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Abstract. We study an interesting class of hamiltonian �ber
bundles whose �bers are compact homogeneous symplectic man-
ifolds. This construction establishes relation between the coho-
mology of the classifying space B Ham(K/V, ω) and the image of
the Matsushima's homomorphism in the cohomology of lattices in
semisimple Lie groups of non-compact type.

1. Introduction

1.1. Symplectic structures on locally homogeneous spaces. This
work is devoted to study of an interesting class of hamiltonian �ber
bundles. A �ber bundle

(M,ω) → P → B

is called symplectic, if its �ber is a symplectic manifold (M,ω), and its
structural group is the group of symplectomorphisms Symp(M,ω). A
symplectic �ber bundle is hamiltonian, if the structure group reduces
further to the group of hamiltonian symplectomorphisms Ham(M,ω).
Total spaces of hamiltonian �ber bundles admit coupling forms, that is,
di�erential 2-forms Ω whose cohomology class restricts to the cohomol-
ogy class [ω] of symplectic form on the �ber [LMcD]. Hamiltonian �ber
bundles are a useful tool in studying topology of the group Ham(M,ω).
Examples of this approach can be found in [LMcD], [KMcD].
The aim of this paper is to prove the following results.

Theorem 1. Let G be a noncompact real semisimple connected Lie
group with no complex structure and let K ⊂ G be a maximal compact
subgroup. Assume that G is a real form of some complex semisimple
Lie group Gc. Let V ⊂ K be the centralizer of a torus S ⊂ K. Then

(i) the manifold K/V admits a K-invariant symplectic structure,
(ii) the manifold G/V admits a G-invariant symplectic structure,
(iii) for any cocompact lattice Γ ⊂ G the inclusion K/V → Γ\G/V is

a symplectic embedding and
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(iv) the bundle

K/V → Γ\G/V → Γ\G/K
is Hamiltonian with the structure group K.

The proof of this theorem follows from Theorem 4 and Theorem
8 in subsequent sections. The possibility of constructing symplectic
forms on locally homogeneous complex manifolds was mentioned in
[ABCKT].

1.2. The Matsushima homomorphism and Hamiltonian char-
acteristic classes. We denote Lie algebras corresponding to Lie groups
G,H, ..., by the corresponding Gothic letters g, h, ..... Assume that G
is a real form of a complex semisimple Lie group Gc and letM ⊂ Gc be
a maximal compact subgroup containing K. The homogeneous space
M/K is called the dual of the locally symmetric space Γ\G/K.
Let us de�ne the Matsushima homomorphism

ν : H∗(M/K; R) → H∗(BΓ).

If a group H acts on a smooth manifold Y , the symbol ΩH(Y ) denotes
the complex of di�erential forms on Y which are invariant with respect
the H-action on Y . It is well known that ΩG(G/K) and ΩM(M/K)
consist of harmonic forms. Therefore

ΩG(G/K) = H∗(g, k), ΩM(M/K) = H∗(m0, k)

where the right-hand side terms denote the relative Lie algebra coho-
mology (here and in the sequel, as an exception, the Lie algebra of
M is denoted by m0). One can show that H∗(g, k) = H∗(m0, k) (see
[O]). Since M/K is compact, the Hodge theory yields ΩM(M/K) =
H∗(M,R). Hence, one can also identify the cohomology of M/K with
the algebra of G-invariant forms on G/K:

ΩG(G/K) = H∗(M/K,R)

Consider the complex ΩΓ(G/K) of Γ-invariant forms. The projec-
tion G/K → Γ \ G/K induces the isomorphism ΩΓ(G/K) ∼= Ω(Γ \
G/K)). Thus, H∗(Γ \ G/K,R) = H∗(ΩΓ(G/K)). Since the elements
of ΩG(G/K) are closed forms, the inclusion ΩG(G/K) ⊂ ΩΓ(G/K) in-
duces a homomorphism ν : H∗(M/K,R) → H∗(Γ \ G/K,R). It was
proved in [M] that ν is injective in all degrees, and is surjective in de-
grees q ≤ m(g), where m(g) is some constant, explicitly determined in
terms of g. It is proved by Okun in [O] that the Matsushima homo-
morphism is induced by a virtual map BΓ → M/K. A virtual map is
a map de�ned on a �nite cover.

Theorem 2. Let c : BΓ := Γ\G/K → BK be the classifying map of
the bundle

K/V → Γ\G/V → Γ\G/K.
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Then the image of the induced homomorphism c∗ : H∗(BK; R) →
H∗(Γ; R) is equal to the image of the Matsushima homomorphism.

Proof. Since the groups K ⊂ M are of equal rank, the inclusion j :
M/K → BK induces the surjection on the real cohomology. Moreover
we have that c∗ = ν ◦ j∗. �

As we mentioned in Theorem 1, the bundle K/V → Γ\G/V → BΓ
is Hamiltonian with the structure group K. Hence the classifying map
BΓ → BHam(K/V ) factors through BK and it follows from the above
result that the induced homomorphism factors through H∗(M/K).
That is, the Hamiltonian characteristic classes are contained in the
image of the Matsushima homomorphism. In some cases the inclusion
is an equality and then we have the following result.

