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Abstract: This paper explores the moduli-dependent coefficients of higher derivative

interactions that appear in the low-energy expansion of the four-supergraviton amplitude

of maximally supersymmetric string theory compactified on a d-torus. These automorphic

functions are determined for terms up to order ∂6R4 and various values of d by imposing

a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or

without source terms, whose solutions are given in terms of Eisenstein series, or more

general automorphic functions, for certain parabolic subgroups of the relevant U-duality

groups. The ultraviolet divergences of the corresponding supergravity field theory limits

are encoded in various logarithms, although the string theory expressions are finite. This

analysis includes intriguing representations of SL(d) and SO(d, d) Eisenstein series in terms

of toroidally compactified one and two-loop string and supergravity amplitudes.
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1. Introduction

In this paper we will pursue a programme of elucidating exact properties of the four-

supergraviton scattering amplitude1 in the low energy expansion of string theory compact-

ified from 10 to D = 10 − d dimensions on a d-torus, T d. Although this is a very small

corner of M-theory it is one in which precise statements can be made. In particular, the

combination of maximal supersymmetry and U-duality is very constraining [2]. The low

energy expansion of the scattering amplitude in D-dimensional space-time has the general

form

AD(s, t, u) = Aanalytic
D (s, t, u) + Anonan

D (s, t, u) , (1.1)

where we have separated analytic and nonanalytic functions of the Mandelstam invariants,

s, t and u (s = −(k1 + k2)
2, t = −(k1 + k4)

2, u = −(k1 + k3)
2 and s + t + u = 0). Although

it is not obvious that such a separation can be made in a useful manner to all orders in the

low energy expansion, it is sensible and useful at the orders to be considered in this paper.

The analytic part of the amplitude has the expansion (in the Einstein frame)

Aanalytic
D = E(D)

(0,−1)(MK\G)
R4

σ3
+

∞
∑

p=0

∞
∑

q=0

E(D)
(p,q)(MK\G)σp

2 σq
3 R4 , (1.2)

which is the general symmetric polynomial in the Mandelstam invariants, which enter in

the dimensionless combinations

σn = (sn + tn + un)
ℓ2n
D

4n
, (1.3)

where ℓD is the Planck length in D dimensions. The factor of R4 in (1.2) indicates the

contraction of four powers of the Riemann curvature tensors linearised around flat space

and contracted with a standard sixteen-index tensor, t8 t8 [3]. The coefficient functions

are necessarily automorphic functions that are invariant under the D-dimensional duality

group, Gd(Z), appropriate to compactification on a d = (10 − D)-torus. These groups are

listed in table 1. They are functions of the symmetric space, MK\G, defined by the moduli,

or the scalar fields, of the coset space K\G. It is often convenient to express the analytic

part of the amplitude in terms of a local one-particle irreducible effective action.

Although this paper will be concerned almost entirely with the analytic part of (1.1),

Aanalytic, it is important to consider its relationship to the nonanalytic part, Anonan. This

part of the amplitude contains the information about the massless thresholds that arise

in perturbation theory and contribute to the nonlocal part of the effective action. Such

contributions include the threshold structure of supergravity scattering amplitudes, and

depend on the space-time dimension, D, in a sensitive manner. At sufficiently high values

of D, a L-loop perturbative contribution in supergravity has ultraviolet divergences that are

power-behaved in a momentum cut-off, Λ. Such divergences are absent in string theory and

the dependence on a power of Λ is replaced by a finite analytic term with a corresponding

1The term “supergraviton” refers to the supermultiplet of 256 massless states. The dependence on the

helicities of these states arises in the amplitude through a generalised curvature, R [1].
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D Gd(R) = Ed+1(d+1)(R) K Gd(Z)

10A GL(1, R) 1 1

10B SL(2, R) SO(2) SL(2, Z)

9 GL(2, R) SO(2) SL(2, Z)

8 SL(3, R) × SL(2, R) SO(3) × SO(2) SL(3, Z) × SL(2, Z)

7 SL(5, R) SO(5) SL(5, Z)

6 SO(5, 5, R) SO(5) × SO(5) SO(5, 5, Z)

5 E6(6)(R) USp(8) E6(6)(Z)

4 E7(7)(R) SU(8)/Z2 E7(7)(Z)

3 E8(8)(R) SO(16) E8(8)(Z)

Table 1: The duality groups of maximal supergravity in D = 10− d ≤ 10 dimensions. The groups

Gd(R) = Ed(d)(R) are the real split forms of rank d+1 and K are the maximal compact subgroups.

In string theory these groups are broken to the discrete subgroups, Gd(Z) as indicated in the last

column.

power of ℓ−1
s , where ℓs is the string length scale. As D is decreased it reaches a critical

value at which supergravity develops a logarithmic ultraviolet divergence. Introducing

a momentum cutoff now produces a nonanalytic factor of the schematic form Anonan
D ∼

R4 sk log(−s/Λ2), which is replaced in string theory by

Anonan
D ∼ R4 sk log(−ℓ2

s µ s) , (1.4)

where µ is a dimensionless scale, which is independent of the moduli and may be determined

by a detailed string loop calculation. This expression is merely illustrative – the detailed

dependence on the Mandelstam variables and pattern of logarithms is more complicated.

For a discussion of such effects in the expansion of the genus-one contribution see [4]. Of

course, there is some ambiguity in how such constant terms are assigned to the analytic and

non-analytic pieces since µ may be changed to µ/µ̃ by adding R4 sk log µ̃ to the analytic

term. In the subsequent discussions in this paper our convention will be to associate

all such moduli-independent logarithms with the scale of non-analytic sk log(−ℓ2
s µ/µ̃ s)

contributions to the amplitude. Furthermore, we will not discuss the precise values of the

constant scales such as µ, which can be determined by explicit string perturbation theory

computations, such as that carried out at genus-one in [4]. As D is decreased to values

D < Dc, the nonanalytic terms are proportional to inverse powers of s, t and u. For

D ≤ 4 the four-supergraviton amplitude possesses the standard infrared divergences of a

perturbative gravitational theory, which will not be discussed here.

The first term in the expansion (1.2) (p = 0, q = −1) has coefficient E(D)
(0,−1) = 3 and

is the classical supergravity tree-level term, with poles in s, t, u, and is determined by

the Einstein–Hilbert action. This has trivial dependence on the moduli. The subsequent

terms have a rich dependence on M that encodes both perturbative and non-perturbative

information. This contrasts with supergravity, in which the continuous Gd(R) duality

symmetry is unbroken, and amplitudes are independent of the moduli. The simplest non-

trivial examples of automorphic functions arise in the ten-dimensional IIB theory, where

the coset is SO(2)\SL(2), so there is a single complex modulus, Ω = Ω1 + iΩ2, and the
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duality group is SL(2, Z). In this case the first two terms in the expansion beyond the

classical term are given by particular examples of non-holomorphic Eisenstein series for

SL(2, Z)

Es(Ω) =
∑

(m,n)6=(0,0)

Ωs
2

|m + nΩ|2s
, (1.5)

which satisfies the Laplace equation

∆Ω Es(Ω) ≡ Ω2
2 (∂2

Ω1
+ ∂2

Ω2
)Es(Ω) = s(s − 1)Es(Ω) , (1.6)

and where s is a (generally complex) index. Some important properties of these functions

are reviewed in appendix B.3. The Fourier expansion of Es in (B.38) has a zero mode or

“constant term” that consists of the sum of two powers,

∫ 1
2

− 1
2

dΩ1 Es = 2ζ(2s)Ωs
2 + 2

√
π

Γ(s − 1
2
)

Γ(s)
ζ(2s − 1)Ω1−s

2 , (1.7)

which correspond to a tree-level and genus-(s − 1/2) contribution to the interaction in

string perturbation theory. The non-zero modes correspond to exponentially suppressed

D-instanton contributions to the interaction. The first term of this type is the lowest order

term beyond the Einstein–Hilbert term, which is the R4 interaction for which p = q = 0

and the coefficient is E(10)
(0,0)(Ω) = E 3

2
(Ω) that has tree-level and one-loop perturbative

contributions [5, 6]. The next term in (1.2), with p = 1, q = 0, corresponds to a ∂4R4

interaction in the effective action, with a coefficient E(10)
(1,0)(Ω) = 1/2E 5

2
(Ω) that has tree-

level and two-loop contributions [7]. Both the R4 and ∂4 R4 interaction coefficients can be

determined by imposing constraints implied by modified supersymmetry transformations

that incorporate higher-derivative contributions [8, 9].

The next term has p = 0, q = 1 and corresponds to the ∂6R4 interaction. Its coefficient

E(10)
(0,1)(Ω) is not an Eisenstein series [10], but satisfies the interesting inhomogeneous Laplace

eigenvalue equation,2

(∆Ω − 12) E(10)
(0,1)(Ω) = −

(

E(10)
(0,0)(Ω)

)2
, (1.8)

where the right-hand side is a source term proportional to the square of the coefficient of

the R4 interaction. In this case the constant term has power-behaved terms corresponding

to perturbative string theory contributions at genus 0, 1, 2, 3, as well as exponentially sup-

pressed contributions corresponding to an infinite set of D-instanton – anti D-instanton

pairs.

There is a certain amount of information about terms of order ∂8 R4 and higher, but

these terms raise issues that go beyond the scope of this paper and will not be discussed here

(see [1] for particular examples). Our main aim will be to extend the results up to order

∂6R4 to the higher-rank duality groups that arise upon compactification to D dimensions

on a d = (10 − D)-torus. There has been some work in this direction for the R4 term

in [6, 10, 11] and for the ∂4R4 and ∂6R4 terms in [12, 13]. Here we will not only amend

2We have rescaled this interaction by a factor of 6 compared to [10].
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these and extend their scope, but more importantly, set it in the general framework of

automorphic functions for higher-rank groups. Some of our ideas overlap with suggestions

in [11,14,15] and related papers [16,17], but they differ in important respects.

Our procedure, outlined in section 2, will be to constrain the expressions for the au-

tomorphic coefficient functions by requiring them to reproduce the correct expressions in

three distinct degeneration limits:

(i) The decompactification limit from D to D+1 dimensions. When the radius,

rd, of one compact dimension becomes large the part of the D = (10 − d)-dimensional

coefficient function, E(D)
(p,q), that leads to a finite term in the rd → ∞ limit is required

to reproduce the (D + 1)-dimensional coefficient function, E(D+1)
(p,q) . In addition there are

suppressed terms with powers of r−ni
d (where the values of ni > 0 depend on D) multiplying

E(D+1)
(p′,q′) , where 2p′ + 3q′ < 2p + 3q. There are also specific terms with positive powers of

s r2
d that are necessary to account for the non-analytic thresholds in D + 1 dimensions (see

the discussion in [18] for more details). The remaining terms are exponentially suppressed

in rd and will not be constrained in any direct fashion.

(ii) Perturbative string theory limit. In the limit in which the D-dimensional

string coupling constant becomes small the expansion of E(D)
(p,q) in powers of the D-dimensional

string coupling, yD, is required to reproduce the known perturbative string theory results.

In order to make this comparison the contributions from genus-one string theory are derived

in appendix D using the methods of [4]. Furthermore, the leading low energy contribu-

tion to ∂4R4 from the genus-two string theory amplitude compactified on T 2 is derived in

appendix E.

(iii) The semi-classical M-theory limit. In the limit of decompactification to

eleven-dimensional supergravity on T d+1 the part of the modular function that depends on

the geometric moduli of the torus, which parameterise the coset space SO(d+1)\SL(d+1),

should be reproduced. This will give the part of the coefficient function that transforms

under SL(d + 1, Z). This is the limit in which the effects of wrapped p-branes are sup-

pressed and the Feynman diagrams of compactified eleven-dimensional quantum super-

gravity should give a valid expansion in powers of the inverse volume of the torus, Vd+1

[1, 6, 7, 10]. The analysis of one-loop and two-loop expressions is reviewed in appendix G.

As we will emphasize, our analysis of these three limits makes contact with properties of

the “constant terms” of the generalised Eisenstein series associated with various parabolic

subgroups of the U-duality groups [19]. This viewpoint indicates the extent of the very

powerful symmetries that relate these three limits for any value of n. Furthermore it gives

a unified view of the relation between the theory in different dimensions by considering a

nested set of (maximal) parabolic subgroups 3

E8(8) ⊃ E7(7) · · · ⊃ E1(1) = SL(2) , (1.9)

where the sequence corresponds to successive decompactifications, as outlined in point (i)

above. We are here using the usual economic notation for the duality groups in Table 1 in

3We here restrict our attention to the classical Lie groups relevant to supergravity theories in D ≥ 3,

although there are likely to be interesting extensions to affine and hyperbolic cases [20,21].
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which Gd = Ed+1(d+1) refers to the real split form of the classical group of rank d + 1 (and

so is related to the coset for string theory compactified on a d-torus).

In other words, we will use the explicit properties of string/M-theory in higher dimen-

sions to constrain the particular automorphic functions that arise as coefficients in lower

dimensions. We will therefore be focussing on very special cases of the general Eisenstein

series. We will see that these particular cases have many interesting properties.

This analysis of the coefficients in various dimensions is somewhat complicated, as well

as repetitive, so the casual reader could choose to skip the details in the bulk of the paper

and read the brief summary in section 6.

The main arguments will begin in section 3, where we will describe the results for the

R4 interaction. The explicit E(D)
(0,0) coefficients in dimensions D ≥ 6 will be obtained in

terms of Eisenstein series that satisfy Laplace eigenvalue equations on moduli space space,

building on the work of [6, 10, 11, 15] . The D = 8 case is of interest because it contains

the logarithmic dependence that encodes the one-loop logarithmic ultraviolet divergence of

maximal supergravity. The fact that string theory is finite is manifested by the cancellation

of an apparent divergence, subject to suitable regularisation. This arises because E(8)
(0,0) is

the sum of two Eisenstein series that each have poles in the parameter s at appropriate

values of s. A suitable analytic continuation leads to a cancellation of the poles in these

two terms, leaving a logarithmic dependence on a modulus that can be identified with the

logarithm that arises in the low energy supergravity limit. Formally these considerations

extend to lower dimensions D ≥ 3, in which the duality groups are those in the Ed+1(d+1)

sequence, where d = 10 − D. In all cases these series are finite, despite apparent poles,

which cancel leaving crucial logarithmic dependence on moduli that are also expected for

a consistent string theory interpretation.

In section 4 this analysis will be extended to the ∂4R4 interaction, for which the

coefficients are E(D)
(1,0). Building on the analyses in [10, 12] we will first discuss the D =

9, 8 cases. The D = 7 expression will then be analyzed. This is particularly interesting

since it reproduces the two-loop logarithm characteristic of the ultraviolet divergence of

maximal supergravity [22]. In order to satisfy the conditions (i)-(iii) we are led to a

specific combination of two Eisenstein series for SL(5). As before, the precise combination

of Eisenstein series is one for which the divergent pole terms cancel, reflecting the absence

of ultraviolet divergences in string theory. The analysis of the D = 6 case with duality

group SO(5, 5) will be left for the discussion in section 6, since our analysis is incomplete.

In this case we make strong use of results for constant terms of Eisenstein series by Stephen

Miller4 and is not as complete. There is no obvious obstacle to the extension to D < 6

higher-rank duality groups, although this will not be discussed in this paper.

Section 5 concerns the ∂6R4 interaction in D = 9, 8 and 7 dimensions. To some

extent the D = 8, 9 cases overlap with the analysis in [13], demonstrating how the Laplace

equation with a source term generalizes for the larger duality groups. In each case the

source term is the square of the R4 coefficient, E(D)
(0,0). In D = 8 this source possesses both

4We are very indebted to Stephen Miller for many illuminating discussions concerning the general struc-

ture of Eisenstein series and their specific form for the cases of interest to us.
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log and (log)2 terms that are required for the solution to have requisite interpretation in

the low energy limit of string theory. For example, maximal supergravity has a two-loop

logarithmic ultraviolet divergence multiplying ∂6R4, as well as a logarithmic contribution

from the one-loop D = 8 counterterm, which are reproduced by our modular coefficients.

Section 6 will summarize our results and describe some issues relating to the extension

to higher-rank groups and higher derivative interactions. In particular, we will summarise in

a compact manner the set of homogeneous and inhomogeneous Laplace eigenvalue equations

satisfied by the coefficient functions for values of D discussed in this paper, but which we

argue should be valid in any dimension in the range 3 ≤ D ≤ 10. We will also make

comments about the form of certain coefficients in D ≤ 6 dimensions.

Technical details are given in several appendices.

2. Degeneration limits and Eisenstein series for parabolic subgroups

α2

α4 α5α1 α3 · · ·
α2α1 · · ·α2α1 · · ·αd

αdαd

αd−1

αd−2

(i) (ii) (iii)

Figure 1: The Dynkin diagrams relevant to: (i) the Ed(d) (d ≤ 8) type II duality groups

of type II string theory compactified to D = 11 − d dimensions on a (d − 1)-torus. Successive

decompactifications to higher dimensions are obtained by deleting the nodes αd, αd−1 . . . in (i);

(ii) The T-duality groups SO(10 − D, 10 − D) obtained by deleting the left node α1 of (i) are the

symmetries of string perturbation theory in D dimensions; (iii) The SL(11 − D) groups obtained

by deleting node α2 in (i) are associated with the geometric compactification of eleven-dimensional

supergravity on a (11 − D)-torus.

The duality groups of maximally supersymmetric closed-string theory are associated

with the series of Dynkin diagrams in figure 1(i) that may be obtained from the E8(8)

diagram by deleting the right nodes in a sequential manner. This generates the diagrams

for the Ed(d) series. In terms of string theory compactified on a d-torus, T d, the deletion

of a right node labelled αd+1 corresponds to the decompactification of a radius, rd → ∞
(d ≥ 2). This is the degeneration limit (i) of the previous section. The limit of small string

coupling, or string perturbation theory, corresponds to deleting the left node labelled α1.

This is the degeneration limit (ii) and gives a series of terms with symmetry SO(d, d)

(where the right node is again αd+1). The T d compactification of string theory may be

viewed as the T d+1 compactification of eleven-dimensional M-theory. The limit (iii) is one

in which the M-theory volume of T d+1 becomes large, Vd+1 → ∞, in which semiclassical

eleven-dimensional geometry is a good approximation and the duality symmetry reduces

to SL(d). This is the degeneration limit in which the node α2 in figure 1(i) is deleted.

2.1 Parabolic subgroups

Parabolic sub-algebras of a semisimple Lie Algebra g = Lie(G) with h a Cartan sub-algebra
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are defined as follows [23,24]. If ∆ is the set of simple roots (a basis of roots) and R+ the

set of positive roots spanned by ∆. Then b = h + ⊕α∈R+ gα, where gα is the root space

associated with the root α, is the associated Borel sub-algebra. Consider a partition of the

positive root space ∆ into disjoint sets ∆1 and ∆2 so ∆ = ∆1 ⊔∆2. We define, R1 the set

of positive roots spanned by ∆1 and R2 the set of positive roots spanned by ∆2. Define

p∆2 = h +
⊕

α∈R+∪(−R1)

gα, l∆2 = h +
⊕

α∈R1∪(−R1)

gα, n∆2 =
⊕

α∈R2

gα, (2.1)

This defines the parabolic sub-algebra p∆2 associated with the set of positive roots R1, l∆2

is its Levi factor and n∆2 the unipotent radical. Clearly if ∆2 ⊂ ∆̂2 then p∆̂2
⊂ p∆2 .

• When p∆ = b, R2 is the set of all the positive roots (and R1 = ∅) the associated parabolic

is the minimal parabolic sub-algebra.

• When p∅ = g (equivalently when R2 = ∅), R1 is the set of all the positive roots the

associated parabolic sub-algebra is the Lie Algebra g.

• Maximal parabolic sub-algebras different from g are defined by singling out one

simple root αi and taking ∆2 = {αi}. We denote the maximal parabolic sub-group by Pαi ,

with rank Pαi = rank(G) − 1.

• The (standard) parabolic subgroup of GL(n) is defined as the group of matrices of the

form, for n = n1 + · · · + nq,

P (n1, . . . , nq) =







U1 ∗ ∗
0

. . . ∗
0 0 Uq






, where Ui ∈ GL(ni) , (2.2)

which can be factored in the form

P (n1, . . . , nq) = L(n1, . . . , nq)N(n1, . . . , nq) . (2.3)

Here

N(n1, . . . , nq) =







In1 ∗ ∗
0

. . . ∗
0 0 Inq






where In = diag(1, . . . , 1) (2.4)

is the unipotent radical and

L(n1, . . . , nq) =







U1 0 0

0
. . . 0

0 0 Uq






, (2.5)

is the Levi component. The minimal parabolic subgroup is given by P (1, . . . , 1). A given

maximal parabolic subgroup has a characteristic pattern of zeroes in the upper off-diagonal
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elements of N . For example, the SL(3, R) maximal parabolic subgroup [25],

P (1, 2) =







∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗






(2.6)

has a unipotent radical of the form

N(1, 2) =







1 ν1 ν2

0 1 0

0 0 1






, (2.7)

where ν1 and ν2 are real angular variables.

