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Abstract. Techniques from moduli spaces are applied to biolog-
ical macromolecules. The first main result provides new a priori
constraints on protein geometry discovered empirically and con-
firmed computationally. The second main result identifies up to
homotopy the natural moduli space of several interacting RNA
molecules with the Riemann moduli space of a surface with several
boundary components in each fixed genus. Applications to RNA
folding prediction are discussed. The mathematical and biological
frameworks are surveyed and presented from first principles.
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Introduction

This paper surveys recent progress in applying techniques from mod-
uli spaces in mathematics and physics to study the geometry and topol-
ogy of three families of macromolecules of interest in biology, namely,
RNAs, proteins and polysaccharides. Our intended audience includes
mathematicians whose expertise does not necessarily extend to either
moduli spaces or macromolecules and who may be interested in this
nascent application of geometry to problems in biology. In such appli-
cation, it is imperative to stay humbly focused on the relevant biology
and avoid the temptation to invent mathematics for its own sake, which
is a perfectly legitimate but entirely different undertaking.

These techniques in essence capture the combinatorics of interact-
ing families of one-dimensional objects and have already proven their
utility in theoretical physics including string theory, where the one-
dimensional strings occur at the Planck scale. Here we apply these
same combinatorial tools to macromolecules that occur at the scale
of hundreds of Ångström, larger by some 25 orders of magnitude. A
childishly simple but nevertheless profound remark is that combina-
torics is insensitive to scale, so it is only natural that these techniques
from high energy physics for studying interactions of one-dimensional
strings should apply to macromolecules as well. In fact, it is already
a slippery slope of dimension as the foundations of string theory were
originally developed before the emergence of quantum chromodynamics
in order to describe hadrons such as neutrons, some 5 orders of mag-
nitude smaller than macromolecules, and then dropped overnight [123]
to gravitational strings partly justified by precisely the same invariance
under scaling, albeit wildly decreasing there and increasing here.

A moduli space in its philosophical or linguistic sense is the variety of
all possibilities whose mathematical explication evidently requires fur-
ther definition. Two important examples are the moduli spaces of Rie-
mann surfaces and the closely related moduli spaces of flat connections
on principal G-bundles over surfaces for some Lie group G. Among
other more elementary examples to set the stage, these two families of
moduli spaces are surveyed in the next section. The important point
here is that each of these two families admits an elementary combina-
torial formulation which can then be applied to macromolecules.

Specifically with G = SO(3), the group of rigid rotations of 3-space
R3, the combinatorial model of flat G-connections allows us to probe
the geometry of proteins, namely as explained in detail later, the ge-
ometry of hydrogen bonds among peptide units in a protein. Our main
result on proteins is the entirely empirical finding that these rotations
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cluster into only about thirty percent of the volume of SO(3), and more-
over within this region there is a further aggregation into 30 sub-regions
or clusters. This gives a new classification for the geometry of hydrogen
bonding that unifies and extends those already known. Consequences
of these new a priori constraints in protein science are discussed later.
There is furthermore a numerical simulation using so-called Density
Functional Theory for the quantum system of two peptide units which
partly reproduces this empirical finding as will also be discussed.

It is not the geometry but rather the topology we describe for RNA.
In fact, there is a natural decomposition of the Riemann moduli space
for a surface F whose cells are in one-to-one correspondence with homo-
topy classes of appropriate graphs embedded in F . There is moreover
a natural combinatorial model based on chord diagrams for the moduli
space of r interacting RNA molecules which have genus g in a suit-
able sense. The striking theorem is that the Riemann moduli space
of a surface F of genus g with r boundary components is combinato-
rially isomorphic with this RNA moduli space up to homotopy. The
proof of this remarkable isomorphism is perhaps a let down since it is a
purely combinatorial identification, however, the depth of structure of
the Riemann moduli space, which plays central roles throughout math-
ematics and physics, carries over to the RNA setting since much of this
structure can in fact be described combinatorially though with unclear
significance for RNA. Moreover, there are tools in quantum field the-
ory called matrix models which have been successfully employed in
mathematics and physics for explicit computations involving this com-
binatorial version of Riemann moduli space. Matrix models can also
therefore be profitably applied to combinatorial aspects of RNA.

By now there is a small group of mathematicians, physicists, bioin-
formaticians and biologists employing these methods to analyze RNA
and protein. We can only hope that this survey paper will attract still
others since there is very much more that can be done. For example for
polysaccharide, also called sugar or carbohydrate, there is a clear ap-
plicability of both the geometric and topological techniques as we shall
very briefly explain, but a serious biological or biophysical application
of these methods has yet to be undertaken.

Gromov asks the question in [52] “Is there mathematics in biology?”
and then goes on to give affirmative examples as we believe also are the
studies here. There are furthermore entire fields of combinatorics and
computer science [9, 132] dedicated to problems related to so-called
sequence or multiple sequence alignment, which entails the effective
comparison of two or more arbitrary words in a fixed alphabet of let-
ters, in practice 20 amino acid letters for protein and 4 nucleic acid
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letters for RNA as will be explained. These sequence alignment ques-
tions lie at the heart of what can be called computational biology or
in their application bioinformatics as opposed to mathematical biology
as Gromov presumably intends in his question. A fundamental ob-
struction to mathematics in biology is the ansatz that no statement in
biology is always true except for this one, which may be a simple con-
sequence of diverse attempts to overcome shared terrestrial challenges
through natural selection. The biological compared to the mathemat-
ical ethos thus allows only for theorems with exceptions which is of
course anathema to the Tao of Mathematics.

We close this introduction with a “day in the life of a cell” just to
very briefly explain the roles and interactions of macromolecules and
other aspects. An excellent introductory reference to cellular molecu-
lar biology is [6]. DNA is the brains of the operation instructing the
duplication of snippets of one or the other of its helical strands to the
chemically similar RNA. So-called mRNA arising from this transcrip-
tion of the DNA after splicing and editing contains the genetic coding
for cellular protein expression whose instruments include proteins as
well as the tRNA and rRNA active in the ribosome. The resulting ar-
ray of translated proteins constitutes the workhorses and machinery of
cellular life with each activity in the whole enterprise principally pow-
ered by the dephosphorylation of ATP to ADP. In addition to extensive
mechanical duties throughout the organism, the proteins are like a flock
of handlers to the celebrity RNA being shuffled importantly about the
cell. A zoo of other RNAs including so-called miRNA, siRNA, snRNA,
scRNA and snoRNA also participates in diverse regulatory activities,
and various other RNAs presumably take part in further cellular en-
terprises as well. In fact, the active or mature protein or RNA is more
than its simple polymer of amino or nucleic acids, for protein is altered
by glycosylation, phosphorylation and methylation and RNA is spliced
and edited, methylated and pseudouridylated among other modifica-
tions to their biologically active forms. It is actually the complex of
several types of mature macromolecules together that begins to faith-
fully describe the complicated and true biology.

The dynamics of the cell is of course also stupendously complex.
In addition to the electromagnetic and other forces, let us emphasize
that the cell is usually an essentially aqueous environment. Hydro-
gen bonding as discussed later between macromolecules and with the
ambient water molecules thus plays a crucial role in dynamics. The
hydrophobicity of a compound measures its tendency to be energeti-
cally favorably hidden from water, and the differing hydrophobicities
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of amino acids provide a major force of protein dynamics for instance
comprising both entropic and electromagnetic aspects.

There is actually a fourth compound sometimes considered a macro-
molecule which we mention here for completeness, namely, lipids or
fats. Certain lipid molecules have one end hydrophobic and the other
hydrophilic and so combine in water into lipid bilayers of two stacked
one hydrophobic end upon the other. These form bilipid sheets ex-
hibiting only hydrophilic exterior in contact with water that form cell
boundaries such as the cell wall itself or the intracellular vesicles deliv-
ering protein and other substances to their appointed locations. These
lipid bilayers contain impurities such as cholesterol rendering them
somewhat fluid. The exterior of the cell wall furthermore contains
a distribution of a number of glycoconjugates of proteins and lipids
which have been implicated in cell signaling among other functions. It
may be interesting to model these impurities or other species within
lipid surfaces as so-called configuration spaces, namely, as collections
of distinct points within the surface, the simplest of all moduli spaces.

We begin by introducing moduli spaces via examples leading up to
our two key combinatorial formulations: the moduli space of Riemann
surfaces and the moduli space of flat connections on a surface. We
next survey chemical and geometric aspects of proteins in order to
probe their experimentally determined crystallographic structures us-
ing graph connections and present our principal discoveries on the ge-
ometry of protein backbone hydrogen bonding. Both combinatorial
formulations are next discussed in the context of sugar though no seri-
ous applications in biology are described; this digression among other
remarks aptly illustrates that our methods surely have traction for fur-
ther utility as well as making familiar those sugars that occur in the
RNA backbone. We turn finally to RNA with a survey of chemical and
topological aspects in order to apply tools from the Riemann moduli
space leading up to its identification with an appropriate moduli space
of RNA structures. Each chapter on protein and RNA moreover ends
with various remarks and speculations, and the paper itself concludes
with an appendix briefly describing matrix models.

It is a pleasure to acknowledge and thank my friends and excel-
lent collaborators on some of the material presented here, specifically
Ebbe Andersen, Sigeo Ihara, Michael Knudsen, Alexey Finkelstein,
Jens Jensen, Jakob Nielsen, Poul Nissen, Joanna Su lkowska, Takashi
Tsuboi, Carsten Wiuf and especially Jørgen Ellegaard Andersen on the
protein projects and the RNA initiatives including also Nikita Alexeev,
Leonya Chekhov, Bertrand Eynard, Fenix Huang, Christian Reidys,
Piotr Su lkowski, Peter Zograf and especially Mike Waterman.
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1. Moduli Spaces

The typical context of a moduli space involves a system of differential
equations often derived from geometrical or physical considerations as
well as a group action on its space of solutions reflecting the inherent
symmetries. It is the quotient of the solution space by the symmetry
group that is the moduli space, and the dicey issue in many examples is
in what sense to take this quotient so as to produce a tractable object.
In various contexts, both the solution space and the group are infinite-
dimensional though the quotient moduli space is finite-dimensional as
a rule. Furthermore, the group action typically has finite isotropy on
a suitably small subset of the solution space, so the quotient moduli
space is not truly a manifold but rather a mild generalization to what
is called an orbifold in geometry or a stack in algebraic geometry as
discussed later. Moduli spaces are often non-compact.

Our goal in the next several sections is simply to give illustrative
examples of moduli spaces including the two families of key importance
here, namely, the Riemann moduli space of an orientable topological
surface F of interest in both mathematics and theoretical physics, and
the moduli space of flat G-connections on such a surface F , where G is
some fixed Lie group, of general interest in gauge theories and in Chern-
Simons theory in particular. We shall apply the former to study the
topology of RNA, the latter to the geometry of proteins for G = SO(3)
and more speculatively both tools to the structure of polysaccharides.

Before this series of examples and owing to the dependency of our
two key families on an underlying surface F , let us first digress to dis-
cuss surfaces in general. There are two versions of surfaces we must
consider in order to handle all of our biological manifestations, namely,
punctured surfaces (with isolated distinguished points and no bound-
ary) and bordered surfaces (with boundary and no punctures where
each boundary component contains a unique distinguished point).

A closed and connected orientable topological surface Fg is uniquely
determined by its genus g ≥ 0. Suppose that P is a finite non-empty set
of distinct points in Fg and define the punctured surface F s

g = Fg −P ,
where we shall require that the Euler characteristic 2 − 2g − s < 0 is
negative. Sometimes it is useful to regard points in P as punctures
removed from Fg to form F s

g and at other times as distinguished points
in Fg. For bordered surfaces, suppose that Q is a finite non-empty
set of open disks in Fg, the closure of any two of which have disjoint
neighborhoods in Fg, and consider Fg,r = Fg−∪Q where we require that
g + r ≥ 2. We furthermore demand that each boundary component of
Fg,r comes equipped with a single distinguished base point. Examples
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of punctured and bordered surfaces are given in Figures 4 and 6. To be
sure, there is a more elaborate discussion simultaneously allowing both
punctures and boundary components with one or more distinguished
points, but we shall not highlight these here.

In order to proceed with convenience, let us choose for each non-
negative g, r, s a specific oriented smooth surface still written F s

g or
Fg,r. The point here is that we can and shall speak of Riemannian
metrics on these smooth manifolds, specifically finite-area complete
metrics whose boundary is geodesic in the latter case. Special aspects
[113, 2] of working in real dimension two imply that this choice of a
smooth surface representing its topological type is immaterial to later
considerations and that two diffeomorphisms of surfaces are homotopic
if and only they are isotopic [15, 39]. We shall thus blur this distinction
between differentiable and topological surfaces and between homotopy
and isotopy in the sequel.

1.1. Conformal quadrilaterals. Consider a Euclidean rectangle

R = Rh,w = {(x, y) ∈ R2 : 0 ≤ x ≤ w and 0 ≤ y ≤ h}

with its Riemannian metric ρE inherited from the Euclidean metric
ds2 = dx2 + dy2 on R2. Define the modulus of R to be

h2

A
=

h2

hw
=
h

w
,

where A = hw denotes the area. Two metrics on R are said to be
conformal if they have the same angles but not necessarily distances,
and a metric on R conformal to ρE is thus described by scaling fρE for
some f : R → R+. It is not hard to see that two Euclidean rectangles
are conformal if and only if their moduli coincide. The moduli space
of conformal classes of Euclidean rectangles is thus identified with the
space R+ of all moduli, i.e., the modulus is a complete invariant of
conformal classes of Euclidean rectangles. Notice the non-compactness
as the modulus goes to zero or infinity.

More interesting is the infinite-dimensional space of all Riemann-
ian metrics on some closed topological disk Q with four distinguished
boundary points. Given a metric ρ0 on Q, again a conformal metric ρ
is given by scaling ρ0 by some f : Q→ R+. Call two opposite sides of
Q the top and bottom of the quadrilateral, let hρ denote the ρ-length
of the shortest arc connecting them, let Aρ denote the ρ-area of Q and

define the modulus of ρ to be µρ =
h2ρ
Aρ

. It is easy to derive a confor-

mal invariant of ρ0 from the modulus, namely, the conformal modulus
µ = supρ µρ, the supremum taken over all conformal metrics ρ = fρ0.
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It is an amazing yet elementary fact [1] that this supremum defining
the conformal modulus is finite, it is realized as a maximum by an ex-
tremal metric and there is a homeomorphism Q → R to a Euclidean
rectangle of the same modulus mapping boundary distinguished points
to vertices and top/bottom to top/bottom so that the push forward1

of the extremal metric is Euclidean. Thus, the conformal modulus is a
complete invariant of conformal classes of metrics on abstract topolog-
ical quadrilaterals.