Theorem 3. Assume that the map BK → BHam(K/V ) induces
a surjection on (rational) cohomology. Let c : BΓ = Γ\G/K →
BHam(K/V ) be the classifying map of the bundle

K/V → Γ\G/V → Γ\G/K.
Then the image of the induced homomorphism

c∗ : H∗(BHam(K/V ); R) → H∗(Γ; R)

is equal to the image of the Matsusima homomorphism. In other words,
all Matsushima classes are Hamiltonian characteristic classes.

Conjecturally the surjectivity occurs if K is a simple compact group.
For example, it is shown in [KMcD] that the action of SU(n) on gen-
eralized �ag manifolds

SU(n)/S(U(n1)× · · · × U(nk)), n1 + · · ·+ nk = n

induces a surjection of the rational cohomology on the classifying space
level. The general case is the subject of our forthcoming paper.

1.3. Hamiltonian characteristic classes from the coupling class.
Recall that the coupling class associated with a Hamiltonian �bration
p : P → B with �bre (M,ω) is a cohomology class Ω ∈ H2(P ) that pulls
back to the class of the symplectic form on the �bre and p!Ω

n+1 = 0,
where dimM = 2n, and p! denotes the �ber integration. If p : P =
MHam((M,ω)) → BHam((M,ω)) is the universal Hamiltonian �bration,
then the �bre integrals

αk := p!Ω
n+k ∈ BHam(M,ω)

form an in�nite family of universal Hamiltonian characteristic classes.
Consider the Hamiltonian bundle as in Theorem 1

K/V → Γ\G/V π→ BΓ.

If H2(BΓ; R) = 0 then the cohomology class of the symplectic form
on Γ\G/V constructed in Theorem 1 is the coupling class. That is
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why its top power is nonzero and hence the �bre integral π!(Ω
N) for

N = dimG/V is nonzero as well. This proves the nontriviality of the
class αk, for k = dimBΓ (see Section 6 for details).
Acknowledgment. This work was done when the third named author
was visiting IHES. He is deeply indebted to the Institute for wonderful
working conditions.

2. Locally homogeneous complex manifolds

Here we describe a general construction of locally homogeneous com-
pact complex manifolds from [GS]. Let Gc denote a connected complex
semisimple Lie group, and B ⊂ Gc a parabolic subgroup in it. It is
known that X = Gc/B is a compact homogeneous algebraic manifold.
Let G be a real form of Gc such that V = G ∩ B is compact. Then,
it can be shown that the G-orbit of o = B is a connected open do-
main D = G(o) = G/V ⊂ X. Hence, D = G/V is a complex open
homogeneous manifold. Let Γ ⊂ G be a discrete subgroup such that
N(Γ)∩V = {e}. Then Γ acts onD properly and discountinuosly, which
yields a complex structure on the quotient Y = Γ \ D. Let M ⊂ Gc

denote the maximal compact subgroup in Gc and let K ⊂ G be the
maximal compact subgroup in G. One can choose M and K in a way
that

M ⊃ K ⊃ V = G ∩B.
It is shown in [GS] that

G ∩B = K ∩B = M ∩B = V.

Also, M acts transitively on Gc/B, which shows that GC/B = M/V .
Let k denote the Lie algebra of K, and kc its complexi�cation. Then
k is a reductive complex subalgebra of the Lie algebra gc of Gc. It is
shown in [GS] that the Lie subgroup Kc ⊂ Gc corresponding to kc, has
the property that

Kc ∩B ⊃ Z(Kc).

Therefore, S = Kc/(Kc ∩ B) is a homogeneous Kähler manifold. The
compact subgroup K acts transitively on S, hence, S can be identi�ed
with K/V . Finally, we have obtained a �ber bundle

K/V → G/V → G/K

such that both G/V and K/V have complex structures, and all �bers
K/V are complex submanifolds of G/V . Moreover, all such K/V are
Kähler homogeneous. We can summarize the discussion as follows.

Theorem 4. Let Gc be a complex semisimple Lie group, which has
a real form G with no compact components and such that for some



HAMILTONIAN FIBER BUNDLES 5

parabolic subgroup B, G∩B = V is compact. If there exists a cocompact
lattice Γ ⊂ G such that N(Γ) ∩ V = {e}, then the �ber bundle

K/V → Γ \G/V → Γ \G/K (1)

has the following properties

(i) Γ \G/V is a closed complex manifold,
(ii) K/V is a Kähler homogeneous manifold with respect to the com-

plex structure on the total space G/V ,
(iii) the structure group of the bundle is K.

