TUBULAR NEIGHBORHOODS OF NODAL SETS AND
DIOPHANTINE APPROXIMATION

DMITRY JAKOBSON AND DAN MANGOUBI

ABSTRACT. We give upper and lower bounds on the volume of a tubular neigh-
borhood of the nodal set of an eigenfunction of the Laplacian on a real analytic
closed Riemannian manifold M. As an application we consider the question of
approximating points on M by nodal sets, and explore analogy with approxi-
mation by rational numbers.

1. INTRODUCTION AND MAIN RESULTS

Let (M, g) be a real analytic closed Riemannian manifold. In the first part of
this paper we give upper and lower bounds on the volume of tubular neighborhoods
of nodal sets. Consider the eigenequation

Ag, + M2¢u =0,

where A is the Laplace-Beltrami operator on M. We denote the nodal set {¢,, = 0}
by N,,. Consider the tubular neighborhood of the nodal set

(1.1) Ty ={x e M : dist(z,N,) < d},

where 1§ < ¢. Throughout this paper C, C; denote positive constants which depend
only on the Riemannian metric g. ¢, ¢; denote positive constants which are small.
We prove

Theorem 1.2. Let (M,g) be a real analytic closed Riemannian manifold. Then
there exist C1,Cq > 0 such that

Crué < Vol(T),5) < Caud,
whenever pd < cs.
To put Theorem 1.2 in the right context we recall

Theorem 1.3 ([DF88, Theorem 1.2]). Let (M, g) be a closed real analytic Riemann-
ian manifold. Then, there exist Cy,C5 > 0 such that Cyp < Vol,,_1(N,,) < Csp,
where Vol,,_1 is the (n — 1)-dimensional Hausdorff measure on M.

One can regard this result as a generalization of the fact that the k-th eigen-
function of a Sturm-Liouville problem has (k — 1) zeros. From this perspective, we
see that Theorem 1.2 describes a regularity property of the nodal set. For example,
the upper bound implies that the nodal set does not have too many needles or very
narrow branches, while the lower bound says that the nodal set doesn’t curve too
much.
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The proof of the lower bound in Theorem 1.2 is given in Section 2. It is based on
the behavior of eigenfunctions in the wavelength scale and on the Brunn-Minkowski
inequality.

The proof of the upper bound in Theorem 1.2 is given in Section 6. The idea of
the proof was suggested to the authors by C. Fefferman. It is based on the upper
bound in Theorem 1.3 and a study of the behavior of eigenfunctions in very small
scales compared to the wavelength 1/u. This study is the content of Sections 3, 4
and 5.

In Section 5 of [DF88] Donnelly and Fefferman study the behavior of eigenfunc-
tions in scales comparable to the wavelength 1/u. In this paper we generalize their
study to arbitrarily small scales with respect to the wavelength. To that end, we
follow closely the guidelines in Section 5 of [DF88]. Donnelly and Fefferman showed
that this kind of problems can be treated on real analytic manifolds by consider-
ing polynomials in dimension one, and then applying an induction argument. We
adopt this approach also here and adjust the proof in [DF88] to our case. The
key proposition is Proposition 5.2. Most of its proof goes without change from the
proof of Proposition 5.11 in [DF88]. We had to adjust the arguments from [DF88]
in two main points. The first is the proof of Lemma 3.5 with explicit estimates
of the Hilbert Transform. The second is in the proof of Proposition 4.3 where the
change of variables argument is more subtle than the parallel argument in [DF88].

In Section 8 we consider the special case where dim(M) = 2. We show that the
lower bound is true for any smooth surface and the upper bound is true for any
smooth surface which satisfies Yau’s conjecture.

In the second part of the paper we make an attempt to look simultaneously on
the ensemble of nodal sets which belong to different eigenvalues. Consider first a
simple example: Eigenfunctions on M = [0, 7] with the standard metric and (say)
with Dirichlet boundary conditions. Then

pr =k, ¢p(x) =sin(kz), Ny = {7;] :0<5 < k}

Accordingly, the set N is 7/(2k)-dense in M. Interestingly, a similar result holds
on any smooth Riemannian manifold (see e.g. [Brii78]):

Proposition 1.4. There exists C > 0 (which depends only on M, g) such that

Bz, C/p) NN (¢u) # 0
for any x € M and p > 0.

Here B(xz,r) denotes the ball of radius r centered at « € M. Thus N, is C/pu-
dense in M.