Three cases will be of particular interest in this paper. These concern the maximal

parabolic subgroups given in the table 2, which are obtained by deleting the left node, the

right node and the upper node of the Dynkin diagrams shown in fig. 1.

deleted node E8 E7 E6 E5 = D5 E4 = A4 E3 = A2A1

left D7 D6 D5 D4 D3 D2

upper A7 A6 A5 A4 A3 A2

right E7 E6 D5 A4 A2A1 A1A1

Table 2: Maximal Parabolic subgroups of Ed(d) arising in string theory are of the form GL(1) ×
Xd−1, where the rank-(d − 1) subgroups are listed. We use the notation Ad = SL(d + 1), Dd =

SO(d, d). Each parabolic subgroup can be decomposed as the product Pα = NαLα of a unipotent

radical Nα and a Levi factor Lα. The Levi factors determine the Lie groups generated by the

remaining nodes of the Dynkin diagram, which are listed in the table.

There are several interesting coincidences.

• In D = 7, where the U-duality group is E4(4) = SL(5), the symmetry group of string

perturbation theory is SL(4) = SO(3, 3), which is also the symmetry of M-theory on

T 4 in the decompactification to eleven dimensions.

• E5(5) = SO(5, 5) arises in the D = 6 theory, for which the group SL(5) arises

both as the symmetry of M-theory on T 5 limit and as the U-duality group upon

decompactification to D = 7.

• SO(5, 5) arises both as the symmetry of string perturbation theory in the D = 5

theory and as the decompactification limit to the D = 5 theory, which has duality

group E5(5).

• E6(6) arises as the U-duality group in D = 5 and is symmetric under the interchange

of nodes 1 and 6. This symmetry interchanges the limit of decompactification to

D = 6 with the perturbative string theory limit.
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2.2 Eisenstein series for maximal parabolic subgroups and their constant terms.

The general Eisenstein series are automorphic functions of d complex parameters, si (i =

1, . . . , d) associated with different parabolic subgroups of the Ed(d) groups. Their definition

may be found in [19, 26] and is briefly reviewed in appendix B. The construction of the

minimal parabolic SL(d) series, is also described in appendix B, based closely on notes by

Stephen Miller and extensions of [25].

However, we are here primarily interested in very special cases corresponding to Eisen-

stein series for maximal parabolic subgroups, defined with respect to one particular node

associated with the simple root αu. Such a series may be obtained by taking residues of

the minimal parabolic series on the poles at si = 0 for all i except i = u, so the series

depends on only one parameter, s ≡ su. The series can be indexed by the Dynkin label

[0u−1, 1, 0d−u], where the 1 is in the u’th position. The particular values of u of interest

to us will be determined on a case by case basis. Such a series for a maximal parabolic

subgroup of the group G will be denoted EG
[0u−1,1,0d−u];s

.

The simplest example is provided by the SL(d) series with u = 1 (the Epstein zeta

function), which can be expressed as a sum over a single integer-valued d-component vector,

E
SL(d)

[1,0d−2];s
=

∑

mi∈Zd\{0}
(migijm

j)−s , (2.8)

where the sum is over all values of mi with the value m1 = m2 = · · · = 0 omitted. The

metric gij is the metric on SO(d)\SL(d). Our conventions for labelling the SL(d) Dynkin

diagrams are shown in figure 1(iii). A less trivial case that we will also need to consider is

the SL(d) Eisenstein series with u = 2, which is given by

E
SL(d)

[0,1,0d−3];s
=

′
∑

mi,ni∈Zd

(m[inj]gikgjlm
[knl])−s , (2.9)

where
∑′ here indicates the sum is over integers subject to the constraint that at least

one minor δ[ij] = m[inj] is non-zero. For SL(3) this series is proportional to the Epstein

series, (2.8) with a shifted value of s, as we show in appendix B.4. More generally, the

SL(d) series E
SL(d)

[0d−2,1];s
is proportional to the Epstein series with a shifted value of s, a

simple consequence of the symmetry under s → d/2 − s, which follows from the Weyl

symmetry of the weight lattice of SL(d). Some relevant properties of the SL(d) series are

deduced in appendix B.

The other cases that will be considered explicitly in this paper are particular cases of

Eisenstein series for SO(d, d). In particular, these symmetries arise as T-duality groups of

string perturbation theory in 10 − d dimensions, and SO(5, 5) is the full U-duality group

for D = 6. We will discuss the maximal parabolic Eisenstein series of the form E
SO(d,d)

[1,0d−1];s
,

where the distinguished node is the one on the left in figure 1(ii) – i.e., associated with the

vector representation. A number of properties of these series are obtained in appendix C

based on a novel representation motivated by compactified two-loop Feynman diagrams.

Although the series with more general Dynkin indices are relevant, we will not discuss them

in this paper.
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Constant terms.

The three degeneration limits (i), (ii) and (iii) that we are interested in correspond to

decompositions of the Eisenstein series, EG
[0u−1,1,0d−u];s

, with respect to parabolic subgroups

of the form, Pv ≡ GL(1)×Gv , associated with one of three distinct nodes, αv, of the Dynkin

diagram, as described earlier. The GL(1) factor is parameterised by a real parameter r,

which corresponds in limit (i) (v = d) to the radius of the compact dimension, rd, in limit

(ii) (v = 1) to the string coupling in D dimensions, yD, and in limit (iii) (v = 2) to the

volume of the M-theory torus, V11−D. In considering these limits we will retain all the

terms that are power behaved in r. These are contained in the ‘constant terms’ obtained

by taking the zero Fourier mode with respect to the components of the unipotent radical,

Nv, associated with the parabolic subgroup Pαv (defined in section 2.1). This is an integral

over the entries, νi, in the upper triangular matrix, Nv

AG
s (u, v; g) =

∫

Nv/G(Z)∩Nv

dnEG
[0u−1,1,0d−u];s(gn) , (2.10)

where dn =
∏

i dνi is the Haar measure on Nv. In order to avoid complicated notation, we

will replace
∫

Nv/G(Z)∩Nv
dn by

∫

Pv
so that

AG
s (u, v; g) ≡

∫

Pv

EG
[0u−1,1,0d−u];s . (2.11)

The angular integral (2.10) generalizes the SL(2, Z) case of (1.7). The constant terms

are expansions in powers of r with coefficients that are Eisenstein series (or products of

Eisenstein series, in the non-simple case) of the schematic form

AG
s (u, v; g) =

∑

i

ci
uv rpi EGv

[... ]i;si
, (2.12)

where the values of the parameters si, pi depend on u and v, and r is a scale factor

associated with the GL(1) subgroup. This integration projects out the non-zero modes

of the Eisenstein series, which are non-perturbative in r and exponentially suppressed

in the appropriate degeneration limit. The coefficients E(D)
(0,1) of ∂6R4 are not Eisenstein

series and their constant terms do contain exponentially suppressed pieces corresponding

to instanton—anti–instanton pairs.

The Eisenstein series for other maximal parabolic SO(d, d) series, as well as those for

the higher-rank Ed(d) groups, are much more difficult to construct in terms of explicit sums

over integers but their explicit properties can be obtained from their basic definition given

in (B.1). Starting from that definition, the constant terms of their parabolic subgroups

have been derived in [27], which is likely to be of use in developing these ideas further.

2.3 The expansion parameters.

In considering M-theory on a (d+1)-dimensional torus, T d+1, length scales are measured in

units of the eleven-dimensional Planck length, ℓ11, whereas for string theory compactified

on a d-dimension torus, T d, scales are measured in units of the string length, ℓs, or the
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ten-dimensional Planck length scales of the IIA and IIB theories, ℓA
10, ℓB

10. These length

scales are related by the well-known relations,

ℓ11 = g
1
3
A ℓs , ℓA

10 = g
1
4
A ℓs , ℓB

10 = g
1
4
B ℓs , R11 = gA ℓs , (2.13)

where gA and gB are the type IIA and IIB coupling constants and R11 is the radius of the

extra M-theory circle.

Compactifying from 10 to D = 10 − d dimensions on T d leads to the relations

ℓD−2
D = yD ℓD−2

s , (2.14)

where the quantity yD is defined by the (10 − d)-dimensional T-duality invariant dilaton,

which defines the D-dimensional coupling,

y10−d ≡ e2φD =
g2
Aℓd

s

V A
d

=
g2
Bℓd

s

V B
d

, (2.15)

where V A
d is the volume of the d-torus in IIA string units while V B

d is the volume in IIB

units. Note further that he relation between the Planck length in D dimensions and D + 1

dimensions is

ℓD−1
D+1 = ℓD−2

D rd , (2.16)

where rd is the radius of the (d = 10 − D)’th direction of T d in IIB string units.

The parameters that we will use to define the three degeneration limits will be the

following.

(i) The decompactification of a single dimension is given by the limit rd/ℓs → ∞ in

the string frame. We will be interested in expressing the result in the Einstein frame in

(D + 1) dimensions at fixed coupling, in which case we will need to consider rd/ℓD+1 → ∞
with yD+1 fixed. It will also be useful to introduce the U-duality invariant quantity defined

in terms of the dimensionless volume of the string theory d-torus,

ν
− 1

2
d =

1

ℓd
10

V B
d , (2.17)

where we have set ℓB
10 ≡ ℓ10 in this and all subsequent expressions since we will not need

to use ℓA
10. It is easy to deduce the useful relations

rd

ℓD+1
=

rd

ℓs
y
− 1

D−1

D+1 = ν
− 1

2
d ν

D
2(D−1)

d−1 . (2.18)

(ii) String perturbation theory is an expansion in powers of the D-dimensional string

coupling, eφB
D ≡ y

1/2
D when yD → 0.

(iii) Decompactification to semiclassical eleven-dimensional supergravity arises in the

limit of large volume of the (d + 1)-dimensional M-theory torus. This volume, Vd+1, is

defined by

GM IJ = V
2

d+1

d+1 G̃M IJ , (2.19)
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where GM IJ (I, J = 1, . . . , d) is the M-theory metric on T d+1 and G̃IJ has unit determi-

nant. The dimensionless volume, V̂d+1, can be expressed as

V̂d+1 ≡ 1

ℓd+1
11

Vd+1 =
1

ℓd+1
11

√

det(GM IJ) = g
2−d
3

A

V A
d

ℓd
s

. (2.20)

This can be converted to type-IIB units by compactifying one dimension of radius rA so

that V A
d = rA × Vd−1 and introducing the volume V B

d = rB × Vd−1, where rB = ℓ2
s/rA,

giving

V̂d+1 = g
2−d
3

A

V A
d

ℓd
s

= g
2−d
3

B

(

rB

ℓs

)
d−8
3 V B

d

ℓd
s

=

(

rB

ℓ10

)
d−8
3 V B

d

ℓd
10

. (2.21)

The M-theory decompactification limit is given by the limit V̂d+1 → ∞.

3. The R4 interaction

The first term in the low energy expansion of the maximally supersymmetric string theory

amplitude beyond the tree-level term is the R4 term in (1.2), which is described by a term

in the effective action of the form

SR4 = ℓ8−D
D

∫

dDx
√

−G(10) E(D)
(0,0) R

4 . (3.1)

In D = 10 dimensions the coefficient function is given by [5]

E(10)
(0,0)(Ω) = E

SL(2)

[1]; 3
2

(Ω) , (3.2)

which is the standard Eisenstein series for SL(2, Z), that is conventionally denoted E 3
2
(Ω)5

and satisfies the Laplace equation

∆(10)E(10)
(0,0) =

3

4
E(10)

(0,0) , (3.3)

where ∆(10) is the SO(2)\SL(2) Laplace operator,

∆(10) ≡ Ω2
2 (∂2

Ω1
+ ∂2

Ω2
) . (3.4)

The string frame expression for this interaction involves the identification

1

ℓ2
10

E(10)
(0,0)(Ω) =

1

ℓ2
s

Ω
1
2
2 E 3

2
(Ω) , (3.5)

using the relation between the ten-dimensional Planck length and the string scale ℓs =

ℓ10 Ω
1/4
2 . The perturbative expansion is associated with the constant term,

1

ℓ2
10

∫ 1
2

− 1
2

dΩ1 E(10)
(0,0)(Ω) =

1

ℓ2
s

(

2ζ(3)

y10
+ 4ζ(2)

)

, (3.6)

where y10 = g2
B . This exhibits a tree-level term and a one-loop term.

We will here discuss the theory after compactification on T d for d = 1, 2, 3, 4. In each

case we will present a candidate expression and verify that it has the correct properties

in the three degeneration limits described in section 1. Several aspects of this discussion

reproduce earlier work, but our analysis will stress the framework that generalizes to other

terms in the low energy expansion and to the larger U-duality groups.
5We will follow the convention of writing E

SL(2)
[1];s as Es.
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3.1 Nine dimensions

The coefficient function in the nine-dimensional effective action ((3.1) with D = 9) was

determined in [5, 6] to be

E(9)
(0,0) = ν

− 3
7

1 E 3
2
(Ω) + 4ζ(2) ν

4
7
1 , (3.7)

with ν1 = (rB/ℓ10)
−2, which is invariant under the U-duality group SL(2, Z). This coef-

ficient function can straightforwardly be seen to satisfy the SO(2)\SL(2) × R+ Laplace

eigenvalue equation,
(

∆(9) − 6

7

)

E(9)
(0,0) = 0 , (3.8)

where the Laplace operator for the nine-dimensional compactification has the form given

in (H.6),

∆(9) ≡ ∆Ω +
7

4
ν1∂ν1(ν1∂ν1) +

1

2
ν1∂ν1 . (3.9)

In order to see how the action behaves in various limits we write ν1 in terms of the other

parameters as

ν1 = V̂
3
2
2 , (3.10)

or

ν1 = Ω
− 1

2
2

(

ℓs

rB

)2

= y
1
4
9

(

ℓs

rB

) 7
4

, (3.11)

where y9 = ℓs/(Ω
2
2 rB), or

ν1 =

(

ℓ9

ℓ10

)14

=

(

rB

ℓ10

)−2

. (3.12)

We will now review the manner in which the expression (3.7) reproduces the expected

expressions in the three degeneration limits of interest.

(i) Decompactification to D = 10

This limit is obtained by letting rB/ℓ10 → ∞ in (3.7)

1

ℓ9
E(9)

(0,0) =
rB

ℓ2
10

E(10)
(0,0) +

4ζ(2)

rB
. (3.13)

The term proportional to rB survives the limit to give the D = 10 expression (3.2).

(ii) D = 9 perturbative string theory.

The perturbative expansion of (3.7) in the string frame is given by evaluating the

constant term,

1

ℓ9

∫ 1
2

− 1
2

dΩ1 E(9)
(0,0) =

1

ℓs

(

2ζ(3)

y9
+ 4ζ(2)

(

r

ℓs
+

ℓs

r

))

, (3.14)

where y9 = g2
B ℓs/rB = g2

A ℓs/rA is invariant under T-duality and r = rB or rA (where

rB = ℓ2
s/rA). This expression is manifestly invariant under r → ℓ2

s/r, as expected at
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this order in string perturbation theory6. The coefficients are the same as those obtained

directly from tree-level and one-loop string scattering amplitudes.

(iii) Semiclassical M-theory limit

The coefficient (3.7) is expressed in eleven-dimensional M-theory units by

1

ℓ9
E(9)

(0,0) =
1

ℓ11

(

V̂− 1
2

2 E 3
2
(Ω) + 4ζ(2) V̂2

)

. (3.15)

This expression coincides with that obtained by evaluating the one-loop contribution of

eleven-dimensional supergravity compactified on T 2 [6]. This calculation has a Λ3 divergent

piece (where Λ is a momentum cutoff) that is regularised by adding a counterterm, cR4,

where the value of c = 4ζ(2) is determined by imposing the equality of the IIA and IIB

one-loop contributions [6]. Furthermore there are no higher-loop corrections to R4, so the

result (3.7) is exactly given by the supergravity expression.

3.2 Eight dimensions

The effective action of the form (3.1) with D = 8 was considered in [6, 10], based on

evaluation of the contribution of one-loop eleven-dimensional supergravity compactified on

T 3. This takes into account the effect of super-supergravitons winding around the torus

and has a manifest invariance under the modular group of the three-torus, SL(3, Z). This

was completed to the full duality group E3(3) = SL(3)×SL(2) by extending the expression

to include the effects of wrapped M2-branes, giving

E(8)
(0,0) = Ê

SL(3)

[10]; 3
2

+ 2Ê
SL(2)
[1];1 , (3.16)

which is the form presented in [11]. The expressions Ê
SL(2)
[1];1 ≡ Ê1 and Ê

SL(3)

[10]; 3
2

are regularised

Eisenstein series (specifically, Epstein series) for the groups SL(2) and SL(3), respectively7.

Some properties of these series are discussed in appendix B and may be summarised as

follows. The series E
SL(2)
[1];s = Es and E

SL(3)
[10];s have poles at s = 1 and s = 3/2, respectively,

which correspond to the presence of logarithmic singularities in the one-loop graviton scat-

tering amplitude in D = 8 dimensions – which may be expressed as poles in ǫ in dimensional

regularisation, where D = 8 + 2ǫ. The hat ˆ indicates that the pole part is subtracted,

leaving only the finite part.

The Eisenstein series E
SL(3)
[10];s is a special case of the most general minimal parabolic

Eisenstein series for SL(3) and is discussed in (B.3). The general series has two param-

eters, s1 and s2, corresponding to the non-compact Cartan directions of the quotient

SO(3)\SL(3), but the series of interest here has s1 = s, s2 = 0. Appendix B.4 pro-

vides more details concerning this series, which is defined by (B.7) in the case d = 3. The

expression for the series E
SL(3)
[10];s in (B.49) is written with an explicit parameterisation of

the metric in terms of the U-duality invariant mass for D = 8 [11],

E
SL(3)
[10];s =

∑

(m1,m2,m3)∈Z3\{0}
ν
− s

3
2

( |m1 + m2Ω + Bm3|2
Ω2

+
m2

3

ν2

)−s

. (3.17)

6The IIA and IIB four-graviton scattering amplitudes are known to be equal up to at least genus-four [28].
7The series Ê

SL(3)
[10];s was denoted Ê

SL(3)
3;s in [15].
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The divergence at s = 3/2 is regularised by setting s = 3/2 + ǫ and subtracting the pole

(see appendix B.4 for details),

E
SL(3)

[10]; 3
2
+ǫ

=
2π

ǫ
+ 4π(γE − 1) + Ê

SL(3)

[10]; 3
2

+ O(ǫ) , (3.18)

where the regularised series Ê
SL(3)

[10]; 3
2

is derived in (B.55) and is given by

Ê
SL(3)

[10]; 3
2

= ν
− 1

2
2 E 3

2
(Ω) +

4π

3
log(ν2) + O(e−Ω

1
2
2 ν

−
1
2

2 , e−(Ω2ν2)
−

1
2 ) . (3.19)

In type IIB variables the U modulus is acted only by the SL(2) factor of the U-duality

group SL(3)× SL(2). The SL(2) Eisenstein series has a pole at s = 1 as shown in (B.41),

E1+ǫ(U) =
π

ǫ
− π log(U2|η(U)|4) + 2π(γE − log(2)) + O(ǫ) , (3.20)

and the regularised series is obtained by subtracting the pole,

Ê1(U) = −π log(U2|η(U)|4) . (3.21)

So far we have discussed the singularities of the individual Eisenstein series Es(U) and

E
SL(3)
[10];s . However the coefficient E(8)

(0,0) (3.16) is a linear sum of these functions. A crucial

factor (not discussed in past work) is that the singularities of the separate Eisenstein series

should not be regularised independently. In fact, the singularities in (3.16) cancel each

other when regularised in a manner consistent with the considerations that follow later

later in this paper. This implies that (3.16) should be written as

E(8)
(0,0) = lim

ǫ→0

(

E
SL(3)

[10]; 3
2
+ǫ

+ 2E
SL(2)
[1];1−ǫ

)

− log µ(0,0) , (3.22)

where the hats have been removed since this expression is finite and log µ(0,0) = 4π(2γE −
1 − log(2)) in order for (3.22) to agree with (3.16). We will later obtain this result from

the decompactification limit for the coefficient of the R4 coefficient in D = 7 dimensions,

which is finite and reduces to (3.22) when r3 → ∞ to give the D = 8 expression. This

is the first of several cases in which divergences in different contributions to a coefficient

function cancel with a suitable regularsation.

The SL(2) Eisenstein series at s = 1 satisfies the Laplace equation (B.40)

∆SO(2)\SL(2)Ê
SL(2)
[1];1 = π , (3.23)

while the SL(3) series satisfies

∆SO(3)\SL(3) Ê
SL(3)

[10]; 3
2

= 4π , (3.24)

where the SO(3)\SL(3) laplacian is given in (B.50). Therefore, applying the total SO(3)\SL(3)×
SO(2)\SL(2) Laplacian of the eight-dimensional theory gives

∆(8) E(8)
(0,0) = ∆SO(3)\SL(3)Ê

SL(3)

[10]; 3
2

+ 2∆SO(2)\SL(2)Ê
SL(2)
[1];1 = 6π . (3.25)
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We will now verify that the expression (3.16) gives the correct expression in each of the

three degeneration limits under consideration.

