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On the ultraviolet behaviour of N = 8 supergravity amplitudes∗
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We discuss the constraints imposed by the extended supersymmetry on the ultravi-
olet behaviour of N = 8 supergravity.

1. Introduction

There have been recent tremendous progress in the evaluation of multiloop am-

plitudes in maximally supersymmetric string theory [1–5], in N = 8 supergravity

in various dimensions [6–9], and the analysis of the constraints from the extended

supersymmetry on possible counter-terms to ultraviolet divergences [10,11]. It has

been shown that up to and including four-loop order that the four-graviton am-

plitudes in N = 8 supergravity in four dimensions are free of ultraviolet diver-

gences [7–9]. One important question is to determine when the first ultraviolet di-

vergence appears in four dimensions. In this text we indicate the various constraints

derived from the implementation of maximal supersymmetry.

The mass dimension of the L-loop gravity amplitude in D dimensions is given

by

[M
(D)
n,L] = mass(D−2)L+2 (1)

In N = 8 supergravity half of the supersymmetry are explicitly realized at each

loop order and the four-point amplitudes factorize the dimension eight operator

R̂4 = κ4
(D) KA1···A4

K̃B1···B4

4∏

i=1

ζAiBi

i (2)

given by the fourth power of the linearized supercurvature — defined in eq. (7.4.57)

of [12] (see as well [13]) where Ai, Bi are the labels of the N = 8 supergraviton

multiplet. We have used κ(D) for the D-dimensional Newton’s constant. In partic-

ular the amplitudes between any four states φ1,. . . ,φ4 in the massless supergravity

multiplet take the form

M
(D)
4,L (φ1, . . . , φ4) = R̂4 Î

(D)
4,3 (k1, . . . , k4) (3)

∗IHES/P/10/02, IPHT-T-09/190. Contribution to the proceedings of the Twelfth Marcel Gross-
mann Meeting, Paris, 12-18 July 2009.



March 8, 2010 14:8 WSPC - Proceedings Trim Size: 9.75in x 6.5in divN=8latex

2

where Î
(D)
4,L (k1, . . . , k4) does not depend on the helicities, and is of superficial mass

dimension (D − 2)L − 6. In the case of the four-graviton amplitudes the tensorial

factor in (2) will be denoted R4.

⊲ This formula indicates that the R4 operator would appear at L = 6/(D−2) loops,

which is (L, D) = (1, 8), (2, 5), (3, 4), (6, 3). Non-renormalisation theorems in string

theory [3,4] and explicit field theory computations [14] confirm the logarithmic

divergence of the one-loop amplitude in D = 8, but rule out the other divergences

in D < 8.

⊲ Because on-shell the operator ∂2R4 vanishes the next operator is the dimension

12 coupling ∂4R4 could appear at (L, D) = (2, 7), (5, 4). The explicit computations

in [7] confirm the divergence in D = 7. The evaluation of higher-loop amplitudes in

field theory [8] and non-renormalisation theorems in string theory [2,3,15] rule out

the appearance of this divergences in D < 7.

⊲ The dimension 14 operator ∂6R4 could appear at (L, D) = (2, 8), (3, 6),

(4, 5), (6, 4). The computations in [7–9] confirm the divergences in (L, D) =

(2, 8), (3, 6) and rule out the divergences in (L, D) = (4, 5), (6, 4).

⊲ The dimension 16 operator ∂8R4 could appear at (L, D) = (2, 9), (7, 4). The

computations in [7] confirm the divergences in (L, D) = (2, 9). There is currently

no explicit evaluation of the contribution (L, D) = (7, 4). We discuss below the

constraints from supersymmetry.

⊲ The dimension 18 operator ∂10R4 could appear at (L, D) = (2, 10), (4, 6), (8, 4).

Explicit computations confirm the divergence in (L, D) = (2, 10), (4, 6). There is

currently no explicit evaluation of the contribution (L, D) = (8, 4). We discuss

below the constraints from supersymmetry.