To study the rate of approximation by N, as p — oo in more detail, consider
again the case of M = [0, 7] where approximating by points in N}, is equivalent
(after rescaling by 7) to approximating by rationals with denominator k. It is
well-known (see e.g. [Khi97]) that the distance from any = € [0,1] to the m-th
convergent of its continued fraction expansion p,, /g, is O(1/¢?,). However, the
denominator ¢, of the m-th continued fraction grows exponentially in m for « ¢ Q
([Khi97]).

Denote by ||z|| the distance from z € R to the nearest integer. The following
proposition can be found in [Khi97] and is proved by an application of the Borel-
Cantelli Lemma.
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Proposition 1.5. If Zq ¥(q) converges, then for Lebesque-almost all x, there exist
only finitely many q such that ||qx|| < ¥(q).

Taking 1(q) = C/q'*¢ in Proposition 1.5 we conclude that
Corollary 1.6. Given C,e > 0, for Lebesque-almost all x € [0,1] the inequality

|z —p/ql < C/g*+*

has finitely many integer solutions (p,q).

Equivalently, almost all x € M = [0, ] cannot be approximated by points in Ny
to within C/k**¢ infinitely often. We prove an analogous statement for any real
analytic manifold M.

To characterize the rate of approximation by nodal sets, we make the following
definition:

Definition 1.7. Given b > 0 (exponent), and C > 0 (constant), let M (b, C) be the
set of all x € M such that there exists an infinite sequence of eigenvalues p; — oo
for which

C
B <x Mi) AN (S,,) £ 0.

For example, Proposition 1.4 implies that M (1,C) = M for some C > 0. Also,
Corollary 1.6 implies that for M = [0, 7], we have Vol(M (2 +¢,C)) =0 VC,e > 0.
We prove

Theorem 1.8. Let (M, g) be a closed real analytic Riemannian manifold of dimen-
sion n. Then for any C > 0,e > 0,

Vol(M(n+1+4¢,C)) =0.

The proof consists of Theorem 1.2, the Borel-Cantelli Lemma and Weyl’s as-
ymptotics of eigenvalues.

1.1. A Reader’s Guide. In Section 2 we prove the lower bound in Theorem 1.2.
It is independent of the other sections. Section 6 gives the line of proof of the upper
bound in Theorem 1.2. On a first reading one may start with this section and then
move to section 5. Section 5 is a study of eigenfunctions in small scales. It is based
on the study of holomorphic functions in Section 3 and Section 4. In Section 7 we
combine the upper bound in Theorem 1.2 with Weyl’s Law and the Borel-Cantelli
Lemma in order to establish Theorem 1.8. In Section 8 we discuss Theorem 1.2 for
smooth surfaces. In Section 9 we discuss possible extensions of the approximation
result.
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2. PROOF OF THE LOWER BOUND IN THEOREM 1.2

Given a ball B C M, let Bt := {¢, > 0} N B and B~ := {¢,, < 0} N B. The
following proposition is proved in [DF88, pp. 164-165].

Proposition 2.1. There ezists a finite collection of balls B; = B(x;,r) centered at
x; of radius r = C1/p which satisfy

(1) ¢/L(Ii) = 07

(ii) their doubles 2B; = B(x;,2r) are pairwise disjoint,
(i)
Vol(B;")
Vol(B;")
(iv) >, Vol(B;) > Cy Vol(M).

Oy < < Cy,

Proposition 2.2. Let B(x,r) be one of the balls described above. Then we have
Vol(T, s N2B) > Csr™ =18, whenever ud < cg.

Proof. Let (BT)s be a d-neighborhood of BT, and similarly for (B~ )s. Since
T,sN2B D (BT)sN(B7)s, it is clear that

Vol(T), s N 2B) > Vol(B™)s + Vol(B™)s — Vol(B(xz,r + 0)) .

Assume first that the metric g is flat on 2B. By the Brunn-Minkowski Inequal-
ity [Fed69, §3.2.41] we know

Vol(BT)s > Vol(BT) + nwl/"§ Vol(BT)1 =1/ |
where w,, is the volume of the n-dimensional unit ball. We have the same inequality
for (B™)s. Set Vol(B™) = aVol(B), and Vol(B~) = (1 — a) Vol(B). We have
(2.3) Vol(T,, s N2B) > Vol(B) — Vol(B(z,r + 9))+

nwl/™§ Vol(B) 1/ (alfl/" +(1- 04)171/”) >

W (r™ = (1 +6)™) + nw,r" 16 (al_l/" +(1- a)l_l/”) )
At this point one observes that when « is bounded away from 0 and 1 we have

a=m 4 (1 —a)'"Y" > 14 ¢g. So, if we take §/r = C'ud small enough then the
last expression in (2.3) is positive and we obtain