(i) Decompactification to D = 9

The nine-dimensional limit is obtained by taking one of the radii of the two-torus to

infinity, r2/ℓ9 → ∞. This is seen by setting T2 = r1 r2/ℓ
2
s, U2 = r2/r1 and

ν−1
2 = Ω2 T 2

2 = ν
− 6

7
1

(

r2

ℓ9

)2

. (3.26)

Using the expansions for E
SL(3)
[10];s

in (B.52) and Es(U) in (B.38), and the general definition of

constant terms in (2.10), the constant term of the combination (3.16) in the GL(1)×SL(2)

subgroup has the form

∫ 1
2

− 1
2

dBRRdBNS E(8)
(0,0) =

r2

ℓ9
E(9)

(0,0) −
14π

3
log

(

r2

ℓ9 µ8

)

, (3.27)

where the double integral is over the elements of the unipotent radical corresponding to

this subgroup. At large r2 and fixed r1 the nonpertubative contributions are exponentially

suppressed and only this constant term survives. The term proportional to r2 gives the

contribution to the D = 9 action, in agreement with those in (3.7) with r1 = rB . The

log(r2/ℓ9) term in (3.27) is an important contribution to the massless threshold behaviour

of the nonanalytic term in the one-loop four-supergraviton amplitude in eight dimensions,

which has the form log(−ℓ2
s s)R4. The log(r2/ℓ9) term in (3.27) combines with this con-

tribution into log(−r2
2s)R4 which is part of the infinite series (r2

2 s)k log(−r2
2s)R4 that

resums into the nine-dimensional massless threshold,
√

sR4, as analyzed in [4]. The term

proportional to log(µ8) is a scale contribution.

(ii) D = 8 perturbative string theory

The perturbative string expansion of the R4 coefficient in D = 8 is obtained from the

expansion of (3.16) in powers of y−1
8 = Ω2

2T2, which is associated with the constant term

∫ 1
2

− 1
2

dΩ1 dBRR E(8)
(0,0) =

2ζ(3)

y8
+ 2 (Ê1(T ) + Ê1(U)) +

2π

3
log(y8/µ̃8) , (3.28)

after using the expansion of the regularised SL(3) series Ê
SL(3)

[10]; 3
2

in (B.56),

Ê
SL(3)

[10]; 3
2

=
2ζ(3)

y8
+ 2Ê1(T ) +

2π

3
log(y8) + O(e−(y8 T2)

−
1
2 , e−T

1
2

2 y
−

1
2

8 ) . (3.29)

The first term is the correctly normalized tree-level contribution and the one-loop contri-

bution is given by

lim
ǫ→0

(E1+ǫ(T ) + E1−ǫ(U)) = Ê1(T ) + Ê1(U) − 2π

3
log(µ̃8) , (3.30)

where log(µ̃8) is a constant scale determined in the appendices. This expression matches

the one derived from the analytic part of the string amplitude in (D.18) obtained by
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decompactifying the genus-one amplitude on a three-torus. The presence of the log y8

term is important. As explained earlier and in [1], this logarithmic term arises from the

Weyl rescaling of a R4 log(−ℓ2
ss) contribution in passing from the string frame to the

Einstein frame. This is the non-local contribution of the massless states in D = 8 one-loop

supergravity. More generally, the presence of logarithms of moduli is characteristic of the

presence of infrared thresholds. This expression can also be derived by making use of the

regularisation of [29].

As with the complete R4 coefficient, the genus-one part, (3.28), is finite without the

need to regularise the divergent individual terms – the poles at s = 1 cancel between the

two terms. This follows directly from an analysis of the string theory one-loop calculation

as sketched in appendix D.1, and is a symptom of the finiteness of perturbative superstring

amplitudes.

(iii) Semi-classical M-theory limit

The one-loop four-supergraviton amplitude in eleven-dimensional supergravity com-

pactified on T 3 was considered in [6,30] (see appendix G.1 for details). This is expected to

reproduce the SL(3)-dependent part of the amplitude on a three-torus. The zero Kaluza–

Klein mode contribution in the loop gives rise to the non-analytic logarithmic terms char-

acteristic of the onset of one-loop ultraviolet divergences in D = 8 supergravity. Using

dimensional regularisation by evaluating the amplitude in D = 8 + 2ǫ dimensions, and

subtracting the ǫ pole, this has the symbolic form (which is reviewed in detail in [7]),

Anonan
L=1 = πR4

(

log(−S ℓ2
11) + log(−T ℓ2

11) + log(−U ℓ2
11) − 2 log(µ8)

)

, (3.31)

where the Mandelstam invariants of the eleven-dimension theory are denoted by capital

letters (and the invariants T and U should not be confused with the complex structure and

the Kähler structure of the two-torus!). Translating to eight-dimensional units this gives

Anonan
L=1 = πR4

(

log(−s ℓ2
8) + log(−t ℓ2

8) + log(−u ℓ2
8)
)

+ π R4 log(V̂3/µ
2
8) , (3.32)

where ℓ6
8 = ℓ6

11 V̂−1
3 .

The analytic part of the one-loop supergravity amplitude is evaluated in appendix G.1.

In order to regularise the ultraviolet divergence this contribution is evaluated in D = 8+2ǫ

dimensions and is given by

∫ 1
2

− 1
2

dU1 E(8+2ǫ)
(0,0) = E

SL(3)

[10]; 3
2
+ǫ

V̂− 2ǫ
3

3 + 4ζ(2) V̂3 . (3.33)

This only depends on the T 3 moduli, which form the “geometrical” part of the moduli

space. The “stringy” dependence on the Kähler structure, U , is due to M2-brane windings

and is not apparent in the supergravity calculations. More generally, this is consistent

with the SL(d) invariance of toroidal compactifications of perturbative supergravity on

a T d torus. However, the divergence of the SL(3) expression limǫ→0 E
SL(3)

[10]; 3
2
+ǫ

must be

regularised by subtracting the pole at ǫ = 0 since it is no longer cancelled. This reflects
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the presence of a one-loop logarithmic ultraviolet divergence in supergravity. Therefore,

∫ 1
2

− 1
2

dU1 E(8+2ǫ)
(0,0) =

2π

ǫ
+ Ê

SL(3)

[10]; 3
2

+ 4ζ(2) V̂3 − 2π log(V̂3/µ8) + O(ǫ) . (3.34)

After subtracting the pole, the regularised interaction is given by the SL(3) invariant

∫ 1
2

− 1
2

dU1 E(8)
(0,0) = Ê

SL(3)

[10]; 3
2

+ 4ζ(2) V̂3 − 2π log(V̂3/µ8) , (3.35)

where Ê
SL(3)

[10]; 3
2

is the regularised Eisenstein series defined in appendix B.4. The log(V3/ℓ
3
11)

term in this equation cancels against the one in (3.32).

The correspondence with string theory follows by using the string theory/M-theory

dictionary, which implies

m2
1R

2
11 + m2

2R
2
10 + m2

3R
2
9 = ν

1
3
2

( |m1 + m2Ω|2
Ω2

+
m2

3

ν2

)

≡ m2
SL(3) , (3.36)

so that Ê
SL(3)

[10]; 3
2

in (3.35) is identified with the expression in (3.16). Expressing the volume,

V3, of the M-theory torus in terms of the string theory variables using (2.21) we have

V̂3 =
V A

2

ℓ2
s

=
V B

2

r2
B

, (3.37)

so V̂3 is identified with the volume of the two-torus T2 = rAr2/ℓ
2
s on the type IIA side

and to the complex structure parameter U2 = r2/rB on the type IIB side. Thus (3.34) is

written as
∫ 1

2

− 1
2

dU1 E(8)
(0,0) = Ê

SL(3)

[10]; 3
2

+ 4ζ(2)U2 − 2π log(U2/µ8) . (3.38)

In type IIB variables the U modulus is acted only by the SL(2, Z) group of the U-duality

group E3(3) = SL(3) × SL(2). The U2-dependent part is completed into the SL(2, Z)-

invariant expression, Ê1(U) = −π log(U2|η(U)|4) (see appendix B.3) by the M2-brane

contributions in the full theory.

3.3 Seven dimensions

Compactification to dimensions D < 8 raises a new issue since the leading dependence

on s, t, u no longer comes from the analytic R4 interaction. The one-loop supergravity

contribution in 4 < D < 8 dimensions is finite and gives a well-studied nonanalytic contri-

bution, symbolically of the form determined by dimensional analysis Anonan ∼ sD/2−4 R4

(suppressing a plethora of logarithms depending on ratios of Mandelstam invariants) [31].

Infrared divergences arise for D ≤ 4. We are interested in subtracting this contribution in

order to isolate the analytic R4 interaction.

After compactification of type II string theory the effective action, (3.1) with D = 7 is

invariant under the U -duality group SL(5). The natural conjecture is that the coefficient

function, E(7)
(0,0), is a SL(5)-invariant Epstein series, similar to the one in [11]. According to
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this conjecture the coefficient of the seven-dimensional R4 interaction in the Einstein-frame

action is

E(7)
(0,0) = E

SL(5)

[1000]; 3
2

. (3.39)

As before, our notation implies that the series is given by the minimal parabolic Eisenstein

series for SL(5) at a special value of the parameters (see, (B.3) in appendix B). Setting

s2 = s3 = s4 = 0 gives the Epstein zeta function, which has the general form of (B.7) with

d = 5. Using a familiar U -duality invariant parameterisation of the metric in terms of the

SO(5)\SL(5) moduli gives

E
SL(5)

[1000]; 3
2

=
∑

(m1,m2,n1,n2,n3)6=0



ν
2
5
3





|m1 + m2Ω + B · n|2
Ω2

+
nT · g̃−1 · n

ν
2
3
3









− 3
2

. (3.40)

The term in brackets is proportional to the SL(5)-invariant mass squared in a parametri-

sation that makes manifest the string theory three-torus with SL(3) metric g̃ij (g̃ =

g (det g)−1/3, where g is the GL(3) metric) and associated Kaluza–Klein charges, ni. The

three scalar fields

Bi = Bi
RR + ΩBi

NS i = 1, 2, 3 , (3.41)

arise from the reduction of the complex two-form C(2) + ΩBNS on the three two-cycles of

the three-torus T 3.

Although this series appears to be divergent and in need of regularsation, analyticity

in s guarantees that it is well defined by meromorphic continuation. In other words, it

does not need to be regulated (which is a different interpretation from that of [11]). A

detailed analysis of its behaviour is given in appendix B.5. Furthermore, as we will soon

see, decompactification to D = 8 leads to precisely the finite combination of terms that

was determined in the previous section.

(i) Decompactification to D = 8

The r3/ℓ8 → ∞ limit is associated with the constant term in the maximal parabolic

subgroup Pα4 = P (3, 2) with Levi subgroup GL(1)×SL(3)×SL(2), which is the U-duality

group for D = 8. In considering this limit in E
SL(5)
[1000];s we will make use of the relations

ν−1
3 = Ω

3
2
2

1

ℓ6
s

(r1r2r3)
2 = ν

− 5
6

2

(

r3

ℓ8

)2

, (3.42)

recalling that ν−1
2 = Ω2 (r1r2)

2/ℓ4
s.

The SL(5)-invariant mass that enters the exponent of (3.40) decomposes into the sum

of a SL(3)-invariant term and SL(2)-invariant term under the decomposition T 3(r1, r2, r3) ⊃
T 2(r1, r2)×S1(r3), which is relevant for the P (3, 2) parabolic. The quantity in brackets in

the definition of the series in (3.40) then becomes the sum of the SL(3) and SL(2)-invariant

mass squared, m2
SL(5) = m2

SL(3) + m2
SL(2), where

m2
SL(3) = ν

1
3
2

( |m1 + m2Ω + m3B|2
Ω2

+
m2

3

ν2

)

, (3.43)

m2
SL(2) =

1

ν2

|n1 + n2U |2
U2T2

,
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with T2 = r1r2/ℓ
2
s and U2 = r1/r2.

Details of the evaluation of the constant term of the SL(5) Eisenstein series on this

maximal parabolic are given in appendix B.5, with the result

ℓ7

∫

P (3,2)
E

SL(5)

[1000]; 3
2

= r3

(

Ê
SL(3)

[10]; 3
2

+ 2Ê1(U) − 4π log

(

r3

ℓ8µ7

))

, (3.44)

where log µ7 = log(4π) − γE. This shows that the R4 interaction in D = 7 dimensions

decompactifies to the D = 8 interaction

ℓ7 E(7)
(0,0) = r3

(

E(8)
(0,0) − 4π log

(

r3

ℓ8µ7

))

+ O(e−r3/ℓ8) . (3.45)

The term proportional to r3 contains the requisite D = 8 coefficient together with a

r3 log r3 term that is essential for cancelling a similar term in the sum of the infinite series

of (s r2
3)

m terms that reproduces the eight-dimensional s log(−ℓ2
8 s)R4 threshold behaviour

(as described in [4, 18] and the introduction).

(ii) D = 7 perturbative string theory.

The D = 7 perturbative expansion parameter is y−1
7 = Ω2

2 v3, where v3 = (r1r2r3)/ℓ
3
s.

The invariant mass is given in terms of y7 and v3 by

m2
SL(5) = y

− 1
5

7

(

y7 (m1 + BRR · n + Ω1 BNS · n)2 + m2
SL(4)

)

, (3.46)

where we have introduced the SL(4)-invariant mass

m2
SL(4) =

|m2 + BNS · n|2
v3

+ v
1
3
3

tn · g̃ · n . (3.47)

In the perturbative string theory limit the U-duality group reduces to its maximal parabolic

subgroup Pα1 = P (1, 4) with Levi subgroup GL(1) × SO(3, 3).

The results of appendix B imply

∫

P (1,4)
E

SL(5)
[1000];s = y

− 4s
5

7 2ζ(2s) + π
1
2

Γ(s − 1
2)

Γ(s)
y

s
5
− 1

2
7 E

SL(4)

[100];s− 1
2

. (3.48)

Setting s = 3/2 this gives

ℓ7

∫

P (1,4)
E(7)

(0,0) = ℓs

(

2ζ(3)

y7
+ 2E

SL(4)
[100];1

)

. (3.49)

The overall normalisation has been chosen so that the first term is the standard tree-

level contribution, while the second term, which is independent of y7, is the genus-one

contribution. This agrees with the perturbative genus-one string theory contribution to

R4 evaluated in (D.13).

(iii) Semiclassical M-theory limit

We will now discuss the relation between the R4 interaction in D = 7 dimensions

and the interaction obtained by considering the one-loop (L = 1) amplitude of eleven-

dimensional supergravity on a four-torus (derived in appendix G.1). This limit corresponds
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to the maximal parabolic subgroup Pα2 = P (4, 1) with Levi subgroup GL(1) × SL(4) of

the U-duality group.

In this limit the SL(5)-invariant mass reduces to

m2
SL(5) = V̂−3/10

4 m2
SL(4) + n2

3 V̂6/5
4 , (3.50)

where we have used V̂4 = (R11R10/ℓ
2
11)

5/4 ν
−1/2
3 and ℓ7 = ℓ11 V̂−1/5

4 .

Therefore the constant term of SL(5) series evaluated in appendix B.5 implies that

the R4 interaction is given by

ℓ7

∫

P (4,1)
E(7)

(0,0) = ℓ11

(

V̂
1
4
4 E

SL(4)

[100]; 3
2

+ 4ζ(2) V̂4

)

. (3.51)

which is invariant under the SL(4) symmetry associated with the geometry of T 4 and

precisely matches the expansion of the M-theory L = 1 amplitude on a four-torus in

appendix G.1.

3.4 Six dimensions

For D = 6 the U -duality group is E5(5) ≡ SO(5, 5) and the conjectured coefficient of the

R4 interaction is

E(6)
(0,0) = E

SO(5,5)

[10000]; 3
2

, (3.52)

which corresponds to the suggestion in [11, 15] although our analysis will be somewhat

different (in particular regarding the regularisation). The Eisenstein series depends on the

moduli parametrizing the coset SO(5)×SO(5)\SO(5, 5). The Dynkin diagram of figure 1(i)

with n = 5 is symmetric under the interchange of nodes 2 and 5, which means that the

decompactification limit to D = 7 and decompactification to M-theory are each described

by a constant term associated with a SL(5) maximal parabolic subgroup of SO(5, 5) (see

table 2).

(i) Decompactification to D = 7

Equation (C.9) together with the relation V(5) = (r4/ℓ7)
5/2 gives the explicit relation

between the SO(5, 5) Epstein series E
SL(5)

[1000]; 3
2

and the Epstein series associated with one

of the SL(5) maximal parabolic subgroups. The decompactification limit is obtained by

deleting the last node α5 of the Dynkin diagram for E5(5) = D5 in figure 1(i). The

decompactification limit r4/ℓ7 → ∞ is associated with the constant term of the parabolic

subgroup, Pα5 , which has the form

ℓ2
6

∫

Pα5

E(6)
(0,0) = ℓ7 r4

(

4ζ(2)
r4

ℓ7
+ E(7)

(0,0)

)

, (3.53)

where we have used the relation between the Planck lengths in six and seven dimensions

ℓ6 = ℓ
5/4
7 r

−1/4
4 . The coefficient of the term proportional to r4 is the expected D = 7 R4

coefficient and the term proportional to r2
4 combines once more with terms in an infinite

series of (r2
4s)

n terms to build the threshold behaviour in the nonanalytic term in D = 7.
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(ii) D = 6 perturbative string theory

We may now check agreement with the D = 6 perturbative string theory expansion.

This is obtained by deleting first node α1 of the Dynkin diagram, resulting in a series of

terms with SO(4, 4) T-duality invariance. The associated parabolic subgroup is denoted

Pα1 . Substituting the relation between the SO(5, 5) Eisenstein series, E
SO(5,5)
[10000];s and E

SO(4,4)
[1000];s′

(given in C.15)) and transforming to string frame using ℓ6 = ℓs y
1
4
6 , we obtain

ℓ2
6

∫

Pα1

E(6)
(0,0) = ℓ2

s

(

2ζ(3)

y6
+ 2E

SO(4,4)
[1000];1

)

. (3.54)

The first term on the right-hand side of (3.54) is the tree-level string theory term and the

second term gives the genus-one contribution, in agreement with the explicit string theory

calculation given in (D.5) evaluated for d = 4.

(iii) Semiclassical M-theory limit

Finally, we may check the M-theory limit, V̂5 → ∞, where V̂5 is the dimensionless

volume of the M-theory torus, T 5. This limit is obtained by deleting node α2 of the Dynkin

diagram in figure 1(i). The associated parabolic subgroup is denoted Pα2 . In this limit we

can use the relation between the Planck lengths, ℓ4
6 = ℓ4

11 V̂−1
5 , and the relation (C.9) to

show that

ℓ2
6

∫

Pα2

E(6)
(0,0) = ℓ2

11 V̂5

(

4ζ(2) + V̂− 3
5

5 E
SL(5)

[1000]; 3
2

)

. (3.55)

This equation agrees explicitly with the regularised one-loop amplitude in eleven dimensions

of appendix G.1. Note that the symmetry between the nodes α2 and α5 of the Dynkin

diagram for E5(5) in figure 1(i) means that the decompactification limit in (3.53) and the

M-theory limit in (3.55) take similar forms.

More generally, compactification of string theory on a higher-dimensional torus, T d

(or M-theory on T d+1) with d > 4, leads to a D = (10 − d)-dimensional theory with

exceptional U-duality group Ed+1(d+1). Consideration of limits (i), (ii) and (iii) should

again pin down the details of the R4 coefficients, E(D)
(0,0), in these cases. Although we have

not completed a detailed analysis of these coefficients, we have a sketchy understanding of

some of their properties, including the Laplace eigenvalue equations that they satisfy, as

will be described in the discussion section 6.

4. The ∂4R4 interaction

The next contribution to the low-energy expansion of the local part of the four-supergraviton

effective action (or, equivalently, to the analytic part of the low-momentum expansion of

the four-supergraviton S-matrix) in the D-dimensional type IIB theory after the ℓ−1
s R4

term is of the form

S∂4R4 = ℓ12−D
D

∫

dDx
√

−G(D) E(D)
(1,0) ∂4R4 . (4.1)
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The duality-invariant coefficient function in D = 10 dimensions is a familiar non-

holomorphic Eisenstein series for SL(2) evaluated at s = 5/2,

E(10)
(1,0) =

1

2
E 5

2
(Ω) . (4.2)

This coefficient function was initially obtained directly by considering the two-loop (L = 2)

amplitude of eleven-dimensional supergravity compactified on T 2 in the limit in which the

volume, V2, vanishes [7]. This follows from the nine-dimensional expression to be presented

in (4.9). Its perturbative expansion is given by the constant term,

ℓ2
10

∫ 1
2

− 1
2

dΩ1 E(10)
(1,0) = ℓ2

s

(

2ζ(5)

y10
+

8

3
ζ(4) y10

)

, (4.3)

which contains the correct tree-level and two-loop terms (and the absence of a one-loop

contribution also agrees with string perturbation theory). The expression (4.2) can also be

strongly motivated by supersymmetry arguments [9] that extend those of [8].