It is characteristic of moduli spaces that there is some über space–
the space of Euclidean rectangles or the space of conformal classes of
metrics on abstract quadrilaterals in this example–supporting a group
action–here the R+-action by homothety on rectangles or push forward
on conformal classes of metrics on quadrilaterals. In general, a moduli
space can often have multiple descriptions by several possible über
spaces as in this example.

1.2. Triangles in neutral geometries. Our next example is the
moduli space E3 of equivalence classes of triangles in the Euclidean
plane R2, where two triangles are equivalent if they are congruent.
Here the über space is the set of all plane triangles supporting the ac-
tion of the group of orientation preserving isometries generated by rigid
rotations and translations in the plane. Euclid’s side-side-side congru-
ence theorem states that three side lengths determine a triangle up to
congruence. To prove this directly, translations act transitively on R2

whence we may assume that two congruent triangles share a vertex,
and rotations act transitively on lines through this vertex whence we
may assume that the two congruent triangles share an edge; the oppo-
site vertex can then be uniquely determined from the angles adjacent
to this edge which of course coincide for the two isometric triangles.

In order to apply this theorem, let us consider a still larger über
space Ẽ3 of all congruence classes of triangles in the plane where the
triangles come equipped with a labeling of their sides into first, second
and third in a linear ordering compatible with the counter clockwise
cyclic order coming from the orientation of the plane. The topology on
Ẽ3 is induced from the metric topology on the R6 coordinates of the
three vertices in R2. According to Euclid’s theorem, this space Ẽ3 is
parametrized by the collection of all ordered triples (a, b, c) of lengths

1Recall that if f : M → N is a diffeomorphism from the Riemannian manifold
(M, g) to any smooth manifold N , then we can push forward the metric on M to
produce the Riemannian metric f∗(g)p(X,Y ) = gf−1(p)(df

−1(X), df−1(Y )) on N ,
where p ∈ N and X,Y are tangent vectors to N at p. Thus, f is an isometry
between the Riemannian manifolds (M, g) and (N, f∗(g)).
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of the labeled sides, where these lengths of course must satisfy all three
strict triangle inequalities a < b + c, b < a + c and c < a + b. These
triangle inequalities cut out an open cone homeomorphic to Ẽ3 lying
inside the positive orthant R3

+ in R3, and the quotient by the cyclic
permutation of entries thus describes

E3 ≈ {(a, b, c) ∈ R3
+ : a < b+c, b < a+c, c < a+b}/cyclic permutation

itself up to homeomorphism, where E3 inherits the quotient topology
under the cyclic group action. Notice that in Ẽ3 it makes sense to
discuss the length of the first edge while the corresponding statement
in E3 itself is without meaning. Also observe that equilateral trian-
gles play a special role in that they are the fixed points of the cyclic
permutation on Ẽ3; a neighborhood in E3 of a corresponding point is
naturally described as the finite quotient of an open set in R3.

Closely related is the analogous moduli space H3 of equivalence
classes of triangles in the hyperbolic plane U = {z = x+iy ∈ C : y > 0}
equipped with its Poincaré metric ds2 = dx2+dy2

y2
. Recall [17, 48] that

this complete metric has constant Gauss curvature -1 on U , geodesics
or straight lines for this metric are either semicircles perpendicular to
the boundary R = U − U ⊂ C or vertical half-lines with endpoints in
R and this upper half plane U with its Poincaré metric gives a model
for hyperbolic geometry.

Furthermore, the Lie group of orientation preserving isometries of U
is called the Möbius group

PSL2(R) =

{(
a b
c d

)
: a, b, c, d ∈ R and ad−bc = 1

}/{
( a bc d ) ∼ ( −a −b−c −d )

}
acting on U by fractional linear transformations(

a b
c d

)
: z 7→ az + b

cz + d
.

A more uniform treatment of the ideal points is to introduce the circle
S1 = R ∪ {∞} at infinity, so that each geodesic is determined by a
pair of points in S1, and in fact the action of PSL2(R) extends in the
natural way to this circle2 in effect setting 0 = 0

1
and ∞ = 1

0
.

There is an important trichotomy on A ∈ PSL2(R):

2The Cayley transform U → D from upper half plane to the open unit disk
D ⊂ C given by z 7→ z−i

z+i maps U to the Poincaré disk D with the unit circle in C as

ideal boundary and push forward Riemannian metric ds2 = 4 dx
2+dy2

(1−|z|2)2 . U is a good

model of the hyperbolic plane for computing while D is a good one for visualizing.
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A is hyperbolic if |trace A| > 2; then A has two fixed points in S1

and acts as translation along the geodesic spanned by them;

A is parabolic if |trace A| = 2; then A has a single fixed point
in S1 and acts as translation along circles tangent to S1 at that
point;

A is elliptic if |trace A| < 2; then A has no fixed points in S1 and
acts as rotation about a point of U .

The proof is an easy exercise using just the equation for fixed points
and the solution of the quadratic equation. Using rotations and transla-
tions precisely as in the Euclidean case, congruence of triangles sharing
side lengths is seen to hold also in the hyperbolic case. We therefore
find homeomorphic moduli spaces H3 ≈ E3 of congruence classes of
triangles parametrized exactly as before.

The existence of these extra parabolic transformations in the hyper-
bolic case will be exploited in the sequel, and we briefly elaborate here.
A Euclidean circle in U which is tangent to R at a point p ∈ R ⊂ S1

is called a horocycle centered at p together with the exceptional case
of horocycles centered at ∞ ∈ S1 which are lines in U ⊂ C with con-
stant imaginary part. Examples of horocycles are given in Figure 2.
A parabolic transformation fixes p and translates along each horocycle
centered at p, the prototypical case being

(
1 1
0 1

)
: z 7→ z+ 1 for p =∞.

Another aspect of hyperbolic geometry that is novel compared to
the Euclidean case is that two distinct geodesics can be asymptotic to
a common point of S1 leading in particular to so-called ideal triangles,
namely, triples of geodesics disjoint in U and pairwise asymptotic to
distinct points of S1. Examples of ideal triangles are given in Figure 2,
each of which has hyperbolic area π from the Gauss-Bonnet Theorem.

1.3. Elliptic curves. Consider a discrete subgroup Λ in C of rank 2.
The quotient of C by Λ is a flat torus or elliptic curve which comes
equipped with a distinguished point corresponding to 0 ∈ C. Up to
conformal equivalence, we may assume that Λ is generated by the unit
1 ∈ C and τ ∈ U ⊂ C.

The full Möbius group PSL2(R) of orientation preserving isometries
contains the discrete subgroup PSL2(Z) ⊂ PSL2(R) with integral en-
tries called the modular group which acts naturally on τ ∈ U by frac-
tional linear transformation and hence on lattices. It is not difficult to
show that a maximal open region in U whose interior meets each orbit
of PSL2(R) exactly once, a so-called “fundamental domain”, is given
by {z = x+ iy : |x| ≤ 1

2
and x2 + y2 ≥ 1} as on the left in Figure 1.



MODULI SPACES AND MACROMOLECULES 11

∞

. 
. 
.∞

. 
. 
.

Figure 1. The modular curve.

The moduli space of elliptic curves is the quotientM = U/PSL2(Z)
illustrated in Figure 1 on the right and is also called the modular curve.
As the terminology would suggest, this is perhaps the most basic non-
trivial moduli space of all appearing across a gamut of fields including
number theory, dynamics and theoretical physics, topology and geom-
etry and whose study goes back to Gauss. The points labeled 2 and 3

on the right in the figure naturally arise from the points i and
√

3±1
2

in
U with isotropy subgroups in PSL2(Z) of these respective orders not
unlike the equilateral triangles in §1.2.

To get a better understanding of the modular group, we next produce
a family H of horocycles in U which is invariant under its action. This
inductive construction begins with the collection of horocycles hn of
Euclidean diameter one centered at n ∈ Z ⊂ R, for each n ∈ Z, so hn
is tangent to hn±1 and is disjoint from the other horocycles. We also
add the horizontal line at unit height as the horocycle h∞ centered ∞,
which is tangent to each hn.

For the inductive step of the construction, two hororycles hn, hn+1

centered at consecutive points determine a triangular region bounded
by the interval [n, n + 1] ⊂ R together with the horocyclic segments
connecting the centers of the horocycles to the point of tangency of
hn and hn+1. There is a unique horocycle contained in such a region
simultaneously tangent to hn and hn+1 as well as R, and we let hn+ 1

2
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hh

h

h

h

h

0 1-1

∞

1/2-1/2

Figure 2. Horocycles H and Farey tesselation F .

denote this horocycle. At the first go, these are evidently tangent to
the real axis at the half-integer points n+ 1

2
and of diameter 1

4
, but in

general the new center is not Euclidean equidistant to the two nearby
old centers. Continue recursively in this manner to add horocycles
tangent to the real axis and tangent to pairs of consecutive tangent
horocycles to produce a family of horocycles H in U . See Figure 2.

Lemma 1.1 (Farey-Cauchy Lemma). There is a unique horocycle in
H centered at each extended rational point Q̄ = Q ∪ {∞} ⊂ S1. Fur-
thermore, the horocycles in H centered at distinct points p

q
, r
s
∈ Q̄ are

tangent to one another if and only if ps−qr = ±1, and in this case, the
horocycle in H tangent to these two horocycles is centered at p+r

q+s
∈ Q̄.

It is not difficult to prove this inductively starting with the second
sentence. The colorful history here is that this result was not proved but
rather discovered by the mineralogist J. Farey thus solving the long-
standing problem of giving a one-to-one enumeration of the rational
numbers. After Farey published his empirical findings, Cauchy quickly
supplied the inductive proofs.

The Farey tesselation is the collection F of hyperbolic geodesics in
U that connect centers of tangent horocyles in H, cf. Figure 2. It is
invariant under the action of the modular group in that each element
of PSL2(Z) extends to a mapping Q̄ → Q̄ which in turn induces a
map on the collection of geodesics in U via the diagonal action on
endpoints of geodesics, and this action on geodesics preserves the Farey
tessellation. In fact, the action of PSL2(Z) on the set of oriented
geodesics in F is simply transitive, so the Farey tessellation allows one
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to quite effectively visualize the modular group PSL2(Z). For example,
an especially beautiful combinatorial fact is that the continued fraction
expansion of p

q
∈ Q can be read off from the sequence of right and left

turns in F of a direct path in U connecting i ∈ U to p
q
∈ S1.

1.4. Riemann moduli space. Our next example of a family of mod-
uli spaces is most profound for its prevalence in low-dimensional clas-
sical and quantum topology, certain aspects of algebraic geometry and
in string theoretic physics for example, namely, the Riemann moduli
space M(F ) of all suitable classes of conformal structures on a fixed
topological type of surface F . We shall begin with the case of possibly
punctured surfaces F = F s

g with s ≥ 0 and afterwards treat bordered
surfaces. For a conformal structure on a manifold M of dimension 2n,
the transition functions of a covering of M by charts lie in the so-called
structure group O(2n)×R+, where O(2n) denotes the group of orthog-
onal matrices of rank 2n, while a complex structure on M has structure
group the general linear group GLn(C). In our special case M = F
of complex dimension n = 1, conformal and complex structures thus
coincide since their structure groups O(2)× R+ ≈ C ≈ GL1(C) agree.
A Riemann surface is a surface with complex or conformal structure.

Let Diff+(F ) be the infinite-dimensional group of orientation pre-
serving diffeomorphisms of F and Con(F ) and Com(F ) denote the
respective infinite-dimensional spaces of conformal and complex struc-
tures on F . Diff+(F ) acts by push forward on both Con(F ) and
Com(X), and the quotient

M(F ) = Con(F )/Diff+(F ) ≈ Com(F )/Diff+(F )

is the Riemann moduli space of F . Both über spaces Con(F ) and
Com(F ) as well as the group Diff+(F ) are infinite-dimensional.

One can continue with much more detail to make precise these infinite-
dimensional spaces and groups and finite-dimensional Riemann moduli
spaces as we shall discuss later, however, we shall take a different tack
based on the Uniformization Theorem [20], a celebrated and game-
changing result due to Koebe, Klein and Poincaré, which asserts that
every simply connected Riemann surface is conformally equivalent to
one of the three domains: the upper half plane U , the complex plane C,
or the Riemann sphere, and in any case admits a Riemannian metric
of constant respective Gauss curvature −1, 0, 1. It is the first case that
is pertinent here to the study of a possibly punctured surface F = F s

g ,
which must have negative Euler characteristic by the Gauss-Bonnet
Theorem, and for which we must impose the further technical condi-
tion if s > 0 that the Riemannian metric is complete with finite area.
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The Uniformization Theorem thus implies that the universal cover of
F is none other than U with the fundamental group π1 = π1(F ) as the
group of deck transformations acting upon it by orientation preserving
isometry. That is, there is a representation

ρ : π1 → PSL2(R)

of the fundamental group π1 of the surface F as hyperbolic isometries,
and F = U/ρ(π1) as a Riemannian manifold with the metric inherited
from the hyperbolic metric on U . Of course, ρ must be injective, and
we further require that the image group Γ = ρ(π1) < PSL2(R) must
be discrete, that is, the identity I ∈ Γ is isolated from Γ − {I} in the
topology of PSL2(R) in order that the quotient is actually a surface.

To guarantee that the induced metric on F = U/Γ is indeed com-
plete and finite-area when s > 0, there is a further parabolicity con-
dition: if g ∈ π1 is a simple loop surrounding a puncture p of F s

g ,
then ρ(g) ∈ PSL2(R) must be parabolic. The paradigm for this is
the puncture labeled ∞ in Figure 1. Likewise, one can easily imagine
interesting examples of subgroups of the discrete group PSL2(Z) with
finite index by choosing a connected sub polygon of the Farey tessella-
tion as fundamental domain and identifying edges in pairs respecting
the orientation and taking care to satisfy the parabolicity condition.
A point at infinity in the fundamental domain for Γ in U corresponds
to a fixed point of a parabolic transformation in ρ(Γ) representing a
simple curve about the corresponding puncture.