Vol(T,,s N2B) > conwpr™ 18 .
Finally, since the metric g is comparable to a flat metric on a small ball, we have

a similar inequality also for g. U]

To conclude the proof of the lower bound in Theorem 1.2 we observe that due to
Proposition 2.1 (iv) the number of balls in Proposition 2.1 is > cu™. So, Vol(T), s) >

ed /e ut = cud .
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3. HOLOMORPHIC FUNCTIONS IN SMALL SCALES - DIMENSION 1

The next three sections are a preparation for Section 6. The reader may prefer to
begin in Section 6 and come back here when necessary. In this section we describe
the behavior of holomorphic functions of one variable in small scales. The proofs
in this section follow closely the proofs in section 5 of [DF88]. We will omit the
proofs when they are identical to the proofs in [DF88].

We denote by B, C C the disk |z| < r. Suppose F is holomorphic on Bs and
satisfies the following growth assumption:

(3.1) sup |F| < |F(0)|e“ 1+ .
B2

Let I C R denote the interval [—1,1]. Let § > 0 be small enough. We decompose

I into disjoint subintervals of sizes C26 < |I,| < C36. We call I,, a tame interval if
|F ()]

|F(y)]

Otherwise, I, is called a wild interval. Given x € I, we denote by I, the subinterval

to which z belongs (I, is defined outside a set of measure 0). The main proposition
of this section is

< CyVx,yel,.

Proposition 3.2. Assume F' satisfies (3.1). Then
(a) There ezist at most Csp wild intervals.
(b) There exists a set E C I of measure |E| < Coud such that for allx € I\ E
we have
L F@L
04 AV[I |F|

where I, is the subinterval of I which contains x. E may depend on F.

The point of part (a) is that the number of wild intervals stays bounded as § — 0.
Part (b) is an immediate corollary of part (a).

Proposition 3.2 generalizes Proposition 5.1 from [DF88]. The main new point
here is the introduction of the parameter ¢ of the subdivision, while in [DF88] the
size of the subdivision is taken to be comparable to 1/u. A minor technical differ-
ence is that here we also allow subdivisions with non-fixed size of the subintervals.
This will serve us in the change of variable argument in the proof of Proposition 4.3.

The first step we make is a reduction to polynomials. It is shown in Section 5
of [DF88|

Lemma 3.3 ([DF88, Lemma 5.2]). F' has at most Cru zeroes in Bs.

Let P(2) := []ja<2,7(a)=0(? — @). P is a polynomial of degree d < Crp. Let
f(z) =log|P(z)|. The next lemma shows that we can assume F'(z) = P(z).

Lemma 3.4 ([DF88, Lemma 5.3]). For all x,y € I, we have
[log [ F'(z)| —log |[F(y)I| < [f(x) = f(y)| + Cspd .
We now turn to bound from above |f(z) — f(y)|.

Lemma 3.5. There exists a set E C R of measure |E| < Coud such that |f'(x)| <
c10/6 for allx € R\ E.
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Proof. This follows from the properties of the Hilbert Transform. We imitate the
proof of Lemma 5.4 in [DF88] with a little more details.

We recall the definition and some basic properties of the Hilbert Transform. Let
u € L*(R). Let sgn be the sign function on R. Let F be the Fourier Transform on
L?(R). Define the Hilbert Transform Hu by

F(Hu) = %sgn - F(u) .

From this definition it is clear that H is a bounded operator on L?(R). Observe

that
Fla) = za:% (xioj .

We may assume Vo, Sa < 0. Consider first the case where Vo, o ¢ R. Let
¢a(z) = =S(1/(z—0)), and ¢ = 3", ga- Then, ¢ € L'(R)NL?*(R) and by Theorem 3
in I11.2.3 of [Ste70] Hq = f’. By observing that sgn’ = 26, and by basic properties
of the Fourier Transform one sees that if u € L?(R) has a compact support and

T & Supp u, then
_ [ uy)
(o) = [ 2 ay

(See also exc. 1.9 in [GS94] and Theorem 5 in IT1.3.3 of [Ste70]). Thus, by Theorem 3
in L5 of [Ste93] the Hilbert Transform is of weak type (1,1). We get

(3.6) {1f'] > c10/0}| < Cridllqlli < Crapd .