The coefficient E(10)
(1,0) satisfies the SO(2)\SL(2) Laplace equation

∆(10)E(10)
(1,0) =

15

4
E(10)

(1,0) . (4.4)

In the following subsections we will discuss the generalisation of the ∂4R4 interaction

to D = 9, 8 and 7 dimensions. Comments about the D = 6 will be made in the discussion

in section 6 with some more details in [32].

4.1 Nine dimensions

The effective ∂4 R4 action in D = 9 dimensions ((4.1) with D = 9) has the coefficient

function,

E(9)
(1,0) =

1

2
ν
− 5

7
1 E 5

2
(Ω) +

2ζ(2)

15
ν

9
7
1 E 3

2
(Ω) +

4ζ(2)ζ(3)

15
ν
− 12

7
1 . (4.5)

Making use of the laplacian on nine-dimensional moduli space (3.9) we see that E(9)
(1,0)

satisfies the differential equation

(

∆(9) − 30

7

)

E(9)
(1,0) = 0 . (4.6)

(i) Decompactification to ten dimensions.

In the rB/ℓ10 → ∞ it is useful to write (4.5) as

ℓ3
9 E(9)

(1,0) = ℓ2
10 rB

(

E(10)
(1,0) +

2ζ(2)

15

(

ℓ10

rB

)4

E(10)
(0,0) +

4ζ(2)ζ(3)

15

(

rB

ℓ10

)2
)

. (4.7)

The term linear in rB gives the finite ten-dimensional result. The term proportional to r3
B is

known to be necessary [1, 4] in order to account for the ten-dimensional normal threshold

proportional to s log(−ℓ2
10s)R4. As described in the introduction, this arises from the

interchange of limits needed in making the transition from the D = 9 low energy limit
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r2
Bs ≪ 1 and the D = 10 low energy limit 1 ≪ r2

Bs ≪ r2
B ℓ−2

s s 8. The term proportional

to r−3
B multiplies the modular invariant function E(10)

(0,0), which is the coefficient of R4 in

D = 10. This fits in with the general statement that terms suppressed by powers of rB are

coefficients of interactions with fewer derivatives.

(ii) D = 9 perturbative string theory.

The perturbative limit is simply obtained by expanding the Eisenstein series in powers

of y9 = g2
sℓs/r, giving

ℓ3
9

∫ 1
2

− 1
2

dΩ1 E(9)
(1,0) = ℓ3

s

(ζ(5)

y9
+

4

15
ζ(2)ζ(3)

(

r3

ℓ3
s

+
ℓ3
s

r3

)

+
4

3
ζ(4)y9

(

r2

ℓ2
s

+
ℓ2
s

r2

)

.
)

(4.8)

This reproduces the tree-level term proportional to 1/y9, the genus-one terms in (3.28),

which are independent of y9 and genus-two terms proportional to y9. The coefficients of all

these terms are consistent with direct calculations in string perturbation theory. Further-

more, since y9 is invariant under T-duality, the expression exhibits the known equivalence

of the perturbative IIA and IIB theories for genus less than or equal to four.

(iii) Semi-classical M-theory limit.

The M-theory limit is also easy to establish. Indeed the complete expression (4.5)

can be obtained directly by adding together the L = 1 and L = 2 contributions to the

four-supergraviton amplitude of eleven-dimensional supergravity compactified on a two-

torus [7], giving (in M-theory units),

ℓ3
9 E(9)

(1,0) = ℓ3
11





1

2

1

V̂
3
2
2

E 5
2
(Ω) +

4

15

1

V̂3
2

ζ(2)ζ(3) − 8ζ(4)V̂
3
2
2 E− 1

2
(Ω)



 . (4.9)

The last term is the contribution of one-loop supergravity (L = 1), while the second term

comes from the finite part of the two-loop (L = 2) supergravity amplitude. The first term

is the sum of the L = 2 sub-divergences and the triangle diagram in which one vertex

is a R4 one-loop counter-term. The divergences cancel between these terms leaving the

displayed finite contribution. Upon converting from M-theory units to nine-dimensional

Planck units this expression coincides with (4.5).

4.2 Eight dimensions

Compactification on T 2 gives rise to the ∂4R4 effective action (4.1) with D = 9, which is

invariant under the D = 8 duality group, E3(3) = SL(3) × SL(2). Since this is a product

group the automorphic function is generally, by separation of variables, expected to be

8The amplitude compactified on a circle has an infinite series of massive square root thresholds of the form
P

p cp (s + p/r2
B)1/2 R4 ∼

P

n dn (r2
Bs)n/rB R4. In the limit r2

Bs ≫ 1 this series sums to the logarithmic

singularity. However, this infinite series of powers of r2
Bs is relevant in the low energy limit r2

Bs ≪ 1 in the

D = 9 interactions. The r3
B term in (4.8) is the n = 2 term in this series.
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the sum of products of eigenfunctions of the SO(2)\SL(2) and SO(3)\SL(3) Laplacian

operators. As argued in [12], the modular function has the explicit form

E(8)
(1,0) =

1

2
E

SL(3)

[10]; 5
2

− 4E
SL(3)

[10];− 1
2

E2(U) . (4.10)

Interestingly, we find by explicit computation that the total interaction E(8)
(1,0) is an eigen-

function of the total SO(3)\SL(3) × SO(2)\SL(2) Laplacian

∆(8) E(8)
(1,0) =

10

3
E(8)

(1,0) . (4.11)

However, the total interaction is not an eigenfunction of the cubic Casimir (whereas the

Eisenstein series are). The evidence that (4.10) is the correct expression is based on the

fact that it reduces to the expected expressions in the three degeneration limits described

earlier, as we will now demonstrate.

(i) Decompactification to D = 9

This is the constant term corresponding to the r2/ℓ9 → ∞ limit. Using the expansions

of E
SL(3
[10];s and Es it is straightforward to obtain the constant term,

ℓ4
8

∫ 1
2

− 1
2

dBRRdBNS E(8)
(1,0) = ℓ3

9r2

(

E(9)
(1,0) +

1

2

(

ℓ9

r2

)3

E(9)
(0,0) +

4πζ(4)

45

(

r2

ℓ9

)3
)

. (4.12)

The term linear in r2 reproduces the D = 9 ∂4R4 coefficient, while the term proportional

to r−2
2 is proportional to the R4 coefficient. The term proportional to r4

2 is the expected

contribution to the nonanalytic R4 threshold term.

(ii) D = 8 perturbative string theory.

The coupling constant associated with string perturbation theory, y8 is a modulus in

the SO(3)\SL(3) part of the moduli space. The weak coupling expansion can therefore be

obtained using properties of the SL(3) Eisenstein series described in (B.53)

∫ 1
2

− 1
2

dBRRdΩ1E
SL(3)

[10]; 5
2

=
2ζ(5)

y
5
3
8

+
4

3
y

1
3
8 E2(T ) , (4.13)

∫ 1
2

− 1
2

dBRRdΩ1E
SL(3)

[10];− 1
2

= −1

6
y

1
3
8 − 1

2π3

1

y
2
3
8

E2(T ) . (4.14)

The perturbative expansion in terms of SL(2) × SL(2) functions is given by the constant

term,

ℓ4
8

∫ 1
2

− 1
2

dBRR dΩ1 E(8)
(1,0) = ℓ4

s

(

ζ(5)

y8
+

2

π3
E2(T )E2(U) +

2

3
y8 (E2(T ) + E2(U))

)

, (4.15)

which contains tree-level, genus-one and genus-two contributions, All three of these terms

can be verified directly from the low-energy expansion of the four-supergraviton scattering
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amplitude in string perturbation theory compactified on T 2. The tree-level term is stan-

dard. Higher loops are briefly discussed in appendix D. The ∂4R4 interaction extracted

by expanding the genus-one integrand has a factor of E2(τ), where τ is the world-sheet

modulus that has to be integrated over the fundamental domain, FSL(2) [4, 33]. Upon

compactifying, the integrand is multiplied by the lattice factor, giving

I
(2)
1 =

∫

FSL(2)

d2τ

τ2
2

E2(τ) Γ(2,2)(T,U) =
2

π2
E2(T )E2(U) , (4.16)

in agreement with (4.15). We refer to appendix D.1 for the evaluation of this integral.

The two-loop amplitude given in [34,35], when compactified on T 2 is proportional to ∂4R4

multiplied by

I
(2)
2 =

∫

FSp(4)

|d3τ |2
(detℑmτ)3

Γ(2,2) , (4.17)

where Γ(2,2) is the genus two lattice sum. This integral was evaluated in [15] (also reviewed

in appendix E), giving

I
(2)
2 =

4

3π
(E2(T ) + E2(U)) . (4.18)

(iii) Semiclassical M-theory limit

The expression (4.10) may be motivated by analyzing the M-theory limit obtained by

compactification of the four-supergraviton amplitude in eleven-dimensional supergravity on

T 3 at one and two loops. This builds in the SL(3, Z) invariance as the geometric symmetry

of T 3, whereas compactification of perturbative supergravity does not build in the SL(2, Z)

part of the duality group, which is sensitive to the effects of euclidean M2-branes wrapped

around T 3. This results in the following expression for the ∂4R4 interaction [1, 7]

ℓ4
8

∫ 1
2

− 1
2

dU1 E(8)
(1,0) =

1

ℓ11

1

V̂
5
3
3

(

1

2
E

SL(3)

[10]; 5
2

+
2

π
E

SL(3)
[01];2

(

2ζ(4)V̂2
3 +

πζ(3)

5

1

V̂3

))

, (4.19)

The first term arises from the two-loop (L = 2) counterterm calculation given by the trian-

gle diagram evaluated in the appendix G.1. The second term arises from the the M-theory

one-loop (L = 1) and the last term arises from the finite part of the two-loop amplitude

and is evaluated in appendix G.2. Transforming to the eight-dimensional Einstein frame

using ℓ11 = ℓ8 V̂1/6
3 and V̂3 = U2 and using the relation E

SL(3)
[10];2 = −π4E

SL(3)

[01];− 1
2

given in (B.9)

gives

ℓ4
8

∫ 1
2

− 1
2

dU1 E(8)
(1,0) = ℓ4

8

(

1

2
E

SL(3)

[10]; 5
2

+
2

π
E

SL(3)
[01];2

(

2ζ(4)U2
2 +

πζ(3)

5U2

))

. (4.20)

It is easy to see that (4.20) has the unique SL(3, Z)×SL(2, Z) completion given in (4.10).

4.3 Seven dimensions

In this subsection we will show that the seven-dimensional ∂4R4 effective action, (4.1) with

D = 7, contains the coefficient function

E(7)
(1,0) =

1

2
Ê

SL(5)

[1000]; 5
2

+
3

π3
Ê

SL(5)

[0010]; 5
2

. (4.21)
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The symbol ˆ signifies that each SL(5) Eisenstein series is regulated by evaluating the

series at s = 5/2+ ǫ and subtracting the pole in the limit ǫ → 0. These poles are a signal of

the ultraviolet divergence of the supergravity two-loop amplitude in D = 7. The detailed

evaluation of the series close to the pole in appendix B.5 gives

E
SL(5)

[1000]; 5
2
+ǫ

=
4π2

3ǫ
+ Ê

SL(5)

[1000]; 5
2

+
8π2

9
(3γE − 4) + O(ǫ) ,

E
SL(5)

[0010]; 5
2
+ǫ

=
2π5

9ǫ
+ Ê

SL(5)

[0010]; 5
2

+
2π3

27

(

6π2γE − 11π2 + 36ζ ′(2)
)

+ O(ǫ) .

(4.22)

It is significant that the poles cancel in the combination

lim
ǫ→0

(

Ê
SL(5)

[1000]; 5
2
+ǫ

+
6

π3
Ê

SL(5)

[0010]; 5
2
−ǫ

)

= Ê
SL(5)

[1000]; 5
2

+
6

π3
Ê

SL(5)

[0010]; 5
2

+ log(µ̃7) , (4.23)

which is therefore finite. The constant

log µ̃7 = 16ζ ′(2) + 16π2γE/3 − 76π2/9 , (4.24)

can be absorbed into the definition of the scale of the logarithm in the nonanalytic part of

the amplitude, leaving the combination of Eisenstein series on the right-hand side of the

ansatz (4.21).

Using the properties of the SL(5) Eisenstein series in appendix (B.5) it follows that

this combination of Eisenstein series satisfies

∆(7)E(7)
(1,0) =

40π2

3
, (4.25)

As with the coefficient E(8)
(0,0) in (3.25) the presence of the inhomogeneous term on the right-

hand side of this equation implies the presence of an additive logarithm in E(7)
(1,0), which

is in this case a sign that the low energy supergravity limit has a two-loop logarithmic

ultraviolet divergence.

(i) Decompactification to D = 8

The r3/ℓ8 → ∞ limit again involves the constant term in the P (3, 2) parabolic. Using

the relation between the Planck length in seven and eight dimensions, ℓ5
7 = ℓ6

8 r−1
3 , and the

formulas of appendix B, we have

ℓ5
7

∫

P (3,2)
E(7)

(1,0) = ℓ4
8r3

(

E(8)
(1,0) +

(

ℓ8

r3

)2 π

3

(

E(8)
(0,0) +

28π

5
log(ℓ8µ̃7/r3)

)

+
2π

15

(

r3

ℓ8

)4
)

.

(4.26)

The term proportional to r3 reproduces the eight-dimensional interaction (4.10) and the

coefficient of the 1/r3 term is the R4 interaction in D = 8 dimensions. The term with a

positive power r4
3 is needed to contribute to the series of (r2

3 s)n terms that sums to give

the R4 log(−ℓ2
8 s) threshold in eight dimensions.
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(ii) D = 7 perturbative string theory

Using the relation between the seven-dimensional Planck length and the string scale

ℓ7 = ℓs y
1/5
7 , in D = 7 the string perturbative expansion, which is associated with the

Pα1 = P (1, 4) parabolic with Levi component GL(1) × SO(3, 3), has the form

ℓ5
7

∫

P (1,4)
E(7)

(1,0) = ℓ5
s

(

ζ(5)

y7
+

3

π3
E

SL(4)

[010]; 5
2

+
2y7

3
(Ê

SL(4)
[100];2 + Ê

SL(4)
[001];2) +

4π2

15
y7 log(y7/µ̃7)

)

,

(4.27)

which matches the direct string perturbation theory calculations of the tree-level, genus-one

terms in (D.14) and the genus-two contribution in (E.9). The tree-level term and the first

genus-two term come from the P (4, 1) parabolic of Ê
SL(5)

[1000]; 5
2

in (4.21), while the genus-one

term and the second genus-two term come from the P (4, 1) parabolic of the series Ê
SL(5)

[0010]; 5
2

in (4.21). Thew log y7 term is the genus-2 ultraviolet threshold, which has a coefficient

that is proportional to the inhomogeneous term on the right-hand side of (4.21).

(iii) Semi-classical M-theory limit

As before, the compactification of the eleven-dimensional supergravity amplitude pro-

vides the data for the constant term for the parabolic subgroup associated with node α2

in fig. 1(i), which gives a series of SL(4)-invariant terms.

The validity of the ansatz for the ∂4 R4 coefficient, (4.21), can be checked in this

limit by using the relation between the seven-dimensional Planck length and the eleven-

dimensional Planck length ℓ7 = ℓ11 V̂−1/5
4 the ∂4R4. This leads to

ℓ5
7

∫

P (4,1)
E(7)

(1,0) =
ℓ5
11

V̂2
4

(

1

2
V̂

3
4
4 E

SL(4)

[100]; 5
2

+
π

30
V̂

9
4
4 E

SL(4)

[001]; 5
2

+
2

π4
Ê

SL(4)
[010];2 −

6π2

5
log(V̂4/µ̃7)

)

(4.28)

This series of terms again coincides with contributions from Feynman diagrams in eleven-

dimensional supergravity. The first term arises from the finite part of the two-loop L = 2

diagrams in D = 11 supergravity on T 4. This finite contribution is given by the integral of

the Γ(4,4) lattice over the fundamental domain of the torus, which leads using the techniques

of appendix G.1 to the series ζ(4)E
SO(3,3)
[100];5/2 = E

SL(4)
[010];5/2. The second term in (4.28) arises

from the one-loop L = 1 diagrams and the last term from the triangle diagram that contains

the one-loop counterterm.

In order to understand the coefficients in dimensions D ≤ 6 in detail we need to make

use of the properties of the constant terms that have not yet been obtained in detail.

However, we have pinned down the combination of two Eisenstein series that arises in

D = 6 (with U-duality group SO(5, 5)) although we have not determined their relative

coefficient. Further comments will be made in the discussion in section 6, where we will

also present the Laplace eigenvalue equations that we believe these series should satisfy for

all D ≥ 3.

5. The ∂6R4 interaction

The next order in the analytic part of the momentum expansion of the amplitude is encoded
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into the local effective action,

S∂6R4 = ℓ14−D
D

∫

dDx
√

−G(D) E(D)
(0,1) ∂6R4 . (5.1)

At this order in the low energy expansion the structure of the equation satisfied by the

coefficient functions changes, as is evident from the D = 10 SL(2, Z) case (1.8), which has

a source term on the right-hand side [10]

(∆SO(2)\SL(2) − 12)E(10)
(0,1) = −(E(10)

(0,0))
2 . (5.2)

Although this has not been derived explicitly from supersymmetry, it is easy to argue for

the qualitative structure of the equation based on a generalisation of the arguments of [8]

used to determine the coefficient of the R4 interaction. The constant term is given by

ℓ4
10

∫ 1
2

− 1
2

dΩ1 E(10)
(0,1) = ℓ4

s

(2ζ(3)2

3
Ω2

2 +
4ζ(2)ζ(3)

3
+

8ζ(2)2

5
Ω−2

2 +
4ζ(6)

27
Ω−4

2 + O(e−4πΩ2)
)

,

(5.3)

which has perturbative contributions up to genus three and has contributions from D-

instanton/anti-D-instanton pairs with zero net instanton number.

Once again, we will see that the generalisation to higher-rank groups does not change

the structure of the equation although the eigenvalues of the homogeneous equation change.

The structure of the coefficient E(D)
(0,1) was determined for D = 10 in [8] and generalisations

to D = 9, 8 were suggested by Basu [13]. We will demonstrate that in each case E(D)
(0,1)

satisfies an inhomogeneous Laplace eigenvalue equation. In D = 8 dimensions subtle effects

due to the regularisation of the R4 term in the source imply additional contributions to

the solution given in [13]. We will later determine the D = 7 equation and properties

of its solution. The D = 6 ∂6R4, which is of particular interest since it contains the

three-loop ultraviolet logarithm characteristic of the ultraviolet divergence in maximal

supergravity [36], will not be discussed here although a few comments will be made in the

concluding discussion section 6 (and in [32]).

5.1 Nine dimensions

In this case the effective action, (5.1) with D = 9, contains the coefficient function deter-

mined in [13] to be

E(9)
(0,1) = ν

− 6
7

1 E(10)
(0,1) +

2ζ(2)

3
ν

1
7
1 E 3

2
+

2ζ(2)

63
ν

15
7

1 E 5
2

+
4ζ(2)ζ(5)

63
ν
− 20

7
1 +

8ζ(2)2

5
ν

8
7
1 . (5.4)

The function E(10)
(0,1) is the ten-dimensional coefficient that satisfies the inhomogeneous

Laplace equation, 5.1.

It is readily checked that E(9)
(0,1) satisfies

(

∆(9) − 90

7

)

E(9)
(0,1) = −

(

E(9)
(0,0)

)2
. (5.5)

The source term is again quadratic in the modular function that arises for the coefficient

of the R4 interaction, as it was for D = 10 in (1.8).
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(i) Decompactification to ten dimensions.

The contribution (5.4) can be reexpressed in ten-dimensional units recalling that ℓ9 =

ℓ
8
7
10 r

− 1
7

B and ν1 = (rB/ℓ10)
−2, giving

ℓ5
9 E(9)

(0,1) = ℓ4
10 rB

(

E(10)
(0,1) +

2ζ(2)

3

(

ℓ10

rB

)2

E(10)
(0,0) +

4ζ(2)

63

(

ℓ10

rB

)6

E(10)
(1,0)

+
4ζ(2)ζ(5)

63

(

rB

ℓ10

)4

+
8ζ(2)2

5

(

ℓ10

rB

)4

+ O(e−rB )

)

. (5.6)

The term proportional to rB gives the ten-dimensional expression in the rB → ∞ limit.

Once again, there is a growing term with the expected power of r5
B, which contributes a

term proportional to (s r2
B)2 R4 to the expansion of the ten-dimensional sR4 log(−ℓ2

10 s)

threshold in the limit s r2
B → ∞.

(ii) Perturbative string theory.

The perturbative expansion of this coefficient is given by expanding in powers of the

string coupling,

ℓ5
9

∫ 1
2

− 1
2

dΩ1 E(9)
(0,1) = ℓ5

s rB

(

ζ(3)2

3g2
B

+
ζ(2)ζ(3)

9

(

1 +
ℓ2
s

r2
B

)

+
ζ(5)ζ(2)

189

(

r2
B

ℓ4
s

+
ℓ6
s

r6
B

)

+
5ζ(4)g2

B

9

ℓ2
s

r2
B

+
ζ(4)g2

B

3

(

1 +
ℓ4
s

r4
B

)

+
7ζ(6)

576
g4
B

(

1 +
ℓ6
s

r6
B

)

+ O(e−1/gB )

)

.

