ON A CLASS OF HAMILTONIAN FIBER BUNDLES
JAREK KEDRA, ANNA SZCZEPKOWSKA, AND ALEKSY TRALLE

ABSTRACT. We study an interesting class of hamiltonian fiber
bundles whose fibers are compact homogeneous symplectic man-
ifolds. This construction establishes relation between the coho-
mology of the classifying space BHam(K/V,w) and the image of
the Matsushima’s homomorphism in the cohomology of lattices in
semisimple Lie groups of non-compact type.

1. INTRODUCTION

1.1. Symplectic structures on locally homogeneous spaces. This

work is devoted to study of an interesting class of hamiltonian fiber
bundles. A fiber bundle

(M,w) — P — B

is called symplectic, if its fiber is a symplectic manifold (M, w), and its
structural group is the group of symplectomorphisms Symp(M,w). A
symplectic fiber bundle is hamiltonian, if the structure group reduces
further to the group of hamiltonian symplectomorphisms Ham (M, w).
Total spaces of hamiltonian fiber bundles admit coupling forms, that is,
differential 2-forms ) whose cohomology class restricts to the cohomol-
ogy class [w] of symplectic form on the fiber [LMcD]. Hamiltonian fiber
bundles are a useful tool in studying topology of the group Ham(M, w).
Examples of this approach can be found in [LMcD|, [KMcD].
The aim of this paper is to prove the following results.

Theorem 1. Let G be a noncompact real semisimple connected Lie
group with no complex structure and let K C G be a maximal compact
subgroup. Assume that G is a real form of some complex semisimple
Lie group G¢. Let V. C K be the centralizer of a torus S C K. Then

(i) the manifold K/V admits a K-invariant symplectic structure,
(i1) the manifold G/V admits a G-invariant symplectic structure,
(1ii) for any cocompact lattice T C G the inclusion K/V — T\G/V is

a symplectic embedding and
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(iv) the bundle
KV - T\G/V - T'\G/K
15 Hamiltonian with the structure group K.

The proof of this theorem follows from Theorem 4 and Theorem
8 in subsequent sections. The possibility of constructing symplectic
forms on locally homogeneous complex manifolds was mentioned in

[ABCKT].

1.2. The Matsushima homomorphism and Hamiltonian char-
acteristic classes. We denote Lie algebras corresponding to Lie groups
G, H, ..., by the corresponding Gothic letters g, b, ..... Assume that G
is a real form of a complex semisimple Lie group G¢ and let M C G* be
a maximal compact subgroup containing K. The homogeneous space
M/K is called the dual of the locally symmetric space I'\G/K.

Let us define the Matsushima homomorphism

v:H (M/K;R) — H*(BT).

If a group H acts on a smooth manifold Y, the symbol Q% (Y') denotes
the complex of differential forms on Y which are invariant with respect
the H-action on Y. Tt is well known that QY(G/K) and QM(M/K)
consist of harmonic forms. Therefore

O°(G/K) = H*(g,%), Q"(M/K) = H*(mq, )

where the right-hand side terms denote the relative Lie algebra coho-
mology (here and in the sequel, as an exception, the Lie algebra of
M is denoted by my). One can show that H*(g,¥) = H*(mg,£) (see
|O]). Since M/K is compact, the Hodge theory yields QM (M/K) =
H*(M,R). Hence, one can also identify the cohomology of M /K with
the algebra of G-invariant forms on G/K:

Q% G/K) = H (M/K,R)

Consider the complex Q'(G/K) of T-invariant forms. The projec-
tion G/K — T'\ G/K induces the isomorphism Q'(G/K) = Q(T \
G/K)). Thus, H*(I'\ G/K,R) = H*(Q'(G/K)). Since the elements
of Q¢(G/K) are closed forms, the inclusion QY(G/K) C Q'(G/K) in-
duces a homomorphism v : H*(M/K,R) — H*(I'\ G/K,R). It was
proved in [M] that v is injective in all degrees, and is surjective in de-
grees ¢ < m(g), where m(g) is some constant, explicitly determined in
terms of g. It is proved by Okun in O] that the Matsushima homo-
morphism is induced by a virtual map BI' — M/K. A virtual map is
a map defined on a finite cover.

Theorem 2. Let ¢ : BI' := I'\G/K — BK be the classifying map of
the bundle

K/V —T\G/V —T\G/K.
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Then the image of the induced homomorphism ¢* : H*(BK;R) —
H*(T;R) is equal to the image of the Matsushima homomorphism.