Finally, we move to the case where Jo € R. Define g.(x) := f'(z —ie). A
small calculation shows that g. — f’ in measure as ¢ — 0. Since we can apply the
considerations above to g. we conclude that (3.6) is true also in this case.

We call I, a bad interval of type I if I, C E. We denote the set of all bad
intervals of type I by B;. From Lemma 3.5 we know

Lemma 3.7. #B; < Cysp.

We call I, a bad interval of type II if I, or one of its adjacent subintervals
contains Ra for some «, or I, is one of the two extreme subintervals. We denote
by I the union of the subinterval I, with its two adjacent subintervals. We denote
the set of all bad subintervals of type II by Bs. It is clear that

Lemma 3.8. #Bs < Cyp.

We call I, a bad interval of type I if [, [f"(x)| dz > c10/6. We denote the set
of all bad intervals of type III by Bs.

Lemma 3.9. #B3 < Cy5u.

Proof. We observe that
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Hence,
1
1! d < / - d <
> [ira@ias ¥ N[ —pdes
v,I, By " v v,1,¢By o v
1 1
——dzr < / ——dx < Clgu/é.
I L ) =

On the other hand
3 / F@lds> Y / F"(@)] de > cro#t(Bs \ Ba)/5 .

v,I1,ZB> v,I, €B3\ B>
Together, we get that #(Bs \ B2) < Ciru . Since #(Bz) < Cyap, we also obtain
#(B3) < Cisp. 0

1, is called good if it is not in B; U By U Bg.
Lemma 3.10. If I, is a good interval we have

sup |f(x) — f(y)] < ci6 -

z,yel,

Proof. Since I, € By, there exists ¢, € I,, such that |f'(x,)| < ¢10/6 . Since I, € B3
sup |f'(x) = f'(y)| < c10/0 .

z,y€l,

Together, we get that sup; [f'(z)| < 2c10/0 . This gives that sup, ¢, [f(7) —
fWl < e -

This completes the proof of Proposition 3.2.

4. HOLOMORPHIC FUNCTIONS IN SMALL SCALES - DIMENSION n > 1

In this section we continue the study of holomorphic functions. We prove an ana-
log of Proposition 3.2 in dimension n > 1. We adjust the proof of Proposition 5.11
in [DF8§].

Let F' be a holomorphic function on the polydisk Bs x ... x B3 C C". Let
Q = I". Assume F satisfies

(4.1) sup |[F| < \F(0)|ecl“ .
By

Subdivide @ into subcubes @, of sides C20 < I, < C30.
The following proposition follows from Proposition 3.2 by induction in the same
way as Proposition 5.9 follows from Proposition 5.1 in section 5 of [DF88].

Proposition 4.2. Let F satisfy (4.1) and F > 0 on Q. Assume that F =1 on
each of the hyperplanes z; = 0. There exists a set E C Q of measure |E| < Cyqud
such that
oy < F@)
AVQmF

where Q is the subcube containing x (Q, is defined outside a set of measure 0).

SCG VLUEQ\E,

We now remove the technical assumption in proposition 4.2. The main proposi-
tion of this section is
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Proposition 4.3. Let F satisfy (4.1) and F > 0 on Q. There exists a cube R C Q
independent of F' with the following property: Suppose ud < c7. We subdivide R
into subcubes R, of sides Cgd < I, < Cyd. Then, there exists a subset E C R of
measure |E| < Cyopd such that

F(x)
Avpg,

where R, is the subcube containing x.

Cs < SC'G Ve e Q\E,

We set R in the same way as in [DF88]:

Lemma 4.4 ([DF88, Lemma 5.10]). There exists a map W : R® — R" with the
following properties:
(1) W is a polynomial map.
(2) W) ce.
(3) W maps the hyperplanes x; = 0 to 0.
(4) W is a local diffeomorphism outside the hyperplanes x; = 0.

Let U C @ be an open set which is mapped diffeomorphically onto W(U) and
has a positive distance from any hyperplane x; = 0. Let R C W(U) C W(Q) C Q
be a cube. We show that R satisfies the property stated in Proposition 4.3.

We begin with the following: Given a subdivision D of () and a subset A C @,
we say that A is adapted to D, if A is contained in one of the subcubes of D. The
next lemma is valid when C;; < Cs.

Lemma 4.5. There exist a finite number of subdivisions D; of Q into cubes @, of
sides Cy0 < I, < C36 such that every set of diameter < C116 is adapted to at least
one of the D;’s.