Proof. We have already proved (i) and (ii). It remains to show that
the structure group of the bundle is K. This follows, since one can
interpret the same bundle as associate with the principal bundle

K → Γ \G→ Γ \G/K
with �ber K/V . To show that K acts freely, one uses the fact that Γ
acts freely on G/K. Hence, if some element k ∈ K had �xed point, say
Γg, then γgk = γ1g. Since Γ acts freely, γ−1

1 γ = e, and, hence, k = e.
This also shows that the K-action has no isotropy. �

3. Preliminaries on Lie algebras and their root systems

Proofs in this article essentially use the Lie algebra techniques. All
necessary information is contained in [OV1], [OV2]. Here we collect
notation and results we use.
Let gc be a complex semisimple Lie algebra. We choose a Cartan

subalgebra t ⊂ gc and denote by ∆ = ∆(gc, t) the root system of gc

with respect to t. Thus, we have a root space decomposition

gc = t⊕
∑
α∈∆

gα,

where gα are one dimensional root subspaces, and [gα, gβ] = gα+β, if
α+β ∈ ∆, and [gα, gβ] = 0 otherwise. We say that a subalgebra u ⊂ gc

is a Borel subalgebra, if it is a maximal solvable subalgebra in gc. A
subalgebra b ⊂ gc is called parabolic, if it contains a Borel subalgebra.
In the sequel we use the following description of parabolic subalgebras
in terms of root systems. We say that a subset P ⊂ ∆ is closed, if

α, β ∈ P, α+ β ∈ ∆ =⇒ α+ β ∈ P.
By de�nition, F(t, P ) denotes the subalgebra of gc of the form

F(t, P ) = t⊕
∑
α∈P

gα.

Choose a system Π ⊂ ∆ of primitive roots in ∆. For any subset
M ⊂ Π, denote by [M ] the minimal closed subsystem in ∆ generated
by M . Let ∆+ denote a subset of positive roots in ∆. Here and in the
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sequel we choose and �x one of such subsets. We have the following
characterization of parabolic subalgebras in gc.

Theorem 5. [OV2], (Theorem 1.4, Chapter 6). By associating with a
subset M ⊂ Π the subalgebra P(M) of the form

P(M) = t⊕
∑

α∈[M ]∪∆+

gα,

one obtains a one-to-one correspondence between subsets of Π and a
class of conjugate parabolic subalgebras of gc. The subalgebra

F(t, [M ])

is a reductive Levi subalgebra of P(M).

A real Lie subalgebra algebra g ⊂ gc is called a real form of gc, if
the natural embedding of (real) Lie algebras g ⊂ gc can be extended
to an isomorphism of complex Lie algebras g(C) = g⊗R C ∼= gc. There
is a one-to-one correspondence between real forms and C-anti-linear
involutive automorphisms σ : gc → gc. Thus, if g is a real form of gc,

g = (gc)σ, σ2 = id,

that is, g is a set of �xed points of some anti-linear involutive auto-
morphism σ. This correspondence will be used in the sequel. A root
space decomposition yields a convenient set of vector space generators
of gc, which we will all the Chevalley generators. Any semisimple Lie
algebra has non-degenerate Killing form, which will be denoted in the
sequel by K in the complex case, and by κ in the real case. For any
α ∈ ∆, one can choose vectors Xα ∈ gα and Hα ∈ t such that

(i) K(Xα, Xβ) = δα,−β, [Xα, X−α] = Hα,
(ii) [Xα, Xβ] = 0, if α 6= −β, and α+ β 6= 0,
(iii) [Xα, Xβ] = Nα,βXα+β, if α, β, α+ β ∈ ∆, Nα,β ∈ R.

4. Symplectic forms on locally homogeneous complex

manifolds

Here we want to show that locally homogeneous closed manifold

Γ \G/V
admits a pseudo-Kähler structure. By de�nition, this means that Γ \
G/V admits a pseudo-Riemannian metric g such that g(Jv, Jw) =
g(v, w) for all tangent vectors v, w and such that the fundamental form
ω determined by ω(v, w) = g(v, Jv) is closed. Note that this implies
the symplecticness of ω. The following conditions are known to be
equivalent (see [KN], Theorem 4.3):

(i) dω = 0, and J is integrable,
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(ii) ∇vJ = 0 for any tangent vector v, and the Levi-Civitta connection
of the metric g.

Consider the principal bundle

K → G→ G/K

and the associated bundle (1). We claim that for the given G-invariant
integrable almost complex structure J there is a G-invariant pseudo-
Riemannian metric g on G/V such that it is preserved by J and ∇vJ =
0 for any v ∈ T (G/V ). By invariance, these structures descend onto
Γ \G/V , as required.
Recall �rst general facts about invariant metrics, almost complex

structures and connections on homogeneous spaces which can be found
in [KN] (Prop. 6.2, 6.5, Cor. 3.2 and Theorem 3.3, Chapter 10).
Assume that we are given a reductive homogeneous space G/V with
the reductive decomposition

g = v⊕m, [v,m] ⊂ m.

In the sequel we will also assume that V is connected, which is the case
for V = B ∩G [GS].

(i) There is one-to-one correspondence between G-invariant almost
complex structures and linear operators

J : m → m, J2 = − Idm

such that

J [Y,X]m = [Y, JX]m.

(ii) an almost complex structure J from (i) is integrable if and only if

[JX, JY ]m − [X, Y ]m − J [X, JY ]m − J [X, Y ]m = 0.