Proof. Since the groups K C M are of equal rank, the inclusion j :
M/K — BK induces the surjection on the real cohomology. Moreover
we have that ¢* = v o j*. U

As we mentioned in Theorem 1, the bundle K/V — I''G/V — BT
is Hamiltonian with the structure group K. Hence the classifying map
BI" — BHam(K/V) factors through BK and it follows from the above
result that the induced homomorphism factors through H*(M/K).
That is, the Hamiltonian characteristic classes are contained in the
image of the Matsushima homomorphism. In some cases the inclusion
is an equality and then we have the following result.

Theorem 3. Assume thalt the map BK — BHam(K/V) induces
a surjection on (rational) cohomology. Let ¢ : BI' = I'\G/K —
BHam(K/V) be the classifying map of the bundle

K/V - T\G/V —- I'\G/K.
Then the image of the induced homomorphism
¢ H*(BHam(K/V);R) — H*(I'; R)

is equal to the image of the Matsusima homomorphism. In other words,
all Matsushima classes are Hamiltonian characteristic classes.

Conjecturally the surjectivity occurs if K is a simple compact group.
For example, it is shown in [KMcD] that the action of SU(n) on gen-
eralized flag manifolds

SUMn)/S(U(ny) x -+ xU(ng)),ny+---+np=n

induces a surjection of the rational cohomology on the classifying space
level. The general case is the subject of our forthcoming paper.

1.3. Hamiltonian characteristic classes from the coupling class.
Recall that the coupling class associated with a Hamiltonian fibration
p: P — Bwith fibre (M, w) is a cohomology class Q € H?(P) that pulls
back to the class of the symplectic form on the fibre and p, Q"+t = 0,
where dim M = 2n, and p! denotes the fiber integration. If p : P =
Mam((mw)) — BHam((M,w)) is the universal Hamiltonian fibration,
then the fibre integrals

o = pQ"F € BHam(M,w)

form an infinite family of universal Hamiltonian characteristic classes.
Consider the Hamiltonian bundle as in Theorem 1

K/V —T\G/V 5 BI.

If H*(BT;R) = 0 then the cohomology class of the symplectic form
on '\G/V constructed in Theorem 1 is the coupling class. That is
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why its top power is nonzero and hence the fibre integral m(QY) for
N = dim G/V is nonzero as well. This proves the nontriviality of the
class ay, for k = dim BT (see Section 6 for details).
Acknowledgment. This work was done when the third named author
was visiting IHES. He is deeply indebted to the Institute for wonderful
working conditions.

2. LOCALLY HOMOGENEOUS COMPLEX MANIFOLDS

Here we describe a general construction of locally homogeneous com-
pact complex manifolds from [GS|. Let G¢ denote a connected complex
semisimple Lie group, and B C G°¢ a parabolic subgroup in it. It is
known that X = G¢/B is a compact homogeneous algebraic manifold.
Let G be a real form of G such that V = G N B is compact. Then,
it can be shown that the G-orbit of 0o = B is a connected open do-
main D = G(o) = G/V C X. Hence, D = G/V is a complex open
homogeneous manifold. Let I' C G be a discrete subgroup such that
N(I)NV = {e}. Then I" acts on D properly and discountinuosly, which
yields a complex structure on the quotient Y = TI'\ D. Let M C G°
denote the maximal compact subgroup in G¢ and let K C G be the
maximal compact subgroup in GG. One can choose M and K in a way
that

M>K>V=GNB.
It is shown in [GS]| that

GNB=KNB=MnB=V.

Also, M acts transitively on G¢/B, which shows that G*/B = M/V.
Let £ denote the Lie algebra of K, and ¢ its complexification. Then
t is a reductive complex subalgebra of the Lie algebra g¢ of G°. It is
shown in |GS| that the Lie subgroup K¢ C G° corresponding to £°, has
the property that

KN B> Z(K°).

Therefore, S = K¢/(K°N B) is a homogeneous Kéhler manifold. The
compact subgroup K acts transitively on S, hence, S can be identified
with K /V. Finally, we have obtained a fiber bundle

KV -GV - G/K

such that both G/V and K/V have complex structures, and all fibers
K/V are complex submanifolds of G/V. Moreover, all such K/V are
Kéahler homogeneous. We can summarize the discussion as follows.

Theorem 4. Let G° be a complex semisimple Lie group, which has
a real form G with no compact components and such that for some
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parabolic subgroup B, GNB =V is compact. If there exists a cocompact
lattice I' C G such that N(I') "'V = {e}, then the fiber bundle

K/V =T\ G/V =T\ G/K (1)

has the following properties

(i) T\ G/V is a closed complex manifold,
(i) K/V is a Kahler homogeneous manifold with respect to the com-

plex structure on the total space G|V,

(15i) the structure group of the bundle is K.

