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On the ultraviolet behaviour of N/ = 8 supergravity amplitudes*
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‘We discuss the constraints imposed by the extended supersymmetry on the ultravi-
olet behaviour of N/ = 8 supergravity.

1. Introduction

There have been recent tremendous progress in the evaluation of multiloop am-
plitudes in maximally supersymmetric string theory [1-5], in N/ = 8 supergravity
in various dimensions [6-9], and the analysis of the constraints from the extended
supersymmetry on possible counter-terms to ultraviolet divergences [10,11]. It has
been shown that up to and including four-loop order that the four-graviton am-
plitudes in N/ = 8 supergravity in four dimensions are free of ultraviolet diver-
gences [7-9]. One important question is to determine when the first ultraviolet di-
vergence appears in four dimensions. In this text we indicate the various constraints
derived from the implementation of maximal supersymmetry.

The mass dimension of the L-loop gravity amplitude in D dimensions is given
by

[SquDL)] = mags(P~2 42 (1)

In AV = 8 supergravity half of the supersymmetry are explicitly realized at each
loop order and the four-point amplitudes factorize the dimension eight operator

4
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i=1

given by the fourth power of the linearized supercurvature — defined in eq. (7.4.57)
of [12] (see as well [13]) where A;, B; are the labels of the N' = 8 supergraviton
multiplet. We have used r(py for the D-dimensional Newton’s constant. In partic-

ular the amplitudes between any four states ¢1,...,¢4 in the massless supergravity
multiplet take the form
D S45(D
M) (@1, 60) = RUL (i, k) 3)
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where fiDL)(kl, ..., kq) does not depend on the helicities, and is of superficial mass
dimension (D — 2)L — 6. In the case of the four-graviton amplitudes the tensorial
factor in (2) will be denoted R*.
> This formula indicates that the R* operator would appear at L = 6/(D —2) loops,
which is (L, D) = (1, 8),(2,5), (3,4), (6,3). Non-renormalisation theorems in string
theory [3,4] and explicit field theory computations [14] confirm the logarithmic
divergence of the one-loop amplitude in D = 8, but rule out the other divergences
in D < 8.
> Because on-shell the operator 9?R* vanishes the next operator is the dimension
12 coupling 9*R* could appear at (L, D) = (2,7), (5,4). The explicit computations
in [7] confirm the divergence in D = 7. The evaluation of higher-loop amplitudes in
field theory [8] and non-renormalisation theorems in string theory [2,3,15] rule out
the appearance of this divergences in D < 7.
> The dimension 14 operator 9°R* could appear at (L,D) = (2,8),(3,6),
(4,5),(6,4). The computations in [7-9] confirm the divergences in (L,D) =
(2,8),(3,6) and rule out the divergences in (L, D) = (4,5), (6,4).
> The dimension 16 operator 9®R?* could appear at (L,D) = (2,9),(7,4). The
computations in [7] confirm the divergences in (L, D) = (2,9). There is currently
no explicit evaluation of the contribution (L, D) = (7,4). We discuss below the
constraints from supersymmetry.
> The dimension 18 operator 9°R* could appear at (L, D) = (2,10), (4,6), (8,4).
Explicit computations confirm the divergence in (L, D) = (2,10), (4,6). There is
currently no explicit evaluation of the contribution (L, D) = (8,4). We discuss
below the constraints from supersymmetry.
> The dimension 20 operator 9'?R?* could appear at (L,D) = (2,11),(3,8),
(6,5),(9,4). Explicit computations confirm the divergences in (L,D) =
(2,11),(3,8). There is currently no direct evaluation of the (L,D) = (6,5),(9,4)
contributions. In fact whatever is the form of the five-loop four-graviton amplitude
(i.e. factorizing the operator 98R* or 9'°R*) there will be a logarithmic divergence
at L = 6 associated with 0'2R* in D = 5. If N = 8 supergravity has an ultraviolet
divergence in D = 4 there will always be a nine-loop divergence. Actually, supersym-
metry cannot rule out this divergence in D = 4 [3,4]. The nine-loop four-graviton
amplitude in four dimensions is ultraviolet finite if and only if N' = 8 supergravity
is ultraviolet finite in four dimensions.

If one parametrizes the superficial power counting of the ultraviolet behaviour
of the amplitude as

[WEL,DL)] — AD=2)L—-6-281 5261 34 (4)

the critical dimension for ultraviolet divergences in the four-graviton amplitude is
given by

- )
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Up to an including four-loop the supersymmetry constraints [2,8,14] implies that
8L = L.

When only the simple large-A regulator of the pure spinor string formalism is
used one can argue [2,4] that , = L for L < 6 and 1, = 6 for L > 6 leading to the
critical dimension for UV divergence

D24—|—§; for L <6

L

18 (6)
DZ2—|—T; for L > 6

which implies a nine-loop divergence in four dimensions [4]. From genus five possible
divergences from the tip of the pure spinor cone that would requiere the use of the
small-A complicated regulator [1,16] can restrict S =4 for L > 4

D24—|—E; for L <4
= 7
14 (7)

leading to seven-loop divergence in four dimensions.

2. D-term and F-term in extended supergravity

The issue of correctly identifying the ultraviolet behaviour of a supersymmetric the-
ory is equivalent to the understanding of which operators are true F-terms satisfying
non-renormalisation theorems, and which operators are D-terms receiving quantum
corrections to all orders [17].

By partial integration over the superspace variables it is possible to rewrite D-
term as “fake” F-term, and detecting the true D-term nature of an operator can
be non-obvious. In four-point open string amplitudes the true D-term nature of the
0%trF* interaction became manifest by the appearance of inverse derivatives after
integrating over the string theory moduli [5]. In the four-graviton amplitudes it was
confirmed in [5] that no such inverse derivative factors arise up to and including
genus four implying that the operators R*, 0*R*, and 05R* are F-terms satisfying
non-renormalisation theorems [2,3] .

In the pure spinor formalism for maximally supersymmetric closed string theory,
D-terms arise explicitly as soon as the small-\ regulator from the tip of the pure
spinor cone enters in the evaluation of the amplitude [1,16]. In the four-graviton am-
plitude arises the folllowing full superspace integral of the dimension one superfield
Wags ZFa,g-i-"'-i-@V@‘sRagw—i—-"

/d329 W?2 = DR* 4 susy completion (8)

which is a D-term. From genus five order singularities from the tip of the pure spinor
cone can modify the naive zero mode counting so that the amplitude contributes to
the 9®R? interactions instead of 90 R%.
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If this happens then the interactions 93 R* will be a D-term receiving contri-
bution to all loop order in string theory and the critical dimensions for ultravio-
let divergences will be given by (7) implying a seven-loop divergence in the four-
graviton amplitude of A/ = 8 supergravity in D = 4. This behaviour of the genus
five amplitude is compatible with the presence of genus five contribution in the
0* R* interaction coupling derived in [18] from M-theory. This gives support to the
bound (7) which implies that the first divergence in the four-graviton amplitude
in four dimensions will be at seven loops. A candidate for an on-shell superspace
expression for this D-term is the volume of superspace

88et ~ K3 / dz / d**0 |E| (9)

where |E| is the determinant of the superfield vielbein Which would be the seven
loop counter-term in four dimensions (see [11] for some comments about this).
Integrating over the fermionic variables this would lead to

08ct ~ k(3 | d'ex/—g® (D*R* + susy completion) . (10)
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