(iii) There is a one-to-one correspondence between pseudo-Riemannian
metrics on G/V and a non-degenerate bilinear forms µ on m×m
such that

µ([Z,X], Y ) + µ(X, [Z, Y ]) = 0

for any X, Y ∈ m and any Z ∈ v.
(iv) There is a one-to-one correspondence between Riemannian con-

nections corresponding to (iii) and bilinear forms

Λ(X)Y =
1

2
[X, Y ]m + U(X, Y )

where U : m×m → m is de�ned by the equation

2µ(U(X, Y ), Z) = µ(X, [Z, Y ]m) + µ([Z,X]m, Y ).

We will derive ∇vJ = 0 from the above data, and our assumptions on
the homogeneous space G/V . Note that since V is compact, we can
always assume that there is a reductive decomposition

g = v⊕m, [v,m] ⊂ m.
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This is known from [KN] (Example 2.1, Chapter 10). Use the for-
mula for the covariant derivative ∇XJ and the Lie derivative LX from
[McDS]:

(∇XJ)Y = (LXJ)Y +∇JYX − J∇YX.

Since in case of the homogeneous space G/V the corresponding formu-
las involve only left-invariant vector �elds generated by vectors X ∈ m,
one concludes that

LXJ = 0.

Indeed, X has the �ow generated by exp tX ⊂ G, and J is G-invariant.
Hence the cited formula together with the previous considerations yields

(∇XJ)Y =
1

2
[JY,X]m −

1

2
J [Y,X]m + U(JY,X)− JU(Y,X).

This gives the following summary.

Proposition 1. The complex homogeneous space G/V admits an in-
variant pseudo-Kähler structure whenever there exists a non-degenerate
bilinear form µ : m×m → R such that

(i) µ([Z,X], Y ) + µ(X, [Z, Y ]) = 0 for all X, Y ∈ m, Z ∈ v;
(ii) µ(JX, JY ) = µ(X, Y );
(iii) a bilinear form U : m×m → R determined by the equation

2µ(U(X, Y ), Z) = µ(X, [Z, Y ]m) + µ([Z,X]m, Y )

satis�es the equality

1

2
[JY,X]m −

1

2
J [Y,X]m + U(JY,X)− JU(Y,X) = 0

for any X, Y ∈ m.

Proposition 2. Under the assumptions on G/V , there exists a bilinear
form g : m×m → R satisfying the assumptions of Proposition 1. Hence,
there is a G-invariant pseudo-Kähler metric on G/V .

Proof. The proof is divided into three steps. We will use the following
formulas and notation.

(i) Recall that K denotes the Killing form of gc, and κ the Killing
form of g.

(ii) Let σ : gc → gc denote the antilinear involutive automorphism of
gc.

(iii) Let hσ denote the hermitian form on gc de�ned by

hσ(A,B) = −K(A, σ(B)).

(iv) the following relations hold [OV1, OV2]:

hσ|g = κ, K|g = κ.
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Step 1. We begin with the proof of the following fact.
Consider the orthogonal decomposition

gc = b⊕mc

with respect to hσ. Let

g = v⊕m

be the orthogonal decomposition with respect to κ. Then m, as a real
vector space, is spanned by vectors

X + σ(X), X ∈ mc.

The proof of the latter statement goes as follows. For A ∈ v, Z =
X + σ(X) ∈ m we have

κ(A,Z) = κ(A,X + σ(X)) = hσ(A,X + σ(X)) =

hσ(A,X) + hσ(A, σ(X)) = 0

The latter follows, since hσ(A,X) = 0 by the choice of m, while
hσ(A, σ(X)) = 0, since hσ is hermitian. Indeed,

hσ(A, σ(X)) = hσ(σ(X), σ(A)) =

−K(σ(X), A)) = −K(A, σ(X)) = hσ(A,X).

Here we used also σ(A) = A. Hence

〈X + σ(X), iX + σ(iX〉R ⊂ m.

Summarizing, we write (m1 considered as a real vector space)

m1 = 〈X + σ(X) , X ∈ mc〉.
Hence, one can de�ne a surjection

ϕ : mc → m1, m1 ⊂ m,

by the rule

ϕ(X) = X + σ(X), X ∈ mc.

Now, if ϕ were injective, by dimensional reasons, the only possibility
would be

ϕ(mc) = m.

If this were not the case, ϕ(X) = 0, for X ∈ mc. We will show that
this is impossible. Recall the following facts from [GS] (p.263-265):
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(i) Let k be the maximal compact subalgebra in g, kc its complexi�-
cation, v = g ∩ b, and

gc = kc ⊕ pc

an ad kc-invariant complement. Let p = pc ∩ g. Then

g = k⊕ p

is a Cartan decomposition,

m0 = k⊕ ip

is a compact real form of gc which contains v.
(ii) If σ and τ denote, the conjugations with respect to g and m0, then

στ = τσ,

and θ = στ is an involutive true automorphism of gc.
(iii) kc and pc are (+1) and (−1)-eigenspaces of θ,
(iv) Root spaces of gc are contained either in kc or in pc, which implies

∆ = ∆k ∪∆p,

kc = tc ⊕
∑
α∈∆k

gα

pc =
∑

α∈∆p

gα.