Proof. We have already proved (i) and (ii). It remains to show that
the structure group of the bundle is K. This follows, since one can
interpret the same bundle as associate with the principal bundle

K—-T\G—-T\G/K

with fiber K/V. To show that K acts freely, one uses the fact that I'
acts freely on G/K. Hence, if some element k& € K had fixed point, say
I'g, then vgk = y19. Since I acts freely, v; 'y = e, and, hence, k = e.
This also shows that the K-action has no isotropy. O

3. PRELIMINARIES ON LIE ALGEBRAS AND THEIR ROOT SYSTEMS

Proofs in this article essentially use the Lie algebra techniques. All
necessary information is contained in [OV1], [OV2]. Here we collect
notation and results we use.

Let g be a complex semisimple Lie algebra. We choose a Cartan
subalgebra t C g¢ and denote by A = A(g® t) the root system of g°
with respect to t. Thus, we have a root space decomposition

=to ) g%
aEA
where g are one dimensional root subspaces, and [g%, g°] = g**? if
a+F € A, and [g¥, g°] = 0 otherwise. We say that a subalgebra u C g¢
is a Borel subalgebra, if it is a maximal solvable subalgebra in g°. A
subalgebra b C g€ is called parabolic, if it contains a Borel subalgebra.
In the sequel we use the following description of parabolic subalgebras
in terms of root systems. We say that a subset P C A is closed, if

a,fePa+feN = a+p€P.
By definition, F(t, P) denotes the subalgebra of g¢ of the form

Ft,P)=t®) g
a€P
Choose a system II C A of primitive roots in A. For any subset
M C 11, denote by [M] the minimal closed subsystem in A generated
by M. Let A" denote a subset of positive roots in A. Here and in the
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sequel we choose and fix one of such subsets. We have the following
characterization of parabolic subalgebras in g°.

Theorem 5. [OV2], (Theorem 1.4, Chapter 6). By associating with a
subset M C II the subalgebra P(M) of the form

PM)=te > g
aE[MJUAT
one obtains a one-to-one correspondence between subsets of 11 and a
class of conjugate parabolic subalgebras of g¢. The subalgebra

F(t, [M])
is a reductive Levi subalgebra of P(M).

A real Lie subalgebra algebra g C g° is called a real form of g¢, if
the natural embedding of (real) Lie algebras g C g° can be extended
to an isomorphism of complex Lie algebras g(C) = g ®g C = g°. There
is a one-to-one correspondence between real forms and C-anti-linear
involutive automorphisms o : g¢ — g°. Thus, if g is a real form of g°,

o 2

g=(g°% 0" =id,

that is, g is a set of fixed points of some anti-linear involutive auto-
morphism . This correspondence will be used in the sequel. A root
space decomposition yields a convenient set of vector space generators
of g¢, which we will all the Chevalley generators. Any semisimple Lie
algebra has non-degenerate Killing form, which will be denoted in the
sequel by I in the complex case, and by x in the real case. For any
a € A, one can choose vectors X, € g* and H, € t such that

(i) K(Xa, Xp) = 6a,-5, [Xa, X_o| = Ha,

(i) [Xa X =0, if a # —f, and a+ [ # 0,

(111) [Xa,Xg] = NaﬁXaJrg, if Oé,ﬁ, o+ ﬁ € A, Naﬁ € R.

4. SYMPLECTIC FORMS ON LOCALLY HOMOGENEOUS COMPLEX
MANIFOLDS

Here we want to show that locally homogeneous closed manifold

r\G/v
admits a pseudo-Kéhler structure. By definition, this means that I' \
G/V admits a pseudo-Riemannian metric g such that g(Jv, Jw) =
g(v,w) for all tangent vectors v, w and such that the fundamental form
w determined by w(v,w) = g(v, Jv) is closed. Note that this implies
the symplecticness of w. The following conditions are known to be
equivalent (see [KN]|, Theorem 4.3):

(i) dw =0, and J is integrable,
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(i) V,J = 0 for any tangent vector v, and the Levi-Civitta connection
of the metric g.

Consider the principal bundle
K—-G—-G/K

and the associated bundle (1). We claim that for the given G-invariant
integrable almost complex structure .J there is a G-invariant pseudo-
Riemannian metric g on G/V such that it is preserved by J and V,J =
0 for any v € T(G/V). By invariance, these structures descend onto
['\ G/V, as required.