We can now finish the proof of Proposition 4.3. We may assume that F(0) = 1
The function ' = F o W satisfies the conditions of Proposition 4.2. So, given
any of the subdivisions D; of Lemma 4.5 we can find an exceptional set B; C Q
corresponding to F. Let E = U, E;.

Call Q, a bad subcube if |E N Q,|/|Q,| > 0. Let B be the union of all bad
subcubes Q,. Finally, set E =W ((EUB)NU).

Lemma 4.6. |E| < Ciaud.

Proof of Lemma. We estimate |B|:

Cispd > |E| >3 Y |ENQ.| >
bad @.’s
37" yo#(bad Q,78)|Q,| > C146"#(bad Q,’s).

Henc~e7 the number of bad Q,’s is < C151/0" ! and their total volume is < Cjgud.
So |[EUB| < Cy7pd. Since the Jacobian of the map W is bounded on U we conclude
that |E| < Cisud. U]

Let R, be a subcube. Look at R, = W~ Y(R,). Since W~ has a bounded
Jacobian, and we may assume Cgy < Co, R, is a set of diameter < 0116 Let D;
be one of the subdivisions of Q from Lemma 4.5 which is adapted to Ra. Ro C Q,
for some v.
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It follows from Proposition 4.2 that ﬁ'(yl)/ﬁ(yg) < Cho Yyl, Yo € QV\E. Hence,
if we let z9 € R, \ F and yo = W~ 1(zg), then yo € R, \ (F'U B) and we obtain

1
(4.7) Avg F = F(z)dx > — F(z) dx =
o E =R S Bal Jre ')
1 - Ca ~
BT Yy y > F(yo)|Jw| dy =
|Ral JRo\E ) |Ral JRo\E o)lwl
R, \FE
C2o| |R\| | F(zg) > Ca1 F(x0).

The last inequality is true, since Ry C Q,, @, is not bad and |Ry|/|Q.| > Cas.
On the other hand,

(4.8) Avg F = / ) dx = Y)|JIw| dy <
[Ral |R |
1
= F(y)\le dy <
| Ral
C
T%'Q ol s y) dy < CagAvg, F < CosF(yo) = CosF(x0).
Inequalities (4.7) and (4.8) complete the proof of Proposition 4.3. U

5. EIGENFUNCTIONS IN SMALL SCALES ON REAL ANALYTIC MANIFOLDS

Let ¢,, be an eigenfunction. Let V be a small open set in which the metric g can
be developed in power series. We identify V with a ball B(0, pg) C R™.

It is proved in Section 7 of [DF88] that Proposition 4.3 and the growth property
of eigenfunctions imply

Proposition 5.1. There exists a cube R C V' with the following property: Suppose
wo < c1. We subdivide R into cubes R, of sides Cod < I < C36. There ezists a
subset E C R of measure |E| < Cyqud such that

o< 2@ o e R\ B
= Avg, 92

Here, R, denotes the subcube which contains x (defined outside a set of measure 0).

We need a slightly different version of this proposition. We say that R, touches
Rg if they have at least one vertex in common. Each cube R, touches at most 3"
cubes. Let us denote by R the cube R, together with the 3" — 1 cubes which
touch R,. There exist 3" subdivisions D; of R such that each subcube of D; is
equal to R} for some . Let E be the union of all the sets E; corresponding to
the subdivision D; according to Proposition 5.1. |E| < C7ud. These considerations
prove the following version of Proposition 5.1.

Proposition 5.2. There exists a cube R C V' with the following property: Suppose
wo < c1. We subdivide R into cubes R, of sides Cgd < lo, < Cgd. There exists a
subset E C R of measure |E| < Cioud such that

¢u($>2
Cy< 2 _-_<(Cq VxeR\E.
S_AVR; I2 - 6 \
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For later reference we divide the subcubes R, into good and bad. We show
that in the vicinity of good subcubes we have a bounded L?-growth, and that the
proportion of bad cubes is < cud.

Definition 5.3. We say that R, is good if |E N Ry|/|Ra| < 0.9. Otherwise, R, is
called bad.

Lemma 5.4. Good subcubes R, satisfy
(5.5) / ¢2 dx > Cpy qsi dx

Proof. By Proposition 5.2

/ d)z(a:) dz > / qﬁi(x) dx > C’5/ AVRZ@QL dx =
Ro\E Ra \E

|Ra \ E|
Cs——5— 7] ¢ $20~1C5|R* / ¢ $2011/12;¢Z(x)d$

Lemma 5.6. The number of bad subcubes is < C’lgu/dnfl.
Proof.