(v) Under the choices made,

τ(gα) = g−α.

(vi) mc =
∑

α∈∆1
gα, where ∆1 = ∆\ [M ]. The latter follows from the

fact that root space decomposition is orthogonal with respect to
hσ form.

We see that the above properties contradict the possibility

σ(Xα) +Xα = 0.

Indeed, if α ∈ ∆k, then θ(Xα) = Xα. But

Xα = θ(Xα) = στ(Xα) = σ(X−α).

Applying σ to both sides of the above equality, and using involutivity,
one obtains

σ(Xα) = X−α.

In the same way, if α ∈ ∆p, equality θ(Xα) = −Xα implies

σ(Xα) = −X−α.
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Let X = Xα1 + · · ·+Xαs be in the kernel of ϕ, that is σ(X) +X = 0.
Then

(σ(Xα1) +Xα1) + · · ·+ (σ(Xαs) +Xαs) = 0.

Applying θ = τσ to the above equation, we get

τ(Xα1) + θ(Xα1) + · · ·+ τ(Xαs) + θ(Xαs) = 0.

This is the same as

±X−α1 ±Xα1 ± · · · ±X−αs ±Xαs = 0

which implies all Xαj
being zero.

Step 2 (constructing a pseudo-riemannian metric). Now we
construct a bilinear form g : m × m → R which satis�es the required
properties to determine a pseudo-Kähler structure on G/V . This fol-
lows from the following statement.
Let there be given decompositions

g = v⊕m, gc = b⊕mc

as in Step 1. Suppose there is an R-linear map ψ : m → mc such that

ψ ◦ J = i ◦ ψ, Ad s ◦ ψ = ψ ◦ Ad s, for any s ∈ V.
Consider the real bilinear form

g : m×m → R, g(X, Y ) = Rehσ(ψ(X), ψ(Y )).

Then

(i) g is a real part of hermitian form h̃σ = hσ ◦ ψ;
(ii) g is AdV -invariant;
(iii) the real bilinear operator U : m × m → m determined by the

equation

2g(U(X, Y ), Z) = g(X, [Z, Y ]m) + g([Z,X]m, Y )

has the property

U(JX, Y ) = JU(X, Y ).

Here is the proof of the statement. Property (i) follows from de�ni-
tion. To prove (ii), write

g(Ad s(X),Ad s(Y )) = Rehσ(ψ(Ad s(X)), ψ(Ad s(Y )))

= Rehσ(Ad s(ψ(X)),Ad s(ψ(Y )))

= ReK(Ad s(ψ(X)), σ(Ad s(ψ(Y )))
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= ReK(Ad s(ψ(X)),Ad s(σ(ψ(Y )))

= ReK(ψ(X), σ(ψ(Y )) = Rehσ(ψ(X), ψ(Y )) = g(X, Y ).

In due course, we used the equality σ ◦ Ad s = Ad s ◦ σ, which follows
from the fact that g is the set of �xed points of σ, and also the AdV -
invariance of the Killing form.
To prove (iii), consider the hermitian form h̃σ on the complex vector

space (m, J). De�ne a real bilinear operator Ũ : m × m → m by the
formula

2h̃σ(Ũ(X, Y ), Z) = h̃σ(X, [Z, Y ]m) + h̃σ([Z,X]m, Y ).

Note that the non-degeneracy of h̃σ ensures the existence of Ũ , but
the right-hand side is only R-linear, since g is not complex as a Lie
algebra. However, the latter de�nition yields

2 Re h̃σ(Ũ(X, Y ), Z) = Re h̃σ(X, [Z, Y ]m) + Re h̃σ([Z,X]m, Y )

2 Im h̃σ(Ũ(X, Y ), Z) = Im h̃σ(X, [Z, Y ]m) + Im h̃σ([Z,X]m, Y ).

It follows that Ũ = U , and for U both equalities for real and imaginary
parts, hold. Hence

2g(JU(X, Y ), Z) = 2 Rehσ(ψ(JU(X, Y ), ψ(Z)) =

2 Rehσ(iψ(U(X, Y ), ψ(Z)) = 2 Re ihσ(ψ(U(X, Y )), ψ(Z))) =

−2 Imhσ(ψ(U(X, Y )), ψ(Z)) = −2 Im h̃σ(U(X, Y ), Z).

On the other hand,

2g(U(JX, Y ), Z) = g(JX, [Z, Y ]m) + g([Z, JX]m, Y ) =

2 Rehσ(ψ(JX), ψ[Z, Y ]m) + 2 Rehσ(ψ([Z, JX]m), ψ(Y )) =

2 Rehσ(iψ(X), ψ([Z, Y ]m)) + 2 Rehσ(ψ(J [Z,X]m, ψ(Y )) =

−2 Imhσ(ψ(X), ψ([Z, Y ]m))− 2 Imhσ(ψ([Z,X]m), ψ(Y )) =

−2 Im h̃σ(X, [Z, Y ]m)− 2 Im h̃σ([Z,X]m, Y ).