The Teichmüller space of the possibly punctured surface F = F s
g of

negative Euler characteristic is the quotient

T (F ) = Hom′
(
π1, PSL2(R)

)
/PSL2(R),

where Hom′ denotes the space of all injective homomorphisms

ρ : π1 → Γ < PSL2(R)

whose image is a discrete group Γ satisfying the parabolicity condition,
where PSL2(R) acts in the natural way by conjugacy on representa-
tions. The tuple of values taken by a representation on a generating
set for π1 provides a topological embedding into a product of copies of
PSL2(R), so the topology on the space of representations and hence
its quotient Teichmüller space is naturally induced from that of the Lie
group PSL2(R). In fact, the Teichmüller space T (F s

g ) is homeomorphic
to an open ball and in fact analytically equivalent to a complex domain
of real dimension 6g − g + 2s admitting numerous natural and sig-
nificant metrics including the Weil-Petersson (Kähler Hermitian) and
Teichmüller (Finsler) metrics for example, cf. [70, 96].
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Diff+(F ) has its canonical subgroup Diff0(F ) of diffeomorphisms
which are homotopic to the identity. The quotient

MC(F ) = MC(F s
g ) = Diff+(F s

g )/Diff0(F s
g )

is called the mapping class group and is a finitely presented discrete
group of truly paramount importance that is highly studied [44]. In
other words, MC(F ) is simply the group of homotopy classes of orien-
tation preserving homeomorphisms of F .

Finally, here is our rigorous entirely finite-dimensional definition:
the Riemann moduli space of the possibly punctured surface F is the
quotient

M(F ) = T (F )/MC(F )

of Teichmüller space by the mapping class group. The distinction is
that at a point in Teichmüller space, the über space from this point
of view, one may speak of the hyperbolic length of a particular curve,
whereas in moduli space one cannot as there is only the MC(F )-orbit
of the curve. Again, MC(F ) acts with finite isotropy on T (F ), so the
moduli space is an orbifold [44], that is, a space much like a manifold
which is locally modeled by open sets in some Rn but supporting finite
group actions in the current context. Low-dimensional exemplars of
non-manifold points in an orbifold are provided by the points labeled 2
and 3 in Figure 1. This is all again reminiscent of the simple example
of congruence classes of triangles discussed in §1.2.

It is no accident that the modular curve seems to be a paradigm3 for
the Riemann moduli space since an elliptic curve is a flat torus with
its origin as distinguished point, that is, a surface of type F 1

1 . The
conformal structure of the punctured torus is uniformized by some
subgroup Γ < PSL2(R) calculable from the modulus τ ∈ U of the
lattice in terms of the Weierstrauss ℘ function, and the hyperbolic
metric on our surface descends from U .

There are two important compactifications which we mention par-
enthetically sticking to surfaces F = F s

g without boundary only for
convenience:

3There is actually a small correction only in this case F 1
1 in that the mapping

class group MC(F 1
1 ) contains a central element, the so-called elliptic involution ε,

which is of order two and thereby uniquely determined. One takes the quotient in
this special case to arrive at our familiar upper half plane U = T (F 1

1 )/ε supporting
the action of the modular group PSL2(Z) = MC(F 1

1 )/ε.
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Algebraically, the moduli space M(F ) of Riemann surfaces homeo-
morphic to F has its fundamental [35] Deligne-Mumford compact-
ification M̄(F ) which is a projective algebraic variety containing
M(F ) as a dense open set. M̄(F ) evidently plays a basic role.

William Thurston [126, 45] described a compactification of the Te-
ichmüller space by so-called projective measured laminations in the
surface, the space of which is a piecewise-linear sphere of dimension
6g − 7 + 2s compactifying the open ball that is T (F ) to a closed
ball on which MC(F ) acts continuously albeit ergodically on the
boundary sphere. This naturally extended and revitalized work of
Jakob Nielsen [93] from the 1940s.

Other geometrical aspects of note include that the Ricci flow [55]
on the surface carries complete finite-area metrics to those of constant
curvature, and the Riemann moduli spaces themselves thus provide the
space of solutions to Einstein’s field equations in this simplified 2D case
of two spatial dimension. Furthermore [127], the Ricci flow describes
the renormalization-group evolution of 2D sigma models.

Finally in the case of bordered surfaces F = Fg,r, we demand that
metrics on F have geodesic boundary. In effect, gluing two copies of
F along their boundaries produces a closed surface to which we can
apply the previous discussion. The Uniformization Theorem provides
a discrete subgroup Γ of PSL2(R) and a subset Ω ⊂ U with geo-
desic boundary so that F = Ω/Γ. The Teichmüller space T (F ) is
then defined to be conjugacy classes of injective homomorphisms of π1

onto discrete groups Γ consisting entirely of hyperbolic transformations.
For the definition of the mapping class group MC(F ) in the bordered
case, we demand that homeomorphisms must fix the boundary distin-
guished points setwise and homotopies of homeomorphisms must fix
them pointwise. The Riemann moduli space M(F ) = T (F )/MC(F ) is
then defined just as before.

1.5. Fatgraphs. In general for punctured surfaces, there is an ana-
logue of the Farey tessellation that gives a suitable cellular decompo-
sition of a slightly elaborated version of Teichmüller space which is
invariant under the action of the mapping class group MC(F ). In or-
der to describe this, we must introduce a mild generalization of graphs,
called “fatgraphs” (sometimes “ribbon graphs” or “maps”) as follows.

A fatgraph is a one-dimensional CW complex τ together with a col-
lection of cyclic orderings on the half-edges incident on each vertex,
where a half-edge is one of the two complementary components to an
interior point of an edge. The number of half-edges incident on a
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Fatgraph and skinny suface for 

the once punctured torus

Fatgraph and skinny surface for

the thrice punctured sphere

1

2

3

4

5

6

1

2

3

4

5

6

F
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1 3
F1

Figure 3. Two fattenings of a single graph and their skinny
surfaces. Each vertex of valence k contributes a non-convex
polygon of 2k sides illustrated with solid lines, and each edge
contributes one quadrilateral respecting the orientations at
its endpoints illustrated with dashed lines.

fixed vertex is called its valence. Fatgraphs in turn determine skinny
surfaces F (τ) with boundary as depicted in Figure 3. Furthermore,
the boundary components of F (τ) determine closed edge paths on τ
themselves called the boundary cycles of the fatgraph. Notice that
one can compute the genus g from the formula for Euler characteristic
2 − 2g − s = m − n, where τ has n edges, m vertices and s boundary
cycles. In order to retrieve the punctured surface F = F s

g from F (τ),
we may adjoin one once-punctured disk to F (τ) along its boundary
to each boundary component of F (τ). We then have the inclusions
τ ⊂ F (τ) ⊂ F all homotopy equivalences, and we say that the fat-
graph τ is a spine of F in this case. Examples of fatgraph spines τ ⊂ F
are given in Figure 4.

There is a representation of a fatgraph τ = τσ,ι as a data type that is
especially amenable to computer representation, namely, a fatgraph τ is
uniquely determined by a pair σ, ι ∈ Σ2n of permutations on 2n letters,
where n is the number of edges of τ , σ is an arbitrary permutation
and ι is an involution; furthermore, fatgraph isomorphism classes are
precisely the double cosets in Σ2n. Namely, σ ∈ Σ2n is a disjoint union
of k cycles (i1, i2, . . . , ik), for certain k, and each such cycle determines
a vertex of τ with its incident half-edges labeled i1, i2, . . . , ik in counter-
clockwise order; as an involution, ι ∈ Σ2n is a product of some number
of disjoint transpositions (j1, j2), and we adjoin one edge connecting
the half-edges with these labels j1 and j2 for each transposition in
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F1

4

0
F

1

Figure 4. Examples of fatgraph spines for punctured surfaces.

τ . For example with the labeling of half-edges in Figure 3, in either
case we have σ = (1, 2, 3)(4, 5, 6) a product of two 3-cycles with ι1 =
(1, 5)(2, 6)(3, 4) for F 1

1 and ι2 = (1, 4)(2, 6)(3, 5) for F 3
0 . Higher valence

vertices are handled similarly. Notice that fixed points of ι correspond
to univalent vertices, 2-cycles of σ to bivalent vertices and fixed points
of σ to isolated points of τ . Another especially nice aspect of this
notation is that the boundary cycles of τ = τσ,ι are none other than
the cycles of the composition ρ = σ ◦ ι. Indeed in an appropriate
sense we shall later exploit, Poincaré duality on the closed surface Fg
is simply described by (σ, ι)↔ (ρ, ι).

Though we must treat univalent vertices in the sequel, let us first con-
sider fatgraphs each of whose vertices has valence at least three. There
is a face relation τ ′ < τ1 on such fatgraphs generated by contracting an
edge of the trivalent fatgraph τ1 with distinct endpoints to produce τ ′

as illustrated in Figure 5. Expanding the unique four-valent vertex of
τ ′ in the unique distinct way produces another fatgraph τ2 > τ ′, and
we say that τ1 and τ2 differ by a flip.

By a metric on a fatgraph τ , we mean the assignment of some non-
negative real number µ(e) to each edge e of τ so that there are no
essential cycles in τ each of whose constituent edges has vanishing µ
value, a restriction we shall call the no-vanishing cycle condition. A
metric µ on τ thus has a (possibly empty) forest Φ ⊂ τ on which it
vanishes. Each component of Φ can be collapsed to a distinct vertex
in order to produce another fatgraph τΦ to which τ contracts, and the
metric µ on τ induces the identical strictly positive metric on τΦ. It
is useful to pass to projective classes of positive metrics on τ , which
are naturally parametrized by points of the open (e − 1)-dimensional
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flip

contract contract

τ
1 2

‘τ

τ

Figure 5. Flips and contractions.

simplex ∆e−1, where e is the number of edges of τ . We may further-
more identify the open face of ∆e−1 corresponding to the vanishing of
barycentric coordinates on the edges in the forest Φ with the open sim-
plex for τΦ. In this manner, the space of all projective metric fatgraph
spines in F naturally inherits the structure of a union of open simplices
together with certain of their faces, namely those faces corresponding
to forests, where the face relation is generated by the contraction of
edges with distinct endpoints.

We must also introduce a mild generalization of T (F ): the decorated
Teichmüller space is simply T̃ (F s

g ) = T (F s
g ) × Rs

+. The depth of this
definition lies in the interpretation of the coordinates Rs

+ as hyperbolic
lengths in F = U/Γ of horocycles as follows. Consider a horocycle h
in U centered at the fixed point of a parabolic transformation in Γ. It
is tantamount to completeness of the hyperbolic metric in F near the
corresponding puncture that h projects to a closed curve in F , which
is also called a horocycle but now in F as opposed to U . If h is short
enough, then a horocycle in F is a simple closed curve separating the
corresponding puncture from the rest of F . The fiber coordinates in
decorated Teichmüller space are taken to be the hyperbolic lengths
of a collection of horocycles in F , one such not necessarily embedded
horocycle about each puncture. By permuting punctures of F and
hence their coordinates, the usual MC(F ) action on T (F ) extends
to T̃ (F ). It is again useful to projectivize T̃ (F s

g ) to produce T (F ) ×
∆s−1, so in particular the projectivized decorated Teichmüller space is
canonically identified with the Teichmüller space T (F ) itself if s = 1.
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Theorem 1.2. [125, 58, 99] Suppose that 2g−2+s > 0. Then there is
a MC(F s

g )-invariant cell decomposition of projectivized decorated Te-

ichmüller space T (F s
g ) × ∆s−1 which is isomorphic to the combinato-

rial space of all homotopy classes of projective metric fatgraph spines
τ ⊂ F , each of whose vertices has valence at least three, under the face
relation generated by contraction.

The hyperbolic description of this decomposition [99] is pointwise dif-
ferent but combinatorially identical with the conformal one [125, 58].
It is important to emphasize that the same combinatorial type of fat-
graph occurs infinitely often as the index of a cell in T (F )×∆s−1 from
its many different homotopy classes of embeddings as a spine. In ef-
fect, there is a tiling of T (F s

g )×∆s−1, where the tiles are in one-to-one
correspondence with homotopy classes of fatgraph spines of F s

g , and
this tiling is natural in the sense that it is invariant under the obvious
action of MC(F s

g ). That is, the finite collection of abstract fatgraphs of
the correct combinatorial type for F s

g describe a tiling of a fundamen-
tal domain for the action of MC(F s

g ); in fact, it is the underlying cells
indexed by combinatorial types modulo their symmetry groups that
comprise the decorated moduli space M̃(F ) = (T (F )×∆s−1)/MC(F ).

Theorem 1.2 exactly generalizes the classical Farey tessellation from
elliptic curves to arbitrary multiply punctured surfaces with negative
Euler characteristic, namely, for F 1

1 , each and every ideal triangle in
the Farey tessellation F has its corresponding fatgraph combinatorially
identical with the one illustrated in Figure 3 while Figure 4 identifies
a particular homotopy class of spine in the surface and hence deter-
mines a particular ideal triangle complementary to F . It is important
to emphasize that the contractions and flips of Figure 5 are performed
on spines within the surface. According to the no-vanishing cycle con-
dition, we can contract any single edge of a trivalent fatgraph spine in
F 1

1 to produce a fatgraph spine with a single vertex of valence four and
pass thereby to the three codimension one faces of a complementary
ideal triangle to F ; however, we cannot contract two such edges since
any two edges comprise a cycle, and this is reflected by the fact that
the vertices of Farey tessellation lie at infinity, i.e., do not lie in T (F ).

We must still go beyond this result a bit to treat surfaces Fg,r with
r ≥ 1 boundary components and no punctures. To this end combinato-
rially, a univalent vertex of a fatgraph uniquely determines its incident
edge called a tail, and each boundary component of a fatgraph for a
bordered surface must have exactly one incident tail as illustrated in
Figure 6 whose univalent vertex must be different from the boundary
distinguished point. A metric does not assign any value to a tail, and
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F
1,1 0,3

F

Figure 6. Examples of fatgraphs with tails as spines
for bordered surfaces. Boundary distinguished points are
marked with � icons.

only non-tail edges can be contracted still subject to the no-vanishing
cycle condition.

To this end geometrically, we have already chosen in each bound-
ary component a distinguished point and consider complete finite-area
metrics with geodesic boundary of constant Gauss curvature −1 on Fg,r
to define the decorated Teichmüller space T̃ (Fg,r) with the action of its
mapping class group MC(Fg,r) of homeomorphisms setwise fixing the
collection of boundary distinguished points modulo homotopies fixing
them pointwise.

Theorem 1.3. [102] Suppose that g + r − 1 > 0. Then there is a
MC(Fg,r)-invariant cell decomposition of decorated Teichmüller space

T̃ (Fg,r) which is homotopy equivalent to the combinatorial space of all
isotopy classes of projective metric fatgraph spines τ ⊂ F with tails
whose univalent vertices lie in the boundary, with exactly one in each
boundary component, and otherwise vertices have valence at least three
under the face relation generated by contraction of non-tail edges.