(5.7)

This expression is symmetric under the T-duality transformation rB → 1/rA and gB →
gA/rA. The genus-three term proportional to g4

B comes from expanding E(0,1) and was

shown to match the IIA results in [18]. The symbol O(e−1/gB ) indicates schematically the

presence of instanton/anti-instanton pairs in the zero D-instanton sector.

(iii) Semi-classical M-theory limit.

The contributions to the ∂6R4 interaction obtained by compactifying the one-loop

and two-loop Feynman diagrams of eleven-dimensional supergravity on T 2 were evaluated

in [10]. Collecting the L = 2 and L = 1 modular functions along with the genus-one terms

of (3.28), we find the modular invariant expression,

ℓ5
9E(9)

(0,1) = ℓ5
11 V̂2

(E(0,1)

12

1

V̂3
2

+
ζ(5)ζ(2)

189

1

V̂6
2

+
ζ(4)

3
+ V̂

7
2
2

ζ(2)

378
E 5

2
+

ζ(2)

9
V̂

1
2
2 E 3

2

)

. (5.8)

This expression sums all the contributions determined from the analysis of the L = 1 and

L = 2 loop amplitude on a torus, to which has been added the contribution ζ(5)ζ(2)/V̂6
2 ,

which arises from a Λ3 divergence of the L = 3 amplitude. This contribution has been

regularised by matching the string-theory genus-one contribution determined in (3.28), and

is a prediction for the three-loop supergravity contribution to the ∂6 R4 interaction.

In the next sub-section we will see how this nine-dimensional interaction arises by

decompactifying the eight-dimensional term proposed in [13] and discuss further properties

of this expression.
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5.2 Eight dimensions

In this section we analyze the eight-dimensional ∂6 R4 interaction, which has an effective

action (5.2) that is invariant under the U-duality group E3(3) = SL(3) × SL(2). We will

show that the modular function proposed in [13], satisfies the differential equation

∆(8) E(8)
(0,1) = 12 E(8)

(0,1) − (E(8)
(0,0))

2 . (5.9)

where ∆(8) is the SL(3) × SL(2) Laplacian. The source term appearing in this equation

again involves the square of the eight-dimensional R4 coefficient.

The systematic solution of this equation will be obtained in appendix I, where we will

see that it is uniquely specified by matching the known properties of string perturbation

theory. The solution is close to the one argued for in [13] on the basis of consistency with

the higher-dimensional interaction (our normalisation differs by a factor 2/3 from [13]),

E(8)
(0,1) = ESL(3)

(0,1) +
40

9
E

SL(3)

[10];− 3
2

E3(U) +
1

3
Ê

SL(3)

[10]; 3
2

Ê1(U) + f(U)

+
π

36
Ê

SL(3)

[10]; 3
2

+
π

9
Ê1(U) +

ζ(2)

9
,

(5.10)

where the function f(U) is defined as the solution of the equation

(∆U − 12) f(U) = −4 Ê2
1(U) , (5.11)

where ∆U = U2
2 (∂2

U1
+ ∂2

U2
). It is straightforward to extract the power-behaved terms in

its expansion (see (I.19)). We have also introduced ESL(3)
(0,1) satisfying

(∆SO(3)\SL(3) − 12)ESL(3)
(0,1) = −(Ê

SL(3)

[10]; 3
2

)2 . (5.12)

The last three terms in (5.10) (absent in the solution presented in [13]) arises from the

regularisation of the R4 interaction.

We will now consider the limits (i) and (ii), but since we have not evaluated the

derivative expansion of the L = 2 amplitude on higher-dimensional tori the limit (iii) will

not be discussed.

(i) Decompactification to D = 9

In the decompactification limit r2/ℓ9 → ∞ the SL(3, Z) modular functions in (5.10)

have the form

∫ 1
2

− 1
2

dBRRdBNS E
SL(3)

[10];− 3
2

=
9

16π4
ν

1
2
2 E 5

2
(Ω) +

π

315
ν−2
2 , (5.13)

∫ 1
2

− 1
2

dBRRdBNS Ê
SL(3)

[10]; 3
2

= ν
− 1

2
2 E 3

2
(Ω) + π log ν2 . (5.14)

– 32 –



Substituting the latter expansion into the source term in (I.5), one finds that the interaction

coefficient becomes

∫ 1
2

− 1
2

dBRRdBNS ESL(3)
(0,1) =

1

ν2
E(10)

(0,1) +

(

2π

9
ν
− 1

2
2 log(ν2) + c1ν

3
2
2 + c2ν

− 5
2

2

)

E 3
2
(Ω)

+
ζ(2)

9

(

5 + 4 log(ν2) + 8 log2(ν2)
)

+ O(e−Ω
1
2
2 ν

−
1
2

2 , e−(Ω2ν2)
−

1
2 ) ,

(5.15)

where c1, c2 are integration constants. They are determined by taking at the same time

the perturbative string limit and comparing with the expressions of appendix I. We find

c1 = ζ(5)/(12π) and c2 = 0. In this case the zero instanton sector contains instanton/anti-

instanton pairs consisting of D-instantons and wrapped (p, q)-string world-sheets as indi-

cated by the last term.

The SL(2, Z) modular functions have the expansions

∫ 1
2

− 1
2

dU1E3(U) = 2ζ(6)U3
2 +

3πζ(5)

4
U−2

2 , (5.16)

∫ 1
2

− 1
2

dU1Ê1(U) = 2ζ(2)U2 − π log(U2) , (5.17)

and the expansion of the function f(U) given in [13] and in (I.19) is9

6f(U) =
π2

180

(

65 − 20πU2 + 48π2U2
2

)

+
ζ(3)ζ(5)

πU3
2

− 2ζ(2) log U2 (4πU2 − 6 log U2 + 1) + O(e−U2) .

(5.18)

Therefore, the constant term associated with decompactifying to nine dimensions is

ℓ6
8

∫ 1
2

− 1
2

dBRRdBNS E(8)
(0,1) = ℓ5

9 r2E(9)
(0,1)

+ ℓ6
9

(

π

36
E(9)

(0,0) +

(

ℓ9

r2

)4 15ζ(5)

4π3
E(9)

(1,0) +
16πζ(6)

567

(

r2

ℓ9

)6
)

− ℓ6
9

π

9
log
(r2

ℓ9

)

(

7E(9)
(0,0) − 4ζ(2) ν

4
7
1

)

− ℓ6
9 ν

4
7
1

4πζ(2)

21
log(ν1) (5.19)

+
ℓ7
9

r2
ζ(2)

(

37

36
+

86

9
log2

(

r2

ℓ9

)

− 20

9
log

(

r2

ℓ9

))

− ℓ7
9

r2

ζ(2)

21
log(ν1)

(

1 + 4 log

(

r2

ℓ9

)

− 48

7
log(ν1)

)

+ O(e−r2) .

The term linear in r2 reproduces the nine-dimensional ∂6R4 interaction, the term indepen-

dent of r2 is proportional to the nine-dimensional R4 interaction, and the term proportional

to r−4
2 is proportional to the nine dimensional ∂4R4 interaction. The term proportional to

r2
2 is needed to reproduce the D = 9 threshold of the form (−s)

1
2 R4.

9We correct a missing 1/π factor in the 1/U3
2 term in [13].
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(ii) D = 8 perturbative string theory

The perturbative expansion of the coefficient E(8)
(0,1) in increasing powers of y8 =

(Ω2
2T2)

−1 is performed in appendix I. We may summarise the result in terms terms of

the functions I
(2)
h (j

(p,q)
h ) that would be obtained by evaluating the appropriate terms at

genus-h in string perturbation theory. The function j
(p,q)
h is the expansion of the inte-

grand of the genus-h string loop diagram to order σp
2 σq

3 R4 (the notation is explained in

appendix D).

ℓ6
8

∫ 1
2

− 1
2

dΩ1dBRRE(8)
(0,1) = ℓ6

s

(2ζ(3)2

3 y8
+

64π

3
I
(2)
1 (j

(0,1)
1 ) +

2πζ(3)

9
log(y8)

+
2

3
y8 I

(2)
2 (j

(0,1)
2 ) +

π

9

(π

2
+ I

(2)
1 (j

(0,0)
1 )

)

y8 log(y8) +
π2

27
y8 log(y8)

2

+ 20y2
8 I

(2)
3 (j

(0,1)
3 ) + O(e−(T2y8)

−
1
2 , e−T

1
2
2 y

−
1
2

8 )
)

.

(5.20)

The genus-one contribution to this expression has the form

I
(2)
1 (j

(0,1)
1 ) =

10

32π6
E3(T )E3(U) +

ζ(3)

32π
(Ê1(T ) + Ê1(U) + log µ) . (5.21)

This follows both from the expansion of the coefficient E(8)
(0,1) and from the direct evaluation

of the genus-one string theory amplitude in (D.10).

There is also a logarithmic correction to the genus-one term of the form log y8 in

(5.20). This is a manifestation of a logarithmic ultraviolet divergence in supergravity that

originates from the one-loop R4 subdivergence of the two-loop supergravity diagram. As

before, the origin of the log y8 is in the transformation of log(−ℓ2
s s) from string frame to

Einstein frame.

Comparing (5.20) with the expansion of E(8)
(0,1) in appendix I.1 we see that the genus-two

contribution is given by

I
(2)
2 (j

(0,1)
2 ) =

2

3
Ê1(T ) Ê1(U) +

π

9
(Ê1(T ) + Ê1(U)) + f(T ) + f(U) +

11ζ(2)

36
. (5.22)

In principle it should be possible to check (5.22) with the expansion of the genus-two string

theory amplitude of [34,35] at order ∂6R4, but this has not been done.

There is also a logarithmic term of the form y8 log y8 in (5.20). As described earlier,

such a term signifies the presence of a two-loop supergravity logarithmic ultraviolet di-

vergence. In other words, there is a ℓ6
s s3 R4 log(−ℓ2

s s) contribution to the amplitude in

string frame, which generates the y8 log y8 term in (5.20) upon transforming to the Einstein

frame.

The genus-three contribution in (5.20) extracted from the expansion of E(8)
(0,1) in ap-

pendix I.1 is

I
(2)
3 (j

(0,1)
3 ) =

1

270
(E3(T ) + E3(U)) . (5.23)

Little is known in detail about the genus-three superstring amplitude apart from the fact

that its leading low energy behaviour contributes to ∂6R4 [28]. However, it is interesting

to note that this genus-three expression is given by the evaluation of the two-dimensional

lattice integrated over the Siegel fundamental domain for Sp(3, Z) evaluated in appendix F.
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5.3 Seven dimensions

The construction of the coefficient of the ∂6R4 interaction in the effective action (5.2) with

D = 7, follows the same logic as in D = 8, so this section will be brief. The modular

function multiplying the ∂6R4 interaction in D = 7 is determined by

(

∆(7) − 42

5

)

E(7)
(0,1) = −(E(7)

(0,0))
2 , (5.24)

where

E(7)
(0,0) = E

SL(5)

[1000]; 3
2

. (5.25)

As in the D = 8 case, the solution can be written as

E(7)
(0,1) = ESL(5)

(0,1) +
25

2π5
E

SL(5)

[0010]; 7
2

, (5.26)

where ESL(5)
(0,1) is a particular solution and E

SL(5)
[0010];7/2 is the only solution of the homogeneous

equation that has perturbative terms consistent with string theory. The relative coefficient

in (5.26) will now be confirmed by studying the decompactification limit.

(i) Decompactification to eight dimensions

In the limit r3/ℓ8 → ∞ the (3, 3) entry in the matrix in (B.62) (after setting r3 = r2)

becomes

∫

P (3,2)
E

SL(5)

[0010]; 7
2

= 2ζ(6)ζ(7)

(

r3

ℓ8

) 42
5

+
π2ζ(2)

5

(

ℓ8

r3

) 8
5

E
SL(3)

[10]; 5
2

+
8

15

(

r3

ℓ8

) 12
5

E
SL(3)
[01];3 E

SL(2)
3 .

(5.27)

From this expression we recognise the term E
SL(3)
[01];3 E

SL(2)
3 that decompactifies to eight

dimensions. The other possible solutions to the homogeneous equation (with Dynkin labels

[1000] and [0100]) are ruled out because in the perturbative string limit they give rise to

terms that cannot be identified with perturbative string theory (i.e. they give wrong powers

of the string coupling). The r
42/5
3 term in (5.27) contributes to the D = 8 threshold.

Comparing with the eight-dimensional expression for E(8)
(0,1) given in section 5.2, and

using E
SL(3)
[01];3 = 2π5/3E

SL(3)
[01];−3/2, fixes the relative coefficient in (5.26), as follows. In ad-

dition, we recognise the term E
SL(3)

[10]; 5
2

in (5.27), multiplied by r
−8/5
3 , which is part of the

∂4R4 interaction in eight dimensions. The other part of the ∂4R4 interaction is a term

r
−8/5
3 E

SL(3)
[01];2 E

SL(2)
2 , which does not show up in (5.27), but arises from ESL(5)

(0,1) , as follows.

The large-r3 limit of the source term is obtained with the use of

∫

P (3,2)
E

SL(5)

[1000]; 3
2

=

(

r3

ℓ8

)
6
5

E(8)
(0,0) − 4π

(

r3

ℓ8

)
6
5

log

(

r3

ℓ8µ7

)

. (5.28)

In this limit, the constant term of the particular solution ESL(5)
(0,1) contains the contributions

∫

P (3,2)
ESL(5)

(0,1) =

(

r3

ℓ8

)
12
5

(

ESL(3)
(0,1) +

1

3
Ê

SL(3)

[10]; 3
2

Ê1(U) + f(U) +

(

ℓ8

r3

)4

Eh + · · ·
)

. (5.29)

– 35 –



The first three terms reproduce the eight-dimensional result (once added to the contribu-

tion of E
SL(5)
[0010];7/2). Since the source term does not contain the power r

−8/5
3 , Eh solves a

homogeneous equation for the SL(3)×SL(2) Laplacian with eigenvalue 10/3, which is the

same as the eigenvalue of E
SL(3)
[10];5/2 in (5.27). The term we are expecting is of the form

k E
SL(3)
[01];2 E

SL(2)
2 , where the coefficient k is fixed by comparing with the ∂4R4 interaction,

which gives k = −8π2ζ(2)/5.

(ii) Perturbative string theory

We will now find the constant part of the particular solution, ESL(5)
(0,1) , in the parabolic

subgroup of relevance to limit (ii), the limit of perturbative string theory. In this limit, the

result is expressed in terms of functions invariant under SO(3, 3) ∼ SL(4), the T-duality

group. We will need the expansions

∫

P (4,1)
E

SL(5)

[1000]; 3
2

= 2ζ(3) y
− 6

5
7 + 2 y

− 1
5

7 E
SL(4)
[100];1 , (5.30)

∫

P (4,1)
E

SL(5)

[0010]; 7
2

= y
− 7

5
7 E

SL(4)

[010]; 7
2

+
8πζ(4)

15
y

3
5
7 E

SL(4)
[001];3 , (5.31)

which can be found in entries (1, 1) and (1, 3) of (B.62) (setting y7 = 1/r4). Thus the

homogeneous solution provides part of the genus-one and genus-three contributions.

In order to study the perturbative string theory limit we will also need the decomposi-

tion of the SL(5) Laplace operator into the SL(4) Laplace operator plus the second-order

differential operator associated with y7,

∆(7) = ∆SO(5)\SL(5) → ∆SO(4)\SL(4) +
5

2
(y7∂y7)

2 + 5(y7∂y7) . (5.32)

The coefficients 5/2 and 5 in this equation have been determined by using the known

D = 8, 7 R4 and ∂4R4 interaction coefficients. The R4 coefficient is given in (5.30),

whereas the ∂4R4 case can be checked using

∫

P (4,1)
E

SL(5)

[1000]; 5
2

= 2ζ(5) y−2
7 +

4

3
E

SL(4)
[100];2 , (5.33)

∫

P (4,1)
E

SL(5)

[0010]; 5
2

= y−1
7 E

SL(4)

[010]; 5
2

+
4πζ(2)

3
E

SL(4)
[001];2

. (5.34)

The constant term of the particular solution associated with the parabolic subgroup of

relevance to the perturbative expansion is a series of the form

ℓ7
7

∫

P (4,1)
ESL(5)

(0,1) = ℓ7
s

3
∑

n=0

ESL(4)
n yn−1

7 , (5.35)

The coefficient functions E(SL(4)
n can be determined by substituting this genus expansion
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into the Laplace equation (5.24) and using (5.26), which gives

6ESL(4)
0 = 4ζ(3)2 , (5.36)

(

∆SO(4)\SL(4) −
21

2

)

ESL(4)
1 = −8ζ(3)E

SL(4)
[100];1 , (5.37)

(

∆SO(4)\SL(4) − 10
)

ESL(4)
2 = −4(E

SL(4)
[100];1)

2 , (5.38)
(

∆SO(4)\SL(4) −
9

2

)

ESL(4)
3 = 0 . (5.39)

Equation (5.36) gives the tree level contribution. The genus-one coefficient is determined

by (5.37), which is solved by

ESL(4)
1 = aE

SL(4)

[100];1+2
√

2
+ a′ESL(4)

[001];1+2
√

2
+ bE

SL(4)

[010]; 7
2

+
2ζ(3)

3
E

SL(4)
[100];1 , (5.40)

for any a, a′, b. The constants a, a′ must be zero to match the genus-one contribution in

D = 8, and b can be fixed by the decompactification limit. Equation (5.38) defines the

genus-two function ESL(4)
2 which, by construction, in the decompactification limit becomes

the genus-two contribution Ê1(T )Ê1(U)+f(T, T̄ )+f(U, Ū) of the ∂6R4 interaction in eight

dimensions. Finally, (5.39) has two independent admissible solutions E
SL(4)
[001];3 and E

SL(4)
[100];3.

The first one combines with the solution of the homogeneous equation, see (5.31).

Thus, the complete perturbative expansion of the modular function E(7)
(0,1) is given by

ℓ7
7

∫

P (4,1)
E(7)

(0,1) = ℓ7
s

(2ζ(3)2

3

1

y7
+ (

2ζ(3)

3
E

SL(4)
[100];1 + (1 + b)E

SL(4)

[010]; 7
2

) + y7ESL(4)
2

+ 2y2
7

(

E
SL(4)
[001];3 + E

SL(4)
[100];3

)

+ n.p.
)

,

(5.41)

where n.p. indicates non-perturbative contributions. By construction this reproduces (5.20)

in the decompactification limit since, as discussed above, in this limit the differential equa-

tion becomes the eight-dimensional one. The genus-one contribution in string perturbation

theory is given by I
(3)
1 (j

(0,1)
1 ) evaluated in (D.15) is given by

I
(3)
1 (j

(0,1)
1 ) =

25

8!
E

SL(4)

[010]; 7
2

+
ζ(3)

16π
E

SL(4)
[100];1 , (5.42)

which determines the value of b = 5π/756 − 1. It would be interesting to determine the

genus-two coefficient by expanding the string theory amplitude [34,35].

Interestingly, as in D = 8, the value of the genus-three contribution is given by inte-

grating the three-dimensional lattice factor over the Siegel fundamental domain for Sp(3, Z)

evaluated in appendix F,

∫

FSp(3,Z)

|d6τ |2
(detℑmτ)5

Γ(3,3) =
1

270

(

E
SL(4)
[100];3 + E

SL(4)
[001];3

)

. (5.43)
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6. Discussion

In this paper we have extended earlier analyses of the nonperturbative structure of the

coefficients of terms in the low energy expansion of the four-supergraviton amplitude to

the higher-rank duality groups that arise in toroidal compactifications of maximally su-

persymmetric string theory or M-theory. We have considered terms up to order ∂6R4 in

the derivative expansion of the effective action and compactification on T d to D = 10 − d

dimensions. The R4 coefficient has been understood in cases with d ≤ 7. The ∂4R4 coef-

ficient has been understood in detail for d ≤ 3, with partial results for d = 4 (see below).

The ∂6R4 coefficient, which has the richest structure, has been understood for d ≤ 3.

The derivation of the coefficient functions necessarily followed a rather tortuous path

since the aim is to discover the modular invariant coefficients for low-dimension string the-

ory (high-rank duality groups) from information in higher dimensions (low-rank duality

groups), which involves checking many limits. Nevertheless the results may be stated com-

pactly. The three terms in the low energy expansion of the four-supergraviton amplitude

can be expressed as local terms in the effective action of the form

S∂2k R4 = ℓ2k+8−D
D

∫

dDx
√

−G(D) E(D)
(p,q) ∂2k R4 , (6.1)

where (p, q) = (0, 0), (1, 0) and (0, 1) and k = 2p + 3q = 0, 2, 3. The coefficient functions

E(D)
(p,q) are automorphic functions of the coset space coordinates that transform as scalars

under the appropriate duality groups. Starting from the known structure of these functions

we have determined their form in the compactified theory by demanding consistency in

the three limits described in the introduction: (i) decompactification from D to D + 1

dimensions; (ii) known properties of string perturbation theory in the limit of small string

coupling; (iii) The limit of large volume of the M-theory torus, T d+1, which is described

by loop diagrams of eleven-dimensional supergravity.