Here we used the equality
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[Z, JX]m = J [Z,X]m

which follows from the invariance of J . Finally,

g(JU(X, Y ), Z) = g(U(JX, Y ), Z).

This proves the statement.
Step 3.Under the conditions of Proposition 2, the complex structure
J : m → m induced by the complex structure on Gc/B has the proper-
ties:

(i) it is Ad V -invariant;
(ii) the map ψ : m → mc, ψ(X) = X + σ(X) is ((J, i)-linear;
(iii) ψ ◦ Ad s = Ad ◦ψ for any s ∈ V .

Now we prove the statement of Step 3. De�ne J : m → m by the
formula

J(X + σ(X)) = iX + σ(iX).

Clearly, J2 = − id. Also,

ψ(J(X + σ(X)) = ψ(iX + σ(iX) = iX = iψ(X + σ(X)).

Now we want to show that this de�nition yields the same complex
structure on m which is induced by the complex structure on G/V
inherited from the complex structure on Gc/B. Note that the latter is
obtained as follows. Identifying To(G/V ) with g/v, and To(G

c/B) with
gc/b, we see that the latter can be identi�ed with the complements in
the direct sum decompositions

g = v⊕m, gc = b⊕m.

Then, if p : gc → m denote the projection, one has

J(A) = p(iA), A ∈ m.

Choose the Chevalley generators {Xα, α ∈ ∆} of gc. Recall that

σ(Xα) = X−α, α ∈ ∆, if α is a compact root

and

σ(Xα) = −X−α, if α is a noncompact root

Let Xα + σ(Xα) ∈ m, where Xα ∈ mc. Note that we have shown
that m = 〈Xα + σ(Xα)〉, and that gc has the compatible root space
decomposition into root spaces belonging either to b, or to mc. Hence,
if we choose Xα + σ(Xα) ∈ m, then

J(Xα + σ(Xα)) = p(iXα + iσ(Xα)).
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Hence, writing

iXα + iσ(Xα) = B̂ + σ(Z) + Z, B̂ ∈ b, Z ∈ mc

and

B̂ = Xα1 + · · ·+Xαk
, Z = Xβ1 + · · ·+Xβs , αl ∈ [M ], βj ∈ ∆1,

we see that there is only one way to represent iXα + σ(Xα) as a sum

of B̂ and σ(Z) + Z, namely

iXα + iσ(Xα) = X̂−α + (σ(X̃α) + X̃α),

and, moreover, X̂−α necessarily belongs to b. Assume that α ∈ ∆1 is
noncompact. Then σ(Xα) = X−α. Then

iXα + iσ(Xα) = iXα + iX−α = iXα + σ(iXα) + 2iX−α.

In the same way, in the compact case,

iXα + σ(Xα) = iXα − iX−α = iXα + σ(iXα)− 2iX−α.

The latter equalities show that J de�ned at the beginning of proof,
coincides with the one induced by the complex structure on Gc/B. Let
us check that it is AdV -invariant.

Ad sJ(X + σ(X)) = Ad s(iX + σ(iX)) =

Ad s(iX) + Ad sσ(iX)) = iAd s(X)− iσ(Ad s(X)).

On the other hand

J Ad s(X + σ(X)) = J(Ad s(X) + Ad(σ(X))) =

J(Ad s(X) + σ(Ad s(X))) = Ad s(iX) + σ(iAd s(X))) =

iAd s(X)− iσ(Ad s(X)).

We have used here the fact that σ in an involutive antilinear automor-
phism of the Lie algebra gc, which yielded the possibility of changing
the order in the formulas. Now, we will check (ii). Since V is connected,
it is su�cient to check (ii) on the Lie algebra level. Let S ∈ v.

adS ◦ ψ(X + σ(X)) = [S,X].

ψ ◦ adS(X + σ(X)) = ψ([S,X] + [S, σ(X)] =

ψ([S,X] + σ([S,X]) = [S,X].
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In calculation, we have used σ(S) = S for any S ∈ v, as well as the
inclusion

v ⊂ b

which implies [v,mc] ⊂ mc. The proof of the statement is complete.
The completion of proof of Proposition 2. By Proposition 1, we need
to construct a bilinear form m × m → R satisfying conditions (i)-(iii).
By Steps 1, and 3, the decomposition g = v⊕m with m generated by
vectors X + σ(X) admits a complex structure J : m → m, which is
AdV -invariant and which yields the complex structure on G/V inher-
ited from Gc/B. By Step 2, there is a non-degenerate bilinear form
g : m×m → R, which is AdV -invariant, and satis�es property (iii) of
Proposition 1. It has property (ii) of Proposition 1, since by Step 2,

it is a real part of a hermitian form h̃σ. Property (i) of Proposition 1
is a consequence of AdV -invariance of g ([KN], Corollary 3.2, Chapter
10).