Recall first general facts about invariant metrics, almost complex
structures and connections on homogeneous spaces which can be found
in [KN] (Prop. 6.2, 6.5, Cor. 3.2 and Theorem 3.3, Chapter 10).
Assume that we are given a reductive homogeneous space G/V with
the reductive decomposition

g=0vdm, [o,m] Cm.
In the sequel we will also assume that V' is connected, which is the case
for V.= BnNG |GS].

(i) There is one-to-one correspondence between G-invariant almost
complex structures and linear operators

J:m—m, J?=—1d,
such that
JIY, X]w = [V, T X ] .
(ii) an almost complex structure .J from (i) is integrable if and only if
[(JX, JY ] — [ X, Y] — J[X, JY ] — J[X, Y] = 0.

(iii) There is a one-to-one correspondence between pseudo-Riemannian
metrics on G/V and a non-degenerate bilinear forms g on m x m
such that

W12, X),Y) + p(X, [2,Y)) = 0
for any X, Y € m and any Z € v.
(iv) There is a one-to-one correspondence between Riemannian con-
nections corresponding to (iii) and bilinear forms
1
AX)Y = §[X, Ym+U(X,Y)
where U : m x m — m is defined by the equation

QU(U(Xv Y)? Z) = M<X7 [Zv Y]m) + M([Za X]m7 Y)

We will derive V,J = 0 from the above data, and our assumptions on
the homogeneous space G/V. Note that since V' is compact, we can
always assume that there is a reductive decomposition

g=v@dm, [o,m C m.
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This is known from [KN]| (Example 2.1, Chapter 10). Use the for-
mula for the covariant derivative V x.J and the Lie derivative £y from
|[McDS]:

(ij)y = (ij)y + Vi X —JVyX.
Since in case of the homogeneous space G/V the corresponding formu-

las involve only left-invariant vector fields generated by vectors X € m,
one concludes that

LxJ =0.
Indeed, X has the flow generated by exptX C G, and J is G-invariant.
Hence the cited formula together with the previous considerations yields

1 1

This gives the following summary.

(VxJ)Y =

Proposition 1. The complex homogeneous space G/V admits an in-
variant pseudo-Kdhler structure whenever there exists a non-degenerate
bilinear form p:m x m — R such that

(i) w([Z,X],Y)+ w(X,[Z,Y]) =0 forall X,Y € m, Z € v;
(i) W(JX,JY) = p(X,Y);
(111) a bilinear form U : m x m — R determined by the equation

2uU(X,Y), Z) = (X, [Z, Y ]w) + p([Z, X]m, V')
satisfies the equality
STV X = IV, X]u + ULIY, X) — JU(Y, X) =0
for any X,Y € m.
Proposition 2. Under the assumptions on G/V, there exists a bilinear

form g : mxm — R satisfying the assumptions of Proposition 1. Hence,
there is a G-invariant pseudo-Kdhler metric on G/V.

Proof. The proof is divided into three steps. We will use the following
formulas and notation.

(i) Recall that K denotes the Killing form of g, and x the Killing

form of g.
(ii) Let o : g — g° denote the antilinear involutive automorphism of
g°.

(iii) Let h, denote the hermitian form on g¢ defined by
hU(A? B) = _IC(Av U(B))
(iv) the following relations hold [OV1, OV2]:

holg = K, K|g = k.
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Step 1. We begin with the proof of the following fact.
Consider the orthogonal decomposition

gC — b @ mC
with respect to h,. Let

=uvodHm

be the orthogonal decomposition with respect to k. Then m, as a real
vector space, is spanned by vectors

X+o(X), Xem
The proof of the latter statement goes as follows. For A € v, 7 =
X 4+ 0(X) € m we have

K(A, Z) = K(A, X + (X)) = ho(A, X + o(X)) =

ho(A, X) + ho(A, 0(X)) = 0

The latter follows, since h,(A,X) = 0 by the choice of m, while
ho(A,0(X)) =0, since h, is hermitian. Indeed,

he(A, (X)) = ho(0(X), 0(A)) =

—K(0(X), A)) = ~K(A, 0(X)) = hy, (A, X).

Here we used also 0(A) = A. Hence

(X 4+0(X),iX +0(iX)g Cm.

Summarizing, we write (m; considered as a real vector space)

m; = (X +0(X),X e m).

Hence, one can define a surjection

p:m‘—my, m Cm,
by the rule

Pe(X)=X+0(X), X e m”.
Now, if ¢ were injective, by dimensional reasons, the only possibility
would be

p(m?) = m.
If this were not the case, p(X) = 0, for X € m°. We will show that
this is impossible. Recall the following facts from [GS| (p.263-265):
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(i) Let € be the maximal compact subalgebra in g, £ its complexifi-
cation, v = gNb, and

gC — EC @ pC
an ad ¢%invariant complement. Let p = p°Ng. Then

g=top
is a Cartan decomposition,

is a compact real form of g¢ which contains v.
(ii) If 0 and 7 denote, the conjugations with respect to g and mg, then

oT = TO,
and € = o7 is an involutive true automorphism of g°.

