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Abstract

Recently Kupershmidt [36] presented a Lie algebraic derivation of a new sixth-order
wave equation, which was proposed by Karasu-Kalkani et al [30]. In this paper we
demonstrate that Kupershmidt’s method can be interpreted as an infinite-dimensional
analogue of the Euler-Poincaré-Suslov (EPS) formulation. In a finite-dimensional case
we modify Kupershmidt’s deformation of Euler top equation to obtain the standard EPS
construction on SO(3). We extend Kupershmidt’s infinite-dimensional construction to
construct nonholonomic deformation of a wide class of coupled KdV equations, all these
equations follow from the Euler-Poincaré-Suslov flows of the right invariant L2 metric

on the semidirect product group ̂Diff(S1) n C∞(S1), where Diff(S1) is the group of
orientation preserving diffeomorphisms on a circle. We generalize our construction to
two component Camassa-Holm equation. We also give a derivation of a nonholonomic
deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation
and this method can be interpreted as an infinite-dimensional supersymmetric analogue
of the Euler-Poincaré-Suslov (EPS) method.
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1 Introduction

Recently Karasu-Kalkani et al. [30] applied Painlevé test to a class of sixth-order non-
linear wave equations and found three of these were previously known, but the 4th one
turned out to be new one

(∂2x + 8ux∂x + 4uxx)(ut + uxxx + 6u2x) = 0. (1)
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One recognizes immediately the potential form of the KdV equation appearing in
the second factor of the left-hand side of (1). The factored way of writing this equation
has the advantage of showing immediately that all solutions of (potential) KdV are also
solutions of the new sixth-order equation.

After a slight change of variables

v = ux, w = ut + uxxx + 6u2x

this equation converts to the KdV equation with a source satisfying a third order ordinary
differential equation

vt + vxxx + 12vvx − wx = 0 ,

wxxx + 8vwx + 4wvx = 0 , (2)

which Kupershmidt called it the KdV6 equation. The authors of [30] obtained the Lax
pair and an auto-Bäcklund transformation for (2). They claimed that (2) is different from
the KdV equation with self-consistent sources (KdVESCS) and posed an open problem
to find higher symmetries and asked if higher conserved densities and a Hamiltonian
formalism exist for (2). In a recent paper Ramani et al. [48] bilinearize the KdV6
equation and derive a new, simpler, auto-Bäcklund transformation, and starting from
the solutions of the KdV equation they constructed those of the KdV6 in the form of M
kinks and N poles, which indeed involve an arbitrary function of time. In spite of all these
results Ramani et al. were unable to find higher symmetries of the KdV6 equation. In fact
Kupershmidt described this equation as a nonholonomic perturbations of bi-Hamiltonian
systems. Most important fact is that the eq. (2) had been written for the first time by
Calogero 1 and it is contained in the book of Calogero and Degasperis [10]. As such
it shares many of the properties of the equations associated to the Schrödinger spectral
problem.

The soliton equation with self-consistent sources has many physical applications, for
example, it describes the interaction of long and short capillary-gravity waves. In a recent
paper Yao and Zeng [52] showed that the KdV6 equation is equivalent to the Rosochatius
deformation of KdV equation with self-consistent sources. In our earlier paper [20] we
extended Yao and Zeng result to construct many other equations equivalent to the KdV6
equation and we identified that the constraint equation of w is a stabilizer equation of the
Virasoro orbit. We tacitly replaced this equation with an equivalent partner equation to
obtain various new avatars of the KdV6 equation. Essentially Yao and Zeng [52] adopted
this philosophy in a more adhoc style. We put it in a more systematic form using Kirillov’s
coadjoint orbit method. In [20], we extended Kuperschmidt’s formalism [36] to extended

Virasoro algebra ̂V ir n C∞(S1) to construct the Ito6 equation. It is known [22, 23]
that a wide class of coupled KdV equations can be manifested as geodesic flows of the

right invariant L2 metric on the semidirect product group ̂Diff(S1) n C∞(S1), where
Diff(S1) is the group of orientation preserving diffeomorphisms on a circle. In this
paper we construct nonholonomic deformation of all the coupled KdV systems, e.g., the
Ito system, the modified dispersive water wave system, the Kaup-Boussinesq equation and

1Thanks to Professor Francesco Calogero for sharing this information
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the Broer-Kaup system from the coadjoint representation of extended Virasoro algebra
[22, 23].

The theory of the integration of nonholonomic mechanical systems is not as fully
explored as that of holonomic systems. G. K. Suslov’s [49] problem of the rotation of a
rigid body about a fixed point with a constraint imposed on the angular velocity of the
body, and S. A. Chaplygin’s [11] problem of the rolling of a dynamically asymmetric ball
on a rough horizontal plane are well-known examples of integrable mechanical systems
with nonholonomic constraints. Authors generalize these two problems and present an
entire family of new integrable systems with nonholonomic constraints by introducing
additional gyroscopic forces and nonlinear potentials of sufficiently general form into the
system. There is a large number of literature dedicated to the Chaplygin ball ( see for
example [8, 9, 16, 50]) as well as Suslov problem ( for example [15, 19, 28]).

In an interesting paper Kersten et al [31] proved that the Kupershmidt deformation
of a bi-Hamiltonian system is itself bi-Hamiltonian. Moreover, the (so called) Magri
hierarchies of the initial system give rise to Magri hierarchies of Kupershmidt deforma-
tions as well. Note that the Magri hierarchy on a bi-Hamiltonian equation is an infinite
sequence of conservation laws which satisfy Lenard recursion scheme, follows from the
ingenious discovery of Magri [40, 41] that integrable Hamiltonian systems usually prove
to be bi-Hamiltonian.

It is known that N = 1 superconformal ( or super Virasoro) algebra can be related
to fermionic extensions of the KdV equation. Using the superspace formalism one can
construct two different fermionic extensions of the KdV equation. The first extension
was proposed by Manin and Radul [44]. The Manin-Radul version of the super KdV
is defined in terms of three independent variables ϑ, x, t, where ϑ is a Grassmann odd
variable. In the supersymmeteric version of the KdV equation the variable x acquires a
Grassmann partner ϑ, so X ≡ (x, ϑ) are coordinates in a one dimensional superspace.
This N = 1 SUSY KdV is given by [44, 42]

Φt +D6Φ + 3D2(ΦDΦ) = 0, (3)

where Φ(t, x, ϑ) = φ(t, x) + ϑu(t, x) stands for superfield. Thus equation (1.3) can be
expressed as

ut = −uxxx + 6uux − 3φφxx ,

φt = −φxxx + 3(uφ)x. (4)

These equations are invariant under the infinitesimal supersymmetry transformation δφ =
εu, δu = ε∂φ, where ε is a constant Grassmann parameter, which is equivalent to the
superspace translation δx = ϑε, δϑ = ε.

Mathieu [42] showed that this equation is associated to the (super) Lax operator

L = D4 − ΦD or L = D4 − (DΦ) + ΦD,

where D = ∂
∂ϑ + ϑ ∂

∂x denotes superderivative. After a suitable scaling Mathieu [42]
showed that the Eqn. (4) is equivalent to the sKdV equation obtained by Manin and
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Radul [44] from the reduction of the super Kadomtsev-Petviashvili (sKP) hierarchy. In
fact, the second Hamiltonian structure of this system was shown by Mathieu [42] and it
corresponds to the superconformal algebra of the superstring theories.

The second class of super KdV was proposed by Kupershmidt [35], given by

ut = −uxxx + 6uux − 6φφx ,

φt = −φxxx + 3uxφ+ 6uφx. (5)

This equation is associated to the Lax operator

L = ∂2 − u+ φ∂−1φ.

In fact Kupershmidt [35] demonstrated the bi-hamiltonian property of this equation.
Ovsienko and Khesin [45] showed that this version of super KdV equation is the Euler-
Poincaré flow corresponding to the inertia operator for the Neveu-Schwarz and Ramond
superalgebras [33, 43], which are the simplest super analogues of the Virasoro algebra.