�

5. Kähler fibers K/V

The aim of this section is a description of all possible �bers K/V in
�ber bundles determined by locally homogeneous complex manifolds.
For convenience of reference, we recall several known facts on homoge-
neous symplectic manifolds and root systems of complex Lie algebras.

Theorem 6. [B] Let either G/U be homogeneous Kähler, or G be com-
pact, and G/U be symplectic. Then U is compact, connected, and
equal to the centralizer of a torus of G. Conversely, let G be com-
pact semisimple and U be the centralizer of a torus. Then G/U is
homogeneous Kähler and algebraic.

In the sequel we need the following characterization of centralizers
of abelian Lie subalgebras.

Theorem 7. [OV2] (Theorem 1.3, Chapter 6). Let M ⊂ Π be any
subset of Π. Then the subalgebra F(t, [M ]) is of the form

F(t, [M ]) = zg(c)

for some subspace c ⊂ gc. Conversely, any subalgebra zg(c), where
c ⊂ t, is of that form.

Our main result now reads as follows.

Theorem 8. Let K be a compact Lie group which can be embedded as
a maximal compact subgroup in a semisimple real Lie group G without
compact components, and without complex structure. Let V be any
closed subgroup which is a centralizer of some torus in K. Then

(i) K/V is Kähler;
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(ii) there exists an associate �ber bundle

K/V → Γ \G/V → Γ \G/K
such that the total space Γ \G/V is symplectic, and the inclusion
of the Kähler �ber K/V is symplectic as well.

Proof. The �ber K/V is Kähler by Theorem 6. In view of Proposition
2, to prove symplecticness of Γ \ G/K, it is su�cient to show that if
V = ZK(S) for some torus S ⊂ K, there exists a parabolic subgroup
B in Gc such that G∩B = V . Note that it is also su�cient to proceed
on the Lie algebra level, and we will do it in the sequel. Let k be the
Lie algebra of K. Consider its complexi�cation kc. Note that

v = zk(a) ⇒ vc = zkc(ac), ac ⊂ t.

Therefore, by Theorem 7

vc = F(t, [M ]),

for some Cartan subalgebra chosen as a common subalgebra in kc and
gc and being the complexi�cation of some maximal abelian subalgebra
in v. Recall the decomposition ∆ = ∆k ∪ ∆p with respect to the sets
∆k and ∆p of compact and non-compact roots. Since the algebra v is
compact, we know that

vc = t⊕
∑

α∈[Mk]

gα,

whereMk ⊂ Πk is a subset of the set of compact primitive roots. De�ne

P(M) = t⊕
∑

α∈[M ]k

gα +
∑

β∈∆+

gβ.

By de�nition, the latter is a parabolic subalgebra. Since

kc = t⊕
∑
α∈∆k

gα,

we see that

kc ∩ P(M) = vc.

It follows that

v = k ∩ P(M).

The latter follows from the obvious inclusion v ⊂ k∩P(M), the equality
for complexi�cations, and dimensional reasons. The latter equality
implies

g ∩ P(M) = k ∩ P(M).
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The latter can be shown as follows. Recall that g is a subalgebra of
�xed points of the involutive anti-linear automorphism of gc. We have
already used the fact that σ(Xα) = X−α for compact roots α, and
σ(Xα) = −X−α. Hence, if X ∈ g ∩ P(M), it is represented as a sum

X = Xα1 +X−α1 + · · ·+Xαk
+X−αk

where αi must be compact. Thus, necessarily, αi ∈ [Mk], and the proof
follows.
Finally, we want to prove symplecticness of the �ber inclusion. Let

Kc be a complex Lie subgroup in Gc corresponding to kc. Note that
K acts transitively on Kc/Kc ∩ B. Hence, there is a di�eomorphism
K/V ∼= Kc/Kc ∩ B determined by inclusion of K into Kc. Moreover,
the equality vc = kc ∩ P(M) enables one to get the decomposition

k = v⊕ n

compatible with the decomposition g = v⊕m, that is

n ⊂ m, J(n) ⊂ n.

Also, hσ, restricted to kc will produce Kähler metric on K/V . To do
this, one simply repeats the proof of Proposition 2, taking kc and k
instead of gc and g, and P(M) instead of b. The necessary change is
only to work with compact roots instead of all roots. Also, there is one
more small change caused by the fact that kc is not always semisimple.
However, it is reductive, and kc and vc have common center, which
means that the argument for n goes through.

�

6. Applications to hamiltonian characteristic classes

Here we present an example of the use of general results obtained in
this article. For any �ber bundle

M −−−→ P
p−−−→ B

we denote by p! the �ber integration p! : H∗(P ) → H∗(M) [GuS]. We
begin with the following easy observation.

Proposition 3. Let (M,ω) → E → B be a Hamiltonian �bration.
Suppose that

(i) the �bration admits a compatible symplectic form. That is there is
a symplectic form Ω on E such that it pulls back to the symplectic
form on each �bre.