Clearly many, if not all, of the properties of the coefficients are highly constrained by

maximal supersymmetry combined with the dualities. In particular we have found that

they satisfy Laplace eigenvalue equations, with or without source terms, which are known

to be consequences of supersymmetry in the simplest examples [8, 9], although we do not

have a general proof. Given such an equation for E(D)
(p,q) it is easy to derive similar equations

satisfied by the constant terms for maximal parabolic subgroups of any given duality group.

These follow from the decomposition of the Laplace operator with respect to the same

subgroups as described in appendix H. In summary, we found that the coefficients are

solutions of
(

∆(D) − 3(11 − D)(D − 8)

D − 2

)

E(D)
(0,0) = 6π δD−8,0 (6.2)

(

∆(D) − 5(12 − D)(D − 7)

D − 2

)

E(D)
(1,0) =

20π2

3
δD−7,0 (6.3)

(

∆(D) − 6(14 − D)(D − 6)

D − 2

)

E(D)
(0,1) = −(E(D)

(0,0))
2 + c δD−6,0 , (6.4)

where the Laplace operators are defined on the appropriate moduli space and c is a constant

that remains to be determined (see below). The overall scale of the Laplace operators (and
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hence, the eigenvalues) of any one of the above equations is convention-dependent10, but

the relative normalisations in the three equations is convention-independent

The coefficients satisfying (6.2)-(6.4) were discussed in detail in the body of this paper

for various values of D. In particular, the inhomogeneous Kronecker delta terms on the

right-hand side of these equations contribute in the ‘critical’ dimensions, D = Dc = 4+6/L

– the lowest dimensions in which the L-loop diagrams of low-energy supergravity have

logarithmic ultraviolet divergences. These are L = 1, Dc = 8 for R4 (see (3.25)) and

L = 2, Dc = 7 for ∂4R4 (see (4.25)). In addition, (6.4) gives the L = 3 Dc = 6 case for

∂6R4, which was not discussed here but will be described in [32]. It is also notable that

the eigenvalues in all these cases vanish in the critical dimensions. This structure implies

that the solutions have logarithmic terms characteristic of the ultraviolet divergences of

maximal supergravity. The coefficients of these logarithms, suitably normalised, should

equal the residues of the epsilon poles in dimensionally regularised supergravity, up to

convention-dependent normalisations. This is straightforward to verify for the Dc = 8 and

Dc = 7 cases (L = 1 and L = 2, respectively), where the analysis has been carried out in

detail. The value of the constant c in the Dc = 6 case determines the coefficient of the

genus-three logarithmic term in E(6)
(0,1). This has to be consistent with the residue of the

ǫ pole in the three-loop supergravity calculation in [36], which is proportional to ζ(3). A

preliminary study indicates this is the case [32].

Although our considerations are for the most part limited to D ≥ 6, in appendix H.2

we argue that (6.2)-(6.4) probably apply for all D ≥ 3. This follows simply by requiring

that the Eisenstein series continue to satisfy a Laplace eigenvalue equation for all D ≤ 6.

Having obtained a coefficient function in D dimensions, all results in dimensions greater

than D follow, after some work, by expanding in the radius, r, of a compact dimension.

Importantly we find that potentially divergent terms cancel in this process, once account is

taken of terms of the form (r2s)n, which diverge in the large-r limit in a manner associated

with the presence of non-analytic thresholds of the scattering amplitude. It appears to be

very nontrivial that whenever a coefficient function contains divergent Eisenstein series the

divergences cancel between different terms. The presence of such cancelling divergences is

indicated by logarithms of the moduli that are signals of logarithmic ultraviolet divergences

in the low energy field theory.

As a detailed example of these results, consider the SL(5)-invariant coefficients of the

D = 7 interactions, which was the lowest dimension considered in full detail. The solutions

we obtained were as follows,

E(7)
(0,0) = E

SL(5)

[1000]; 3
2

, (6.5)

E(7)
(1,0) =

1

2
Ê

SL(5)

[1000]; 5
2

+
3

π3
Ê

SL(5)

[0010]; 5
2

, (6.6)

E(7)
(0,1) = E

SL(5)

[0010]; 7
2

+ ESL(5)
(0,1) . (6.7)

10The formula for the R4 eigenvalues differs by a factor of 2 from equation (4.11) in [15], since our

conventions differ.
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In particular, the coefficient E(7)
(1,0) multiplies ∂4R4, which has a non-analytic two-loop

threshold in D = 7 supergravity, accompanied by a logarithmic divergence. This is mani-

fested in the string expression in (6.6), which illustrates the cancellation of divergences men-

tioned earlier. We have subtracted the constant log µ(1,0) from the epsilon regularised E(7)
(1,0)

because this quantity is the scale factor of the threshold contribution s2R4 log(−ℓ2
7 s/µ(1,0)).

The higher-dimensional interactions can be deduced by considering the sequence of decom-

pactifications corresponding to limit (i).

We can also make some comments about Eisenstein series for the groups Gd = Ed+1(d+1)

with 4 ≤ d ≤ 7 (of relevance to 3 ≤ D ≤ 6, where D = 10− d). These are more difficult to

analyze by elementary methods, but by making use of some relations derived by Miller [27]

we find the following in dimensions 3 ≤ D ≤ 6:

• The D = 6 R4 interaction with symmetry SO(5, 5) has a coefficient E(6)
(0,0) = E

SO(5,5)
[10000];3/2,

as described in section (3.4), but the analysis for 3 ≤ D ≤ 5 has not been com-

pleted. However, the eigenvalues in (6.2) coincide with those of the Eisenstein series

E(D)
(0,0) = EGd

[1,0,...,0];3/2, as can be seen directly from (B.2) setting λ = [3/2, 0, . . . , 0].

This strongly suggests that the R4 coefficient is given by E(D)
(0,0) = EGd

[1,0,...,0];3/2 for all

D ≥ 3, as suggested in [15].

• Although the D = 6 ∂4R4 interaction has not been determined in detail, by looking at

the decompactification limit it can be inferred that it must be of the form Ê
SO(5,5)
[10000];5/2+

c Ê
SO(5,5)
[00001];3, where our knowledge of the second series is based on [27]. The value of

c is determined by the cancellation of the poles of these series at s = 5/2 and s = 3

respectively.

• The D = 6 ∂6R4 interaction coefficient is uniquely determined from (6.4) by match-

ing the different limits, in the same manner as in earlier sections. In particular, this

determines the constant c, which arises as the coefficient of a genus-three logarith-

mic term. This is of special interest since it is proportional to the coefficient of the

ultraviolet divergence of three-loop maximal supergravity in D = 6 dimensions.

• As argued above, in D = 3, 4, 5 we expect that the modular functions multiplying

the ∂4R4 and ∂6R4 interactions are still determined by (6.3) and (6.4), but these

equations alone do not determine the Dynkin labels of the possible Eisenstein series

with the same eigenvalue. These must be found by matching with the different limits,

as done in this paper for the higher D cases. This is an issue that we will return to

using more powerful methods.

Finally, we remark that that the analysis of interactions of higher order that ∂6 R4

raise interesting new issues. In particular, it was shown in [1] that the coefficient functions

for the ∂8R4, ∂10R4 and ∂12R4 interactions in D = 9 dimensions consist of sums of

modular functions with different eigenvalues. The generalisation to higher-rank duality

groups should be interesting but is beyond the considerations of this paper.
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A. Applications of the unfolding method

This section will present some applications of the unfolding method to the computation

of integrals of modular functions that are used in the main body of the paper. At several

points we need to evaluate integrals of the type

I[Es, f ] =

∫

FSL(2,Z)

d2τ

τ2
2

Es(τ) f(τ) , (A.1)

where f(τ) is a modular function, FSL(2) is a fundamental domain for SL(2, Z) and Es(τ)

is the Sl(2, Z) Eisenstein series defined by

Es(Ω) =
∑

(m,n)6=(0,0)

Ωs
2

|m + nΩ|2s
. (A.2)

The integral (A.1) can be evaluated by means of the standard unfolding method using the

fact that Es(τ) = ζ(2s)
∑

γ∈Γ∞\SL(2,Z)(ℑm(γ · τ))s, with Γ∞ = {±
(

1 n

0 1

)

, n ∈ Z} is an

incomplete Poincaré series, leading to

I[Es, f ] = 2ζ(2s)

∫ ∞

0

dτ2

τ2−s
2

∫ 1
2

− 1
2

dτ1f(τ) . (A.3)

A second type of integral that we need to consider is integration of a modular function

f(τ) multiplied by a Lattice sum,

I[Γ(d,d), f ] =

∫

FSL(2,Z)

d2τ

τ2
2

Γ(d,d) f(τ) (A.4)

where Γ(d,d) is the (even) Lattice sum

Γ(d,d) =
√

det g
∑

(mi,ni)∈Zd×Zd

exp(− π

τ2
(gij + bij)(m

i − τni)(mj − τ̄nj)) (A.5)

= τ
d
2
2

∑

(pL,pR)∈Λ(d,d)

exp(−πτ2 (p2
L + p2

R) + iπτ1 (p2
L − p2

R))

where pL = (n + m.(b + g)).e∗ and pR = (n + m.(b − g)).e∗ with e defined by g = eT e

provide a basis of the lattice Λd so that T d = Rd/(2πΛd), and e∗ is a basis of the dual

lattice.
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This type of integral can be evaluated by the method of orbits [11, 15, 29, 37–39], as

follows. The exponent in (A.5) can be rewritten as

1

τ2
(g + b)ij(m

i − τni)(mj − τ̄nj) =
1

τ2

(

1 −τ̄
)

MT (g + b)M

(

1

−τ

)

, (A.6)

where M is the d × 2-rectangular matrix with integer entries

M =







m1 n1
...

...

md nd






. (A.7)

The SL(2, Z) action, τ → (aτ + b)/(cτ + d) represented by the matrix A ∈ Sl(2, Z)

transforms the matrix M on the right

M → MA =







m1 n1
...

...

md nd







(

d −c

−b a

)

. (A.8)

Therefore the integral can be decomposed into various orbits with respect to the

Sl(2, Z) action. The orbits are i) the singular orbit that corresponds to mi = ni = 0

for all i = 1, . . . , d; ii) the degenerate orbit where all the sub-determinants of the 2× 2 ma-

trices defined by the ith and jth line of the matrix M are vanishing dij = minj −mjni = 0,

which reduces to ni = 0 for all 1 ≤ i ≤ d; iii) the non-degenerate orbit where at least one

determinant dij is non-zero. Up to relabelling, the representative of the orbit can always

be taken to have the form

M0,k =



























m1 j1

m2 j2
...

...

mk jk

0 nk+1
...

...

0 nd



























, 0 ≤ jk < mk, 2 ≤ k ≤ d . (A.9)

Therefore the integral in (A.4) can be expanded as

I[Γ(d,d), f ] =

∫

FSL(2,Z)

d2τ

τ2
2

f(τ)

+
∑

mi∈Zd\{0}

∫ ∞

0

dτ2

τ2
2

e
−π

migijmj

τ2

∫ 1
2

− 1
2

dτ1f(τ)

+ 2
∑

(mi,ni)∈Zd×Zd\{0}2

∫

C+

d2τ

τ2
2

f(τ) e
− π

τ2
(gij+bij)(mi−τni)(mj−τ̄nj)

.

(A.10)
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We remark that the unfolding has been expressed in terms of the matrix (g+b)ij , which im-

plies that the last line of (A.10) contains exponentially suppressed effects of order exp(−gij).

If it is necessary to consider an expansion in which exponentially suppressed terms are of

order exp(−g−1
ij ), then one would apply the same formula starting from the lattice ex-

pressed in terms of g−1 after a complete Poisson resummation over all mi and ni integers

in (A.5).

B. Eisenstein series for SL(d)

The minimal parabolic Eisenstein series for a group G is defined by [19]

EG
λ (g) =

∑

γ∈G(Q)/B(Q)

e〈λ+ρ,H(gγ)〉 , (B.1)

where 〈·, ·〉 is the inner product on the root system of G. Any g ∈ G can be uniquely de-

composed according the Iwasawa decomposition as g = kan where n ∈ N in the unipotent

subgroup, a is in the maximal Abelian subgroup and h is in the maximal compact subgroup

K. We have identified a with exp(H(g)). Finally, ρ is half the sum of the positive roots

and λ is a vector in the weight space of the lie algebra g of G and B is a Borel subgroup

of G.11 Eisenstein series are eigenfunctions of the invariant differential operators of K\G.

In particular, they are eigenfunctions of the Laplacian,12

∆K\G EG
λ (g) = 2(〈λ, λ〉 − 〈ρ, ρ〉)EG

λ (g) . (B.2)

They are also eigenfunctions of higher-order Casimir operators of G.

However, we will only need this general definition in order to discuss the special low-

rank cases of interest here. For large part we are interested in Eisenstein series for SL(d),

which can be analyzed relatively easily in terms of their definitions as multiple sums (see,

for example, [40]), as we will see in this appendix. Although we will not need to explicitly

consider the most general SL(d) series in this paper, it is nevertheless illuminating to

review their construction since the maximal parabolic series can be obtained from it..

The following treatment is based closely on notes by Stephen Miller and extensions of his

thesis [25].

To begin, we consider H = γ g γT , where γ ∈ SL(d, Z) and g is the SL(d) matrix

parametrizing the coset space SO(d)\SL(d). Letting Hk be the bottom right k × k minor

of H the general minimal parabolic Eisenstein series [27] associated with the minimal

parabolic subgroup P (1, . . . , 1),

E
SL(d)
[ǫ1,...,ǫd−1];s1,...,sd

=
∑

γ∈SL(n,Z)/B(Z)

d−1
∏

k=1

(det Hk)
λd−k+1−λd−k−1

2 , (B.3)

11Because the function g → exp(〈λ + ρ, H(g)〉) is defined on G(A), where A is the ring of Adeles of Q, it

is common to consider the sum defined on the group of Adeles although this will not be necessary for the

considerations of this paper.
12Invariance under K implies that the eigenvalue of the Laplacian is the same as the value of the second-

order Casimir of G 〈λ, λ〉 − 〈ρ, ρ〉.
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which is a special case of the general formula (B.1). Here we have set 2sk = λd−k+1−λd−k−1

for 1 ≤ k ≤ d − 1, and ǫk = 1 if sk 6= 0 and ǫk = 0 if sk = 0.

The SL(d) series that are studied in this paper are

• The series E
SL(d)

[1,0d−2];s
given by λd = 1 + λd−1 + 2s and for 2 ≤ i ≤ d − 1 we have

λd−i = λd−i−1 − 1.

• The series E
SL(d)

[0,1,0d−3];s
given by λd = 1+λd−1, λd−1 = 1+λd−2+2s and for 3 ≤ i ≤ d−1

we have λd−i = λd−i−1 − 1.

• The series E
SL(d)

[0d−2,1];s
given by λ2 = 1 + λ1 + 2s and for 1 ≤ i ≤ d − 2 we have

λd−i = λd−i−1 − 1.

• Since H = γ g γT , detHk = m[i1 · · ·mik]m[j1 · · ·mjk]
∏k

r=1 girjr , where (m1, . . . ,md)

is the last row of γ ∈ SL(2, Z)

Since det Hd = 1 in the definition (B.3) one does not need to introduce 2sd = λ1−λ0−1.

However, in order to make the symmetry more explicit we introduce such variables and

consider the change of variables [40] sj = zj+1−zj +1/2 for j ≤ d and sd = −zd +1/2, i.e.,

zi = −∑d
j=i sj + d−i+1

2 . The variables zi are related to the λi variables by λd−i = 2zi + 1

for 1 ≤ i ≤ d. We define

Ξ(z) =
1

π2
Pd

j=1 jzj

E
SL(d)
[ǫ1,...,ǫd−1];s1,...,sd−1

∏

1≤i<j≤d

Γ(zj − zi +
1

2
) . (B.4)

Then

E
SL(d)
[ǫ1,...,ǫd−1];s1,...,sd−1

∏

1≤i<j≤d

(zj − zi +
1

2
) (B.5)

can be analytically continued to a holomorphic function for all z ∈ Cn and Ξ(z) satisfies

the d! functional equations [19]

Ξ(ω(z)) = Ξ(z) , (B.6)

where ω(z) = {zω(1), · · · , zω(d)} is a permutation of the z elements of the Weyl group of

SL(d).

The poles of the series E
SL(d)
[ǫ1,...,ǫd−1];s1,...,sd−1

are located at si = 0 or si = 1 and the

residue at si = 0 is given by the Eisenstein series associated with the parabolic subgroup

Pi = P (1, . . . , 1, 2, 1, . . . , 1) evaluated at the value of (s1, . . . , si−1, si+1, . . . , sn). Further-

more, the residue at si = 1 is given by the Eisenstein series associated with the parabolic

subgroup Pi evaluated at the value of the parameters (s1, . . . , si−2, si−1 + 1/2, si+1 +

1/2, si+2, . . . , sn) [40]. All the series discussed in the main text and the following sub-

sections can be deduced by extracting residues of poles of the minimal parabolic series

(although we shall not exploit this procedure).

We will first present general features of the series E
SL(d)

[1,0d−2];s
and E

SL(d)

[0,1,0d−3];s
and then

specialise to the particular cases of the SL(2), SL(3) and SL(5) series that are of specific

interest in the main text.
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B.1 The series E
SL(d)

[1,0d−2];s

The series E
SL(d)

[1,0d−2];s
is defined by setting λd = 1 + λd−1 + 2s and λd−i = λd−i−1 − 1 for

2 ≤ i ≤ d − 2. These Epstein series can be written in the usual form as

E
SL(d)

[1,0d−2];s
=

∑

(m1,...,md)∈Zd\(0,...,0)

1

(migijmj)s
, (B.7)

where gij is the metric with unit determinant det g = 1. Since det g = 1, the inverse

metric g−1 = adj(g)T is given by the transpose of the adjugate matrix. The elements of

the adjugate matrix are the determinant of the minors of order d−1 of the matrix g. If we

introduce the dual integers ni = ǫij1···jd−1
mj1 · · ·mjd−1 we can express the series E

SL(d)

[0d−2,1];s

in terms of the inverse of g as

E
SL(d)

[0d−2,1];s
=

∑

(n1,...,nd)∈Zd\(0,...,0)

1

(ni(g−1)ijnj)s
. (B.8)

Applying the general functional equation (B.6) we find the relation

Γ(s)

πs
E

SL(d)

[1,0d−2];s
=

Γ(d
2 − s)

π
d
2
−s

E
SL(d)

[0d−2,1]; d
2
−s

. (B.9)

The Epstein series E
SL(d)

[1,0d−2];s
has a single pole at s = d/2 and converges absolutely for large

values of ℜe(s). It is defined by meromorphic continuation for other values of s [40]. These

series do not have poles at the values s = k/2 for 1 ≤ k ≤ d − 1, which agrees with the

expectation from the string theory arguments given in the main text. Note particularly

that it follows, using analytic continuation and 2ζ(0) = −1, that

E
SL(d)

[1,0d−2];0
= −1 . (B.10)

Using the integral representation of the series in (B.7),

Γ(s)

πs
E

SL(d)

[1,0d−2];s
=

∑

(m1,...,md)∈Zd\{0}

∫ ∞

0

dt

t1+s
e−

π
t

migijmj
, (B.11)

it follows that the constant term on the parabolic subgroup Pαd−1
= P (d− 1, 1) with Levi

component GL(1) × SL(d − 1) characterized by the matrix of the form

g = diag(r−(d−1)/d g̃, r(d−1)2/d) contains the explicit perturbative terms

∫

P (d−1,1)
E

SL(d)

[1,0d−2];s
= r

s(d−1)
d E

SL(d−1)

[1,0d−3];s
+2π

d−1
2 r

(d−2s)(d−1)2

2d
Γ(s − d−1

2 )

Γ(s)
ζ(2s−d+1), (B.12)

This implies by recursion that the Epstein series E
SL(d)

[1,0d−2];s
has a single pole at s = d/2, so

that

E
SL(d)

[1,0d−2]; d
2
+ǫ

=
π

d
2

Γ(d
2) ǫ

+ Ê
SL(d)

[1,0d−2]; d
2

+
π

d
2

Γ(d
2)

(

γE − log(4) − Γ′(d
2 )

Γ(d
2)

)

+ O(ǫ)

(B.13)
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where γE is Euler’s Gamma constant and we introduced the regularized series Ê
SL(d)

[1,0d−2]; d
2

.

Using the expression for the SO(d)\SL(d) Laplacian given in [15] it is straightforward

to verify that these series satisfy the following Laplace equations

∆SO(d)\SL(d)E
SL(d)

[1,0d−1];s
= s(s − d

2
)
2(d − 1)

d
E

SL(d)

[1,0d−1];s
(B.14)

∆SO(d)\SL(d)E
SL(d)

[0d−1,1];s
= s(s − d

2
)
2(d − 1)

d
E

SL(d)

[0d−1,1];s
(B.15)

These equations are particular cases of (B.2) for the value of the weight vector λ specified

by the Dynkin labels [s, 0, . . . , 0] and [0, . . . , 0, s].