It should be noted that that the Kupershmidt’s version of super KdV equation does
not preserve SUSY transformation, although it yields bihamiltonian structures. Some-
times it is approapriate to call Eqn. (5) the Kuper-KdV equation. Moreover, a Painlevé
analysis by Mathieu of possible supersymmetric extensions of the KdV equation seems
to suggest that the only integrable extensions are the Manin-Radul KdV and the one of
Kupershmidt.

1.1 Motivation, result and plan

This paper serves two purposes: it provides a (geometric) method to derive various non-
holonomic deformations of coupled KdV and super KdV equations which are integrable,
and it elaborates some techniques which promise to be useful in formulating new types
of nonholonomic deformed bi-Hamiltonian systems. Also this method turns out to be an
infinite-dimensional generalization of the celebrated Euler-Poincaré-Suslov method.

At first we consider Kupershmidt’s derivation of the KdV6 equation or nonholonomic
deformation of the KdV equation. We discuss the significance of his method and its
connection to Euler-Poincaré-Suslov (EPS) method. this method can be considered as
an infinite-dimensional analogue of the EPS scheme. We reformulate the derivation of
Kupershmidt using coadjoint orbit method of the Virasoro algebra. Then we focus on
to finite dimensional systems. We slightly modify Kupershmidt’s deformation of the
Euler top equation to obtain nonholonomic deformation of the top equation. Note that
Kupershmidt’s deformation leads to holonomic deformation of the top equation.

In this paper we construct nonholonomic deformation of all the coupled KdV systems,
e.g., the Ito system, the modified dispersive water wave system, the Kaup-Boussinesq
equation and the Broer-Kaup system from the coadjoint representation of extended Vi-
rasoro algebra [22, 23]. We give a geometrical construction the nonholonomic deformation
of the two component Camassa-Holm equation. Given two Hamiltonian structures O2

and O1 for the KdV equation, it is customary to define constraint equation as O2w = 0.
Recently, Yao and Zeng [52, 53] considered another kind of generalized Kupershmidt
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deformation where the constraint equation is given by (O2 − λO1)w = 0. In this pa-
per we also discuss this nonholonomic deformation from the geometric point of view and
compute the generalized Kupershmidt deformation of the two component Camassa-Holm
equation. Finally we extend the Kupershmidt’s programme to construct the nonholo-
nomic deformation of the N = 1 supersymmetric KdV equation, dubbed as the N = 1
super KdV6 equation.

The plan of the paper is as follows. We give a comprehensive description of the
Kupershmidt’s construction of nonholonomic systems and its connection to the Euler-
Poincaré-Suslov method in Section 2. We also show how Kupershmidt’s nonholonomic
deformation of Euler top can be mapped to EPS problem on SO(3). Section 3 is devoted
to Euler-Poincaré-Suslov flows on the coadjoint orbit of the extended Virasoro algebra.
We divide our job in two steps, at first we compute the Hamiltonian structures of various
coupled KdV systems, then using these we obtain the nonholonomic deformations of the
coupled KdV equations. In Section 4, at first we discuss N = 1 superconformal algebra
and superKdV equation and using this result we construct the nonholonomic deformation
of the N = 1 super KdV equation. We finish our paper with a modest outlook.

2 Kupershmidt’s construction and nonholonomic

deformation

In an interesting paper Kupershmidt [36] described the new sixth-order equation as a
nonholonomic deformation of the KdV equation and proved the integrability property.
The novelty of his paper is far reaching, in fact he formulated a method which is closely
associated to the Euler-Poincaré-Suslov (EPS) method. We describe his method both for
finite and infinite dimensions separately. We start with the infinite-dimensional version
of Kupershmidt’s construction, in fact, this is the main aspect of his construction.

2.1 Kupershmidt’s scheme for KdV6 equations and EPS
formalism

Let us start with the sixth-order equation proposed by Karasu-Kalkani et al. By rescaling
v and t of equation (2) Kupershmidt further modified this to

ut − 6uux − uxxx + wx = 0,

wxxx + 4uwx + 2uxw = 0, (6)

which he called the KdV6 equation. This can be converted into bi-Hamiltonian form

ut = B1

(
δHn+1

δu

)
−B1(w) = B2

(
δHn

δu

)
−B1(w), B2(w) = 0, (7)

where
B1 = ∂ = ∂x, B2 = ∂3 + 2(u∂ + ∂u) (8)

are the two standard Hamiltonian operators of the KdV hierarchy, n = 2, and

H1 = u, H2 = u2/2, H3 = u3/3− u2x/2, ... (9)
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are the conserved densities. Thus after simplifying the sixth-order equation Kupershmidt
put it in a bihamiltonian form which indeed helps us to investigate the equation along
the direction of coadjoint orbit method. We now present the reformulation the KdV6
equation using Virasoro orbit.

2.1.1 Virasoro orbit, infinite-dimensional EPS flow and KdV6

Let us consider the Lie algebra of vector fields V ect(S1) on a circle S1. The dual of this
algebra is identified with space of quadratic differential forms F2. The pairing between
f(x) d

dx ∈ V ect(S
1) and u(x)dx⊗2 ∈ F2 is defined as

< u(x)dx2, f(x)
d

dx
>=

∫ 2π

0
u(x) f(x)dx.

The Virasoro algebra V ir has a unique non-trivial central extension, described by the
Gelfand-Fuchs cocycle

ω1(f, g) =

∫
S1

f ′g′′dx.

The elements of V ir can be identified with the pairs (2π periodic function , real
number ). The commutator in V ir takes the form

[(f(x)
d

dx
, a), (g(x)

d

dx
, b)] = ((fg′ − gf ′) d

dx
,

∫
S1

f ′g′′ dx).

The dual space V ir∗ can be identified to the set {(µ, udx2) | µ ∈ R}. A pairing between
a point (λ, f(x) d

dx) ∈ V ir and a point (µ, udx2) ∈ V ir∗ is given by

< (µ, u(x)dx2), (λ, f(x)
d

dx
>= λµ+

∫
S1

f(x)u(x) dx.

Lemma 1 The coadjoint action of the Virasoro algebra (λ, f(x) d
dx) ∈ V ir on its dual

(µ, udx2) ∈ V ir∗ is given by

ad∗
(λ,f(x) d

dx
)
(µ, udx2) = µf ′′′ + 2f ′u+ fu′. (10)

We fix the hyperplane µ = 1
2 . The kernel of the ad∗ yields the stabilier set of Virasoro

orbit
f ′′′ + 4u′f + 4uf ′ = 0. (11)

The second Hamiltonian operator of the KdV equation can be easily derived from the
coadjoint action of the Virasoro algebra, which is given by

O2
KdV = D3 + 4uD + 2ux, where D =

d

dx
. (12)

It is known that the first Hamiltonian operator of the KdV equation can also be derived
( please see next section for derivation of this operator when we deal with the coupled
systems) from the coadjoint action using frozen Lie-Poisson structure. It is given by
O1
KdV = D.
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Proposition 1 The KdV6 equation is constraint Hamiltonian flow on the Virasoro orbit

ut = ad∗∇H(u)− wx = O2
KdV

δH

δu
−O1

KdV (w) s. t. < ∇H,wx >= 0 (13)

and
O2
KdV (w) = 0, (14)

where H = 1
2

∫
S1 u

2 dx.

Our task is to find w such that it satisfies < ∇H,wx >= 0. The workable approach
to this problem is to choose Kupershmidt’s scheme, i.e.,

w =
δG

δu
, (15)

for some function G. This immediately leads to

< ∇H,wx >=<
δH

δu
, ∂(

δG

δu
) >= {H,G}1 = 0.

Since O2
KdV (w) = 0, hence

{H,G}2 = 0.