It is fair to say that Teichmüller theory was traditionally a topic in
complex analysis with a beautiful and extensive theory of Com(F ) ≈
Con(F ) based on Banach manifolds in the work of Ahlfors and Bers
[21, 22, 70] and their school which makes precise our first definition
of the Riemann moduli space. The definition can also be formulated
in terms of algebraic geometry [53, 91, 60, 35] though this is again
rather involved. While the complex analytic viewpoint prevailed in the
Ahlfors-Bers school, hyperbolic geometry was employed though not
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centrally until Thurston and his school in the 1970s and 1980s mean-
while brought various geometric techniques into play providing a whole
new perspective.

The combinatorial treatment described here has proven useful com-
putationally in multiple contexts in part owing to the applicability of
techniques for enumerating fatgraphs from quantum field theory called
matrix models as discussed in the Appendix. Let us also just mention
that Theorems 1.2 and 1.3 furthermore provide a new description of
the mapping class group MC(F ) as the stabilizer of any object in an
associated mapping class groupoid generated by flips as well as explicit
representations of both group and groupoid as rational mappings on
appropriate coordinates [99, 104]. These give prototypical examples of
so-called cluster varieties [47].

1.6. Flat G-connections. Good general references for the material
in this section and beyond are [78, 89].

Fix a Lie group G and fix a possibly punctured or bordered suface
F . A principal G-bundle over F is a fiber bundle p : P → F with a
right action of G on P so that G acts freely and transitively on each
fiber. Principal bundles are always locally trivial. An (Ehresmann)
connection on P is a “horizontal” subbundle H ⊂ T∗P of the tangent
bundle with the kernelKer(dp) of dp “vertical” which is invariant under
the G-action such that H ⊕Ker(dp) = T∗P . For example, the trivial
G-bundle over F is given by the projection p : F × G → F onto the
first factor with the action of G by right multiplication, and the trivial
connection is given by pull back p∗(T∗F ).

Two principal G-bundles are isomorphic if there is a G-equivariant
bundle isomorphism covering the identity map of F , and two bundles
with connections are isomorphic if moreover H pushes forward to H ′.
A connection is said to be flat if the bundle H is comprised of tangent
spaces to a foliation of P .

The group of gauge transformations G(P ) of P is the group of princi-
pal G-bundle isomorphisms of P . G(P ) is naturally isomorphic to the
group of equivariant smooth maps P → G with respect to the conju-
gation action, and in particular, if the principal G-bundle P is trivial,
then the group of equivariant maps P → G is simply identified with
the group of all maps F → G.

The holonomy of H along a closed curve γ : [a, b]→ F is the element
g ∈ G so that gx = y, where x is any chosen point in the fiber of
P → F over γ(a) = γ(b), and the unique lift of γ to P starting from x
whose tangent vectors lie in H has its endpoint with fiber coordinate y.
More generally, lifting vectors horizontally along paths in this manner
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tangent to H is called parallel transport. If the connection is flat,
then the holonomy is well-defined on homotopy classes of curves and
indeed upon choosing a base point in F for the fundamental group
π1 = π1(F ) gives rise to a homomorphism π1 → G. This choice of base
point corresponds to an inner automorphism of P , so a flat connection
on the principal G-bundle P → F gives rise to a well defined element
of Hom(π1, G)/G.

Conversely, such a homomorphism ρ : π1 → G for a chosen base
point in F in turn gives rise to the flat G-bundle (F̃ × G)/π1, where
γ ∈ π1 acts diagonally on the universal cover F̃ as deck transformations
and on G as left multiplication by ρ(γ). This bundle comes equipped
with a flat connection inherited from the trivial connection on F̃ ×G,
and its holonomy is given by ρ.

Consider the moduli space M(F,G) of all flat connections on princi-
pal G-bundles P → F modulo the group of all gauge transformations
G(P ). Flat connections for a fixed F form an affine space modeled on
the Banach space of 1-forms on P with values in the Lie algebra of G
that satisfy the Maurer-Cartan equation. Techniques of global analysis
thus again provide rigorous definition for M(F,G), or at least for the
über-space of all flat connections on all principal G-bundles. Morevoer,
the elementary constructions above based on holonomy provide map-
pings between M(F,G) and Hom(π1, G)/G, and we have:

Theorem 1.4. For any Lie group G and any surface F , we have

M(F,G) = Hom(π1(F ), G)/G,

that is, the moduli space of flat G-connections on principal G-bundles
over F is naturally identified with the representation variety.

There is the small quirk of terminology to point out that it is not
the quotient Riemann moduli space M(F ) = T (F )/MC(F ) but rather
Teichmüller space T (F ) itself which corresponds to the moduli space
M(F, PSL2(R)) of flat connections. Indeed, Teichmüller space is ac-
tually a component of M(F, PSL2(R)) according to [51], and likewise
at least for real reductive groups G, there is an analogous so-called
Hitchin component [62] of M(F,G). In any case, the mapping class
group MC(F ) acts on the moduli space M(F,G) as a representation
variety in the current context, and the dynamics, which is only partly
understood, depends upon the specific Lie group G.

Our final interpretation of M(F,G) follows immediately from its de-
scription as a representation variety, and we suppose that F has at
least one puncture or boundary component and choose any fatgraph
spine τ ⊂ F . The next idea is very simple: instead of representing the
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fundamental group π1 of F , let us instead represent the fundamental
path groupoid of τ in G.

Namely, a G-graph connection on the graph underlying τ is the as-
signment g(e) ∈ G to each oriented edge e of τ so that g(ē) = g(e)−1 if
ē is the reverse orientation to e. Two such assignments g(e), h(e) ∈ G
are regarded as equivalent if there is kv ∈ G, for each vertex v of τ , so
that g(e) = kvh(e)k−1

w for each oriented edge e of τ with initial point v
and terminal point w.

Corollary 1.5. For any Lie group G, any surface F , and any graph τ
homotopy equivalent to F , we have

M(F,G) = {G− graph connections on τ},

that is, the moduli space is naturally identified with the collection of all
G-graph connections on τ .

The value taken by a graph connection on an oriented edge simply
describes the parallel transport along it, and the holonomy of the graph
connection g on τ along the closed oriented edge path e1− e2−· · ·− en
in τ is the ordered product g(e1)g(e2) · · · g(en) ∈ G.

In order to get straight to the combinatorics, we have ignored the
foundational complexity in effect taking Hom(π1, G)/G as our operative
definition of M(F,G). The key difficult and critical issue is to control
the topology of moduli space M(F,G) as the quotient by the group
G(P ) of gauge transformations. This has an expansive history based
on global analysis in Banach manifolds and on important work of Mum-
ford, Narasimhan-Seshadri, Atiyah-Bott, Hitchin, Simpson, Donaldson
and Marsden-Weinstein, Kempf, Ness, Kirwin among others. We re-
fer the interested reader to the forthcoming Bulletin of the American
Mathematical Society article by Goldman et al.

2. Protein

The geometric and chemical nature of proteins required here is sur-
veyed in [105] as we first recall, and the fatgraph model of proteins is
discussed. This is not our key result on protein, rather, using SO(3)-
graph connections, we have discovered [106] new geometric constraints
on proteins as we shall explain effectively passing from topology in
[105] to geometry in [106]. The marvelous monograph [46] provides the
broader view of protein structure and dynamics.

2.1. Chemistry and geometry. A protein is a special type of polypep-
tide, and a polypeptide is a linear polymer of amino acids. An amino
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Figure 7. Amino acids. On the left, residue R is one
of a number of possibilities and Cα is the first or “αth”
carbon; the exceptional imino acid Proline is depicted
on the right. We shall for simplicity here also refer to
Proline as amino acid.

acid is one of 20 special molecules4 of the general structure illustrated
in Figure 7.

In any case, the OH on the right hand side in Figure 7 of an amino
acid can condense off a water molecule with an H on the left hand
side of another amino acid thus combining two or many amino acids
into a polymer linked by new inter-amino bonds C−−N called “peptide
bonds” as in Figure 8. These are drawn as partial bonds between
Ci−1 with Oi−1 including Ni because it is a consequence of quantum
chemistry–and an amazing geometric fact about this hybridized bond–
that the six atoms Ci−1 and Ni plus Oi−1, Cα

i−1, Cα
i and Hi comprising

the so-called “peptide unit” actually lie in a common plane, namely,
the centers of mass of the Bohr models for these atoms are coplanar.
The angles are also nearly 120◦, so the geometry of peptide units in
Figure 8 is roughly accurate5. Furthermore, the angles at each Cα

i

are tetrahedral. The “backbone” is the sequence of molecules N-Cα-
C-N-Cα-· · · -C-N-Cα-C, and the only moduli for the geometry of the

4We shall take this number of 20 since these are the “classical” gene-encoded
amino acids including Proline which occur widely across all species although two
others have been more recently discovered: There is a 21st (Selenocysteine) which
also occurs widely across species but rarely compared to the other 20 as well as a
22nd (Pyrrolysine) arising only in methanogenic archaea and certain exotic bacteria.

5The peptide units are all drawn with the Cαs on opposite sides of the line of
the peptide bond. This is the so-called trans conformation of the protein, and it
is usually energetically favorable to keep these carbon atoms thus separated. The
other possible conformation is called cis, and it occurs relatively commonly only
for Proline-preceding peptide bonds, where the energetics is mitigated by the steric
implications of the massive carbon groups in the Proline itself.
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backbone are thus the so-called conformational angles6 ϕ, ψ, one pair
of these dihedral angles for each Cα again as illustrated.

peptide

  bond

peptide

  bond

Figure 8. Polypeptide, backbone, peptide unit and
conformational angles from [105].

The “primary structure” of a polypeptide is given by the sequence of
amino acid residues that comprise it in the linear order from its N- to
C-terminus. This word in the 20-letter alphabet of residues uniquely
determines the chemical structure. A reasonable operative length to
keep in mind for a protein is a few hundred amino acid residues though
lengths of biologically active proteins can in fact range from just a few
into the tens of thousands.

2.2. Protein folding. Certain rare polypeptides have the property
that they crystalize–not in any mathematical sense–but in the sense
that there is a least energy state whose energy level is well separated
at normal biological conditions from its competitors; this state is more-
over often densely situated in space in that it cannot be penetrated by
ambient water molecules. This is perhaps a good attempt to define
“protein” but only for moderately sized so-called globular or water sol-
uble proteins which are sometimes implicitly considered. Larger water
soluble proteins are commonly comprised of a number of moderately
sized and often repeating constituents. The other two main classes
of proteins beyond the water soluble ones are fibrous (like collagen

6The histogram of these two backbone conformational angles in a torus S1 × S1

over some representative subset varies from one amino acid to another and is the
so-called Ramachandran plot of important utility throughout protein science.
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whose primary structures are typically repeating) and transmembrane
(which cross cellular lipid bilayers and therefore have their own spe-
cial properties for example sometimes having several comparable low
energy conformations in order to mechanically pump ions efficiently
across cell membranes). At any rate, certain polypeptides are selected
for expression in an organism, and these are its natural proteins. Their
folding and function must be sufficiently reliable that the organism
can depend upon them through thick and thin and thus must indeed
therefore have these well separated least energy states.

Proteins fold into characteristic shapes, and most moderately sized
globular proteins do so spontaneously without further instruction from
the cell. The prediction of the folded structure from the primary struc-
ture is the famous “protein folding problem” rightfully ballyhooed as
the fundamental problem in molecular biology since a comprehensive
solution to it would in principle allow drug invention and testing to be
performed largely on the computer at a minuscule cost and difficulty
compared to current laboratory methods just for example. Accurate
predictions of protein folding and protein interactions from first physi-
cal principles are difficult because many forces are at play: electromag-
netic and ionic forces coming from charges on the different residues,
van der Waals forces and hydrophobicity of residues and protein re-
gions among others, all this taking place in the essentially aqueous
environment that is the organism–let alone consideration of the full
Schrödinger equations to describe the quantum system. The computer
modeling of classical physical systems approximating folding or other
evolution is called “Molecular Dynamics, and there is a vast literature,
cf. [114, 18, 81, 65, 40, 130, 122]. There are also numerical methods
of “Density Functional Theory” approximate solutions to the many-
body quantum systems, cf. [63, 79, 97, 28, 66]. Both approaches are
computationally extremely intensive.

The repository [19] of all experimental data on folded proteins started
slowly in the 1970s and is called the Protein Data Bank (PDB). Each
PDB file provides the complete set of spatial coordinates of each con-
stituent atom in the corresponding protein. As an aside, we mention
that another procedure of predicting folded protein structure called
“Homology Modeling” comes from comparing primary structure with
the known structures in PDB, cf. [34, 86, 16, 90, 129, 76]. The PDB
is readily available online and grows daily. However, individual files
among the 100,000 or so entries vary in quality and idiosyncrasy. The
novice is encouraged to probe this very accessible data base, but any
systematic processing of this library is best undertaken with guidance
to overcome various quirks.
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Some biologists would argue that these PDB files do not truly rep-
resent the structure in the cell since first the proteins are isolated
and respectively either crystalized or dissolved in specific buffers in-
corporating heavy isotopes and only then analyzed using either X-ray
crystallography or NMR techniques. Further criticisms come from the
equal standing as PDB files of diverse experimental conditions ren-
dered by different laboratories as well as the equally diverse methods
of processing the raw data–electron cloud densities or pulse sequences
of ensembles–to finally produce the PDB file. Two aspects of this data
processing are “validation” and “refinement”, namely, comparing spa-
tial coordinates determined from the raw data to idealized conforma-
tions and then improving this fit according to some scoring procedure.
It is clear that a priori geometric constraints such as planarity of the
peptide unit for instance play a critical role in this basic processing
from raw data to PDB file.

One of the key stabilizing forces for folded proteins as well as one
of the key driving forces of hydrophobicity is provided by hydrogen
bonding or H-bonding as follows. An electronegative atom is one that
tends to attract electrons, and examples of such atoms include C,N,O in
this order of increasing attraction. When one electronegative atom ap-
proaches another one which is chemically bonded to a hydrogen atom,
the two atoms can share the electron cloud of the H atom and thus
attract one another through an H-bond; the former is called the “ac-
ceptor” and the latter the “donor” of the H-bond. These H-bonds are
roughly ten times weaker than the covalent bonds between adjacent
atoms in the backbone and residues, however, H-bonds are still rel-
atively energetically expensive, for example exceeding van der Waals
forces, and hence are deeply involved in protein folding. Electronega-
tive atoms in the residues can also participate in H-bonds.

Two special motifs of H-bonding are especially prevalent in prac-
tice, namely, alpha helices and beta strands as illustrated in Figure
9, where the H-bonds are oriented from donor to acceptor. Notice
that beta strands can naturally combine via further H-bonds into beta
sheets of multiple strands. These patterns of bonding sufficiently sat-
urate the protein for these energetically important H-bonds that fully
60-70 percent of the backbone participates in them. The pattern of
alpha helices and beta strands is called the “secondary structure” of
the protein, and its “tertiary structure” is the complete set of spatial
coordinates of each constituent atom as recorded in a PDB file.