(iii) € and p© are (+1) and (—1)-eigenspaces of 0,

(iv) Root spaces of g° are contained either in ¢ or in p®, which implies

A= AUA,,
= Z ga
a€A;
=D
a€Ap

(v) Under the choices made,

(") =g7"
(vi) m® =3 cn, 8% where Ay = A\ [M]. The latter follows from the
fact that root space decomposition is orthogonal with respect to
h, form.

We see that the above properties contradict the possibility

o(X,)+ X, =0.
Indeed, if o € Ay, then 6(X,) = X,. But

Xo=0(X,) =07(Xy) =0(X_0).
Applying o to both sides of the above equality, and using involutivity,
one obtains

o(Xa) =X 4.
In the same way, if & € A,, equality 0(X,) = —X, implies

0(Xa) = —X_0.
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Let X = X,, + -+ X,, be in the kernel of ¢, that is o(X) + X = 0.
Then

(0(Xay) + Xay) + -+ (0(Xa,) + Xo,) = 0.
Applying 6 = 70 to the above equation, we get

T(Xm) + H(Xal) +oe At T(Xas) + Q(Xas) = 0.
This is the same as

+X o £ Xg E X o E X, =0

which implies all X,,; being zero.

Step 2 (constructing a pseudo-riemannian metric). Now we
construct a bilinear form g : m x m — R which satisfies the required
properties to determine a pseudo-Kéhler structure on G/V. This fol-
lows from the following statement.

Let there be given decompositions

g=0dm, g°=bPdm
as in Step 1. Suppose there is an R-linear map 1 : m — m° such that

Yo =io01Y, Adsoy =1 oAds, for anys € V.
Consider the real bilinear form

g:mxm—R g(X,Y)=Reh,(¥(X),(Y)).
Then

(i) g is a real part of hermitian form h, = hy o ;
(ii) g is Ad V-invariant;
(iii) the real bilinear operator U : m x m — m determined by the
equation

29(U(X,Y), Z) = 9(X,[2,Y]w) + 9([Z, X]m,Y)
has the property

UJX,Y)=JU(X,Y).
Here is the proof of the statement. Property (i) follows from defini-
tion. To prove (ii), write
9(Ads(X), Ads(Y)) = Rehy (¢ (Ad s(X)), ¥ (Ad 5(Y)))
= Reh, (Ad s(¢(X)), Ad s((Y)))

= Re K (Ad s(¢(X)), o(Ad s(x(Y)))
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= Re K(Ad s(¢(X)), Ad s(o(4(Y)))

= Re K(¢¥(X),0((Y)) = Reho (¥(X), ¥ (Y)) = g(X,Y).
In due course, we used the equality 0 o Ads = Ad s o o, which follows
from the fact that g is the set of fixed points of o, and also the Ad V-
invariance of the Killing form.
To prove (iii), consider the hermitian form A, on the complex vector

space (m,J). Define a real bilinear operator U : m x m — m by the
formula

20, (U(X,Y), Z) = ho(X,[Z,Y]m) + ho([Z, X]m, ).
Note that the non-degeneracy of h, ensures the existence of U, but

the right-hand side is only R-linear, since g is not complex as a Lie
algebra. However, the latter definition yields

2Reho(U(X,Y),Z) = Reho(X,[Z,Y]m) + Reho([Z, X]m, V)

2Im ho(U(X,Y), Z) = Imho (X, [Z,Y |w) + Im by ([Z, X, V).

It follows that U = U, and for U both equalities for real and imaginary
parts, hold. Hence

29(JU(X,Y),Z) = 2Re hy(Y(JU(X,Y),(Z)) =
2Reho (i (U(X,Y),9(Z)) = 2Reih, (Y (U(X,Y)),¥(Z))) =

—2Im he(W(U(X,Y)),p(Z)) = —2Im h, (U(X,Y), Z).
On the other hand,

29(U(JX,Y), Z) = g(JX,[2,Y]m) + 9([Z, T X]m, V) =
2Rehe (P(JX), 912, Y]m) + 2Re ho (Y ([Z, T X]m), (V) =
2Re he (1(X), (2, Y]m)) + 2Re ho (Y(J[Z, X]m, (Y)) =

—2Im he (P(X), ¥ ([Z, Y]m)) = 2Im he (([Z, X]w), ¥ (V) =

—2Im ho(X,[Z,Y]w) — 2Im ho([Z, X]m, ).
Here we used the equality
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(Z, I X |wm=J[Z, X]n

which follows from the invariance of J. Finally,

g(JUX,Y), Z) = g(U(JX,Y), Z).

