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We are still learning intriguing new facets of the string theory motivated Kawai-Lewellen-
Tye (KLT) relations linking products of amplitudes in Yang-Mills theories and ampli-
tudes in gravity. This is very clearly displayed in computations of N = 8 supergravity
where the perturbative expansion show a vast number of similarities to that of N = 4
super-Yang-Mills. We will here investigate how identities based on monodromy relations
for Yang-Mills amplitudes can be very useful for organizing and further streamlining the
KLT relations yielding even more compact results for gravity amplitudes.
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1. Introduction

The search for a valid construction of quantum gravity has been on for most of the

previous century initiated by Einstein’s formulation of General Relativity in 1916

and the quantum mechanics revolution in the 1920ties. Physicists today are still

hunting the answers to the ultimate questions, e.g. how was the universe formed

and how does one comprehend the fabric of space and time? Quantum mechanical

corrections to gravity are crucial for the exact answers but the fundamental concepts

of such a quantum theory are unfortunately still very dim. In this paper we will

investigate how we can learn about an ultimate theory of quantum gravity through

studying symmetries in Yang-Mills theories and the links posed between Yang-Mills

theories and gravity through string theory.

The combination of a traditional quantization and the extra symmetry intro-

duced by a super-symmetrization of fundamental interactions appeared for a long
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while to be a way out of the troublesome ultraviolet divergences associated with a

field theory for gravity. The most famous model is possibly is the one of maximal su-

persymmetry N = 8 supergravity [1,2]. This theory arises as a low-energy effective

description of string theory in four dimensions. Various later arguments based on

supersymmetry point to a delay in the onset of ultraviolet divergences due to the ex-

tra symmetry [3–6] but it has long been the belief that only string theory should be

completely free of UV divergences. However since no explicit ultraviolet divergences

have been found so far in the four-dimensional four-graviton amplitude [7–12], the

effective field-theory status of N = 8 supergravity and its relation to string theory

have been put into questions.

We know that the on-shell S-matrix elements in string theory depend on the

scalars parameterizing the (classical) moduli space E7(7)(R)/(SU(8)/Z2) and that

these are covariant under the discrete U-duality subgroup E7(7)(Z) [13,14]. However

in supergravity the S-matrix elements are invariant under the continuous symme-

try E7(7)(R) [15–18]. From the string theory viewpoint the relation between the

four-dimensional Planck length ℓ4 and the string scale ℓs =
√

α′ depend on the

(four-dimensional) dilaton ℓ2
4 = α′ y4 where y4 = g2

s α′3/(R1 · · ·R6) and Ri are the

radii of compactification. The decoupling limit of string amplitudes goes as ℓs → 0,

1/Ri → ∞ and Ri/α′ → ∞, keeping the four-dimensional Newton’s constant

2κ2
(4) = 2π ℓ2

4 fixed. This limit is singular since in this limit some non-perturbative

states become massless and dominate the S-matrix [19,20]. These non-decoupling

results do not imply that N = 8 supergravity has perturbative ultraviolet problems

however because of the lack of concrete data it has become urgent to clarify the

status of the ultraviolet behavior of N = 8 supergravity in four dimensions and its

relation to string theory.

In recent years, by a combination of different inputs from string theory, super-

symmetry, unitarity and due to remarkable progress in computational capacity, a

huge number of amplitudes have been computed [21]. Surprisingly the ultraviolet

behavior of N = 8 supergravity occurs explicitly to be identical to the one of N = 4

super-Yang-Mills at least through four loops [4,5,8,9,12,22–26]. These results have

made it clear that N = 8 supergravity has a much better perturbative expansion

than power-counting näıvely suggests. It is still an open question if the perturba-

tive expansions of the two theories are similar to all loop orders or what in given

case will be the first loop order to have a dissimilarity. These and other aspects are

discussed further in ref. [27].

Motivated by string theory [28] where the massless spectrum of N = 8 super-

gravity can be factorized as the tensorial product of two copies of N = 4 super-

Yang-Mills theories, one can organize N = 8 supergravity tree-level amplitudes

according to the KLT relations [8,21,28–32] which we will write schematically in

the following way

Mtree
Gravity ∼

∑

ij

KijAi L
Yang−Mills ×Aj R

Yang−Mills . (1)
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Here MGravity, Ai L
Yang−Mills, Aj R

Yang−Mills are gravity and color ordered Yang-Mills

amplitudes and Kij is a specific function of kinematic invariants needed to ensure

that the tree-level gravity amplitude has the correct analytic structure.

The simple KLT relations between theories of gravity and two gauge theories

are observed directly in on-shell S-matrix elements but have no motivation at the

Lagrangian level (This is true even if part of the Lagrangian is rearranged as a

product of Yang-Mills types of interactions at the two-derivative level [32–34] or for

higher derivative corrections [35]. In the case of pure gravity one needs to take into

account the contribution from the dilaton in employing the KLT relations.)

Because of their high degree of supersymmetry both N = 4 super-Yang-Mills

and N = 8 supergravity loop amplitudes are cut constructible in D = 4 − 2ǫ

dimensions and surprisingly the knowledge of the tree-level amplitudes is enough

for reconstructing the full higher-loop amplitudes [9,10,12,15,36].

We will here discuss tree amplitudes from the point of view of the classical N = 8

theory, which can be constructed from the N = 4 super-Yang-Mills tree-level am-

plitudes using the KLT relation in (1). (For effective theories of gravity [30] one can

also employ KLT relations in a slightly modified fashion taking into account higher

derivative operators introduced through counterterms to ultraviolet divergences.)