2.3. Fatgraph model. There is a topological model of proteins as fat-
graphs introduced in [105] which associates a fatgraph τ = τ(P) to a
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Figure 9. Alpha helices and beta strands. Each × rep-
resents a Cα. Specific H-bonds will be discussed later.

folded protein P that is so natural that we just applied aspects of it
without explanation or apology in the depiction of alpha helices and
beta strands in Figure 9 as is typically done in protein science: to each
peptide unit is assigned a fatgraph building block for the backbone
consisting of a small horizontal segment with one smaller vertical seg-
ment at each end, one pointing up and the other down. The endpoints
of the building blocks represent Cαs, and the first and second vertical
segments along the backbone respectively represent C and N . These
can be combined at their endpoints either preserving or reversing the
pattern of up and down as was convenient in Figure 9 along the back-
bone, and we then add one edge to τ for each H-bond in the natural
way oriented from donor to acceptor.

In fact, τ must now be enhanced to allow two types of edges, one type
as before and the new type contributing a once-twisted band instead
of an untwisted one as usual to the skinny surface F (τ). This permits
the backbone depictions as in Figure 9 and evidently leads to possibly
non-orientable skinny surfaces F (τ) associated to the pattern P of H-
bonding. It furthermore turns out to be necessary to turn to this
category of not necessarily orientable surfaces using fatgraphs with
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twisted and untwisted edges in order that the topological type of F (τ)
changes only a bit under experimental errors or uncertainties in the
data for P . The details are given in [105] which also describes the
natural twisting on the edges of τ arising from the H-bonds, e.g., those
with arrows on them in Figure 9, that we have yet to discuss here.

To explain this key construction from [105], let
−→
PQ denote the dis-

placement vector from P toQ and recall from above that the unit vector

parallel to the displacement vector
−−−−→
Ci−1Ni from Ci−1 to Ni lies in the

plane of the peptide unit, itself oriented naturally counter-clockwise

from
−−−−→
Ci−1Ni to

−−−−−→
Cα
i−1Ci−1. This gives a vector in an oriented plane in

R3 or equivalently a so-called positive 3-frame (u, v, w) of mutually per-
pendicular unit vectors where the third w = u× v is the cross product
of the first two. Thus, the pair of peptide units participating in an
H-bond7 gives a pair of positive 3-frames (u`, v`, w`), where ` = a for
acceptor and ` = d for donor, and hence also determines the unique
rotation of R3 carrying (ud, vd, wd) 7→ (ua, va, wa).

2.4. SO(3)-graph connections. We have seen that an H-bond be-
tween peptide units gives rise to an element of the Lie group

SO(3) = {3× 3 matrices A : AtA = I and detA = 1},

where superscript t denotes the transpose, det the determinant and I
the 3-by-3 identity matrix. Under the assumption of idealized geome-
try, it is an exercise to compute the rotation in SO(3) for two peptide
units consecutive along the backbone in terms of the backbone confor-
mational angles:

Lemma 2.1. [105] Consider two consecutive peptide units with the
backbone conformational angles ϕ, ψ between them under the idealized
geometry that angles in the peptide units are exactly 120 ◦ and the an-
gles at the Cαs are exactly tetrahedral. Then the element A ∈ SO(3)
mapping the 3-frame of one peptide unit8 to the next one along the

7The question naturally arises of how to recognize an H-bond in practice, i.e.,
from the PDB file of the protein. There is a standardized method [75] of recognizing
and classifying H-bonds from a PDB file called Dictionary of Secondary Structure
for Proteins (DSSP) which employs a crude approximation of the energy of an H-
bond and takes a threshold of -0.5 kcal/mole below which the H-bond is regarded
to exist. Refinements of DSSP as well as other methods for recognizing H-bonds
are also used.

8When the peptide unit before the acceptor Cα is in the cis conformation, the
matrix A must be pre-multiplied by a diagonal matrix with entries (1,−1,−1).
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Recall (cf. [106]) that SO(3) supports the metric

d(A,B) =
∣∣arccos

trace(ABt)− 1

2

∣∣, for A,B ∈ SO(3),

which is invariant under both right and left multiplication. In fact, we
define an edge in our model of τ in [105] to be untwisted9 if d(I, A) <
d(I, B), where A ∈ SO(3) maps (ud, vd, wd) 7→ (ua, va, wa) and B maps
(ud, vd, wd) 7→ (ua,−va,−wa); the fatgraph of [105] is thus quite natu-
ral and reproduces the diagrams usually drawn with physical but until
now without precise mathematical interpretation in protein science.
The paper [105] goes on to use the topological type of the resulting
possibly non-orientable surface F (τ) to predict certain aspects of pro-
tein classification, however, the paper [107] shows that the primary
structure does a better job of this than the topological type of F (τ).
We shall not further discuss the topological considerations of [105] here
yet shall rely critically in the sequel on the geometric construction of
the SO(3) graph connection of a folded protein that was just described.

A fortunate consequence is that we shall not be forced to further
consider non-orientable surfaces and can take any convenient up or
down depiction of the backbone to which we add one ordinary edge as
before for each H-bond in order to determine a graph τ (not a fatgraph
though we may draw it as such) together with an SO(3) graph connec-
tion upon it. Specifically, a positive 3-frame F = (u, v, w) determines

9There is a little more to it depending upon the cis or trans conformation, but
we shall leave it at that here and refer the interested reader to the original text.
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a matrix A ∈ SO(3) whose respective columns are given by u, v, w in
the standard vector basis; this matrix A maps the standard coordinate

3-frame (~i,~j,~k) to F . For any two peptide units with corresponding
positive frames Fi,Fj and matrices Ai, Aj, the rotation AjA

−1
i thus

maps Fi to Fj. However, this is not a useful invariant since it changes
if we rotate the entire protein in space. There is a standard trick to
correct this deficiency by transforming both Fi and Fj by A−1

i so that
Fi becomes the standard 3-frame, Fj becomes A−1

i (Fj), and the rota-
tion Ai,j = A−1

j Ai mapping the former to the latter is our true invariant
value of the SO(3) graph connection associated to the H-bond between
two peptide units. Notice that for three peptide units i, j, k, we have
the identity Ai,k = Ai,jAj,k.

Since edges corresponding to H-bonds can be canonically oriented
from donor to acceptor, we do not really need the full fatgraph building
blocks described before.

Construction 2.1. Given a folded protein P, take a “backbone” in-
terval K with integer endpoints in R whose consecutive integral points
are in one-to-one correspondence with the consecutive peptide units in
P. If there is an H-bond from the ith (donor) to the jth (acceptor)
peptide units, then add to K a semicircular arc in the upper half plane
oriented from i ∈ K to j ∈ K. This determines a graph τ(P) with its
non backbone edges oriented. Assign to each oriented edge the matrix
Ai,j discussed before associated to peptide units i and j participating in
H-bonding and further assign to each backbone interval oriented from
i to i + 1 the matrix Ai,i+1 rotating consecutive 3-frames, cf. Lemma
2.1. This determines an SO(3) graph connection AP(e) ∈ SO(3), for e
an oriented edge of τ(P).

Recall from Gauss that a rotation A ∈ SO(3) of R3 is equivalently
described in “angle-axis” form as rotation by some angle θ ≥ 0 about
some unit vector ~ω with the understandings that θ, ~ω is equivalent to
−θ,−~ω and θ = 0 corresponds to A = I. By associating the product
θ~ω ∈ R3, we may thus draw figures in SO(3) depicted as the ball of
radius π centered at the origin in R3 where antipodal points in the
boundary of this ball are to be identified.

Main Discovery 2.1. [106] Apply Construction 2.1 to a representative
subset of H-bonds from the PDB to extract roughly one million H-bonds
using high-quality data. Then the histogram in SO(3) of the associated
H-bond rotations actually occurs in only about 30 percent (with most
of the data in fact occurring in only about 20 percent) of the volume
of SO(3) as depicted in Figure 10. The data in this region of H-bond
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Figure 10. Histogram in SO(3) of a representative set of
roughly one million H-bonds together with several sample
rotations of peptide units adapted from [106].

rotations in SO(3) that do arise further cluster into 30 regions depicted
in Figure 11 providing a new classification for H-bonds.

Using SO(3) graph connections to probe the geometry of H-bonds in
the PDB, we have thus discovered new a priori geometric constraints on
folded proteins, namely, roughly 70 percent by volume of the possible
H-bond conformational space is avoided. It is important to emphasize
that nearly the entire space SO(3) arises in principle for some config-
uration of peptide units with an appropriate translation though some
several percent by volume of SO(3) is ruled out presumably for steric
reasons. Nature is thus more conservative than Geometry. For ex-
ample, just as the restrictions on backbone conformational angles in
Ramachandran plots are widely used to refine and validate PDB files
as determined from raw experimental data in practice, so too these
new constraints on H-bond geometry should be imposed as well. The
utility of this will take some time yet to confirm, but the phenomenon
of clustering and the attendant classification it entails are so robust
that they are plainly visible to the naked eye already in the raw data
in Figure 10. Moreover, the same basic clusters occur for other data
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Figure 11. Depiction of the 30 clusters together with their population,

percentage volume of SO(3), point of highest density or so-called mode given

in angle-axis coordinates, average translation vector, average and maximum
distance from mode again adapted from [106]. The notation Nε

x for a cluster

indicates that ∆ = εN as explained in the text, and L denotes long-range

|∆| > 6, with alphabetical subscripts x = a, b, . . . distinguishing the various
clusters. Major/minor clusters are simply those of largest/smallest population.



MODULI SPACES AND MACROMOLECULES 35

sets extracted from the PDB using various cutoffs of primary sequence
identity and PDB file quality; see the original paper for details.

It turns out that certain density features of the original histogram
can be explained by separating the data into 11 subsets depending upon
the signed distance ∆ = j − i − 1 along the backbone from the donor
i to the acceptor j taking values 2 ≤ |∆| ≤ 6 and “long-range” with
|∆| > 6. These subsets are separately grouped into clusters according
to methods discussed in [106] leading to 30 regions in SO(3). H-bonds
that are short-range along the backbone, i.e., those with |∆| ≤ 6, have
of course been well-studied in terms of the backbone conformational
angles ϕ, ψ. Our results confirm and refine the existing classifications of
so-called helices, turns and hairpins, and moreover provide new classes.
Furthermore, this is the first systematic study and classification of long-
range H-bond geometries.

Two planes in space are of course related not only by a rotation
but also a translation, and it is natural to wonder if there might be
a further refinement of the rotation clustering by translations. For
length ∆ = −3, there was found an evident sub-clustering of the main
region into two sub-clusters which depend upon the translation, and
this distinction is incorporated into the 30 clusters of Discovery 2.1. It
is also interesting that the translations provide no further aggregations
of density among rotations other than this case of ∆ = −3.

Purely computational verification of the empirical discovery above
is based on Density Functional Theory, which we recall gives an ap-
proximate solution to the Schrödinger equation, where we compute
minimum energies for two peptide units engaged in an H-bond. The
resulting solution again lies in a region roughly thirty percent of the
volume of SO(3) nicely roughly agreeing with that already discovered
albeit without the fine detail of the 30 clusters. We refer the interested
reader to the original paper.

2.5. Further remarks on protein. We close this discussion applying
SO(3) graph connections to protein with several mostly mathematical
remarks. Let us first just mention that the SO(3) graph connection
method has been elaborated in [94] to provide a useful graphical tech-
nique for studying and comparing protein structures which is then ap-
plied to a complex of the protein streptavidin and the vitamin biotin
highlighting the importance of so-called water bridges, another mani-
festation of H-bonding involving the ambient water molecules.

It follows from Lemma 2.1 that H-bonds which are short-range along
the backbone can be computed directly in terms of the conformational
angles, but the situation is more interesting for long-range H-bonds.



36 R. C. PENNER

Referring back to Figure 8, the ideal backbone conformations given
in degrees are known to be (φ, ψ) = (−135, 150) for antiparallel beta
and (−120, 135) for parallel beta. The SO(3) graph connection of H-
bond rotations clearly has no holonomy in the sense that the product
of holonomies along any closed edge path in the fatgraph must give the
identity since the graph connection is itself derived from the 3-frames.
Thus, the two paths illustrated on the anti-parallel beta strand have
the same holonomy, and this gives a recursion for A2 in terms of A1

based on the anti-parallel backbone matrices computed for the ideal
geometry from Lemma 2.1. Similar remarks apply in the parallel case.

For example, recognition that the long-range clusters called Lb is as-
sociated with parallel beta strands comes from the fact that its point of
highest density is very near a fixed point of the ideal dynamical system
in the metric geometry of SO(3). This is interesting for several reasons
including demonstrating that the intrinsic Lie geometry of SO(3) ap-
pears to be an effective tool for biophysics, i.e., this is the right metric
for this question about proteins. Such dynamical systems on a Carte-
sian product of several copies of SO(3) may warrant further study in
treating other motifs comprised of several H-bonds.

As was already mentioned, our SO(3) graph connections have triv-
ial holonomy, yet the holonomy of general SO(3) graph connections
can certainly be non-trivial. One such example arises from elements
of SO(3) occurring as averages over ensembles of graph connections,
which could quite reasonably arise experimentally.

To a fatgraph τ arising from Construction 2.1 with K chords, we
assign an open (K − 1)-simplex ∆τ with the natural face relation as
before. Explicitly, let us consider some positive real number assigned to
each chord which we shall call its “free energy”, and let us furthermore
take the quotient by an overall homothetic scaling by R+. Setting these
projective free energies to zero on an edge corresponds to erasing that
edge and passing to the corresponding face of the simplex naturally
enough. It is much like the structure in §1.5, where contraction of an
edge there corresponds to erasure of a chord here. Of course, the value
of the graph connection is lost when its projective free energy vanishes,
i.e., when it is erased.

Consider a fatgraph τ arising from Construction 2.1. Any graph
connection on τ can always be represented by one that is identically
I ∈ SO(3) on the backbone edges as is easily confirmed, and we shall
assume this realization henceforth. The union

PN = ∪τ ∆τ ×M(τ, SO(3))
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of all SO(3) graph connections M(τ, SO(3)) on all possible graphs τ
of oriented chords supporting projective free energies on a backbone
interval containing N integral points thus provides a moduli space for
proteins on N peptide units.