Ciopd > |E| >37" Y |[EN R, >
bad R.’s
0.94(bad Ra’s)|Ra| > 0.9CT6"#(bad Ry’s).
O

6. PROOF OF THE UPPER BOUND IN THEOREM 1.2

In this section we estimate from above the volume of a tubular neighborhood of
the nodal set. The proof is based on the study of eigenfunctions in small scale in
Section 5.

Let V = {V4} be a covering of M by small open sets. Let Ry C V} be a cube
preferred by Proposition 5.2. The next lemma shows that it is enough to estimate
the volume of T}, 5 in preferred cubes.

Lemma 6.1. There exists a covering V = {Vi} on M with the following properties
(a) V is a finite covering.
(b) the metric g can be developed in power series in each chart V.
(¢) M = UgRy, for some choice of cubes Ry, C Vi, preferred by Proposition 5.2.

We defer the proof of this Lemma to Section 6.1.
Now, let R C V be a preferred cube. We denote by R, its subcubes. The side
of Ry is C10 < 1y < C99.

Definition 6.2. We call R, a nodal cube if N, N Ry # 0.

Let us denote the set of nodal subcubes R, by Nod. R} denotes the union of
R, with its 3" — 1 neighbors.

Lemma 6.3. T}, .,5 € Ur,_eNod 2}, -

It remains to estimate the number of nodal cubes.
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Lemma 6.4. The number of good nodal cubes is < CyqVol,,_1(N,,)/6" 1.

Proof. Let R, be a good nodal cube. It is proved in pp. 181-182 of [DF88] that
the growth assumption (5.5) implies
(6.5) Vol, (N, NRY) > Cso™ ' .

Another proof of this fact follows from Theorem 4.1 in [Man07].
Summing up (6.5) over all good nodal cubes we arrive at

(6.6) 3" Vol,_1(N,) > Vol,_1(N, N Ry) >

Z Vol,,_1 (N, N RY) > Cs#(good nodal R,’s)é™ ' .
good nodal Rr,’s

0O

Proof of Theorem 1.2. By Lemma 5.6 we know that the number of bad nodal cubes
is < Cepu /0"~ 1. By Lemma 6.4 and Theorem 1.3 the number of good nodal cubes
is < Cypu/d"~ L. Together, we get that the number of nodal cubes is < Cgu /6" 1.
By Lemma 6.3

VOI(Tﬂyg) < Cg#(NOd)(Sn < C101U/5 .

O

6.1. Proof of Lemma 6.1. The following lemma is clear by compactness of M.

Lemma 6.7. There exists pg > 0 such that for all p, the metric g can be developed
in power series in B(p, po)-

Let p1 = po/C with C large enough.
Lemma 6.8. Every ball B(p, p1) contains a preferred cube R which contains p.

Proof. We identify B(p, p) with the Euclidean ball B(0, p) by working in geodesic
coordinates. Suppose that the point g € R C B(0,po). Let 1 € B(0, pg) with
|z1| = |zo| =: . We can construct a preferred cube R’ C B(0, pg) which contains
x1 by using an orthogonal transformation in B(0, po).

Now, given p, let ¢ be any point on M such that dist(p,q) = r. The geodesic
ball B(q,po) contains a preferred cube Ry which contains p. Take a cube R in
Ry N B(p, p1) which contains p. U

Proof of Lemma 6.1. By lemma 6.8 we can cover M by preferred cubes. Then by
compactness of M we can extract a finite covering by preferred cubes. ]

7. APPROXIMATION BY NODAL SETS

Proof of Theorem 1.8. The proof proceeds similarly to the proof of Corollary 1.6.
Fix C,e > 0. Let Ty s be the tubular neighborhood of N(¢y) of radius &, =
C/ut1e. By Theorem 1.2 Vol(Ty 5,) < C/pu} ™. We conclude that

(7.1) > Vol (Trs,) <CY "5
k k

By Weyl’'s Law [Wey12, Hor68] we know that
HE < Ckl/n
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Hence

> Vol (Trs,) <C Y K17e/m
k k

is finite. So, by the Borel-Cantelli Lemma (see e.g. [Fel68]) we obtain

VOl(ﬁjzl U?;] Tk,(sk) =0.

8. DIMENSION TWO

Theorem 8.1. Let (X, g) be a smooth (i.e. C*) closed Riemannian surface. Then
there exist C1,Cq > 0 such that

C1pd < Vol(T), 5) < Cylength(N,)6 .