This proves the statement.
Step 3.Under the conditions of Proposition 2, the complex structure
J :m — m induced by the complex structure on G°/B has the proper-
ties:

(i) it is Ad V-invariant;

(ii) the map 1 : m — m€, (X)) = X + o(X) is ((J,?)-linear;
(iii) » o Ads = Ad ot for any s € V.

Now we prove the statement of Step 3. Define J : m — m by the
formula

J(X +0(X))=iX +o(iX).
Clearly, J? = —id. Also,

DI(X + 0(X)) = (X + o(iX) = iX = (X + o(X)).

Now we want to show that this definition yields the same complex
structure on m which is induced by the complex structure on G/V
inherited from the complex structure on G°/B. Note that the latter is
obtained as follows. Identifying 7,,(G/V') with g/v, and T,(G¢/B) with
g°/b, we see that the latter can be identified with the complements in
the direct sum decompositions

g=0dm, g°=bcdm
Then, if p : g — m denote the projection, one has

J(A) =p(iA), A € m.
Choose the Chevalley generators {X,, a € A} of g°. Recall that

0(Xa) =X o, o€ Aif o is a compact root

and

0(Xa) = —X_,, if a is a noncompact root

Let X, + 0(X,) € m, where X, € m° Note that we have shown
that m = (X, + 0(X,)), and that g° has the compatible root space
decomposition into root spaces belonging either to b, or to m¢. Hence,
if we choose X, + 0(X,) € m, then

J(Xo + 0(Xa)) = p(iXa + io(X,)).
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Hence, writing

A

iXq+io(X,)=B+0(Z)+Z,Beb,Zem"
and

B=Xg + 4 Xo, Z=Xs 4+ Xs, qy € [M], 5; € Ay,
we see that there is only one way to represent iX, + o(X,) as a sum
of B and o(Z) + Z, namely

iXa+i0(X) = X_o+ (0(X,) + X.),
and, moreover, X_, necessarily belongs to b. Assume that a € A; is

noncompact. Then o(X,) = X_,. Then

iXo +io(Xy) =1 Xy +iX o =iX, +0(iX,) + 21X _,.
In the same way, in the compact case,

iXo+0(Xy) =1X, —iX_ o =iXy +0(iX,) — 21X _,.
The latter equalities show that J defined at the beginning of proof,
coincides with the one induced by the complex structure on G°/B. Let
us check that it is Ad V-invariant.
AdsJ(X +0(X)) =Ads(iX +0(iX)) =

Ads(iX) + Adso(iX)) =i Ad s(X) —io(Ad s(X)).
On the other hand

JAds(X +0(X)) =J(Ads(X) + Ad(o(X))) =
J(Ads(X)+o0(Ads(X))) =Ads(iX)+o(iAds(X))) =
i Ads(X) —io(Ad s(X)).
We have used here the fact that o in an involutive antilinear automor-
phism of the Lie algebra g¢, which yielded the possibility of changing

the order in the formulas. Now, we will check (ii). Since V' is connected,
it is sufficient to check (ii) on the Lie algebra level. Let S € v.

adSo (X +0(X)) =[5, X].
YoadS(X +a(X)) =9([S,X]+[S,0(X)] =

D([9, X] + o([S, X]) =[S, X].
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In calculation, we have used o(S) = S for any S € v, as well as the
inclusion

pCb

which implies [0, m¢] C m®. The proof of the statement is complete.
The completion of proof of Proposition 2. By Proposition 1, we need
to construct a bilinear form m x m — R satisfying conditions (i)-(iii).
By Steps 1, and 3, the decomposition g = v & m with m generated by
vectors X + o(X) admits a complex structure J : m — m, which is
Ad V-invariant and which yields the complex structure on G/V inher-
ited from G¢/B. By Step 2, there is a non-degenerate bilinear form
g :m x m — R, which is Ad V-invariant, and satisfies property (iii) of
Proposition 1. It has property (ii) of Proposition 1, since by Step 2,
it is a real part of a hermitian form h,. Property (i) of Proposition 1
is a consequence of Ad V-invariance of g ([KN], Corollary 3.2, Chapter
10).