Thus G commutes with H with respect to both the Poisson structures. It is easy to
generalize this construction to sequence of Hamiltonians Hn. Thus G commutes with Hn

w.r.t. to both the brackets, i.e.,

{Hn, G}1 = 0 = {Hn, G}2. (16)

Second type of nonholonomic deformation Let us define pencil of Hamiltonian
structures

OλKdV = O2
KdV − λO1

KdV . (17)

Then equation (16) implies {H,G}λ = 0, i.e. G commutes with H with respect to pencil
of Hamiltonian structures. This immediately yields a slightly modified nonholonomic
deformation of the KdV equation

ut = ad∗∇H(u)− wx = O2
KdV

δH

δu
−O1

KdV (w) OλKdV (w) = 0, (18)

which is given by

ut = 6uux + uxxx − wx ,
wxxx + 4uwx + 2uxw − λwx = 0 . (19)

This equation was derived by Yao and Zeng [52, 53].

Other avatars of KdV6 equation Suppose ψ1 and ψ2 are the solutions of the
spectral equation

∆ψ = ψxx + (u− λ)ψ = 0, (20)
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then the product w = ψ2
i satisfies the constraint equation w′′′ + 2u′w + 4uw′ − λw′ = 0,

which yields

2ψ1(ψ1xx + (u− λ)ψ1)x + 6ψ1x(ψ1xx + (u− λ)ψ1) = 0.

This gives rise to Ermakov-Pinney equation

ψ1xx + (u− λ)ψ1 =
µ

ψ3
1

. (21)

If we start with the hierarchy and consider spectral problem with N distinct eigenvalues
and follow the similar procedure we obtain the Rosochatius system. Essentially this is
the observation of Yao and Zeng.

The integrable Ermakov-Pinney deformation of the KdV6 equation follows from the
usual KdV framework. If ψ1 and ψ2 satisfy Hill’s equation then ψ =

√
Aψ2

1 + 2Bψ1ψ2 + Cψ2
2

satisfies Ermakov-Pinney equation

ψ′′ + u(x)ψ =
σ

ψ3
, σ = AC −B2,

and {ψ2
1, ψ

2
2, ψ1ψ2} satisfy constraint equation w′′′ + 4uw′ + 2u′w = 0.

2.2 Kupershmidt’s construction for finite-dimensional sys-
tem

We now consider the finite-dimensional case, this is relatively less studied by the inte-
grable system community. In fact his method only leads to holonomic deformation, we
modify it and establish a connection between his method and classical EPS method.

The constraint equation related to second Hamiltonian operator B2(w) = 02 is, in
general, nonholonomic only for systems which are either differential or difference on
Z. Kupershmidt showed that in Classical Mechanics with a finite number of degrees
of freedom, the constrain B2(w) = 0 becomes holonomic. Let us quickly recapitulate
Kupershmidt formalism in finite-dimensional system.

Kupershmidt considered the Euler top equation

ẋi = αixjxk, with x = (x1, x2, x3) ∈ R3. (22)

with α = (α1, α2, α3) ∈ R3 being arbitrary but fixed vector parameter. He considered
Poisson brackets

{xi, xj}γ = γkxk, with γ ∈ R3, (23)

and Hamiltonian Hc = 1
2

∑3
i=1 cix

2
i to express top equation in a Hamiltonian form

ẋi = {xi, Hc} = Jγ ×∇Hc, ( where (α, c) = 0 (24)

2Here we keep his notation, i.e., B2 and B1 stand for second and first Hamiltonian structures
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where Jγ is the Poisson matrix related to (23). Kupershmidt considered this to be second
Hamiltonian structure B2 and first one B1 is given another Poisson matrix Jβ related to
Poisson brackets {xi, xj}β = βkxk. Therefore the constraint equation B2(w) = 0 is

w × Jγ = 0, (25)

so that w = k1Jγ , where k1 is a constant. Thus the deformation equation becomes

ẋi = αixjxk − k(Jβ × Jγ)i, (26)

which can be easily reduced to ẋi = Kαixjxk, where K is another constant. Thus he
showed that the deformation for Euler top is not nonholonomic anymore and overall
effect of the perturbation amounts to the time rescaling of the original top. Hence
Kupershmidt’s formalism of deformation leads to only holonomic deformation of the
Euler top equation. After a brief recapitulation of the finite-dimensional EPS method
we will modify this construction.

2.3 Modified Kupershmidt’s scheme for classical systems
and the Euler-Poincaré-Suslov method

We wish to show that Kupershmidt’s scheme for the Euler top is closely related to Euler-
Poincaré-Suslov (EPS) formalism [6, 17, 18, 29]. The reduced dynamics of the constrained
generalized rigid body is governed by the Euler-Poincaré-Suslov equations which in fact
one of the best known demonstration of EPS formalism in integrable systems.

2.3.1 Recap of Euler-Poincaré-Suslov (EPS) method

We briefly recall the definition of EPS from [6, 18, 29]. Let Q be an n-dimensional
manifold. The distribution can be defined by m independent 1-forms αi via

Dq = {γ ∈ TqQ, αi(γ) = 0, i = 1, · · · ,m}.

The smooth path c(t), t ∈ ∆ is called admissible (or allowed by constraints) if the
corresponding velocity ċ(t) belongs to Dc(t) for all t ∈ ∆. The admissible path c(t) is
called a nonholonomic geodesic line if it satisfied d’AlambertLagrange equations

π(∇ċ(t)ċ(t)) = 0,

where π : TqQ→ Dq is the orthogonal projection.

Let {., .} be canonical Poisson brackets on T ∗Q. A Hamiltonian vector field Xh

satisfies < dg,Xh >= {g, h} for all g : T ∗Q→ R. Let Mc be the constraint submanifold
in the phase space T ∗Q:

Mc = {(p, q) ∈ T ∗Q, p ∈ gq(Dq) ⊂ T ∗qQ},

where gq : TqQ→ T ∗qQ. Let

h(p, q) =
1

2
pg−1q p, p ∈ T ∗qQ,
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we can write the nonholonomic flow as

ẋ = Xh(x) +

m∑
i=1

λi vert αi|π(x), (27)

where x stands for the phase space coordinates. Here vertαi|π(x) ∈ Tx(T ∗Q) is the
vertical lift of αi|π(x ∈ T ∗π(x)Q, π : T ∗Q→ Q, π : T ∗Q→ Q.

In canonical coordinates these becomes

ṗ = −∂h
∂q

+
m∑
i=1

λiαi(q) q̇ =
∂h

∂p
. (28)

Nonholonomic systems on Lie groups We now replace the configuration space Q
by a compact connected Lie group G and the system is characterized by a left-invariant
Lagrangian

L =
1

2
< Iα, α > where α = g−1ġ ∈ g,

where I : g→ g∗ is the momentum map. Then distribution is given by

D = {α ∈ g, < α, ai >= 0, i = 1, · · ·m} ⊂ g.

In other words, the nonholonomic constraints are expressed in terms of m linearly in-
dependent fixed covectors ai ∈ g∗, i = 1, · · · ,m. We say a velocity vector satisfies con-
straints if < ai, α >= 0. Suppose D ⊂ g be the vector subspace of all velocities satisfying
the constraints, we say the constraints are nonholonomic if D is not a Lie subalgebra of
g.

Given a set of linearly independent vectors ai and H(α) = 1/2 < I−1α, α > this
non-holonomic flow equation can be expressed in canonical coordinates α = (α1, · · · , αn)

α̇ = ad∗∇Hα+

m∑
i=1

λia
i, (29)

where the Lagrange multipliers are chosen such that

< ∇H(α), ai >= 0, i = 1, · · · ,m.

Example : Nonholonomic rigid body dynamics The Euler equation of the an-

gular velocity is given by IΩ̇ = IΩ × Ω. Let M = IΩ denotes angular momentum. The
Euler equation for rigid body may be expressed equivalently in angular momentum vec-
tor Ṁ = M × ∂H

∂M , where the Hamiltonian H = 1/2 < M, I−1M >. The equations are
Hamiltonian with the rigid body Poisson bracket [26, 44]

{F,K}(M) = −M ·
[
∇F (M)×∇K(M)

]
, where ∇F (M) =

∂F

∂M
.