For s = d/2 the eigenvalue vanishes and the Epstein series satisfy the differential

equation

∆SO(d)\SL(d)Ê
SL(d)

[1,0d−1]; d
2

=
(d − 1)π

d
2

Γ(d
2 )

(B.16)

B.2 The Series E
SL(d)

[0,1,0d−3];s

The series E
SL(d)

[0,1,0d−3];s
is obtained by substituting the values λd = 1 + λd−1, λd−1 = 1 +

λd−2 + 2s and, for 3 ≤ i ≤ d − 2, λd−i = λd−i−1 − 1 in in (B.3). This gives

E
SL(d)

[0,1,0d−3];s
=

∑

1≤k≤d−1
[M0,k]

1

(gijgkldildjk)s
, (B.17)

where dij = minj − mjni, which can be interpreted as the determinants of the order two

minors of the rectangular d× 2 matrix introduced in (A.7). Setting nT = (n1, · · · , nd) and

mT = (m1, · · · ,md), we can introduce the matrix

M =

(

(n.g.n) (n.g.m)

(n.g.m) (m.g.m)

)

, (B.18)

such that

2 detM = 2
(

(n.g.n)(m.g.m) − (n.g.m)2
)

= gijgkld
ildjk . (B.19)

The series in (B.17) can then be represented as

E
SL(d)

[0,1,0d−3];s
=

∑

1≤k≤d−1
[M0,k]

1

(detM)s
(B.20)

We recognize here the conditions characterizing the non-degenerate orbit when unfolding

the lattice Γ(d,d) in appendix A.

The expression (B.20) is a generalization of the s = 2 case that arises in the evaluation

of the two-loop contribution to four-supergraviton scattering in compactified supergravity,
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which is evaluated in (G.20). This motivates the introduction of the following integral

representation when s > −1,

Id
s (Λ) =

∫ Λ

0
dV V 2s−1

∫

FSL(2,Z)

d2τ

τ2
2

∑

(mi,ni)∈Zd×Zd

e
−V π

τ2
gij(mi−τni)(mj−τ̄nj)

, (B.21)

where FSL(2,Z) is a fundamental domain for SL(2, Z), so modular invariance is explicit.

Evaluating this integral with the unfolding method of appendix A the finite part that

arises from the non-degenerate orbit leads to the Λ-independent contribution

Id
s (Λ)|Λ0 = 2

∫ ∞

0
dV V 2s−1

∫

C+

d2τ

τ2
2

∑

1≤k≤d−1
[M0,k]

e
− π

τ2
V gij(mi−τni)(mj−τ̄nj)

= 2
∑

1≤k≤d−1
[M0,k]

1√
detM

∫ ∞

0
dV V 2s−2 e−2πV

√
detM (B.22)

= 2
Γ(2s − 1)

(2π)2s−1

∑

1≤k≤d−1
[M0,k]

1

(detM)s
= 2

Γ(2s − 1)

(2π)2s−1
E

SL(d)

[0,1,0d−3];s

Therefore

Id
s (Λ) = 2ζ(2)

Λ2s

2s
+

1

π

Λ2s−1

2s − 1
E

SL(d)

[1,0d−2];1
+ 2

Γ(2s − 1)

(2π)2s−1
E

SL(d)

[0,1,0d−3];s
(B.23)

where the series E
SL(d)

[1,0d−2];1
is finite for d > 2 and is defined by analytic continuation from

the region where ℜe(s) > d/2.

For the d = 3 case the normalisation of the series E
SL(d)

[0,1,0d−3];s
is different and we have

I3
s (Λ) = 2ζ(2)

Λ2s

2s
+

1

π

Λ2s−1

2s − 1
E

SL(3)
[10];1 + 2

Γ(2s − 1)ζ(2s − 1)

(2π)2s−1
E

SL(3)
[01];s (B.24)

In order to evaluate the constant term on the Pαd−1
= P (d − 1, 1) parabolic sub-

group characterized by the matrix of the form g = diag(r−(d−1)/dgd−1, r
(d−1)2/d), it is

useful to split the lattice sum in (B.21) into the product of two lattice factors, Γ(d,d) =

Γ(1,1)(r
(d−1)2/d) Γ(d−1,d−1)(r

−(d−1)/dgd−1). Unfolding the Γ(1,1) factor [37] leads to the con-

stant term

2Γ(2s − 1)

π2s−1

∫

P (d−1,1)
E

SL(d)

[0,1,0d−3];s
=

2Γ(2s − 1)

π2s−1
E

SL(d−1)

[0,1,0d−4];s

+

∫ ∞

0
dV V 2s−1

∫ ∞

0

dτ2

τ2
2

∑

m∈Z\{0}
e−πr

(d−1)2

d V m2

t

∫ 1
2

− 1
2

dτ1Γ(d−1,d−1) .

(B.25)

The τ1 integral projects on the sector p · w = 0 where p and w are the Kaluza-Klein and

winding modes of the lattice. The piece independent of Λ arises13 from the zero winding

13See section B.5.1.3 for detailed example on the SL(5) series.
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sector w2 = 0, leading to14

∫

P (d−1,1)
E

SL(d)

[0,1,0d−3];s
= r

2s(d−1)
d E

SL(d−1)

[0,1,0d−4];s

+ r
(d−2s)(d−2)(d−1)

2d π
d
2
−1 Γ(s + 1 − d

2)

Γ(s)
ζ(2s + 2 − d)E

SL(d−1)

[1,0d−3];s− 1
2

(B.26)

We note in particular the d = 4 case, with our normalisations for the SL(3) series, we find

∫

P (3,1)
E

SL(4)
[010];s = r

3s
2 ζ(2s − 1)E

SL(3)
[01];s + r

3(2−s)
2 π

Γ(s − 1)

Γ(s)
ζ(2s − 2)E

SL(3)

[10];s− 1
2

, (B.27)

which is used in various places in this paper.

Therefore the series E
SL(d)

[0,1,0d−3];s
has single pole at s = d/2 so that

E
SL(d)

[0,1,0d−3]; d
2
+ǫ

=
(2π)d

24Γ(d − 1) ǫ
+ Ê

SL(d)

[0,1,0d−3]; d
2

(B.28)

+
(2π)d

24Γ(d − 1)

(

γE + log(2π) + 12ζ ′(−1) − 1 − Γ′(d − 1)

Γ(d − 1)

)

+ O(ǫ) ,

where we introduced the regularized series Ê
SL(d)

[0,1,0d−3]; d
2

and similarly

E
SL(d)

[0d−3,1,0]; d
2
+ǫ

=
(2π)d

24Γ(d − 1) ǫ
+ Ê

SL(d)

[0d−3,1,0]; d
2

(B.29)

+
(2π)d

12Γ(d − 1)

(

γE + log(2π) + 12ζ ′(−1) − 1 − Γ′(d − 1)

Γ(d − 1)

)

+ O(ǫ) .

The antisymmetric rank-two dij representation can be converted into the antisymmet-

ric rank-(d − 2) representation, dr1···rd−2
= ǫijr1···rd−2

dij representation, so that

2 detM = gijgklǫ
ikr1···rd−2ǫjls1···sd−2 dr1···rd−2

ds1···sd−2
. (B.30)

Since gijgkl − gikgjl are the rank-two minors of the matrix g, it follows (for matrices with

det g = 1) that gijgklǫ
ikr1···rd−2ǫjls1···sd−2 are the rank d − 2 minors of g−1. Therefore

4 detM = (d − 2)!
d−2
∏

i=1

(g−1)risi dr1···rd−2
ds1···sd−2

. (B.31)

This leads to the series with label [0d−3, 1, 0] evaluated for the metric g−1. By Poisson

resummation this sum can be brought back to a sum over g, giving the following functional

equation, which is a particular case of (B.6)

Γ(s)Γ(s − 1
2)

π2s− 1
2

E
SL(d)

[0,1,0d−3];s
=

Γ(d
2 − s)Γ(d−1

2 − s)

πd−2s− 1
2

E
SL(d)

[0d−3,1,0]; d
2
−s

, (B.32)

14 Conjecture 5 of [15] states that πE
SL(d)

[0,1,0d−3];1/2
= E

SL(d)

[1,0d−2];1
. Comparison of (B.12) and (B.26) implies

that E
SL(d)

[1,0d−2];1
= −2πE

SL(d)

[0,1,0d−2];1/2
for all values of d ≥ 4.
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where use has been made of the replicating formula 2Γ(2s−1)/(2π)2s−1 = Γ(s−1/2)Γ(s)/π2s−3/2.

Using the expression for the SO(d)\SL(d) Laplacian given in [15] it is easy to verify

that the integral representation implies

∆SO(d)\SL(d)E
SL(d)

[0,1,0d−3];s
= s(s − d

2
)
4(d − 2)

d
E

SL(d)

[0,1,0d−3];s
, (B.33)

∆SO(d)\SL(d)E
SL(d)

[0d−3,1,0];s
= s(s − d

2
)
4(d − 2)

d
E

SL(d)

[0d−3,1,0];s
. (B.34)

These equations are particular cases of (B.2) for the value of the weight vector λ specified

by the Dynkin labels [0, s, 0, . . . , 0] and [0, . . . , 0, s, 0].

For the value s = d/2 this gives

∆SO(d)\SL(d)Ê
SL(d)

[0,1,0d−2]; d
2

=
(2π)d

12Γ(d − 2)
. (B.35)

B.3 The SL(2) Eisenstein series

Non-holomorphic SL(2) Eisenstein series are defined by

Es(Ω) =
∑

(m,n)6=(0,0)

Ωs
2

|m + nΩ|2s
, (B.36)

with Ω = Ω1 + iΩ2 ∈ h = {Ω2 > 0,Ω1 ∈ R} in the complex upper-half plane. The modular

function

Ẽs(Ω) =
Γ(s)

πs
Es(Ω) (B.37)

has an analytic continuation for all complex s and has simple poles at s = 0 and s = 1. It

satisfies the functional equation Ẽs(Ω) = Ẽ1−s(Ω) which is a particular case of the general

functional equation satisfied by the Eisenstein series (B.6).

The Fourier expansion with respect to Ω1 is given by

Es(Ω) = 2ζ(2s)Ωs
2 + 2

√
π

Γ(s − 1
2)

Γ(s)
ζ(2s − 1)Ω1−s

2

+
2πs

Γ(s)
Ω

1
2
2

∑

n 6=0

|n|s− 1
2

∑

0<d
n/d∈N

1

d2s−1
Ks− 1

2
(2π|n|Ω2) e2iπ n Ω1 , (B.38)

where Ks(x) is a modified Bessel function of the second-kind. These series are eigenfunc-

tions of the Laplacian,

∆Ω = Ω2
2(∂

2
Ω1

+ ∂2
Ω2

) = 4Ω2
2∂Ω∂̄Ω̄ , (B.39)

∆ΩEs(Ω) = s(s − 1)Es(Ω) . (B.40)

Eisenstein series evaluated at special values

• The SL(2) Eisenstein series has a pole at s = 1. Setting s = 1+ ǫ and expanding for

small ǫ gives

E1+ǫ(z) =
π

ǫ
− π log(Ω2|η(Ω)|4) + 2π(γE − log(2)) + O(ǫ) , (B.41)
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where γE is Euler’s constant. The regulated series, Ê1(Ω), is defined by subtracting the

pole and a constant to give

Ê1(Ω) = −π log(Ω2|η(Ω)|4) (B.42)

where η(Ω) is the Dedekind function,

η(Ω) = e
iπΩ
12

∞
∏

n=1

(1 − e2iπnΩ) . (B.43)

Since ∆E1+ǫ(Ω) = ǫ(1 + ǫ)E1+ǫ(Ω) , for any ǫ it follows that

∆Ê1 = π . (B.44)

• The series with s = 1/2 appears to diverge, but is finite when defined in terms of a

limit,

E 1
2
(Ω) = lim

ǫ→0
E 1

2
+ǫ(Ω) (B.45)

= 2Ω
1
2
2 (γE + log(Ω2/(4π)) + 2Ω

1
2
2

∑

(m,n)∈Z2

K0(2π|mn|Ω2) e2iπmn Ω1 .

• The series with s = 0 is defined by analytic continuation to have the finite value

Eǫ(Ω) = −1 + ǫ (π−1Ê1 − 2 log(2π)) + O(ǫ2) , (B.46)

which is compatible with functional equation of Eisenstein series Ẽ1+ǫ(Ω) = Ẽ−ǫ(Ω).

B.4 SL(3) Eisenstein series

For the d = 3 case it is useful to introduce the integers pi = ǫijkd
jk, where ǫijk is the

completely antisymmetric symbol (ǫ123 = 1), and (B.19) becomes

2 detM = ǫilmǫjkn gijgkl pmpn = (g−1)mn pmpn , (B.47)

which uses the fact that ǫilmǫjkn gijgkl are the elements of the adjugate of the matrix gij

and that g−1 = (det g)−1 adj(g)T , where det g = 1. Therefore the definition (B.20) gives

the functional relation between Eisenstein series

Γ(s)

πs
E

SL(3)
[01];s =

Γ(3
2 − s)

π
3
2
−s

E
SL(3)

[10]; 3
2
−s

. (B.48)

B.4.1 Fourier expansions

Using the parametrisation of SO(3)\SL(3) given in the main text the Eisenstein series

E
SL(3)
[10];s is defined by

E
SL(3)
[10];s =

∑

(m1,m2,m3)6=(0,0,0)

ν
− s

3
2

(

|m1+m2Ω+m3B|2
Ω2

+
m2

3
ν2

)s , (B.49)
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where ν−1
2 = Ω2 T 2

2 is the inverse volume of the two-torus of compactification defined

in (2.17) expressed in terms of the string variables, and B = BRR + ΩBNS is the usual

combination of the RR and NS B-field (in the construction from the L = 1 and L = 2

supergravity loops there is no dependence on the three-form of eleven -dimensional super-

gravity therefore we have to set B = 0.)

The SO(3)\SL(3) laplacian is given by [11]

∆SO(3)\SL(3) = 4Ω2
2∂Ω∂̄Ω̄ +

|∂BNS
− Ω∂BRR

|2
ν2Ω2

+ 3∂ν2(ν
2
2∂ν2) , (B.50)

which gives

∆SO(3)\SL(3) E
SL(3)
[10];s =

2s(2s − 3)

3
E

SL(3)
[10];s . (B.51)

For s 6= 3/2 these Eisenstein series can be expanded using T−2
2 = ν2Ω2 [11–13]

E
SL(3)
[10];s = ν

− s
3

2 Es(Ω) + 2π
Γ(s − 1)

Γ(s)
ζ(2s − 2)ν

2s−3
3

2 (B.52)

+
2πs

Γ(s)
ν

s−3
6

2 Ω
1−s
2

2

∑

(m1,m2) 6=(0,0)
m3 6=0

∣

∣

∣

∣

m2 − m1Ω

m3

∣

∣

∣

∣

s−1

×

× Ks−1(2π|m3(m2 − m1Ω)|T2) e2iπm3(m1BRR+m2BNS) .

Using the variables (y8, T ) (where y−1
8 = Ω2

2T2) this can be rewritten as

E
SL(3)
[10];s = 2ζ(2s) y

− 2s
3

8 +
√

π
Γ(s − 1

2)

Γ(s)
y

2s−3
6

8 Es− 1
2
(T ) (B.53)

+
2πs

Γ(s)
T

2s−1
4

2 y
− 2s+3

12
8

∑

m1 6=0,m2 6=0

∣

∣

∣

∣

m1

m2

∣

∣

∣

∣

s− 1
2

Ks− 1
2
(2πΩ2|m1m2|) e2iπm1m2Ω1

+
2πs

Γ(s)

√

T2 y
2s−3

6
8

∑

(m1,m2) 6=(0,0)
m3 6=0

∣

∣

∣

∣

m2 − m1Ω

m3

∣

∣

∣

∣

s−1

×

× Ks−1(2π|m3(m2 − m1Ω)|T2) e2iπm3(m1BRR+m2BNS) .

Series evaluated at special values

• For s = 3/2 the expression has a logarithmic divergence associated with the one-loop

divergence in eight dimensions discussed in the main text. The expression needs to be

regulated, leading (in the (ν2,Ω) variables) to

E
SL(3)

[10]; 3
2
+ǫ

=
2π

ǫ
+ 4π(γE − 1) + Ê

SL(3)

[10]; 3
2

+ O(ǫ) , (B.54)

where the regularised series Ê
SL(3)

[10]; 3
2

can be expanded in limit (i) as

Ê
SL(3)

[10]; 3
2

= ν
− 1

2
2 E 3

2
(Ω) +

4π

3
log(ν2) + O(e−Ω

1
2
2 ν

−
1
2

2 , e−Ω
−

1
2

2 ν
−

1
2

2 ) (B.55)
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or in limit (ii) as

Ê
SL(3)

[10]; 3
2

=
2ζ(3)

y8
+ 2Ê1(T ) +

2π

3
log(y8) + O(e−(T2y8)

−
1
2 , e−T

1
2

2 y
−

1
2

8 ) (B.56)

Since

∆E
SL(3)

[10]; 3
2
+ǫ

=
2

3
ǫ(3 + 2ǫ)E

SL(3)

[10]; 3
2
+ǫ

(B.57)

we deduce that

∆Ê
SL(3)

[10]; 3
2

= 4π . (B.58)

• For s = 1 the expression using the (Ω, ν2) variables in (B.52) appears to diverge

because it involves E1(Ω) and Γ(s − 1) and so seems to have a pole in s. But the pole

cancels between the first two terms and no explicit subtraction is needed. This is obvious

from the expansion given in (B.53) where no divergences are met at s = 1. The resulting

expression is therefore

E
SL(3)
[10];1 = lim

ǫ→0
E

SL(3)
[10];1+ǫ

= 2ζ(2) y
− 2

3
8 + y

− 1
6

8 E 1
2
(T ) + O(e−

√
Ω2/ν2 , e−1/

√
Ω2ν2)

= ν
− 1

3
2

(

Ê1(Ω) − π log(ν2) + 2π(γE − log(4π))
)

+ O(e−(T2y8)−
1
2 , e−T

1
2
2 y8−

1
2 )

(B.59)

where we have used the expression for E 1
2
(T ) given in (B.45) Using the duality relation

between Eisenstein series this gives a definition of πE
SL(3)

[01]; 1
2

= E
SL(3)
[10];1 .

• For s = 1/2 we get

E
SL(3)

[10]; 1
2

= lim
ǫ→0

E
SL(3)
[10];1+ǫ

= ν
− 1

6
2 E

SL(2)
1
2

(Ω) +
π

3
ν
− 2

3
2 + O(e−

√
Ω2/ν2 , e−1/

√
Ω2ν2)

= y
− 1

3
8

(

1

π
Ê1(T ) − log(y8) + 2(γE − log(4π))

)

+ O(e−(T2y8)
−

1
2 , e−T

1
2

2 y
−

1
2

8 )

(B.60)

The two set of equations (B.59) and (B.60) are compatible with the functional equation

E
SL(3)
[10];1 = πE

SL(3)
[01];1/2.

B.5 SL(5) Eisenstein series

In the following subsections we will determine the entries in the matrix A
SL(5)
s (u, v; r)

defined in (2.10). Recall that the columns of the matrix are labelled by u, which specifies

the root, αu, which labels which of the si’s is non-zero. The series associated with a

particular u is E
SL(5)
[0u−1,1,04−u];s

. The rows, labelled by v, specify the node αv that defines a

particular parabolic subgroup of the SL(5) series.

The detailed discussion of each entry will be given in subsections (B.5.1) and (B.5.2).

Since this is fairly complicated we will first summarize the results. First note a simple
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consequence of the symmetries of the Weyl group is the set of relations

ASL(5)
s (u, 1; r) = π2s− 5

2
Γ(5

2 − s)

Γ(s)
A

SL(5)
5
2
−s

(u, 4; r) (B.61)

ASL(5)
s (u, 2; r) = π4s−5 Γ(5

2 − s)Γ(2 − s)

Γ(s − 1
2)Γ(s)

A
SL(5)
5
2
−s

(u, 3; r) .

The explicit expressions for the entries are as follows

ASL(5)
s (u, v; r) =











(B.76) (B.91) (B.92) (B.80)

(B.97) (B.109) (B.111) (B.100)

(B.98) (B.110) (B.112) (B.101)

(B.78) (B.89) (B.93) (B.82)











, (B.62)

where the entries number the equations where the constant terms can be found.

Constant terms of Eisenstein series at the special values in main text

Since we are interested in the values of the constant terms at particular values of s we

will here summarize properties of the entries in (B.62) at those values.