O

5. KAHLER FIBERS K/V

The aim of this section is a description of all possible fibers K/V in
fiber bundles determined by locally homogeneous complex manifolds.
For convenience of reference, we recall several known facts on homoge-
neous symplectic manifolds and root systems of complex Lie algebras.

Theorem 6. |B| Let either G/U be homogeneous Kdihler, or G be com-
pact, and G/U be symplectic. Then U is compact, connected, and
equal to the centralizer of a torus of G. Conversely, let G be com-
pact semisimple and U be the centralizer of a torus. Then G/U is
homogeneous Kahler and algebraic.

In the sequel we need the following characterization of centralizers
of abelian Lie subalgebras.

Theorem 7. |[OV2| (Theorem 1.3, Chapter 6). Let M C II be any
subset of I1. Then the subalgebra F(t,[M]) is of the form

F(t, [M]) = 34(c)
for some subspace ¢ C g°. Conversely, any subalgebra 34(c), where
¢ C t, is of that form.

Our main result now reads as follows.

Theorem 8. Let K be a compact Lie group which can be embedded as
a mazimal compact subgroup in a semisimple real Lie group G without
compact components, and without complex structure. Let V be any
closed subgroup which is a centralizer of some torus in K. Then

(i) K/V is Kdihler;
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(ii) there exists an associate fiber bundle

K/V —-T\G/V -T\G/K
such that the total space T'\ G/V is symplectic, and the inclusion
of the Kahler fiber K/V is symplectic as well.

Proof. The fiber K/V is Kéhler by Theorem 6. In view of Proposition
2, to prove symplecticness of I' \ G/K, it is sufficient to show that if
V = Zk(S) for some torus S C K, there exists a parabolic subgroup
B in G° such that GN B = V. Note that it is also sufficient to proceed
on the Lie algebra level, and we will do it in the sequel. Let £ be the
Lie algebra of K. Consider its complexification €°. Note that

b = 3e(a) = 0 = jec(a),a° C t.
Therefore, by Theorem 7

b = "T(t’ [M]),
for some Cartan subalgebra chosen as a common subalgebra in £ and
g¢ and being the complexification of some maximal abelian subalgebra
in v. Recall the decomposition A = Ay U A, with respect to the sets
Ag and A, of compact and non-compact roots. Since the algebra v is
compact, we know that

where M, C 1l is a subset of the set of compact primitive roots. Define

PM)=ta Y g*+ Y o

a€[M]e BeATt
By definition, the latter is a parabolic subalgebra. Since

=t Zgo‘,

aEAg
we see that
ENP(M) ="
It follows that
b=¢tNPM).

The latter follows from the obvious inclusion v C 8NP (M), the equality
for complexifications, and dimensional reasons. The latter equality
implies

gNP(M)=tnP(M).
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The latter can be shown as follows. Recall that g is a subalgebra of
fixed points of the involutive anti-linear automorphism of g°. We have
already used the fact that o(X,) = X_, for compact roots «, and
0(X,) = —X_,. Hence, if X € gnNP(M), it is represented as a sum

X =Xo +Xoa,+ 4 Xy + X_a,

where a; must be compact. Thus, necessarily, «; € [Mg, and the proof
follows.

Finally, we want to prove symplecticness of the fiber inclusion. Let
K¢ be a complex Lie subgroup in G¢ corresponding to €. Note that
K acts transitively on K°/K°N B. Hence, there is a diffeomorphism
K/V =2 K¢/K°N B determined by inclusion of K into K¢. Moreover,
the equality v = € N P(M) enables one to get the decomposition

t=0vdn
compatible with the decomposition g = v & m, that is

nCm, J(n) Cn.

Also, h,, restricted to € will produce Kéhler metric on K/V. To do
this, one simply repeats the proof of Proposition 2, taking £ and ¢
instead of g° and g, and P(M) instead of b. The necessary change is
only to work with compact roots instead of all roots. Also, there is one
more small change caused by the fact that €¢ is not always semisimple.
However, it is reductive, and £ and v° have common center, which

means that the argument for n goes through.
O

6. APPLICATIONS TO HAMILTONIAN CHARACTERISTIC CLASSES

Here we present an example of the use of general results obtained in
this article. For any fiber bundle

M P —"- B
we denote by py the fiber integration p, : H*(P) — H*(M) |GuS]. We
begin with the following easy observation.

Proposition 3. Let (M,w) — E — B be a Hamiltonian fibration.
Suppose that

(i) the fibration admits a compatible symplectic form. That is there is
a symplectic form Q on E such that it pulls back to the symplectic
form on each fibre.