The Euler-Poincaré-Suslov problem on SO(3) can be formulated as the standard Euler
equations subjected to the constraint < a,Ω >= 0, where a ∈ g∗. The nonholonomic
equations of motion are then given by

IΩ̇ = IΩ× Ω + λa (30)

11



subject to the constraint. We can easily solve for λ:

λ = −I
−1a · (IΩ× Ω)

I−1a · a
. (31)

The nonholonomic equation (30) can also be expressed in terms of coadjoint action

Ṁ = M × I−1M − < M × I−1M, I−1a >

< a, I−1a >
a. (32)

This equation is a special case for G = SO(3), for arbitrary Lie group this can be
expressed as

Ṁ = ad∗∇H(M)M −
< M, ad∇H(M)I

−1a >

< a, I−1a >
a. (33)

2.3.2 Kupershmidt’s method and EPS formalism

Let us modify and update Kupershmidt’s method for the Euler top. We show that a little
modification of Kupershmidt’s scheme yields nonholonomic deformation of the Euler top
equation.

Let us start with an explicit representation of the Poisson matrix J in R3. Any exact
Poisson bivector in R3 corresponds to a certain function ζ(x, y, z) is given by

Λ3
ζ =

∂ζ

∂x

∂

∂y
∧ ∂

∂z
+
∂ζ

∂y

∂

∂z
∧ ∂

∂x
+
∂ζ

∂z

∂

∂x
∧ ∂

∂y

This we can express in terms of a Poisson matrix

Jζ =

 0 ∂ζ
∂z −∂ζ

∂y

−∂ζ
∂z 0 ∂ζ

∂x
∂ζ
∂y − ∂ζ

∂x 0

 (34)

If we focus on the Jacobi identity, it is well known that in R3 the Jacobi equation for
the Poisson structure, is a single scalar equation for the three components of the Poisson
structure J [5, 46]. Note that if we stick to usual notation of Poisson matrix then the
relevant properties of the matrix J = (J)ij for the Poisson structure are

(i) Jij = −Jji i, j = 1, 2, 3 skew-symmetry

(ii) J li∂lJ
jk + J lj∂lJ

ki + J lk∂lJ
ij = 0 i, j, k = 1, 2, 3, (35)

which is a consequence of the Jacobi identity.
A distinguished property of the Poisson structures in 3D is the invariant of the Jacobi

identity under the multiplication of the Possion vector J(x) by an arbitrary but non-zero
factor. In particular, under the transformation of Poisson vector

J(x)→ h(x)J(x)

the Jacobi identity transforms as

J · (∇× J)→ h(x)2J · (∇× J). (36)
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Our ansätz is to choose trivial structure, as Kupershmidt prescribed for infinite-
dimensional case B1 operator. Then the deformed Euler top equation becomes

ẋ = Jγ ×∇H(x) +

3∑
i=1

λiw
i, (37)

and the system is subject to the constraint

< ∇H,wi >= 0, i = 1, 2, 3. (38)

Thus replacing Jβ by a constant matrix we can reduce the Kupershmidt construction
to Euler-Poincaré-Suslov problem on SO(3).

The nonholonomic description on the semidirect space SO(3) n R3 is closely related
to Veselova system [51] on the motion of a rigid body about a fixed point under the action
of the nonholonomic constraint (Ω,Γ) = 0.

3 Euler-Poincaré formalism on extended Vira-

soro algebra and coupled KdV equations

We start with some basic definitions collected from [25, 44, 43]. Let ρ : G → Aut(V )
denotes a Lie group (left) representation of G in the vector space V , and ρ̃ : g→ End(V )
is the induced Lie algebra representation. Let us denote G n V the semidirect product
group of G with V by ρ with multiplication [12, 44]

(g1, v1)(g2, v2) = (g1g2, v1 + ρ(g1)v2).

Let gn V be the Lie algebra of Gn V . The Lie bracket on gn V is given by

[(ξ1, u1), (ξ2, u2)] = ([ξ1, ξ1], ρ̃(ξ1)u2 − ρ̃(ξ2)u1).

We have already seen that a prototypical example of a semidirect product structure
is when g is the Lie algebra so(3) associated with the rotation group SO(3) and u is R3.
Their semidirect product is the algebra of the 6-parameter Galilean group of rotations
and translations.

We can build the Lie-Poisson brackets from these algebras. The ± Lie-Poisson bracket
of f, g : (gn V )∗ → R is given as

{f, g}±(µ, a) = ±
〈
µ, [

δf

δµ
,
δg

δµ
]
〉
±
〈
a, ρ̃(

δf

δµ
) · δg
δa

〉
∓
〈
a, ρ̃(

δg

δµ
) · δf
δa

〉
,

where δf
δµ ∈ g and δf

δa ∈ V , dual of µ under the pairing <,>: g∗ × g→ R.
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3.1 Extended Bott-Virasoro group

Let Diff(S1) be the group of orientation preserving diffeomorphisms of a circle. It is
known that the group Diff(S1) as well as its algebra, i.e., the Lie algebra of vector fields
on S1, TidDiff(S1) = V ect(S1), have non-trivial one-dimensional central extensions, the

Bott-Virasoro group ̂Diff(S1) and the Virasoro algebra V ir respectively [33].
The Lie algebra V ect(S1) is the algebra of smooth vector fields on S1. This satisfies

the commutation relations

[f
d

dx
, g

d

dx
] := (f(x)g′(x)− f ′(x)g(x))

d

dx
. (39)

One parameter family of V ect(S1) acts on the space of smooth functions C∞(S1) by

L
(µ)

f(x) d
dx

a(x) = f(x)a′(x) + µf ′(x)a(x), (40)

where

L
(µ)

f(x) d
dx

= f(x)
d

dx
+ µf ′(x)

is the Lie derivative with respect to the vector field f(x) d
dx on the tensor density a(x)dxµ.

The Lie algebra of Diff(S1) n C∞(S1) is the semidirect product Lie algebra

g = V ect(S1) n C∞(S1).

An element of g is a pair (f(x) d
dx , a(x)), where f(x) d

dx ∈ V ect(S
1) and a(x) ∈ C∞(S1).

It is known that this algebra has a three dimensional central extension given by the
following non-trivial cocycles [3, 43]

ω1((f
d

dx
, a), (g

d

dx
, b)) =

∫
S1

f ′(x)g′′(x)dx (41)

ω2((f
d

dx
, a), (g

d

dx
, b)) =

∫
S1

f ′′(x)b(x)− g′′a(x))dx (42)

ω3((f
d

dx
, a), (g

d

dx
, b)) = 2

∫
S1

a(x)b′(x)dx. (43)

The first cocycle ω1 is the well known Gelfand-Fuchs cocycle and we have seen earlier
that the Virasoro algebra is the unique non-trivial central extension of V ect(S1) via this
ω1 cocycle.

3.1.1 Modified Gelfand-Fuchs cocycle

Consider the following “modified” Gelfand-Fuchs cocycle [33] on V ect(S1):

ωmGF (f(x)
d

dx
, g(x)

d

dx
) =

∫
S1

(af ′g′′ + bf ′g)dx. (44)
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This cocycle is cohomologues to the Gelfand-Fuchs cocycle, hence, the corresponding
central-extension is isomorphic to the Virasoro algebra. The additional term in (44) is a
coboundary term. It is easy to check that the functional∫

S1

f ′g dx =
1

2

∫
S1

(f ′g − fg′)dx

depends on the commutator of f d
dx and g d

dx .

The Gelfand-Fuchs theorem states that H2(V ect(S1)) = R, and therefore, every
nontrivial cocycle is proportional to the Gelfand-Fuchs cocycle upto a coboundary. Thus
one has

ω̃1 = λω1 + b,

where b is a coboundary

b(f
d

dx
, g

d

dx
)(u) =< udx2, [f, g]

d

dx
>

for some udx2 ∈ V ir∗ is the element of the dual space of Virasoro algebra.