We will next discuss the construction of tree-level amplitudes in Yang-Mills and

gravity from a minimal basis of amplitudes following [37].

2. Minimal basis for Yang-Mills and Gravity tree-level amplitudes

The n-point amplitude in open string theory with U(N) gauge group reads

An = ign−2
YM (2π)D δD(k1 + · · · + kn)

∑

(a1,...,an)∈Sn/Zn

tr(T a1 · · ·T an)An(a1, · · · , an) , (2)

where D is any number of dimensions obtained by dimensional reduction from 26

dimensions if we consider the bosonic string, or 10 dimensions in the supersymmetric

case. The field theory amplitudes are obtained by taking the limit α′ → 0. A new

series of amplitude identities between different color-ordered amplitudes based on

monodromy for integrations in string theory was derived in [37] (see [38,39] for

related discussions). The real part of these relations relates the n-point amplitude

with different orderings as

An(β1, . . . , βr, 1, α1, . . . , αs, n) = (−1)r

×ℜe
[

∏

1≤i<j≤r

e2iπα′(kβi
·kβj

)
∑

σ⊂OP{α}∪{βT }

s
∏

i=0

r
∏

j=1

e(αi,βj)An(1, σ, n)
]

. (3)

Here e(α,β) ≡ e2iπα′(kα·kβ) if xβ > xα and 1 otherwise, α0 denotes the leg 1 at point

0. The imaginary part give the following amplitude relation

0 = ℑm
[

∏

1≤i<j≤r

e2iπα′(kβi
·kβj

)
∑

σ⊂OP{α}∪{βT }

s
∏

i=0

r
∏

j=1

e(αi,βj)An(1, σ, n)
]

. (4)
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We define the (n− 3)! color ordered amplitudes Bσ = An(1, σ(2), · · · , σ(n− 2), n−
1, n) with σ ∈ Sn−3 denoting a permutation of the legs (2, . . . , n − 2). As a conse-

quence of (3) and (4) any color ordered amplitudes associated with the permutation

σ′ of the external legs can be expanded [37]

An(σ′(1), · · · , σ′(n)) =
∑

σ∈Sn

cσ
σ′ Bσ , (5)

where cσ
σ′ are functions of the Sp,q = sin(2πα′ p · q) and p and q are sums of the

external momenta. This implies that {Bσ; σ ∈ Sn−3} provides a minimal basis in

which all other color ordered amplitudes can be expanded.

Because the monodromy relations hold for all polarization configurations and

any smaller number of dimensions by a trivial dimensional reduction, it follows

immediately that they hold for any choice of external legs corresponding to the full

N = 1, D = 10 supermultiplet and in dimensional reductions thereof [40].

In the case of the four-gluon amplitude one have

A4(1, 2, 3, 4) =
Γ(1 − α′s)Γ(1 − α′t)

Γ(1 − α′u)

(ns

s
+

nt

t

)

, (6)

A4(1, 3, 2, 4) =
Γ(1 − α′u)Γ(1 − α′t)

Γ(1 − α′s)

(

−nu

u
− nt

t

)

, (7)

A4(2, 1, 3, 4) =
Γ(1 − α′s)Γ(1 − α′u)

Γ(1 − α′t)

(ns

s
+

nu

u

)

, (8)

where ns, nt and nu depends on the polarizations and the external momenta.

The monodromy relations (3) and (4)

A4(1, 3, 2, 4) =
sin(2πα′ s)

sin(2πα′ u)
A4(1, 2, 3, 4) , A4(2, 1, 3, 4) =

sin(2πα′ t)

sin(2πα′ u)
A4(1, 2, 3, 4) ,

(9)

imply that the numerator factors satisfy the Jacobi like relation ns = nt + nu. The

generalization to higher points gives the new amplitude relations recently conjec-

tured by Bern et al. in ref. [31]. The string theory monodromy identities for the

Kawai-Lewellen-Tye relationship between closed and open string amplitudes give

highly symmetric forms for tree-level amplitudes where the tree-level gravity ampli-

tudes are expanded in a basis obtained by the left/right tensorial product of gauge

color ordered amplitudes

Mn =
∑

σ,σ′∈Sn−3

Gσ,σ′

(ki · kj)BL
σBR

σ′ . (10)

As a direct application of our procedure, we can rewrite the Kawai-Lewellen-Tye

relations at four-point level as

M4 =
κ2

(4)

α′

Sk1,k2
Sk1,k4

Sk1,k3

AL
4 (1, 2, 3, 4)AR

4 (1, 2, 3, 4) . (11)
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The field theory limit of the string amplitude (11), α′ → 0 gives the symmetric form

of the gravity amplitudes of [31]

MFT
4 = κ2

(4)

st

u

(ns

s
+

nt

t

)

(

ñs

s
+

ñt

t

)

= −κ2
(4)

(

nsñs

s
+

ntñt

t
+

nuñu

u

)

. (12)

Here we have made use of the on-shell relation s + t + u = 0 and the four-point

Jacobi relation nu = ns − nt. Similarly considerations at higher-point order will be

detailed in [41].

3. Conclusions

We have discussed the interesting link posed by the Kawai-Lewellen-Tye (KLT)

string theory relations between products of amplitudes in Yang-Mills theories and

amplitudes in gravity. We here observed how identities based on monodromy rela-

tions for Yang-Mills amplitudes and the KLT relations can be employed to yield very

compact results for gravity amplitudes. It would be interesting to analyze the role

of the monodromies at loop order since this would allow us to further understand

the similarities of the perturbative expansion of N = 8 supergravity and N = 4

super Yang-Mills.
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