(ii) the second Betti number of the base is zero and dim B = 2k

Then the Hamiltonian characteristic class o, € BHam(M,w) is non-
trivial.
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Proof. Let ¢ : B — BHam(M,w) be the classifying map. Since the
second Betti number of the base is zero the cohomology class of the
compatible symplectic form is actually the coupling class. Since it is
symplectic we have that

o B) = [ perthy = [tz

which completes the proof. Il

This observation leads to the following results on the non-vanishing
of certain hamiltonian characteristic classes.

Theorem 9. Let G C G° be a semisimple Lie group which is a real
form of a complex Lie group G¢. Let I' C G be a cocompact lattice
such that H*(T;R) = 0. Let (M,w) = K/V be a closed homogeneous
symplectic manifold, where K C G is a maximal compact subgroup with
HYK;R) =0 and V = BN G, where B C G is a parabolic subgroup.
Then the characteristic class ay € H**(BHam(M,w)) is nontrivial for
2k = dim G — dim K.

Proof. Consider the Hamiltonian fibration (1). It follows from Theo-
rem 1 that the fibration admits a compatible symplectic form. Since
['\G/K = BT we have that the second Betti number of the base is
zero and hence the compatible symplectic form represents the coupling
class. Thus we are in the situation of Proposition 3 and the statement
follows. O

Example 1. To give explicit examples, we refer to the following result
proved in [KaNa|. We use standard notation for types of classical and
exceptional simple Lie groups (JOV1]).

Theorem 10. Let G be a non-compact real simple Lie group and I" be
a discrete subgroup of G with compact quotient space I' \ G. Then the
second Betti number bo(I'\ G) of T'\ G equals zero if the type of G is
Ei, (1 =1,2), B, i =1,2,3, or F}, or if G is classical and satisfies
the following conditions
(i) SL(l+1,R),l > 6,
(ii) SU*(2l),1 > 6,
(iii) SU(p,q),p+q=1+1,% >p>5,
(iv) SO(p,q),p+q =20+ 1, min(, 2E-2) > 2,
(v) SOp,q),p+q=2l,5>5>2
(vi) SO*(21),l > 7
(vii) Sp(l,R),1 > 7
(viit) Sp(p,q),p+q= l,% >p=3.
Now, assume that G/K is not Hermitian symmetric. Then K is

semisimple, and we have b;(K) = 0 for i < 3. The long cohomology
exact sequence for the fibration K — I'\ G — I'\ G/ K yields vanishing
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of the second cohomology H*(I'\ G/K) = 0. Comparing the list of G
for which H?(T'\ G) = 0 with the classification of all non-compact real
forms of complex simple Lie algebras g° [OV1] (Table 9), we find that
all types of simple real Lie groups G from Kanuyuki-Nagano theorem
except (ii) and (vii) can be realized by a fibration (1). Moreover, look-
ing through this table, one can list all semisimple K which may occur.
These are

(i) G=SL(l+1,R),K = SO(l+ 1),
(1) SO(p,q), K = SO(p) x SO(q)
(iti) SP(p,q), K = Sp(p) x Sp(q)

(iv) G = E§, K = Sp(4

() G=E2 K = SU(
(vi) G = E}, K = SU(
(i) G = B2, K = SU(

(viii) G = F!, K = SU(

x SU(6)

2

)
2)
8)
2) X SO(12)
2) x Sp(3).

Example 2. Let

(M,w) — Myam — BHam(M, w)

be the universal Hamiltonian fibration. Define the characteristic classes
oy € H*(BHam(M,w)) by

ay, 1= pl(Q"TF),
Let (M,w) = SO(21)/U(l). Applying theorem 9 to the fibration
(M,w) — I'\SO(k,2l)/SO(k) x U(l) — I'\SO(k, 2l)/SO(k) x SO(2])

we get that ay € H?M(BHam(M,w)) are nontrivial for all integers
k>1.

Example 3. Using Theorem 2 one can look for non-zero cohomol-
ogy classes in H*(B Ham(K/V),R). Indeed, they are non-zero in any
degree p , for which the Matsushima map p is onto, H?(M/K) is non-
zero, and BK — BHam(K/V) induces a surjection in cohomology.
For example, p is an isomorphism in any degree p in case of real forms
of classical Lie groups:

(1) SL(L,R), p < 42,

(2) SU*(21), p < 52,

(3) SO, 20+ 1 — @) p < min(%, 2=,

(4) SO(,20 = i), p< 5 < 3,

(5) Sp(i,l —1i), p <z<l

The whole list can be found in [KaNa|. Note that manifolds M /K are
compact Riemannian symmetric spaces, and their Poincaré polynomi-
als are well known [GHV]|
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