In fact, H-bonds can bifurcate, though this is not terribly common
especially for donors, and this could be incorporated into the definition
of PN , i.e., usually no more than one semicircle pointing towards or two
pointing away from any integer point. This moduli space PN is so far
only of speculative utility, but nevertheless this new concept of metric
(fat)graph connection seems to be an interesting one in gauge theory.
There are also other physical restrictions on proteins, for example, the
so-called steric constraints that constituent atoms cannot overlap which
depend upon the primary structure of the protein.

Let us finally emphasize that this idea of applying SO(3)-graph con-
nections to physical chemistry surely goes far beyond the application
here to protein H-bonds between peptide units.

3. Sugar

Polysaccharide is a typically not linear but rather treelike polymer of
monosaccharides (one constituent sugar) and oligosaccharides (a few,
usually 3-6 with some exceptional cases of 7-9 sugars). Monosaccha-
rides have the chemical formula (CH20)n for some n = 3, . . . , 7 and
come in two chemically distinct families: ketoses containing C=O and
aldoses containing CH=O. Monosaccharides come in both open linear
and closed cyclic forms though it is the cyclic form that prevails in
solution as well as in our attention here. The linear form of a monosac-
charide is concisely described by its Fischer projection (1891) and the
cyclic form by its Haworth diagram (1928) as illustrated in Figure 12
for glucose, ribose and fructose. It is surely an affirming point that
the Haworth diagram itself is already a fatgraph meant to describe a
molecule containing a carbon-oxygen ring lying in a cylinder in space.
The C and O atoms lying in the cycle of a cyclic form are called the
backbone atoms of the monosaccharide. Chemists number the C in the
Haworth diagram as illustrated in the figure in each case. The backbone
C next to the O which does not carry just the CH2OH group is called
the anomeric carbon for both aldoses and ketoses as also illustrated in
the figure, and it plays a special role as we shall see.

For each of these two chemical families, there are two basic di-
chotomies of conformation: a monosaccharide is in the D-form if the
bottom OH in the Fischer projection, just above the terminal CH2OH,
lies to the right, and it is in the L-form if it is the mirror image of
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Figure 12. Typical aldose and ketose monosaccharides
in Fischer and Haworth projections. The bold vertex de-
notes the anomeric carbon in either case, and the stan-
dard ordering on carbons is indicated.

the D-form with this OH therefore lying to the left. The second dis-
tinction between so-called alpha and beta forms captures whether the
OH carried by the anomeric carbon lies on the same or different side,
in the Haworth diagram up or down, as the nearby CH2OH group.
Both alpha and beta conformations typically occur while the D-form
is drastically more common in nature than the L-form, which occurs
only negligibly, and we have therefore illustrated in Figure 12 both
conformations alpha and beta but only D-forms.

As to the polymer, mono- and oligosaccharides assemble into oligo-
and polysaccharides through the formation of covalent so-called glyco-
sidic bonds between the OH on the anomeric carbon and another OH
on the backbone ring of another mono- or oligosaccharide while con-
densing off a water molecule. There is an entirely obvious fatgraph to
build by simply connecting Haworth fatgraph diagrams of mono- and
oligosaccharides with one edge for each glycosidic bond in the obvious
way as we did for H-bonds in protein.

This associates a natural fatgraph τ(S) to a polysaccharide S. There
is moreover a graph τ̄(S) arising from τ(S) by collapsing each cycle
in the Haworth diagram of each constituent monosaccharide to a dis-
tinct point. Because of the special bonding which always involves an
anomeric carbon, it is not difficult to show that τ̄(S) must be a tree.
For example, a cellular storage device for glucose called glycogen con-
sists of linear strands of glucose with glycosidic bonds, i.e., edges of the
fatgraph, including the anomer OH at position 1 and the OH of the
4th carbon, where long such linear strands of 1,4 linkages branch every
10-14 glucose units via 1,6 linkages to form a tree.

The topological type of this tree τ̄(S) is one invariant of the polysac-
charide S. The fatgraph τ(S) without the collapse furthermore has
in particular its boundary cycles, and for example, the number `k of
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boundary cycles of edge-length k for each k–the so-called length spec-
trum of τ(S) or S–provide further polysaccharide fatgraph invariants.

It is important to stress the vital fact that the geometry of the Ha-
worth diagram is approximately correct for a monosaccharide in space
but not quite. Indeed, the backbone atoms satisfy non-generic pla-
narity conditions: for 5 backbone atoms (like the vertices of an en-
velope) and for 6 backbone atoms (like the vertices of a lawn chair),
there is a plane containing O and 3 backbone C. In any case, it is
again encouraging that there is thus a canonical positive 3-frame asso-
ciated with each monosaccharide which could be useful in studying the
geometry of polysaccharide interactions.

In contrast, matrix models may not be of much use in realistic biol-
ogy since interesting biologically active roles of sugars, cellular signaling
for example, depend on exquisitely refined structure that has been evo-
lutionarily selected, and certainly not on bulk properties of ensembles
of polysaccharides as captured by matrix models. However, here is a
problem in physical chemistry to which matrix models may apply:

Take a test tube mostly filled with water and add a selection of
oligosaccharides according to some specified recipe. Let it be shaken
and then left alone until a steady state emerges of the ensemble of
mostly cyclic polysaccharides S in the test tube. We speculate that
there is a version of matrix models suited to polysaccharides for study-
ing these stable ensembles and predicting the attributes of their con-
stituent fatgraphs. Computing the average asymptotic topological at-
tributes of the ensemble in terms of the original recipe would be a goal
beyond the abilities of current techniques in computational chemistry
towards this end, which would require [131] Monte Carlo methods for
Molecular Dynamics. It is not difficult to start building attributes of
polysaccharides into a matrix model, but a natural and new matrix
model type to describe polysaccharides has yet to be invented.

4. RNA

RNA and protein share certain properties in that each is a linear
polymer of acid residues, 20 amino acids in the former case and 4 nucleic
acids in the latter in the standard models. These residues interact
by H-bonds in the former case and by Watson-Crick [134] or other
rules in the latter–though a distinction for RNA is that only certain
residue pairs can interact. On the other hand, a key difference is that
it is the geometry of protein interactions that has been successfully
probed as we have already discussed while it is the topology of RNA
interactions that is both deeply connected with the Riemann moduli
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spaces and admits effective description and computation with matrix
models. A good reference for RNA chemistry and structure is [92] with
[115, 132, 109, 74] providing excellent and comprehensive treatments
of the RNA bioinformatics and beyond. Most of the material in this
section comes from [11, 117, 104, 14].

4.1. Chemistry and topology. An RNA molecule is a linear polymer
of nucleic acids, and a nucleic acid is one of the four10 compounds:
Adenine, Guanine, Cytosine or Uracil.

Just as for protein, there is a backbone this time given by an alter-
nating sequence of ribose sugars11 and phosphate groups, where each
sugar is covalently bonded to a nucleic acid residue, which is also called
a “base”. It is the 3rd carbon in the sugar that connects to the sub-
sequent phosphate and the 5th carbon that connects to the previous
phosphate along the backbone so as before for protein, the RNA back-
bone comes with a canonical orientation determined by the chemistry
called “from the 5’ to 3’ end”. The “primary structure” of the RNA
molecule, which completely determines it chemically, is the word in this
4-letter alphabet {A,G,C, U} oriented from the 5’ end to the 3’ end of
the molecule. The classical12 Watson-Crick bonds or “base pairs” are
C − G arising from three H-bonds and A − U arising from two. The
two nucleic acid residues participating in a Watson-Crick base pair are
essentially planar, and these planes stack one on top of another in a
tightly folded RNA molecule. These and other aspects as well are illus-
trated in Figure 13a, where the backbone including the ribose sugars
familiar from the previous section are depicted in blue and the nucleic
acid residues in green. A chemically more detailed illustration of the
residues is given in Figure 17.

In contrast to our discussion of protein, however, it is not the ge-
ometry of RNA but rather its topology that is studied here. This
reflects both the relative paucity of data for folded RNA compared to
protein as well as the admittedly controversial view that in some cir-
cumstances RNA has continuous moduli which proteins typically do

10This is just the simplest version. Indeed, a mature RNA undergoes chemical
modification of these four, and furthermore, there is a fifth player called Inosine,
which is part of Crick’s so-called wobble model.

11In fact, in order to participate in the RNA backbone as well as in other impor-
tant cellular mechanisms, a ribose sugar as illustrated in Figure 12b must first be
phosphorylated via an ADP-ATP cycling reaction catalyzed by a so-called riboki-
nase enzymatic protein.

12Crick’s wobble model allows also the non-standard pairing G − U as well as
I−X, for X = A,C,U . Another geometrically more refined version of base pairing
will also be discussed later.
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a) RNA molecule

b) Stick figure

c) Partial matching

d) Chord diagram as seed

Figure 13. Seed of a pseudoknotted RNA molecule.
Part a) c© Vossman from Wikipedia taken from w:PDB
ids 1sv model 1 imaged using w:UCSF Chimera. Part b)
models the Watson-Crick bonds as red lines in a stick fig-
ure, part c) as a partial matching on a linear backbone,
and part d) presents the associated seed.

not. The geometry of RNA is regarded as invisible to our model, and
it is the pattern of H-bonding as a topological surface that is recorded
as a fatgraph. Furthermore, evident hybrids of the methods could be
developed to handle both the topology and geometry.
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We shall find that there is a fundamental identification up to ho-
motopy of the Riemann moduli space M(Fg,r) of a bordered surface
with the moduli space of r ≥ 1 many interacting RNA molecules with
genus g as we shall define it thus directly relating two otherwise quite
disparate topics. This identification is understood only on the combina-
torial level presented here. Nevertheless, much of the deep structure of
Riemann moduli spaces can be described purely combinatorially [104]
and so can indeed be carried over straightaway to the biophysics but
with unclear meaning. It is an exciting but perhaps naively optimistic
hope for a deeper geometric or dynamical confluence between Riemann
surfaces and RNA. Nevertheless, matrix model techniques from quan-
tum field theory are available to enumerate and compute varied aspects
of fatgraph complexes in general and these RNA moduli spaces in par-
ticular as we shall also explain.

Here is the basic model of an RNA complex13 which originated in-
dependently in [108, 101] and [95, 25]: Consider a collection of b ≥ 1
pairwise disjoint oriented intervals lying in the real line R ⊂ C, each
component of which is called a backbone: a chord diagram C on these
backbones is comprised of a collection of n ≥ 0 semi-circles called
chords lying in the upper half plane whose endpoints lie at distinct
interior points in the backbones so that the resulting diagram is con-
nected. This description of C with its chords in the upper half plane
automatically determines a corresponding fatgraph structure on C, and
as such, the skinny surface associated to C has its genus g(C) ≥ 0 and
number r(C) ≥ 1 of boundary components. Chords in C can represent
interactions between their endpoints such as Watson-Crick bonds in an
RNA molecule as illustrated in Figure 13, or they may represent still
other binary interactions as will be discussed later.

This chord diagram C is already a combinatorial simplification since
by definition a chord diagram cannot contain isolated vertices (i.e., it
is a “complete matching” rather than a “partial matching” in the par-
lance of classical combinatorics) in contrast to the evident biophysics
as illustrated in Figure 13b and c. A chord c ⊂ C with endpoints x < y
is called a non-crosser if x and y lie in a common backbone and there is
no chord in C with exactly one endpoint between x and y. A stack in a
chord diagram C is a collection of m ≥ 1 chords c1, . . . , cm where cj has
endpoints xj, yj so that x1 < . . . < xm and ym < . . . y1 each comprise
consecutive vertices lying in a common backbone of C. Geochemically,

13Complexes comprised purely of RNA are not common in nature although so-
called antisense RNA [26, 50, 98] provides an important example. Nevertheless,
more biologically realistic models of several RNAs in complex with proteins or
sugars of course then restrict to the purely RNA sub-complex described here.
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a stack represents a helix of base pairs, and for example, the Watson-
Crick bonded nucleic acids indeed “stack” upon one another in space
as already mentioned.

We simplify C further still by removing all non-crossers and collaps-
ing each stack to a single chord in order to define the essential com-
binatorial abstraction called a “seed” as depicted in Figure 13d. The
utility of seeds arises from basic combinatorics: the set of all partial
matchings on a collection of backbones can be efficiently enumerated
from seeds by a process of “inflation” that inserts isolated points as
well as planar sub-diagrams consisting entirely of non-crossers and ex-
pands arcs to stacks. One can furthermore specify two parameters: the
minimum size of a stack and the minimum distance along the backbone
between endpoints of a chord. The interested reader is referred to [14].

4.2. RNA Folding. The enumeration of partially matched RNA struc-
tures of fixed genus g was obtained in [128] using matrix models, and a
closed-form expression for the number of such partial chord diagrams
was given in [38] in terms of Stirling numbers of the first kind. Chord
diagrams without isolated vertices of fixed genus g are likewise com-
puted in [11], cf. the Appendix. Moreover, second-order, non-linear, al-
gebraic partial differential equations on generating functions for chord
diagrams as well as partial chord diagrams based on lengths of bound-
ary cycles are derived in [7]. These lead to efficient enumerative meth-
ods in both the orientable and non-orientable settings. The scheme for
partial matchings is furthermore formulated as a matrix model whose
planar limit is computed using techniques of free probability.

In [14], the minimum stack size σ of RNA structures is taken into
account, the generating function of those structures is computed and
it is found that the genus only enters through a sub-exponential factor
for σ ≥ 2. This slow growth rate compared to the number of RNA
molecules implies the existence of so-called neutral networks of distinct
RNA molecules with the same structure of any genus.

Enumeration of seeds is already a combinatorially interesting prob-
lem especially owing to the utility of matrix models to actually compute
in practice as well as the intimate relationship with the Riemann mod-
uli spaces of bordered surfaces that we shall describe. However, beyond
the purely combinatorial aspect of enumeration lies the folding problem
for RNA of interest biologically: fix the primary structure of a single
RNA molecule or a family of them and predict the partial matching
that corresponds to its pattern of Watson-Crick or other bonding. In
the associated bioninformatics problem, the folding is determined by
minimizing some specified free energy function.
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The vast majority of folded single RNA molecules appears to have
genus zero, hence a planar chord diagram C on one backbone with all
arcs non-crossers. In this special case of planar chord diagrams on a
single backbone, there is the ansatz of a particular free energy function
due to Waterman [133] in the 1970s which is roughly modeled on the
idea that as for protein the H-bonds should be as saturated as possible
since they are quite energetically favorable especially in this instance
when they occur in larger stacks–now subject to the Watson-Crick rules
however–and that the backbone itself has a tensile strength and cannot
bend much. This leads to dynamic programming methods to minimize
this free energy, namely, compute the minimum free energy (MFE)
solutions as well as their corresponding Boltzman partition functions.
These methods are O(N3) in time and O(N2) in space, where N is the
number of bases in the RNA. In fact, the method provides a collection
of solutions with free energy near the minimum, say in the five-percent
band of energy around the MFE, and the “correct solution” always lies
in this five-percent band. In this limited sense, the planar RNA folding
problem for a single backbone is sometimes regarded as solved.