3.1.2 Coadjoint orbit and Hamiltonian structure

Let us consider the extension of g = V ect(S1)nC∞(S1). This extended algebra is given
by

ĝ = V ect(S1) n C∞(S1)⊕R3. (45)

Definition 1 The commutation relation in ĝ is given by

[(f
d

dx
, a, α), (g

d

dx
, b, β)] := ((fg′ − f ′g)

d

dx
, fb′ − ga′, ω) (46)

where α = (α1, α2, α3), β = (β1, β2, β3) ∈ R3, ω = (ω1, ω2, ω3) are the two cocycles.

The dual space of smooth functions C∞(S1) is the space of distributions ( generalized
functions) on S1. Of particular interest are the orbits in ĝ∗reg. In the case of current group,
Gelfand, Vershik and Graev have constructed some of the corresponding representations
[43].

Definition 2 Let ĝ∗reg be the regular part of the dual of the extended Virasoro algebra ĝ,
defined as

g∗reg = C∞(S1)⊕ C∞(S1)⊕R3.

The L22 pairing between this space and the extended Virasoro algebra ĝ < ·, · >L2 :
g∗reg ⊗ g→ R is given by

< û, f̂ >L2=

∫
S1

f(x)u(x)dx+

∫
S1

a(x)v(x)dx+ α · γ, (47)

where û = (u(x), v, γ), f̂ = (f d
dx , a, α).
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Extend this to a right invariant metric on the semi-direct product group ̂Diff(S1) n C∞(S1)
by setting

< û, f̂ >ξ̂=< dξ̂Rξ̂−1 û, dξ̂Rξ̂−1 f̂ >L2 (48)

for any ξ̂ ∈ ĝ and û, f̂ ∈ Tξ̂Ĝ, where Rξ̂ : ĝ −→ ĝ is the right translation by ξ̂.

Given any two elements f̂ = (f d
dx , a, α), ĝ = (g d

dx , b, β) ∈ ĝ, the coadjoint action of f̂
on its dual element (udx2, v(x), c) ∈ ĝ∗reg is given below.

Lemma 2

ad∗
f̂
û = (2f ′(x)u(x) + f(x)u′(x) + a′v(x)− c1(af ′′′ + bf ′) + c2a

′′

f ′v(x) + f(x)v′(x)− c2f ′′(x) + 2c3a
′(x)

0


Proof: This follows from

< ad∗
f̂
û, ĝ >L2=< û, [f̂ , ĝ] >L2

=< (u(x)
d

dx
, v(x), c), [(fg′ − f ′g)

d

dx
, fb′ − ga′, ω) >L2

= −
∫
S1

(fg′ − f ′g)u(x)dx−
∫
S1

(fb′ − ga′)vdx− c1
∫
S1

f ′(x)g′′(x)dx−

c2

∫
S1

(f ′′(x)b(x)− g′′(x)a(x))dx− 2c3

∫
S1

a(x)b′(x)dx.

Since f, g, u are periodic functions, hence integrating by parts we obtain

R.H.S. =< (2f ′(x)u(x) + f(x)u′(x) + a′(x)v(x)− c1f ′′′(x)+

c2a
′′(x),f ′(x)v(x) + f(x)v′(x)− c2f ′′b(x) + 2c3a

′(x),0)

2

The Hamiltonian structure associated with the coadjoint action is given by

O =

(
−c1(aD3 + bD) + 2uD + ux vD + c2D

2

vx + vD − c2D2 2c3D

)
. (49)

This is most general Hamiltonian structure for the Antonowicz-Fordy system. So all
other Hamiltonian structures follow from this.

The Euler-Poincaré equation is the Hamiltonian flow on the coadjoint orbit in g∗,
generated by the Hamiltonian

H(u, v) =< (u(x), v(x)), (u(x), v(x)) >=
1

2

∫
S1

(u2 + v2) dx, (50)
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given by
dû

dt
= ad∗∇H û(t). (51)

Let V be a vector space and assume that the Lie group G acts on the left by linear
maps on V , thus G acts on the left on its dual space V ∗. The Euler-Poincaré flows on
the coadjoint orbits of dual space of the extended Virasoro algebra can be identified with
the geodesic flow the extended Bott-Virasoro group from the following proposition.

Proposition 2 Let GnV be a semidirect product space ( possibly infinite dimensional),
equipped with a metric < ·, · > which is right translation. A curve t → c(t) in G n V is
a geodesic of this metric if and only if û(t) = dc(t)Rc(t)−1 ċ(t) satisfies the Euler-Poincaré
equation.

We now consider various examples of the Euler-Poincaré flows.

3.2 Examples of Euler-Poincaré Flows on Semidirect prod-
uct spaces and Hamiltonian structures

We give a series of examples of coupled KdV equations and their corresponding second
Hamiltonian structures. All these flows are restricted to certain hyperplanes on the dual
space of the extended Virasoro algebra.

1. Ito system

We choose the hyperplane in the dual space. The coadjoint action leaves the parame-
ter space invariant. Let us consider a hyperplane c1 = −1, a = 1, b = 0, c2 = c3 = 0.

The Hamiltonian structure of the well known Ito system

ut = uxxx + 6uux + 2vvx, vt = 2(uv)x (52)

is given by

OIto =

(
D3 + 4uD + 2ux 2vD

2vx + 2vD 0

)
,

where δH
δu = u, δHδv = v.

2. Modified dispersive Water wave equation

When we restrict to a hyperplane c1 = 0, c2 = 1, c3 = 0, we obtain the modified
dispersive water wave equation

ut = 6uux + 2vvx + vxx ,

vt = 2(vu)x − uxx. (53)
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Thus the Hamiltonian structure of the modified dispersive water wave is

O2 =

(
4uD + 2ux 2vD +D2

2vx + 2vD −D2 0

)
,

with Hamiltonian H = 1
2

∫
S1(u2 + v2)dx.

3. The Kaup-Boussinesq system

The Kaup-Boussinesq equation

ut = (uv)x +
1

4
vxxx, vt = vvx + ux. (54)

This equation is also related to a hyperplane c1 = −1
2 , a = 1, b = 0, c2 = 0

and c3 = 1 in the coadjoint orbit of the extension of the Bott-Virasoro group. Its
Hamiltonian structure is

O2 =

(
2uD + ux + 1

2D
3 vD

Dv 2D

)
,

with
δH

δv
=

1

2
u,

δH

δu
=

1

2
v.

4. The Broer-Kaup system

The Broer-Kaup system

ut = −uxx + 2(uv)x, vt = vxx + 2vvx − 2ux (55)

is a geodesic flow associated to the hyperplane c1 = 0, c2 = −1 and c3 = −1. Hence
the Hamiltonian structure is

OBK =

(
uD +Du −D2 + vD
D2 +Dv −2D

)
, with H =

∫
S1

uv.

We will use all these second Hamiltonian structures to compute nonholonomic defor-
mations of various coupled KdV systems in the next section.

3.3 Frozen Lie-Poisson bracket and First Hamiltonian struc-
tures

We also consider the dual of the Lie algebra of V ir∗ with a Poisson structure given by
the “frozen” Lie-Poisson structure. In otherwords, we fix some poinr µ0 ∈ g∗ and define
a Poisson structure given by

{f, g}0(µ) :=< [df(µ), dg(µ)], µ0 >

It was shown by Khesin and Misiolek [32] that
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Proposition 3 The brackets {·, ·}LP and {·, ·}0 are compatible for every ”freezing” point
µ0.

Proof: Let us take any linear combination

{·, ·}λ := {·, ·}LP + λ{·, ·}0

is again a Poisson bracket, it is just the translation of the Lie-Poisson bracket from the
origin to the point −λµ0.