(ii) the second Betti number of the base is zero and dimB = 2k

Then the Hamiltonian characteristic class αk ∈ BHam(M,ω) is non-
trivial.
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Proof. Let c : B → BHam(M,ω) be the classifying map. Since the
second Betti number of the base is zero the cohomology class of the
compatible symplectic form is actually the coupling class. Since it is
symplectic we have that

〈c∗(αk), [B]〉 =

∫
B

p!(Ω
n+k) =

∫
E

Ωn+k 6= 0

which completes the proof. �

This observation leads to the following results on the non-vanishing
of certain hamiltonian characteristic classes.

Theorem 9. Let G ⊂ Gc be a semisimple Lie group which is a real
form of a complex Lie group Gc. Let Γ ⊂ G be a cocompact lattice
such that H2(Γ; R) = 0. Let (M,ω) = K/V be a closed homogeneous
symplectic manifold, where K ⊂ G is a maximal compact subgroup with
H1(K; R) = 0 and V = B ∩G, where B ⊂ Gc is a parabolic subgroup.
Then the characteristic class αk ∈ H2k(BHam(M,ω)) is nontrivial for
2k = dimG− dimK.

Proof. Consider the Hamiltonian �bration (1). It follows from Theo-
rem 1 that the �bration admits a compatible symplectic form. Since
Γ\G/K = BΓ we have that the second Betti number of the base is
zero and hence the compatible symplectic form represents the coupling
class. Thus we are in the situation of Proposition 3 and the statement
follows. �

Example 1. To give explicit examples, we refer to the following result
proved in [KaNa]. We use standard notation for types of classical and
exceptional simple Lie groups ([OV1]).

Theorem 10. Let G be a non-compact real simple Lie group and Γ be
a discrete subgroup of G with compact quotient space Γ \G. Then the
second Betti number b2(Γ \ G) of Γ \ G equals zero if the type of G is
Ei

6, (i = 1, 2), Ei
7, i = 1, 2, 3, or F 1

4 , or if G is classical and satis�es
the following conditions

(i) SL(l + 1,R), l ≥ 6,
(ii) SU∗(2l), l ≥ 6,
(iii) SU(p, q), p+ q = l + 1, l+1

2
≥ p ≥ 5,

(iv) SO(p, q), p+ q = 2l + 1,min(p
2
, 2l+1−p

2
) > 2,

(v) SO(p, q), p+ q = 2l, l
2
≥ p

2
> 2

(vi) SO∗(2l), l ≥ 7
(vii) Sp(l,R), l ≥ 7
(viii) Sp(p, q), p+ q = l, l

2
≥ p ≥ 3.

Now, assume that G/K is not Hermitian symmetric. Then K is
semisimple, and we have bi(K) = 0 for i < 3. The long cohomology
exact sequence for the �bration K → Γ\G→ Γ\G/K yields vanishing
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of the second cohomology H2(Γ \G/K) = 0. Comparing the list of G
for which H2(Γ \G) = 0 with the classi�cation of all non-compact real
forms of complex simple Lie algebras gc [OV1] (Table 9), we �nd that
all types of simple real Lie groups G from Kanuyuki-Nagano theorem
except (ii) and (vii) can be realized by a �bration (1). Moreover, look-
ing through this table, one can list all semisimple K which may occur.
These are

(i) G = SL(l + 1,R), K = SO(l + 1),
(ii) SO(p, q), K = SO(p)× SO(q)
(iii) SP (p, q), K = Sp(p)× Sp(q)
(iv) G = E1

6 , K = Sp(4)
(v) G = E2

6 , K = SU(2)× SU(6)
(vi) G = E1

7 , K = SU(8),
(vii) G = E2

7 , K = SU(2)× SO(12),
(viii) G = F 1

4 , K = SU(2)× Sp(3).

Example 2. Let

(M,ω) →MHam → BHam(M,ω)

be the universal Hamiltonian �bration. De�ne the characteristic classes
αk ∈ H2k(BHam(M,ω)) by

αk := p!(Ωn+k).

Let (M,ω) = SO(2l)/U(l). Applying theorem 9 to the �bration

(M,ω) → Γ\SO(k, 2l)/SO(k)× U(l) → Γ\SO(k, 2l)/SO(k)× SO(2l)

we get that αkl ∈ H2kl(BHam(M,ω)) are nontrivial for all integers
k > 1.

Example 3. Using Theorem 2 one can look for non-zero cohomol-
ogy classes in H∗(BHam(K/V ),R). Indeed, they are non-zero in any
degree p , for which the Matsushima map µ is onto, Hp(M/K) is non-
zero, and BK → BHam(K/V ) induces a surjection in cohomology.
For example, µ is an isomorphism in any degree p in case of real forms
of classical Lie groups:

(1) SL(l,R), p < l+2
4
,

(2) SU∗(2l), p < l−1
2
,

(3) SO(i, 2l + 1− i), p < min( i
2
, 2l−i+1

2
),

(4) SO(i, 2l − i), p < i
2
≤ l

2
,

(5) Sp(i, l − i), p < i ≤ l
2
.

The whole list can be found in [KaNa]. Note that manifolds M/K are
compact Riemannian symmetric spaces, and their Poincaré polynomi-
als are well known [GHV]
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