However, there are a number of examples of non-planarity in the
Watson-Crick bonding, and they are typically of biological significance.
A chord c in the chord diagram C is said to form a pseudoknot14 if the
chord diagram C − {c} has a different genus than that of C, and C is
said to be pseudoknotted if it contains a pseudoknot. This is a precise
definition of the term pseudoknot as used in the literature here based
on the fatgraph topology. It is a misnomer since there is no natural
pseudoknot-free sub diagram of a general chord diagram, but the planar
sub-bonding of a folded RNA molecule is nevertheless often called its
“secondary structure”.

Example 4.1. (Moduli space of all RNA secondary structures [108])
Consider a polygon F , namely, an unpunctured surface of genus zero
with one boundary component containing n distinguished points, where
we shall assume that n ≥ 3. There is a standard CW complex A =
A(F ) called the arc complex of F where there is one (k− 1)-simplex in
A for each k-tuple of distinct diagonals in F which are pairwise disjoint
except perhaps at their endpoints, and the face relation is generated
by erasure of diagonals as before. One of the many interpretations of
the Catalan numbers [124] is given by the number of top-dimensional
cells in A, i.e., the number of triangulations of F .

14The term comes from the fact that the backbone of an RNA molecule is after
all usually not a closed curve but rather an interval and hence cannot be knotted,
and the term pseudoknot arose in practice to describe non-planarity.
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a) arc families b) seed-like partial matchings

Figure 14. Seed-like planar partial matchings on one
backbone with n− 1 unbonded sites are in bijective cor-
respondence with arc families in a polygon with n sides.

The arc complex of a pentagon is illustrated in Figure 14a and is
itself also a pentagon. That the arc complex A(F ) is a sphere Sn−4 for
a polygon F with n ≥ 4 sides is the classical case of a more general
result [103]. The classical case apparently [121] was known to Hassler
Whitney, and [108] gives a novel elementary proof of it. In fact, the
analogous arc complex for a general surface F contains a dense open
subset that is equivariantly identified [99, 102] with the Teichmüller
space T (F ), so the quotient of the arc complex by the mapping class
group MC(F ) provides a combinatorial compactification of the moduli
space M(F ) of Riemann surfaces, cf. [103].

In order to exploit these combinatorics to describe the binary kind
of unmatched bonding that occurs for example with classical Watson-
Crick RNA, we say that a partial matching B on the collection of
integral vertices lying in a single backbone interval is seed-like if no
two bonds in B are parallel and no chord in B has its endpoints either
consecutive or consecutive-but-one. As illustrated in Figure 14b and
shown in [108] in somewhat greater generality up to homotopy, the geo-
metric realization of the partially ordered set of seed-like planar partial
matchings with f ≥ 4 free or unmatched vertices is homeomorphic to
a sphere Sf−3 of dimension f − 3.

A fundamental aspect of the full folding problem for RNA including
pseudoknots, even on only one backbone, is that once the Pandora’s
Box of higher genus is opened, the problem of computing MFE solutions
becomes NP complete [5, 84] provided that the energy function is based
upon the size of stacks. Thus, we go from a reasonable polynomial time
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solution directly to NP hard in one go. One must therefore limit the
topology in some way in order to permit viable algorithms to probe
RNA pseudoknot folding, and this can be done in a number of ways.

The classification of chord diagrams by genus is applied to design a
folding algorithm of RNA structures in [117]. The key idea in this work
is to consider irreducible shapes of genus γ as building blocks under
concatenation and nesting, where the number of irreducible shapes is
finite. The notion of shape irreducibility is derived from the concept
formulated in [77] plus work [73, 118] on pseudoknot shapes, or equiv-
alently as we shall see, corresponds simply to having top-dimensional
dual in the Riemann moduli space of the associated bordered surface.
Irreducibility is furthermore equivalent to the notion of primitivity in-
troduced by [25] as inspired by the work in [37]. For γ = 1, there are
four basic irreducible shapes as first presented in [111, 25] or equiva-
lently already in the 1990s as the top-dimensional cells in M(F1,1).

The γ-structures [117] whose irreducible shapes have genus at most
γ = 1 are built by concatenating and nesting these four basic irreducible
shapes. Associating a specific energy to each irreducible shape allows
one to compute a specific MFE akin to that of [133] and again mini-
mize using dynamic programing algorithms for the associated multiple
context-free grammar providing also the Boltzman partition function
and base pairing probabilities; this is implemented in the software pack-
age gfold which runs in O(N6) time and O(N4) space in the number
N of bases. This algorithm gfold is different in kind from the work
in [110] which only generates RNA structures of genus one without
any loop-based energy model, cf. also [49]. Further combinatorics of
γ-structures are studied in [56, 82].

A chord diagram with two backbones is sometimes called an “in-
teraction structure”, and these are important in principle for studying
antisense RNA [26, 50, 98] for example. The analogue [13] of gfold for
γ-interaction structures, this time with γ = 0 having seven irreducible
seeds, again runs in O(N6) time and O(N4) space. The generating
function of γ-interaction structures is shown to be algebraic in [112],
which implies that their number and its asymptotics can be computed
by singularity analysis.

In the literature, there are other such heuristics [61, 119] as well as
other approaches [115, 72] to predicting RNA folding with pseudoknot-
ting. For the general class of so-called k-noncrossing RNA structures,
i.e., diagrams in which there are no k mutually crossing chords, ex-
plicit generating functions and simple asymptotic formulas for their
coefficients have been obtained [115].
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4.3. Chord diagrams, seeds and shapes. Recall that the so-called
Catalan numbers

cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
=

n∏
k=2

n+ k

k
, for n ≥ 0,

count

cn = #{triangulations of a polygon with n+ 2 sides}.
They furthermore satisfy the recursion cn+1 =

∑n
i=0 cicn−i with c0 = 1.

In effect, we shall study here the possibly higher genus and possibly
many backbone generalization of this classical sequence. Let cg,b(n) de-
note the number of fatgraph isomorphism classes of chord diagrams of
genus g with n chords on b labeled backbones with generating function

Cg,b(z) =
∑
n≥0

cg,b(n) zn, for g ≥ 0.

Two chords c and c′ in a chord diagram C with respective endpoints
x, y and x′, y′ are parallel if x, x′, as well as y, y′, lie in a common
backbone with no chord endpoints in between, where x < x′ and y′ < y.
Parallelism generates an equivalence relation whose equivalence classes
are called stacks as before.

Suppose that the endpoints x, y of a chord c in C lie in a common
backbone β. If there are no chord endpoints between x, y, then c is
called a 1-arc on β. At the other extreme, if all chord endpoints in β
lie between x and y, then c is called a rainbow on β.

A seed is a chord diagram where every stack has cardinality one and
each 1-arc is a rainbow. A seed is a shape provided every backbone has
a rainbow. For a planar chord diagram, an innermost chord with both
endpoints on a single backbone is necessarily a 1-arc, so the only seeds
of genus zero on one backbone are the empty diagram with no chords
and the diagram with a single chord given by the rainbow, and only
the latter is also a shape.

Proposition 4.2. Other than the case g = 0, b = 1 just discussed, a
seed of genus g on b backbones with n chords must satisfy the constraints
2g + b − 1 ≤ n ≤ 6g − 6 + 5b, and these inequalities are sharp. In
particular, there are only finitely many seeds or shapes for fixed g, b.

Proof. The lower bound on n follows from 2g + b − 1 ≤ n + 1 − r
according to the Euler characteristic plus the obvious constraint r ≥ 1.
Conversely, a seed which saturates this lower bound has r = 1.

If the skinny surface associated to a seed has more than one boundary
component, then there must be a chord with different boundary com-
ponents on its two sides by connectivity of chord diagrams; removing
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-arc1 -arc1 -arc1

Figure 15. Stacks, 1-arcs, rainbows, shapes, seeds from [11].

this chord decreases r by exactly one preserving g again from consid-
eration of the Euler characteristic. Define the “length” of a boundary
cycle to be the number of chords it traverses counted with multiplicity.
If there are ν` boundary cycles of length `, for each `, then 2n =

∑
` `ν`

since each side of each chord is traversed exactly once in the boundary.
It follows that 2n = 2(b+r+2g−2) ≥ ν1 +2ν2 +3(r−ν1−ν2) ≥ 3r−2b
since 2ν1+ν2 ≤ 2b (except in the excluded case for which 2ν1+ν2 ≤ 4b).
Thus, we have 4(b+g−1) ≥ r, and there can thus be at most 4g+4b−5
such removals of chords to produce a seed with r = 1 providing the
upper bound on n. �

Let cg,b(n), sg,b(n) and tg,b(n), respectively, denote the number of
isomorphism classes of connected chord diagrams, seeds and shapes of
genus g ≥ 0 with n ≥ 0 chords on b ≥ 1 backbones. In each alphabetic
case of X = C, S, T , consider generating functions

Xg,b(z) =
∑
n≥0

xg,b(n) zn.

Whereas Cg,b(z) is a formal power series, Sg,b(z) and Tg,b(z) are poly-
nomials by Proposition 4.2 for each fixed g, b. Indeed, C0(z) = C0,1(z)
is the generating function for the Catalan numbers, the recursion for

which gives C0(z) = 1 + z[C0(z)]2, and hence C0(z) = 1−
√

1−4z
2z

by
solving the quadratic.

Theorem 4.3. The generating functions for seeds and chord diagrams
are related by

Cg,b(z) = [C0(z)]b Sg,b

(
C0(z)− 1

2− C0(z)

)
,

Sg,b(z) =

[
z + 1

1 + 2z

]b
Cg,b

(
z(1 + z)

(1 + 2z)2

)
,
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and the generating functions for seeds and shapes are related by

(1 + z)b Tg,b(z) = zb Sg,b(z).

Proof. Writing simply C0 for C0(z) and using C0 − 1 = zC2
0 , we have

C0 − 1

2− C0

=
C0 − 1

1− (C0 − 1)
= zC2

0

∑
i≥0

(zC2
0)i =

∑
j≥1

(zC2
0)j.

The jth term in the sum corresponds to inflating a single arc in a seed
to a stack of cardinality j ≥ 1 as well as inserting a genus zero diagram
immediately preceding along the backbone each of the resulting 2j
chord endpoints. Still another factor C0 arises from the insertion of
a genus zero diagram following the last endpoint of the seed on each
backbone accounting for the further factor Cb

0. The seed is connected
if and only if so too is the resulting chord diagram proving the first
formula.

For the second formula, direct calculation shows that z = u(1+u)
(1+2u)2

in-

verts the expression u = C0(z)−1
2−C0(z)

= 1−
√

1−4z
2
√

1−4z
. The first formula therefore

reads

Sg,b(u) =

[
C0

(
u(1 + u)

(1 + 2u)2

)]−b
Cg,b

(
u(1 + u)

(1 + 2u)2

)
.

Direct computation substituting z = u(1+u)
(1+2u)2

into C0(z) = 1−
√

1−4z
2z

gives

C0

( u(1+u)
(1+2u)2

)
= 1+2u

1+u
, and the expression for Sg,b then follows.

The third formula is truly elementary since a shape is by definition
simply a seed where there is a rainbow on each backbone. �

Suppose that C is a shape of genus g on b backbones. Removal of
certain chords can separate C, and removal of any chord of C other
than a pseudoknot preserves the genus by definition. Thus, we may
remove any non-separating, non-pseudoknot and non-rainbow chord in
order to produce another shape from C of the same genus g.

Let us build a combinatorial space Rg,b, where there is one (n− 1)-
dimensional simplex for each such shape C with n chords. Certain
faces of C correspond to shapes of the same genus as just discussed,
and these faces are to be identified with the simplices associated to
these sub shapes. The other faces of the simplex for C are simply
absent to produce the non-compact space Rg,b.

As before in more biophysical words, assign to each chord in a shape
a real-valued free energy of the bond and projectivize by the homo-
thetic action of R+ on all these weights simultaneously where erasing
an edge corresponds to the vanishing of its projectivized free energy.
The moduli space Rg,b of RNA shapes can alternatively be described
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simply as the space of all projectively weighted shapes of genus g on b
backbones, where vanishing projective free energy of an arc corresponds
to its removal, with its natural combinatorial structure.

Theorem 4.4. Provided g + b− 1 > 0, the moduli space Rg,b of RNA
shapes of genus g on b backbones is combinatorially isomorphic to the
Riemann moduli space M(Fg,b) for a surface Fg,b of genus g with b
boundary components up to homotopy.

In light of this result, the explicit calculation of the generating function
for shapes discussed here thus simultaneously gives as a consequence
the numbers of cells of fixed dimension in the Riemann moduli spaces
of bordered surfaces.

Proof. Given a shape C on b ≥ 1 backbones, we may collapse each
backbone to a distinct point in the natural way to produce a fatgraph
τ with b vertices. C and τ have the same Euler characteristic, number
of boundary components and hence genus.

Notice that τ has b boundary cycles of length one arising from the
rainbows of C, and these are the unique boundary cycles of length one
since a shape has no other 1-arcs. Furthermore, since a shape has no
two parallel chords, τ can have no boundary cycles of length two. It
follows that other than its boundary cycles of length one coming from
the rainbows, every other boundary cycle of τ must have length at least
three. We may uniquely reconstruct the shape C from the fatgraph τ
by expanding each vertex to a backbone so that its unique boundary
cycle of length one becomes a rainbow.

As already discussed, the fatgraph τ with m edges may be described
by a pair σ, ι of permutations on 2m letters identified with the half-
edges of τ , where σ is the composition of one disjoint k-cycle for each
k-valent vertex of τ corresponding to the cyclic orderings, and ι is the
composition of m disjoint transpositions permuting the two half-edges
contained in an edge. Furthermore in this representation, the boundary
cycles of τ correspond to the cycles of the composition ρ = σ ◦ ι.

Let τ ′ be the fatgraph corresponding to the composition ρ = σ ◦ ι
and the same ι. The boundary cycles of τ ′ correspond to the vertices
of τ and conversely. Let v, e, r, g and v′, e′, r′, g′ denote the respective
numbers of vertices, edges, boundary cycles and the genus of τ and
τ ′. Thus, v = r′, r = v′, and moreover e = e′ by construction, so we
conclude g = g′. In fact, τ and τ ′ are related by Poincaré duality in
the closed surface of genus g. In light of the constraints on τ already
articulated since it arises from the shape C, the fatgraph τ ′ has all
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its vertices of valence at least three except for a unique tail on each
boundary component.