2

Let us proceed to compute frozen brackets. In general, given

(u0, v0, c) ∈ ̂V ect(S1) n C∞(S1)
∗
' C∞(S1)⊕ C∞(S1)⊕R3,

the frozen bracket is given by

{f, g}(u, v, c) =< (u0, v0, c), [
δf

δ(u, v, c)
,

δg

δ(u, v, c)
] >,

=< −ad∗ δf
δ(u,v,c)

(u0, v0, c),
δf

δ(u, v, c)
> .

Furthermore, recall the corresponding equations of motions are given by

d

dt
(u, v, c) = −ad∗ δf

δ(u,v,c)

(u0, v0, c).

We would like find the frozen bracket at (u(x), v(x), c) ≡ (0, 0, c) and this gives rise
to the first Hamiltonian structure of the coupled KdV type systems

O1 =

(
∂x 0
0 ∂x

)
, (56)

where c = (−1, 0, 12) and a = 0, b = 1.

Remark on coboundary operator and frozen structure Every 2-cocycle Γ
defines a Lie-Poisson structure on g∗. The vanishing of Schouten-Nijenhuis bracket for
Poisson bivector can be recast as a cocycle condition ∂Γ = 0, where ∂ : ∧kg∗ → ∧k+1g∗.
A special case of Lie-Poisson structure is given by a 2-cocycle Γ which is a coboundary
[13, 14]. If Γ = ∂µ0 for some µ0 ∈ g∗, the expression

{f, g}0(µ) = µ0([dµf, dµg])

considered to be Lie-Poisson bracket which has been “frozen” at a point µ0 ∈ g∗.
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3.4 Nonholonomic deformation of coupled systems

In this section we present one of the main result of the paper, i.e., the nonholonomic
deformations of the coupled KdV systems using Kupershmidt’s prescription. These are
all dubbed as the Ito6, the Modified dispersive water wave 6 (or MDWW6), the Kaup-
Boussinesq 6 (KB6) and the Broer-Kaup 6 (or BK6) equatiions. These are all considered
to be multi-component generalization of the KdV6 equation.

Proposition 4 1. The Ito6 equation is a constraint flow on the dual space of semi-
direct algebra g restricted to hyperplane c1 = −1, a = 1, b = 0, c2 = c3

ut = uxxx + 6uux + 2vvx − w1x vt = 2(uv)x − w2x, (57)

where w = (w1, w2) satisfies

w1xxx + 4uw1x + 2uxw1 + 2vw2x = 0 ,

2(w1v)x = 0. (58)

(59)

2. The MDWW6 equation is a constraint flow on the dual space of g restricted to
hyperplane c1 = 0, c2 = 1, c3 = 0

ut = 6uux + 2vvx + vxx − w1x vt = 2(vu)x − uxx − w2x, (60)

where the constraint equations satisfy

2uw1x + 2(uw1)x + 2vw2x + w2xx = 0 2(vw1)x − w1xx = 0. (61)

3. The Kaup-Boussinesq 6 (KB6) equation is a constraint flow on the dual space of g
restricted to hyperplane c1 = 1/2, c2 = 0, c3 = 1, c4 = 0

ut = (uv)x +
1

4
vxxx −w1x, vt = vvx + ux −w2x, vt = (uv)x +

1

4
uxxx −w2x,

(62)
where w equations satisfy the following constraint equations

2uw1x + uxw1 +
1

2
w1xxx + vw2x = 0, (vw1)x + 2w2x = 0. (63)

4. The Broer-Kaup 6 (BK6) equation is a constraint flow on the dual space of g re-
stricted to hyperplane c1 = 0, c2 = −1, c3 = −1, c4 = 0

ut = −uxx + 2(uv)x − w1x, vt = vxx + 2vvx − 2ux − w2x (64)

where constriant equations satisfy

uw1x + (uw1)x − w2xx + vw2x = 0, w1xx + (vw1)x − 2w2x = 0. (65)
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Proof: We use Kupershmidt formulation or Euler-Poincaré-Suslov type equation(
u
v

)
= O2

(
δH
δu
δH
δv

)
−O1

(
w1

w2

)
,

and constraint equation

O2

(
w1

w2

)
= 0

to produce our result. 2

Following Kupershmidt we can show the the existence of infinite number of conserved
densities

dHm

dt
= ∇Hm(u)

[
O2(∇Hn(u)−O1(w)

]
= ∇Hm(u)O2(∇Hnu)−∇Hn(O1)w = 0.

where all the operations are defined upto exact differential and ∇Hm(u) =

(
δHm
δu
δHm
δv

)
and

the operators O2 and O1 are identified with the Kupershmidt’s B2 and B1 operators.
Like Kupershmidt’s case, if we proceed to develop the variational calculus in the (u, v, w)-
variables for general system, we would be obstructed since the calculus works only when
the factor Ω1/∂(Ω1) is free module, where Ω1 is the module of differential forms. But it
can be performed well for the KdV type systems. We demonstrate this for the coupled
KdV equations.

Remark By changing the constriant equation from O2w = 0 to pencil of Poisson
structure Oλw = (O2 − λO1)w = 0 we may construct second type of nonholonomic
deformed coupled KdV systems.

By changing the norm from L2-norm to H1 we may study the Euler-Poincaré-Suslov
flows on the extended Virasoro group. Since these are bihamiltonian in nature so we can
apply Kupershmidt scheme and this will yield nonholonomic deformation of the coupled
Camassa-Holm type equations. In the next section we present this construction.

3.5 The two component Camassa-Holm equation and non-
holonomic deformation

Let us consider extended Virasoro algebra ĝ = V ect(S1) n C∞(S1) ⊕ R3. In fact it is
known [24] that the two component Camassa-Holm (CH) equation also follows from the
geodesic flow on the extended Bott-Virasoro with respect to H1 inner product.

Let us introduce H1 inner product on the algebra ĝ

〈 f̂ , ĝ 〉H1 =

∫
S1

[ f(x)g(x) + a(x)b(x) + ∂xf(x)∂xg(x) ] dx+ α · β, (66)

where

f̂ =

(
f
d

dx
, a, α

)
, ĝ =

(
g
d

dx
, b, β

)
.

Now we compute :
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Lemma 3 The coadjoint operator with respect to the H1 inner product is given by

ad∗
f̂

(
u
v

)
=

(
(1− ∂2)−1[2f ′(x)(1− ∂2x)u(x) + f(x)(1− ∂2x)u′(x) + a′v(x)]− c1(af ′′′ + bf ′) + c2a

′′

f ′v(x) + f(x)v′(x)− c2f ′′(x) + 2c3a
′(x)

)
.

(67)

Proof: Since we have identified g with g∗, it follows from the definition that

〈 ad∗
f̂
û , ĝ 〉H1 = 〈 û , [f̂ , ĝ] 〉H1 = −

∫
S1

[ (fg′ − f ′g)u− (fb′ − ga′)v − ∂x(fg′ − f ′g)∂xu ]dx.

After computing all the terms by integrating by parts and using the fact that the functions
f(x), g(x), u(x) and a(x), b(x), v(x) are periodic, the right hand side can be expressed as
above.

Let us compute now the left hand side:

ad∗
f̂

(
u
v

)
=

∫
S1

[ (ad∗
f̂
u)g + (ad∗

f̂
u)′g′ + (ad∗

f̂
v)b ] dx

=

∫
S1

[ [(1− ∂2)ad∗
f̂
u]g + (ad∗

f̂
v)b ] dx =

〈
((1− ∂2)ad∗

f̂
u , (ad∗

f̂
v)), (g, b)

〉
Thus by equating the the right and left hand sides, we obtain the desired formula. 2

We conclude that the Hamiltonian operator arising from the induced Lie–Poisson
structure is

Ĵ =

(
Dρ+ ρD − c1(aD3 + bD) vD + c2D

2

Dv − c2D2 2c3D

)
, (68)

where ρ = (1− ∂2x)u.
If we restrict it to hyperplane c1 = c2 = c3 = 0, then this yields the two-component

Camassa-Holm equation

ut − uxxt = uxxx + 3uux + vvx −
(
uuxx +

1

2
u2x

)
x

vt = 2(uv)x (69)

and second Hamiltonian structure

J2 =

(
Dρ+ ρD vD
Dv 0

)
. (70)

It is a protypical example of a two-component integrable system.