In particular, Theorem 1.2 is true for surfaces which satisfy Yau’s conjecture.
We recall from [DF90] that for any smooth surface length(N,,) < Cs 1372, Hence,
if we modify the proof of Theorem 1.8 according to Theorem 8.1 we obtain

Proposition 8.2. Let (X,g) be a closed compact surface with a smooth metric g.
Then we have Vol(M(7/2+¢,C)) =0 for all C,e > 0.

8.1. Lower Bound in Theorem 8.1. This is basically Briining’s argument. We
can cover a fixed portion of ¥ with pairwise disjoint balls B; = B(z;,r) of radius
r = ¢/p and such that ¢,(xz;) = 0. The set N, N B(z;,r) is of length > r.
Moreover, in local coordinates it has a projection of length > cr on one of the axes.
This implies that T}, s N B(z;,r) has area > ¢rd. Summing up over all the balls B;
we obtain

Vol(T,.5) > e cca0/ 1 = caud .

8.2. Upper Bound in Theorem 8.1- First Proof. Let an eigenfunction ¢,
have nodal domains Q1, ..., Q). Given 9Q; C Ny, let L;(t) denote the interior
parallel of 0§, at the distance ¢ inside £2;. It is clear that

N 5
(8.3) area(A,) = Z/ length(L;(t)) dt.
= Je=0
The following inequality can be found in [Sav01, Proposition A.1l.iv]:

(8.4) length(L;(t)) < length(99;) + R(£;) max {/ KT —2mx(Q;), 0} :
Q;

Here K denotes the positive part of the Gauss curvature, x(€;) is proportional
to the number m; = m;(p) of connected components of 9Q;, and R(£2;) denotes
the inner radius of €2;. We substitute (8.4) into (8.3) and sum over 1 < j < N. By
Proposition 1.4 we know that R(2;) < C/u. We get the estimate

N(p)

ClyKt 4nC
< 2-length(N,) + L\Z +7; ij(,u)

(8.5) area(A4,)

Jj=1
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As p1j = p — o0, the second term goes to zero. It remains to estimate the third
term. One can construct a connected graph on M whose edges will include all arcs
of NV,,, and show using Euler’s formula that

N
> m; <2N+g-1),
j=1
where g denotes the genus of the surface M. Also, by Courant’s nodal domain
theorem
N =N(u) <k+1

We recall that by [Wey12, Hor68] in dimension two g = Cvk, hence N(uz) <
Cuz. Tt follows that the third term in the right-hand side of (8.5) is less than
Cu. Substituting everything back into (8.5) and recalling that length(N,) > Cu
(see [Brii78]) we get the desired estimate. U]

8.3. Upper Bound in Theorem 8.1- Second Proof. This proof was commu-
nicated by M. Sodin and I. Polterovich.

It suffices to give a proof for the neighborhood of N, of size §/3. We cover M
with cubes of side C§ (large cubes), as well as by cubes of side C§/3 (small cubes).
One can easily arrange that each cube intersects a bounded number of other cubes.
For every small cube, there exists a unique concentric large cube whose side is three
times larger. To estimate the area of T}, 5, it suffices to estimate the volume of the
union Bj of all small cubes which intersect the nodal set N,,. Indeed, if z € T}, 5,
then N, intersects either the small cube containing x, or one of the 8 neighboring
small cubes, so the volume of T}, 5 is at most 9 - vol(B;).

We distinguish several cases

i) NV, intersects a small cube @, but any connected component of N, N Q
doesn’t intersect the boundary of the big concentric cube @’.

ii) N, intersects a small cube @, and there exists a connected component of
N, N Q that intersects the boundary of the big concentric cube Q’.

In case (i) there is at least one nodal domain contained in @’, so by the Faber-
Krahn Inequality (see [EK96, Ch. 7, Th. 1]) we get that the area of this nodal
domain is > C/u?. By the Isoperimetric Inequality, the length of NV, N Q' is at
least C'/u > C6.

In case (ii), the length of AV; N Q' is at least 6/3.

Hence, we conclude that the number of )’ for which @ satisfies case (i) or case (ii)
is < length(NV,,)/d. Accordingly, the sum of the areas of those cubes is

(8.6) < length(N,,)/§ - 6 < C'length(N,,)d.