1
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C ττ ‘

Figure 16. Dual fatgraph τ ′ of a shape C from [11].

An example on one backbone is illustrated in Figure 16. Beginning
with the shape C, collapse its backbone to a vertex to produce the fat-
graph τ which is described by the cycle σ = (1, 2, 3, 4, 5, 6, 7, 8) for its
single vertex plus involution ι = (1, 2)(3, 5)(4, 7)(6, 8) with one trans-
position for each edge of τ . It follows that ρ = σ ◦ ι = (2, 5, 8)(3, 7, 6, 4)
fixing 1. The depicted fatgraph τ ′ whose vertices are described by ρ
and whose edges are again given by ι is dual to τ .

This provides a mapping from shapes C to the required fatgraphs
τ ′ as asserted. The inverse mapping is given by the same involution
σ 7→ σ ◦ ι, ι 7→ ι followed by expansion of the vertex to a backbone so
that each cycle of length one becomes a rainbow. Note that the face
relation of removal of chords in the RNA moduli space Rg,b is dual to
contraction of edges in the Riemann moduli space M(Fg,b). �

4.4. Further remarks on RNA. There is another well-known [83, 8]
approach to RNA combinatorics and geometry as follows. Early on, in
addition to observing the predicted geometry of Watson-Crick base
pairs, a different geometry for H-bonds between base pairs was ob-
served by Hoogsteen [64]. Subsequent analysis furthermore showed
that H-bonds also form with the backbone ribose sugars in a struc-
tured RNA molecule. The model due to Leontis-Westhof [83] which
we next describe provides a classification of this more elaborate RNA
bonding. There is a triangular region t around each nucleic acid base
that supports the H-bonding as illustrated in Figure 17A, where the
edge of t adjacent to the nucleic acid base supports the usual Watson-
Crick base pairs themselves, which we recall are comprised of two or
three H-bonds. In the so-called anti conformation, the edge of t to-
wards the 5’ end supports the Hoogsteen base pairs and towards the
3’ end supports the sugar bonds with these roles reversed if t is in the
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less common syn conformation. A crucial point is that this descrip-
tion is roughly faithful biophysically thus providing a starting point for
describing the geometry.

Figure 17. Original figure from [8] with permission summarizing
the Leontis-Westhof base pairing classification. (A) Each RNA nu-
cleotide displays three edges for base pairing interactions represented
by triangles as shown. (B) For each pair of edges, nucleotides can pair
in two distinct ways designated cis and trans and related by 180◦ ro-
tation of one nucleotide about the magenta axis. (C) Schematic rep-
resentations of the 12 basic base pair families associating circles with
W edges, squares with H edges and triangles with S edges. Filled in
and open symbols respectively represent cis and trans base pairs. The
12 base pair families result in 18 ordered base pairing relations. (D) A
representative regular base triple denoted AUG tHW/cHS.

The analogue of chord diagrams in this context replaces each 3-valent
vertex of a chord diagram by a 5-valent vertex, where the three non-
backbone half-edges at any vertex occur in either the clockwise order
SWH or HWS starting from the 5’ end depending on the respective
syn or anti conformation and where H stands for Hoogsteen, W for
Watson-Crick and S for sugar bonds. We add chords to this model
of the backbone for the various types of bonds illustrated in Figure
17B in the natural way and call this the trichord RNA diagram. This
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fatgraph model of RNA naturally supports an SO(3) graph connection
giving the plane of a suitably defined ideal Leontis-Westhof triangle
which could be compared to RNA physical chemistry analyses in the
literature. It may be interesting to likewise study the planes determined
by the ribose sugars along the backbone. There is furthermore a matrix
model enumerating trichord diagrams which might be computed.

This trichord model of a single RNA molecule has been employed
in a fascinating recent study by Ebbe Andersen and Piotr Su lkowski
[10] as follows. Consider the subinterval of the backbone that contains
the first M bases starting from the 5’ end. Add the chords both of
whose endpoints occur in this interval to produce a sequence of trichord
diagrams TM . Taken together, the bonds are sufficiently pervasive that
the genus of TM in general grows roughly linearly in M however with a
finite set of jumps at certain residues. An exciting aspect of this study
is that these jump points of genus seem to be preserved across species
for ribosomal RNA; as might be expected, these conserved jump points
occur at the so-called ribosomal domain boundaries, but they also occur
elsewhere along the RNA with as yet undetermined significance.

We turn away now from the Leontis-Westhof RNA base pair clas-
sification and nomenclature and specialize to only one backbone. In
this case with g ≥ 1, we set cg(n) = cg,1(n) and have the remarkable
formula of Harer-Zagier [59]:

1 + 2
∑
n≥0

∑
2g≤n

cg(n)Nn+1−2g

(2n− 1)!!
zn+1 =

(
1 + z

1− z

)N
,

or equivalently, the cg(n) satisfy the recursion

(n+ 1) cg(n) = 2(2n−1) cg(n−1) + (2n−1)(n−1)(2n−3) cg−1(n−2).

From this recursion, it is not difficult to show that the generating func-
tion for g ≥ 1 is of the form Cg(z) = Pg(z)/(1− 4z)3g− 1

2 , where Pg(z)
is an integral polynomial divisible by z2g but no higher power and of
degree at most (3g − 1) with Pg(

1
4
) 6= 0. The first few Pg(z) are

P1(z) = z2,

P2(z) = 21z4 (z + 1)

P3(z) = 11z6
(
158 z2 + 558 z + 135

)
,

P4(z) = 143z8
(
2339 z3 + 18378 z2 + 13689 z + 1575

)
,

P5(z) = 88179z10
(
1354 z4 + 18908 z3 + 28764 z2 + 9660 z + 675

)
.
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Needless to say, polynomials like these with non-negative integral co-
efficients might reasonably be expected to be generating polynomials
for some as yet unknown fatgraph structure.

Moreover, in complete generality for an arbitrary number of back-
bones as long as it is not the Catalan case g = 0, b = 1, then techniques
of so-called topological recursion (cf. the Appendix) can be used [43]
to prove that indeed

Cg,b(z) =
Pg,b(z)

(1− 4z)3g−3+ 5
2
b
,

where Pg,b is a polynomial with Pg,b(
1
4
) 6= 0. This gives no clue, how-

ever, as to the non-negative integrality of the coefficients of Pg,b(z),
a fact which has tantalizingly resisted proof for some time but which
holds pervasively in computer experiments and which we conjecture
should follow from a suitable fatgraph interpretation of the coefficients.

There is in fact a huge literature on this Harer-Zagier recursion,
and there has recently been its first constructive proof in [30] that
nevertheless fails to derive it from first combinatorial principles. We
shall describe the main ideas from [30] and their consequences for RNA
here and refer the interested reader to [30] and the references therein.

A fatgraph τ with only one boundary component is sometimes called
a “unicellular map”. Such are therefore by definition dual to a fatgraph
of the same genus with a single vertex, i.e., a chord diagram on a
single backbone. The paper [30] introduces a novel bijection between
unicellular maps of genera g and g − k by a specific slicing/gluing
process on vertices as follows.

The slicing process splits a vertex into 2k+ 1 separate vertices while
edges are preserved, thereby reducing the genus by k, for some k, and
the gluing process is the inverse map of gluing 2k + 1 distinct vertices
into one. Both processes preserve unicellularity. Indeed, suppose that
the unicellular map τ is described as a fatgraph by the two permuta-
tions σ for its vertices and ι for its edges and we ρ = σ◦ι corresponding
to the single boundary cycle. The key point is that given a half-edge r,
the permutations ρ and σ each induce a natural strict linear ordering
on certain sets of half-edges, namely,

r <ρ ρ(r) <ρ · · · <ρ ρ
2n−1(r) and r <σ σ(r) <σ · · · <σ σ

k(r).

A half-edge r >γ σ(r) where σ(r) is not the <σ-minimum half-edge at
the vertex is called a trisection. The trisection records σ- and ρ-order
violations and is considered an indicator of genus since there are in
fact exactly 2g trisections in a unicellular map of genus g. Iteratively
slicing a unicellular map of genus g finally produces a planar tree.
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This bijection [30] has both enumerative and algorithmic application
since pseudoknotted RNA structures can be processed as if they were
pseudoknot-free plus additional gluing information. This provides in
particular linear time uniform sampling and generating algorithms for
RNA structures of fixed genus [67, 68] and facilitates a novel stochastic
context-free grammar [116] for RNA structures including pseudoknots.

In an entirely different direction based on trisection, signed permu-
tations and the reversal action on them have been widely studied in
evolutionary biology, cf. [57]. A fatgraph formalism for them has been
introduced in [69] including an extension of the trisection technique.

Despite our caveat in the first paragraph of the Introduction to
humbly respect the biology, we are aware of the danger that the current
speculations for RNA threaten to represent bioinformatics or biophysics
for its own sake. The enumeration of RNA seeds or shapes certainly
likewise threatens to provide mathematics for its own sake with the
suggestion of biological relevance coming from the prediction of RNA
folding based on an appropriate free energy. This may indeed be the
case for certain of the mRNA, tRNA or rRNAs involved in protein
expression, however, regulatory RNAs such as snoRNAs must surely
fold according to other as yet undetermined rules or mechanisms which
might still be illuminated by topological considerations.
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Appendix. Matrix models

Matrix model techniques from quantum field theory [23, 87, 36, 4]
have provided effective computational tools in practice in numerous
instances of geometry and theoretical physics over the last 30 years in-
cluding [100, 80, 88, 71, 42]. Gian-Carlo Rota prophetically christened
his journal Advances in Applied Mathematics issue one of volume one
with these methods hoping [120] to transport these powerful combina-
torial tools from high energy physics to mainstream mathematics.

We shall describe here an application of these methods to an effective
computation of the cg,b(n) in §4.3 from [11], which is surveyed in [12].
These quantities also arise from the multi-resolvents of the simpler
Gaussian density, but our methods encode at once cg,b(n) for all b ≥ 1.
Suppose that C is a disjoint union of chord diagrams and let

b(C) denote its number of backbones,

n(C) denote its number of chords,

r(C) denote its number of boundary cycles,

Aut(C) denote its automorphism group possibly

permuting oriented backbones, and

g(C) denote the sum of the genera of its components.

For any tuple v1, v2, . . . , vK of non-negative integers, define

Pv1,...,vK (s, t, N) =
1∏
k vk!

∫
HN

e−tr H2/2
∏
k

(
s tr (tH)k

)vk
dM

for the integral over the N × N Hermitian matrices HN with respect
to the normalized Haar measure

dM(H) =
1

2N/2πN2/2

( N∧
i=1

dHii

)
∧
(∧
i<j

dReHij ∧ dImHij

)
,

where tr denotes the trace.

Lemma A.1 For any tuple v1, . . . , vK, parameters s, t and natural
number N , we have

Pv1,...,vK (s, t, N) =
∑ N r(C) sb(C) t2n(C)

#Aut(C)
,

where the sum is over all isomorphism classes of disjoint unions of
chord diagrams with vk backbones having k incident half-chords, for
k = 1, . . . , K, and # denotes cardinality.
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Proof. The special case s = t = 1 is completely analogous to that
of Theorem 2.1 of [100] which gives an elementary and self-contained
proof. The replacement of 1

k
tr Hk there by tr Hk here corresponds to

replacing fatgraphs there by chord diagrams here insofar as distinguish-
ing one sector at each vertex of the fatgraph to represent the location of
the backbone in the chord diagram kills any cyclic permutation about
the vertices. Since b(C) =

∑
k vk and 2n(C) =

∑
k kvk, the general

case then follows. �

An easy argument as on p. 49 of [100] then gives:

Theorem A.2 For the partition function

Z(s, t, N) =

∫
HN

e−Ntr V (s,t,H) dM

with potential

V (s, t,H) =
1

2
H2 − stH

1− tH
=

1

2
H2 − s

∑
k≥1

(tH)k,

we have

log Z(s, t, N) =
∑ N2−2g(C) sb(C) t2n(C)

#Aut(C)
,

where the sum is over all (connected) chord diagrams C.

Meanwhile in theoretical physics, there has been spectacular progress
over the last decade in actually computing matrix models in general
using a new technique called topological recursion [32, 33, 42]. In
order to apply this in the current situation, our partition function
Z =

∫
HN e−Ntr V (H) dM can be written

Z = exp
∞∑
g=0

N2−2gFg,

in terms of the so-called free energies Fg in genus g which are given by

Fg(s, t) =
B2g

2g(2g − 2)
+
∑
b≥1

sb

b!
Cg,b(t

2), for g ≥ 0,

where the constant terms, with appropriate modifications for g = 0, 1,
reproduce the Gaussian free energies [54], B2g denoting Bernoulli num-
bers. The free energies had previously been computed in the two cases
g = 0 [27, 85] and g = 1 [31].
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The topological recursion is applied in [11] to compute Fg explicitly
for g ≤ 3 and in principle in complete generality for any g ≥ 0. For
example in genus two, we find after much computation that

F2 = − t4(1− σ)2

240δ4(1− δ − 4σ + 3σ2)5(1 + δ − 4σ + 3σ2)5[
160δ4(1− 3σ)4(1− σ)6 − 80δ2(1− 3σ)6(1− σ)8

+ 16(1− 3σ)8(1− σ)10 + δ10(−16 + 219σ − 462σ2 + 252σ3)

+ 10δ6(1− 3σ)2(1− σ)4(−16− 126σ − 423σ2 + 2286σ3 − 2862σ4 + 1134σ5)

+ 5δ8(1− σ)2(16 + 189σ − 2970σ2 + 9549σ3 − 11286σ4 + 4536σ5)

]
,

where σ = t(a+ b)/2, δ = t(a− b)/2 and a, b satisfy

0 = a+ b+ st(at+bt−2)(
(at−1)(bt−1)

)3/2 ,
16 = (a− b)2 +

4s
(

(2− (a+b)t
2

)(at+bt−2)+2abt2−3t(a+b)+4
)(

(at−1)(bt−1)
)3/2 .

This can be solved exactly in one of s, t and perturbatively in the other
to extract specific Cg,b(z) as in [11], for example

C2,1(z) =
21z4

(1− 4z)
11
2

(z + 1),

C2,2(z) =
z5

(1− 4z)8
(1485 + 6096z + 1696z2),

C2,3(z) =
6z6

(1− 4z)
21
2

(15015 + 137934z + 197646z2 + 27592z3),

C2,4(z) =
144z7

(1− 4z)13
(38675 + 620648z + 2087808z2 + 1569328z3 + 134208z4).
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