3.5.1 Nonholonomic deformation of two component Camassa-Holm equa-
tion

The two-component Camassa-Holm equation can also be expressed in bihamiltonian form
and the first Hamiltonian structure of the two-component Camassa-Holm equation is
obtained from the frozen Lie-Poisson structure. Consider hyperplane c1 = 1, c3 = 1

2 and
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c2 = 0, furthermore we set a = 1 = −b. This immediately yields the first Hamiltonian
operator

J1 =

(
D −D3 0

0 D

)
. (71)

One can put the two-component Camassa-Holm equation as a bihamiltonian system
using the two compatible Hamiltonian operators.

Now we follow the recipe of Kupershmidt to derive the nonholonomic deformation of
the two-component Camassa-Holm equation, which yields

ut − uxxt = 3uux + vvx −
(
uuxx +

1

2
u2x

)
x

− (w1xxx − w1x),

vt = 2(uv)x − w2x (72)

and the constraint equation is given by

2w1xρ+ ρxw1 + vw2x = 0,

(vw2)x = 0. (73)

Note that these Hamiltonian operators appeared in tri-hamiltonian system [47].

Second type of nonholonomic deformation of 2-component CH equation
Compatibility of J1 and J2 suggest us to define pencil of Hamiltonian structures

Jλ = J2 − λJ1. (74)

This allows us to modify the nonholonomic deformation of the two-component Camassa-
Holm equation, where the constraint equation is given by

2w1xρ+ ρxw1 + vw2x − λ(w1xxx − w1x) = 0,

(vw2)x − λw2x = 0. (75)

Thus we extend the Kupershmidt method to construct the nonholonomic deformation
of the two component Camassa-Holm (CH) equation. In fact the same method can be
applied to other bihamiltonian coupled CH equations. We now move to another class of
coupled KdV type equation coming from superconformal algebra.

4 Neveu-Schwarz algebra and Kuper-KdV flows

We now concentrate on the nonholonomic deformations of the supersymmetric KdV
equation. This is also yield coupled KdV equation and we formulate this nonholonomic
deformation using superconformal algebra. We restrict ourselves to only N = 1 super-
conformal algebra but this can be generalized also to N = 2 superconformal algebra.

The first characteristic special property of a super algebra is that all the additive
groups of its basic and derived structures are Z2. In other words replace vector spaces
by Z2-graded vector spaces and invoke the “sign rule” when commuting homogeneous
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elements. A graded vector space V = V0⊕V1 is simply a vector space which is presented
as the direct sum of two subspaces. Elements in V0 are termed even, and elements in V1
are termed odd.

An ordinary Lie algebra is a vector space g with a bracket [., .] : g ⊗ g → g which is
skew-symmetric and satisfies Jacobi identity. A Lie superalgebra is a Z2- graded algebra

g = g0 ⊕ g1

together with a bracket. An element v of g0 (resp. g1) is said to be even (resp. odd).
The axioms are equivalent to the following: (a) g0 is an ordinary Lie algebra, (b) g1 is a
representation of g0, and (c) there is an anticommutator given by a symmetric bilinear
map

[., .]+ : g1 ⊗ g1 → g0.

The supercommutator of a pair of elements v, w ∈ g is defined by

[v, w] = vw − (−1)ṽw̃wv,

where ṽ and w̃ are the gradings of v and w respectively. It also satisfies the super Jacobi
identity

(−1)ṽũ[v, [w, u]] + (−1)ṽw̃[w, [u, v]] + (−1)w̃ũ[u, [v, w]] = 0.

Let Ω be the cotangent bundle of S1. The cotangent bundle of S1 has two representa-
tion; a trivial one is given by cylinder and the nontrivial one by Möbius strip. We denote
by Ω±1/2 the square root of the tangent and cotangent bundle of S1, respectively.

4.1 Kirillov’s construction and Lie superalgebra

Consider the space F−1/2 of −1/2-tensor densities on S1, where elements are given by

ξ = ξ(x)(dx)−1/2. Here −1/2 is the degree ( or weight), x is a local coordinate on S1.
Once again as a vector space F−1/2 is isomorphic to C∞(S1).

Let us define a super algebra g = g0⊕g1 from the vector fields on a circle. We denote
g0 ≡ V ect(S1) and g1 ≡ Ω−1/2(S1). Then g forms a Lie superalgebra on S1,1 [33], where
g1 is the super-partner of g0. The anticommutator bracket is defined as[

ξ(x)

√
d

dx
, φ(x)

√
d

dx

]
+

= ξφ
d

dx
. (76)

Since g1 is the super-partner of g0 hence g1 is the g0 module and it is compatible with
the structure of g0 module and satisfies g1 ⊗ g1 −→ g0. The action of V ect(S1) on F− 1

2

is defined as

L
−1/2
f(x) d

dx

ξ = (fξ′ − 1

2
f ′ξ). (77)

In this realization, (f(x) d
dx +ξ(x)

√
d
dx) i.e. (f(x), ξ(x)) forms a super Lie algebra and

the pair (f(x), ξ(x)) satisfies
f(x+ 2π) = f(x)
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ξ(x+ 2π) = ±ξ(x)

When it is in the ‘+ ’ sector, it is called the Ramond sector super Lie algebra, and the
‘−’ sector is known as the Neveu-Schwarz sector. All these spaces are V ect(S1)-module.

The Gelfand-Fuchs cocycle may be extended to this superalgebra via

ωF (ξ1, ξ2) =

∫
S1

ξ′1ξ
′
2 dx. (78)

This centrally extended Lie superalgebra is denoted by ĝ.

Definition 3 There exists a unique nontrivial central extension of the Lie superalgebra
g is defined by the following two cocycles

ω̃
(

(f(x)
d

dx
, ξ(x)

√
d

dx
), (g(x)

d

dx
, φ(x)

√
d

dx
)
)

=

∫
S1

(f ′g′′ + ξ′φ′) dx (79)

Proposition 5 The supervector fields (ξ1

√
d
dx , ξ2

√
d
dx , ξ3

√
d
dx) satisfy the Jacobi identity

[
[ξ1

√
d

dx
, ξ2

√
d

dx
], ξ3

√
d

dx

]
+ cyclic terms = 0

Proof: We tacitly use two different commutation relations, i.e.,[
ξ1

√
d

dx
, ξ2

√
d

dx

]
= ξ1ξ2

d

dx
and

[
ξ1ξ2

d

dx
, ξ3

√
d

dx

]
= (ξ′3ξ1ξ2 −

1

2
ξ3(ξ1ξ2)

′).

The second relation follows from the basic definition of the action of V ect(S1) on F− 1
2

L
−1/2
f(x) d

dx

ξ = (fξ′ − 1

2
f ′ξ).

Therefore we obtain
[[ξ1, ξ2], ξ3] + cyclic terms = 0.

2

Definition 4 A Lie superalgebra is defined on a superspace is given by

ĝ = V ect(S1)⊕F−1/2 ⊕C. (80)

This Lie superalgebra is called the Neveu-Schwarz algebra.

The N = 1 Neveu-Schwarz algebra ĝ has commutation relation[
(f(x)

d

dx
, φ(x)(dx)−1/2, λ), (g(x)

d

dx
, ψ(x)(dx)−1/2, µ)

]
=
[
(fg′ − f ′g +

1

2
ψφ)

d

dx
, ((fψ′ − 1

2
f ′ψ)− (gφ′ − 1

2
g′φ))(dx)−1/2,

a

∫
S1

f ′g′′ dx+ b

∫
S1

φ′ψ′dx
]
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4.1.1 Expression of the N = 1 Neveu-Schwarz algebra in terms of super
bracket

We define the supercircle S1|1 in terms of its superalgebras of functions, denoted by
C∞C (S1|1), consisting of elements of the form F (x, ϑ) = f(x) + ϑφ(x), where x is an
arbitrary parameter on S1 and ϑ is an formal Grassmann coordinate such that ϑ2 = 0.
A vector field on S1|1 is a superderivation of C∞C (S1|1). There is an isomorphism

V ect(S1|1) ' F−1/2 ⊕F−1. (81)

Using super derivative we can express this commutation relation

[(F, a) , (G, b)] =

(
FD2G−D2FG+ (−)p(F ) 1

2
DFDG , Res FDGxx

)
(82)

where D := ∂
∂ϑ+ϑ ∂

∂x is the superderivate on supercircle S1|1 and p(F ) is a parity function.