⊲ The dimension 20 operator ∂12R4 could appear at (L, D) = (2, 11), (3, 8),

(6, 5), (9, 4). Explicit computations confirm the divergences in (L, D) =

(2, 11), (3, 8). There is currently no direct evaluation of the (L, D) = (6, 5), (9, 4)

contributions. In fact whatever is the form of the five-loop four-graviton amplitude

(i.e. factorizing the operator ∂8R4 or ∂10R4) there will be a logarithmic divergence

at L = 6 associated with ∂12R4 in D = 5. If N = 8 supergravity has an ultraviolet

divergence in D = 4 there will always be a nine-loop divergence. Actually, supersym-

metry cannot rule out this divergence in D = 4 [3,4]. The nine-loop four-graviton

amplitude in four dimensions is ultraviolet finite if and only if N = 8 supergravity

is ultraviolet finite in four dimensions.

If one parametrizes the superficial power counting of the ultraviolet behaviour

of the amplitude as

[M
(D)
4,L ] = Λ(D−2)L−6−2βL ∂2βLR̂4 (4)

the critical dimension for ultraviolet divergences in the four-graviton amplitude is

given by

D ≥ 2 +
6 + 2βL

L
(5)
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Up to an including four-loop the supersymmetry constraints [2,8,14] implies that

βL = L.

When only the simple large-λ regulator of the pure spinor string formalism is

used one can argue [2,4] that βL = L for L ≤ 6 and βL = 6 for L ≥ 6 leading to the

critical dimension for UV divergence

D ≥ 4 +
6

L
; for L ≤ 6

D ≥ 2 +
18

L
; for L ≥ 6

(6)

which implies a nine-loop divergence in four dimensions [4]. From genus five possible

divergences from the tip of the pure spinor cone that would requiere the use of the

small-λ complicated regulator [1,16] can restrict βL = 4 for L ≥ 4

D ≥ 4 +
6

L
; for L ≤ 4

D ≥ 2 +
14

L
; for L ≥ 4

(7)

leading to seven-loop divergence in four dimensions.

2. D-term and F-term in extended supergravity

The issue of correctly identifying the ultraviolet behaviour of a supersymmetric the-

ory is equivalent to the understanding of which operators are true F-terms satisfying

non-renormalisation theorems, and which operators are D-terms receiving quantum

corrections to all orders [17].

By partial integration over the superspace variables it is possible to rewrite D-

term as “fake” F-term, and detecting the true D-term nature of an operator can

be non-obvious. In four-point open string amplitudes the true D-term nature of the

∂2trF 4 interaction became manifest by the appearance of inverse derivatives after

integrating over the string theory moduli [5]. In the four-graviton amplitudes it was

confirmed in [5] that no such inverse derivative factors arise up to and including

genus four implying that the operators R4, ∂4R4, and ∂6R4 are F-terms satisfying

non-renormalisation theorems [2,3] .

In the pure spinor formalism for maximally supersymmetric closed string theory,

D-terms arise explicitly as soon as the small-λ regulator from the tip of the pure

spinor cone enters in the evaluation of the amplitude [1,16]. In the four-graviton am-

plitude arises the folllowing full superspace integral of the dimension one superfield

Wαβ = Fαβ + · · · + θγθδ Rαβγδ + · · ·
∫

d32θ W 2 = D12R4 + susy completion (8)

which is a D-term. From genus five order singularities from the tip of the pure spinor

cone can modify the naive zero mode counting so that the amplitude contributes to

the ∂8R4 interactions instead of ∂10 R4.
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If this happens then the interactions ∂8 R4 will be a D-term receiving contri-

bution to all loop order in string theory and the critical dimensions for ultravio-

let divergences will be given by (7) implying a seven-loop divergence in the four-

graviton amplitude of N = 8 supergravity in D = 4. This behaviour of the genus

five amplitude is compatible with the presence of genus five contribution in the

∂4 R4 interaction coupling derived in [18] from M-theory. This gives support to the

bound (7) which implies that the first divergence in the four-graviton amplitude

in four dimensions will be at seven loops. A candidate for an on-shell superspace

expression for this D-term is the volume of superspace

δSct ∼ κ12
(4)

∫
d4x

∫
d32θ |E| (9)

where |E| is the determinant of the superfield vielbein Which would be the seven

loop counter-term in four dimensions (see [11] for some comments about this).

Integrating over the fermionic variables this would lead to

δSct ∼ κ12
(4)

∫
d4x

√
−g(4) (D8R4 + susy completion) . (10)
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