9. DISCUSSION
For a given M it seems interesting to find
E(M) :=sup{b: vol(M(b,C)) >0 for some C > 0}.

Theorem 1.8 implies that on real-analytic n-dimensional manifolds, E(M) < n+ 1.
In dimension one, it follows from the theory of continued fractions that E(M) = 2
for M = [0, 7]. In fact, M(2,7) = M while Vol(M (2 +¢,C)) =0 Ve > 0.
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The same result likely holds for separable systems.! In such systems one can
separate variables and choose a basis of eigenfunctions that (in appropriate coor-
dinates) have the form ¢(zq,...,z,) = [[¥;(z;), where ¢; are solutions of 2nd
order differential equations. Accordingly, N(¢) forms a “grid” of hypersurfaces
determined by zeros of 1;-s, and approximation by N (¢) reduces to a series of
one-dimensional problems.

As a model example we consider an n-dimensional cube

n
M) = I 10.7/a;),
j=1
with Dirichlet boundary conditions, where for simplicity we assume {05? i_q are
2

linearly independent over Q. Then the eigenvalues have the form 2?21 aj m? (where

m; € N) and are simple, while the corresponding eigenfunctions have the form

(M, M T,y ) = H sin(m;o;z;).
j:m]‘}/‘o

Proposition 9.1. E(M(n)) =2 for all n.

Proof of Proposition 9.1.

We first make a change of variables y; = ma;z;. This change of variables will
only affect constants in the rate of approximation by nodal sets; it won’t affect the
exponent. In the rescaled coordinates, nodal sets have the form

(9.2) N(d)(ml, R ,mn)) = Uj;mﬂeo.Aj,
where A; :={(y1,...,yn) 1 y; = kj/m;, 0<k; <m;}. We first show that
Claim 9.3. E(M(n)) > 2.

Proof. Let (y1,...,Yn) € M be an arbitrary point on M; we have 0 < y; < 1. We
can assume without loss of generality that y; ¢ Q,V1 < j < n, since the set of such
points has the full measure. Consider next the continued fraction expansion of its
first (say) coordinate,
y1 = [0;a1,aq,...],

where we use the notation of [Khi97]. Let px/qr, k= 1,2,... be the corresponding
continued fractions. Then the points (px/qk,y2,---,yn) € N(P(qx,0,...,0)), and
the Claim follows from the well-known inequality [Khi97]

ly1 — pi/ak| < 1/4;.

‘We next show that
Claim 9.4. E(M(n)) < 2.

Proof. Tt suffices to show that Vol(M (2 +¢,C)) = 0 for all C;e > 0. Let y =
(Y1, Yn) € M(2+4¢,C). As before, we may assume that y; ¢ Q. We know that
there exists a sequence of eigenvalues iy — oo such that d(y, N (¢, )) < C/uite.
Since all distances on [0, 1] are equivalent, we may define d(x,y) = maxi<;<y, |z, —
yjl-

1Examples include surfaces of revolution, Liouville tori and quantum completely integrable
systems [TZ02].
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In view of (9.2), it follows that for some 1 < j < n (say, for j = 1), there exists a
sequence of integers g,k = 1,2, ..., such that g — oo and |y1 — pr/qx| < C’/q,%JrE
for some 0 < pr < gx. The Claim now follows from Corollary 1.6. This also finishes

the proof of Proposition 9.1. ]

For manifolds with ergodic geodesic flows (e.g. in negative curvature), eigen-
function behavior has been studied using random wave model [Ber77]. In addition,
percolation model [BS02] has been used to study the statistics of nodal domains in
chaotic systems. 2

In the opinion of the authors, it would be difficult to use these models directly to
predict the “best possible” rate of approximation by nodal sets. The reason is that
these models describe a single eigenfunction on a scale of C'/u (several wavelengths).
However (as shown by the example of M = [0,7]) for a given € M the values
of p giving the best approximation of by N(¢,) can grow exponentially. It thus
seems difficult to take into account simultaneous behavior of all eigenfunctions in
such a large energy range. However, one can probably expect that E(M) > 2 for
such manifolds (in contrast to the integrable case), due to irregularity of nodal lines
for such systems.

It also seems interesting to study “level sets” M (b) for the approximation expo-
nent b, e.g. defined by

M(b) := UcM (b, C) \ (Uacy Ue M(a,C)).

Remark 9.5. It should follow from the results of [JL99] that the conclusion of
Theorem 1.8 should also hold for level sets of eigenfunctions (since the level set of
an eigenfunction is a nodal set of a linear combination of that eigenfunction with

a constant eigenfunction). It seems interesting to determine which level sets are
C/p-dense (like nodal sets).
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