4.2 Dual of the Neveu-Schwarz algebra and the Kuper-
KdV equation

A typical element of ĝ would be

(f(x)
d

dx
, ξ(x)

√
d

dx
, a) where a ∈ C

and the super Lie bracket is given by

[ f1
ξ1
a1

 ,

 f2
ξ2
a2

] =

 [f1, f2] + ξ1ξ2
{f1, ξ2}+ {ξ1, f2}

0

 ,

where [f1, f2] = f1f
′
2 − f ′1f2 and {f1, ξ2} = f1ξ

′
2 − 1

2f
′
1ξ2.

Since the topological dual of the superalgebra g is too big, once again we restrict our
attention to the regular part of the dual of Kirillov’s superalgebra. The regularized dual
space to the superalgebra is naturally isomorphic to

g∗ = F2 ⊕F3/2 ⊕ C.

It is clear that the module F3/2 is dual to the “ Fermionic” part of the superalge-
bra. Therefore, the regular dual space of superalgebra consists of elements (u, φ, c) =
(u(x)dx2, φ(x)dx3/2, c).

Proposition 6 The coadjoint representation of the superalgebra is given by

ad∗
(f(x) d

dx
,ξ
√

d
dx
,a)

 u(dx)2

φ(dx)3/2

c

 =

 (fu′ + 2f ′u+ cf ′′′ + 1
2ξφ

′ + 3
2ξ
′φ)dx2

fφ′ + 3
2f
′φ− 1

2uξ + cξ′′)(dx)3/2

0

 .
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Proof: We obtain the above result by direct computation. 2

The Hamiltonian operator (for c = 1
2) is given by

O2
sKdV =

(
1
2∂

3 + ∂u+ u∂ 1
2∂ξ + ξ∂

∂ξ + 1
2ξ∂

1
2∂

2 − 1
2u

)
. (83)

We consider Hamiltonian

H =

∫
S1

(u2 +
1

2
ξξx) dx

such that
δH

δu
= 2u

δH

δξ
= ξx.

Using the Euler-Poincaré (or Hamiltonian) equation

ut = −OsKdV∇H, u = (u, ξ),

we obtain the Kuper-KdV equation

ut + uxxx + 6uux +
3

2
ξξxx = 0 ξt + ξxxx + 3uξx +

3

2
uxξ = 0. (84)

4.3 Frozen structure and first Hamiltonian structure of
sKdV equation

Using modified cocycle the coadjoint orbit yields following Hamiltonian operator

OgensKdV =

(
c1∂

3 + c2∂ + ∂u+ u∂ 1
2∂ξ + ξ∂

∂ξ + 1
2ξ∂ c3∂

2 − 1
2u

)
. (85)

Using frozen Lie-Poisson structure we can derive the first Poisson structure The frozen
Hamiltonian operator at (u, ξ, c1, c2, c3) = (u0, 0, κ, 0) is given by

OfrozensKdV =

(
(2u0 + κ)∂ 0

0 −1
2u0

)
. (86)

We choose u0 and κ such a way so that the first Hamiltonian structure is given by

O1
sKdV =

(
∂ 0
0 1

)
(87)

with

H2 =

∫
S1

(u3 − 1

2
u2x +

3

2
uξξx +

1

2
ξξxxx)dx.
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4.4 Nonholonomic deformation of N = 1 Super KdV equa-
tion

In this section we propose the N = 1 supersymmetric KdV6 equation. It is a nonholo-
nomic deformation of the N = 1 supersymmetric KdV equation.

Proposition 7 The sKdV6 equation is a constraint flow on the dual space of supercon-
formal algebra g, confined to a hyperplane c1 = 1, c2 = 0 and c3 = 1, is given by

ut = uxxx + 6uxu+
3

2
ξxxξ − w1x

ξt = ξxxx + 3uξx +
3

2
uxξ − ν1. (88)

where w =

(
w1

ν1

)
satisfies

w1xxx + 2uw1x + uxw1 +
1

2
(ξν1)x + ξν1x = 0

(ξw1)x +
1

2
ξw1x + ν1xx −

1

2
uν1 = 0.

Proof: We use Kupershmidt’s scheme or Euler-Poincaré-Suslov type equation(
u
v

)
t

= O2
sKdV

( δH
δu
δH
δξ

)
−O1

sKdV

(
w1

ν1

)
,

and constraint equation

O2
sKdV

(
w1

ν1

)
= 0

to produce our result. 2

Let us denote u = (u, ξ). Following Kupershmidt we can show the the existence of
infinite number of conserved densities

dHm

dt
= ∇Hm(u)

[
O2
sKdV (∇Hn(u)−O1

sKdV (w)
]

= ∇Hm(u)O2
sKdV (∇Hnu)−∇Hn(O1

sKdV )w = 0.

where all the operations are defined upto exact differential and ∇Hm(u) =

(
δHm
δu
δHm
δv

)
.

In this case also we can introduce the nonholonomic deformation of second kind,
which is given by the constraint equation

(O2
sKdV − λO

frozen
sKdV )

(
w1

ν1

)
= 0. (89)

Thus we derive another version of the supersymmetric KdV6 equation.
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5 Conclusion

In this article using the idea of Kupershmidt’s programme on nonholonomic deformation
method of KdV equation we have proposed an algorithmic method to derive nonholo-
nomic deformations of the entire KdV family. Our method is deeply connected to the
the Euler-Poincaré-Suslov (EPS) method, in fact, we have argued in the paper that
our method can be manifested as an infinite-dimensional analogue of the EPS method.
The classical EPS method yields Hamiltonian formulation of the finite-dimensional non-
holonomic systems. There are numerous classical works dedicated to finite-dimensional
cases that develop the equations of motion for mechanical systems with non-holonomic
constraints, but infinite-dimensional systems are rare.

In particular, we have derived several coupled nonholonomic deformed KdV equations
whose flows are defined on the semidirect products of the Bott-Virasoro group. Our
method is useful tool for deriving new types of coupled constraint integrable systems.
This method also explained various other generalization of Kupershmidt’s programme,
for example, we have discussed the generalized Kupershmidt deformation proposed by
Yao and Zeng [52] and many other KdV6 avatars follows from method.

We have extended our method to supersymmetric KdV equation. Starting from the
coadjoint action of the N = 1 superconformal algebra we derived explicit representation
of the nonholonomic deformation of the Kupershmidt version of N = 1 supersymmetric
KdV equation, also known as the Kuper-KdV6 equation. This method can be regarded
as the infinite-dimensional supersymmetric Euler-Poincaré-Suslov method.

It would be interesting to study the integrability aspect of the Kupershmidt deforma-
tion method in general. It would be pertinent to study the solutions of these new sets of
equations. The N = 2 supersymmetric integrable hierarchies have attracted much atten-
tion in integrable systems. It is commonly believed that all these super hierarchies will
help us to study superconformal field theory. This work opens up various generalization
of nonholonomic deformed integrable systems. Extension of the construction and inte-
grability properties of the nonholonomic deformation of the N = 2 Labelle-Mathieu type
super KdV and super coupled KdV type systems is under investigation. We also wish to
study the super coupled KdV type systems using the extended superconformal algebra.
All these programmes would lead to a infinite-dimensional supersymmetric extension of
the Euler-Poincaré-Suslov method.
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