• The SL(5) series has a single pole at s = 5/2. Explicitly, setting s = 5/2 + ǫ gives

E
SL(5)

[1000]; 5
2
+ǫ

=
4π2

3ǫ
+ Ê

SL(5)

[1000]; 5
2

+
8π2

9
(3γE − 4) + O(ǫ) (B.63)

The constant terms of Ê
SL(5)

[1000]; 5
2

for the parabolic subgroups considered in the main text are

∫

P (1,4)
Ê

SL(5)

[1000]; 5
2

= 2r8ζ(5) +
4

3
Ê

SL(4)
[100];2 −

16π2

15
log(r) , (B.64)

∫

P (4,1)
Ê

SL(5)

[1000]; 5
2

= r2E
SL(4)

[100]; 5
2

− 64π2

15
log(r) , (B.65)

∫

P (3,2)
Ê

SL(5)

[1000]; 5
2

= r4 E
SL(3)

[10]; 5
2

+
4π

3
Ê

SL(2)
[1];1 − 16π2

5
log(r) . (B.66)

The series E
SL(5)
[0010];s also has a pole when s = 5/2 + ǫ,

E
SL(5)

[0010]; 5
2
+ǫ

=
2π5

9ǫ
+

2π3

27

(

6π2γE − 11π2 + 36ζ ′(2)
)

+ Ê
SL(5)

[0010]; 5
2

+ O(ǫ) (B.67)

and the relevant constant terms are

∫

P (1,4)
Ê

SL(5)

[0010]; 5
2

= r4E
SL(4)

[010]; 5
2

+
2π3

9
Ê

SL(4)
[001];2

− 8π5

15
log(r) , (B.68)

∫

P (4,1)
Ê

SL(5)

[0010]; 5
2

= ζ(4)r6E
SL(4)

[001]; 5
2

+
2π

3
Ê

SL(4)
[010];2 −

16π5

45
log(r) , (B.69)

∫

P (3,2)
Ê

SL(5)

[0010]; 5
2

= 10ζ(4) Ê
SL(3)

[10]; 3
2

− 32π5

45
log(r) +

2r4

3
E

SL(3)
[01];2 E

SL(2)
[1];2 + 2ζ(4)r12 .(B.70)
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• The SL(5) series E
SL(5)
[1000];s is finite when s = 3/2. The constant terms of interest to

us are given by
∫

P (1,4)
E

SL(5)

[1000]; 3
2

= r
6
5 E

SL(4)

[001]; 3
2

+ 4ζ(2)r
16
5 (B.71)

∫

P (3,2)
E

SL(5)

[1000]; 3
2

= r
12
5

(

Ê
SL(3)
3
2

+ 2Ê
SL(2)
[1];1 + 8π log(r)

)

(B.72)

Furthermore, using the functional equation for the SL(3) series (B.48) E
SL(3)
[01];1 =

π E
SL(3)
[10];1/2, one sees that E

SL(3)
[10];1/2 also contains a logarithmic term in its P (2, 3) constant

term.

B.5.1 Parabolic subgroups P (1, 4) and P (4, 1)

For the maximal parabolic subgroup Pα1 = P (1, 4) obtained by deleting the first node of

the Dynkin diagram in figure 1(iii) the matrix gij has the block diagonal form

g5 =

(

r−
16
5 0

0 r
4
5 g4

)

, (B.73)

where g4 is a 4 × 4 square matrix of unit determinant so that det g5 = 1. The parabolic

subgroup Pα4 = P (4, 1) is obtained by deleting the last node of the Dynkin diagram in

figure 1(iii) and is characterized by the matrix of the form

g5 =

(

r−
4
5 g4 0

0 r
16
5

)

. (B.74)

For these parabolic subgroups the Levi subgroup is GL(1) × SL(4).

B.5.1.1 Constant term of the series E
SL(5)
[1000];s The constant term for the parabolic

P (1, 4) is given by

Γ(s)

πs

∫

P (1,4)
E

SL(5)
[1000];s =

∑

(m,n1,...,n4)∈Z5\{(0,...,0)}

∫ ∞

0

dt

t1+s
exp

(

−π

t
[m2r−

16
5 + r

4
5 nT · g4 · n]

)

.

(B.75)

Performing a Poisson resummation on m one gets
∫

P (1,4)
E

SL(5)
[1000];s = 2ζ(2s) r

16s
5 +

√
π

Γ(s − 1
2)

Γ(s)
r2− 4s

5 E
SL(4)

[100];s− 1
2

, (B.76)

which gives the element A
SL(5)
s (1, 1; r) of the A

SL(5)
s matrix in (B.62).

The constant term in the P (4, 1) parabolic takes the form

Γ(s)

πs

∫

P (4,1)
E

SL(5)
[1000];s =

∑

(m,n1,...,n4)∈Z5\{(0,...,0)}

∫ ∞

0

dt

t1+s
exp

(

−π

t
[m2r

16
5 + r−

4
5 nT · g4 · n]

)

.

(B.77)

Performing the Poisson resummation on the integers (n1, . . . , n4) gives
∫

P (4,1)
E

SL(5)
[1000];s = r

4s
5 E

SL(4)
[100];s + 2π2ζ(2s − 4)

Γ(s − 2)

Γ(s)
r8− 16s

5 . (B.78)

This gives the element A
SL(5)
s (4, 1; r) of the A

SL(5)
s matrix in (B.62).
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B.5.1.2 Constant term of the series E
SL(5)
[0001];s The constant terms for the parabolic

P (1, 4) is given by

Γ(s)

πs

∫

P (1,4)
E

SL(5)
[0001];s =

∑

(m,n1,...,n4)∈Z5\{(0,...,0)}

∫ ∞

0

dt

t1+s
exp

(

−π

t
[m2r

16
5 + r−

4
5 nT · g−1

4 · n]
)

.

(B.79)

Performing a Poisson resummation on (n1, . . . , n4) gives

∫

P (1,4)
E

SL(5)
[0001];s = r

4s
5 E

SL(4)
[001];s + 2π2ζ(2s − 4)

Γ(s − 2)

Γ(s)
r8− 16s

5 , (B.80)

which gives the entry A
SL(5)
s (1, 4; r) of the A

SL(5)
s matrix in (B.62).

The constant term in the P (4, 1) takes the form

Γ(s)

πs

∫

P (4,1)
E

SL(5)
[0001];s =

∑

(m,n1,...,n4)∈Z5\{(0,...,0)}

∫ ∞

0

dt

t1+s
exp

(

−π

t
[m2r−

16
5 + r

4
5 nT · g−1

4 · n]
)

.

(B.81)

Performing the Poisson resummation on m gives

∫

P (4,1)
E

SL(5)
[0001];s = 2ζ(2s) r

16s
5 +

√
π

Γ(s − 1
2)

Γ(s)
r2− 4s

5 E
SL(4)

[001];s− 1
2

, (B.82)

which gives the entry A
SL(5)
s (4, 4; r) of the A

SL(5)
s matrix in (B.62).

B.5.1.3 Constant term of the series E
SL(5)
[0100];s To evaluate the constant terms for the

parabolic P (4, 1) specified by the metric in (B.74) we will write the lattice sum in (B.21)

in the factorized form

ΓP (4,1) =
∑

(p,q)∈Z2

e
−πV r

16
5

|p+qτ |2

τ2

∑

(m,n)∈Z8

e
−πV r−

4
5

(m−τn)T ·g4·(m−τ̄n)
τ2 . (B.83)

Starting from the representation in (B.21) and unfolding the Γ(1,1) lattice gives

I(4,1)
s (Λ) = I4

s (Λ) +

∫ Λ

0
dV V 2s−1

∫ ∞

0

dτ2

τ2
2

∑

m6=0

e
−π r

16
5 V m2

τ2

∫ 1
2

− 1
2

dτ1Γ(4,4) . (B.84)

We are particularly interested in the finite part (order Λ0) of this integral, which is given

by

Is(Λ)(4,1)|Λ0 = 2
Γ(2s − 1)

(2π)2s−1

∫

P (4,1)
E

SL(5)
[0100];s . (B.85)

The finite part of the first term on the right-hand-side of (B.84) is given by

Is(Λ)4|Λ0 = 2r
8s
5

Γ(2s − 1)

(2π)2s−1
E

SL(4)
[010];s (B.86)
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To analyze the second term we perform a Poisson resummation on half of the integers in the

lattice Γ(4,4) giving the representation in terms of Kaluza-Klein momenta p and windings

w,

Γ(4,4) =

(

τ2r
4
5

V

)2
∑

(p,w)∈Λ(2,2)

e−πτ2 (V r−
4
5 p2+V −1r

4
5 w2)+2iπ τ1 p·w . (B.87)

The integral over τ1 projects onto the subspace p · w = 0 where p2 = mT · g4 · m and

w2 = nT · g−1
4 · n. This is solved by either p = 0 or w = 0. So the finite part of the second

term in (B.84) is given by the contribution with w = 0,

Is(Λ)(4,1)|Λ0 = r
8
5

∫ ∞

0
dV V 2s−3

∫ ∞

0
dt
∑

m6=0

p∈Z4

e
−πV r

16
5 m2

t
−πt V p2

r
4
5 (B.88)

= r6− 12s
5 ζ(2s − 3)

Γ(s − 3
2 )Γ(s − 1

2)

π2s−2
E

SL(4)

[100];s− 1
2

.

Thus, the constant term for the parabolic P (4, 1) is
∫

P (4,1)
E

SL(5)
[0100];s = r

8s
5 E

SL(4)
[010];s + r6− 12s

5 π
3
2 ζ(2s − 3)

Γ(s − 3
2)

Γ(s)
E

SL(4)

[100];s− 1
2

, (B.89)

which gives the entry A
SL(5)
s (4, 2; r) of the A

SL(5)
s matrix in (B.62).

For the parabolic subgroup P (1, 4) characterized by the metric in (B.73) the lattice

sum takes the form

ΓP (1,4) =
∑

(p,q)∈Z2

e
−πV r−

16
5

|p+qτ |2

τ2

∑

(m,n)∈Z8

e
−πV r

4
5

(m−τn)T ·g4·(m−τ̄n)
τ2 . (B.90)

Performing a complete Poisson resummation on the Γ(1,1) lattice and then using the same

manipulations as before leads to the expression for the constant term
∫

P (1,4)
E

SL(5)
[0100];s = ζ(2s − 1)r

12s
5 E

SL(4)
[001];s + πr4− 8s

5
Γ(s − 1)

Γ(s)
E

SL(4)

[010];s− 1
2

, (B.91)

which gives the entry A
SL(5)
s (1, 2; r) of the A

SL(5)
s matrix in (B.62).

B.5.1.4 Constant term of the series E
SL(5)
[0010];s This series is defined in section B.2, as

E
SL(5)
[0100];s(g

−1
5 ), which is the same series as discussed in the previous paragraphs but evaluated

with the inverse metric. Applying the previous results it follows that the constant term on

the parabolic subgroup P (1, 4) is given by
∫

P (1,4)
E

SL(5)
[0010];s = r

8s
5 E

SL(4)
[010];s + r6− 12s

5 π
3
2 ζ(2s − 3)

Γ(s − 3
2)

Γ(s)
E

SL(4)

[001];s− 1
2

, (B.92)

which gives the entry A
SL(5)
s (1, 3; r) of the A

SL(5)
s matrix in (B.62).

On the parabolic subgroup P (4, 1) the constant term is given by
∫

P (4,1)
E

SL(5)
[0010];s = ζ(2s − 1)r

12s
5 E

SL(4)
[001];s + πr4− 8s

5
Γ(s − 1)

Γ(s)
E

SL(4)

[010];s− 1
2

, (B.93)

which gives the entry A
SL(5)
s (4, 3; r) of the A

SL(5)
s matrix in (B.62).
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B.5.2 Parabolic subgroup P (2, 3) and P (3, 2)

The maximal parabolic subgroup Pα2 = P (2, 3), obtained by deleting the second node, is

characterized by the matrix

g5 =

(

r−
12
5 g2 0

0 r
8
5 g3

)

, (B.94)

where g3 is square 3 × 3 matrix and g2 a square 2 × 2 matrix both of unit determinant.

The other parabolic Pα3 = P (3, 2) is obtained by considering the matrix

g5 =

(

r−
8
5 g3 0

0 r
12
5 g2

)

. (B.95)

For these parabolic subgroups the Levi subgroup is given by GL(1) × SL(2) × SL(3).

B.5.2.1 Constant term of the series E
SL(5)
[1000];s For the parabolic P (2, 3) the metric

takes the form given in (B.94), leading to the integral representation

∫

P (2,3)
E

SL(5)
[1000];s =

πs

Γ(s)
× (B.96)

×
∑

(m1,...,m3,n1,n2)∈Z5\{(0,...,0)}

∫ ∞

0

dt

t1+s
exp

(

−π

t
[r

8
5 m · g3 · mT + r−

12
5 nT · g2 · n]

)

.

Performing a Poisson resummation on the two integers n1 and n2 one gets one gets for the

constant term for the parabolic P (2, 3)

∫

P (2,3)
E

SL(5)
[1000];s = r

12s
5 E

SL(2)
[1];s + π

Γ(s − 1)

Γ(s)
r4− 8s

5 E
SL(3)
[10];s−1 , (B.97)

which gives the entry A
SL(5)
s (2, 1; r) of the A

SL(5)
s matrix in (B.62).

The parabolic P (3, 2) is obtained by using the metric (B.95) and performing the Pois-

son resummation (m1, . . . ,m3) one gets gives the coefficient ASL(5)(4, 3; r, s) of the A
SL(5)
s

matrix in (B.62).

∫

P (3,2)
E

SL(5)
[1000];s = r

8s
5 E

SL(3)
[10];s + π

3
2

Γ(s − 3
2)

Γ(s)
r6− 12s

5 E
SL(2)

[1];s− 3
2

, (B.98)

which gives the element A
SL(5)
s (3, 1; r) of the A

SL(5)
s matrix in (B.62).

B.5.2.2 Constant term of the series E
SL(5)
[0001];s For the parabolic P (2, 3) the relevant

metric is that in (B.95) and the integral representation for the constant term is given by

∫

P (2,3)
E

SL(5)
[0001];s

=
πs

Γ(s)
× (B.99)

×
∑

(m1,...,m3,n1,n2)∈Z5\{(0,...,0)}

∫ ∞

0

dt

t1+s
exp

(

−π

t
[r−

8
5 m · g−1

3 · mT + r
12
5 nT · g−1

2 · n]
)

.
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Performing a Poisson resummation on the three integers m1, m2 and m3 one gets the

constant term for the parabolic P (2, 3),
∫

P (2,3)
E

SL(5)
[0001];s = r

8s
5 E

SL(3)
[01];s + π

3
2

Γ(s − 3
2)

Γ(s)
r6− 12s

5 E
SL(2)

[1];s− 3
2

, (B.100)

which gives the entry A
SL(5)
s (2, 4; r) of the A

SL(5)
s matrix in (B.62).

In the case of the P (3, 2) parabolic we perform the Poisson resummation on the two

integers n1 and n2 one gets
∫

P (3,2)
E

SL(5)
[0001];s = r

12s
5 E

SL(2)
[1];s + π

Γ(s − 1)

Γ(s)
r4− 8s

5 E
SL(3)
[01];s−1 , (B.101)

which gives the entry A
SL(5)
s (3, 4; r) of the A

SL(5)
s matrix in (B.62).

B.5.2.3 Constant term of the series E
SL(5)
[0100];s In the case of the parabolic P (2, 3) we

decompose the lattice sum (B.21) as ΓP (2,3) = Γ(2,2)(r
− 12

5 g2) Γ(3,3)(r
8
5 g3). Performing a

Poisson resummation on the Γ(2,2) factor gives

Γ(2,2) =
r

24
5

V 2

∑

(m,n)∈Z4\{0}
e
−πV −1r

12
5

(m−nτ)T ·g−1
2 ·(m−nτ̄)

τ2 , (B.102)

and unfolding the lattice sum following the method described in appendix A results in

I(2,3)
s (Λ) = I3

s (Λ) (B.103)

+ r
24
5

∫ Λ

0
dV V 2s−3

∫ ∞

0

dτ2

τ2
2

∑

n∈Z2\(0,0)

e
−πr

12
5

nT ·g−1
2

·n

τ2 V

∫ 1
2

− 1
2

dτ1Γ(3,3)

+ 2r
24
5

∫ Λ

0
dV V 2s−3

∫

C+

d2τ

τ2
2

∑

[M0,1]

e
−π r

12
5

(1 τ̄)MT
0,1g−1

2
M0,1(1 τ̄)T

V τ2 Γ(3,3) .

We are interested in the finite part of this integral,

I(2,3)
s (Λ)|Λ0 = 2

Γ(2s − 1)

(2π)2s−1

∫

P (2,3)
E

SL(5)
[0100];s . (B.104)

The first term in the right-hand-side of (B.103) leads to

I3
s (Λ)|Λ0 = 2r8− 16s

5
Γ(2s − 3)

(2π)2s−3
ζ(2s − 3)E

SL(3)
[01];s−1 . (B.105)

The second term is treated as in the previous section. The integration over τ1 projects on

the sector p · w = 0 of the Γ(3,3) lattice and the contribution constant in Λ is given by the

p = 0 term

(I(2,3)
s (Λ)|Λ0)2nd line = r

12
5

∫ ∞

0

dV

V
9
2
−2s

∫ ∞

0

dτ2

τ
1
2
2

∑

n∈Z2\(0,0)

p∈Z3

e
−π r

12
5

V

nT ·g−1
2

·n

τ2
−πτ2

w2

V r
8
5

=
1

2
r2+ 4s

5

(

Γ(s − 1
2 )

πs− 1
2

)2

E
SL(2)

[1];s− 1
2

E
SL(3)

[10];s− 1
2

. (B.106)
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In the last line the sum is over the representative [M0,1] defined in (A.9)

M0,1 =

(

m j

0 n

)

0 ≤ j < m,n 6= 0 . (B.107)

The finite contribution from the last line is given by

(I(2,3)
s (Λ)|Λ0)3rd line = 2r

24
5

∫ ∞

0
dV V 2s−3

∫

C+

d2τ

τ2
2

∑

[M0,1]

e
−π r

12
5

V

(1 τ̄)MT
0,1g−1

2
M0,1(1 τ̄)T

τ2

= 4r
24s
5

Γ(2s − 1)

(2π)2s−1
ζ(2s)ζ(2s − 1) , (B.108)

where we have used the fact that this contribution only arises from the sector with Γ(3,3) ∼
r24/5V −3.

Collecting the various contributions, the constant term for the parabolic P (2, 3) reads
∫

P (2,3)
E

SL(5)
[0100];s = 2r

24s
5 ζ(2s)ζ(2s − 1)

+ (2π)2 r8− 16s
5

Γ(2s − 3)

Γ(2s − 1)
ζ(2s − 3)E

SL(3)
[01];s−1

+

√
π

2
r2+ 4s

5
Γ(s − 1

2)

Γ(s)
E

SL(2)

[1];s− 1
2

E
SL(3)

[10];s− 1
2

,

(B.109)

which gives the entry A
SL(5)
s (2, 2; r) of the A

SL(5)
s matrix in (B.62).

Similar manipulations apply to the analysis of the parabolic subgroup P (3, 2), leading

to
∫

P (3,2)
E

SL(5)
[0100];s = r

16s
5 ζ(2s − 1)E

SL(3)
[01];s

+ π r4− 4s
5

Γ(2s − 2)

Γ(2s − 1)
E

SL(2)
[1];s−1E

SL(3)

[10];s− 1
2

+ 2(2π)3 r12− 24s
5

Γ(2s − 4)

Γ(2s − 1)
ζ(2s − 4)ζ(2s − 3) ,

(B.110)

which gives the entry A
SL(5)
s (3, 2; r) of the A

SL(5)
s matrix in (B.62).

B.5.2.4 Constant term of the series E
SL(5)
[0010];s Applying the same manipulation as

before one finds the constant term for the parabolic P (2, 3)
∫

P (2,3)
E

SL(5)
[0010];s = r

16s
5 ζ(2s − 1)E

SL(3)
[10];s

+ π r4− 4s
5

Γ(2s − 2)

Γ(2s − 1)
E

SL(2)
[1];s−1E

SL(3)

[01];s− 1
2

+ 2(2π)3r12− 24s
5

Γ(2s − 4)

Γ(2s − 1)
ζ(2s − 3)ζ(2s − 4) ,

(B.111)

which gives the entry A
SL(5)
s (2, 3; r) of the A

SL(5)
s matrix in (B.62).
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Finally, similar manipulations applied to the parabolic subgroup P (3, 2) lead to

∫

P (3,2)
E

SL(5)
[0010];s = 2r

24s
5 ζ(2s − 1)ζ(2s)

+

√
π

2
r2+ 4s

5
Γ(s − 1

2 )

Γ(s)
E

SL(2)

[1];s− 1
2

E
SL(3)

[01];s− 1
2

+ (2π)2r8− 16s
5

Γ(2s − 3)

Γ(2s − 1)
ζ(2s − 3)E

SL(3)
[10];s−1 ,

(B.112)

which gives the entry A
SL(5)
s (3, 3; r) of the A

SL(5)
s matrix in (B.62).

C. The SO(d, d) Eisenstein series

We will here consider Eisenstein series for SO(d, d) groups defined with respect to the

Dynkin label [1, 0d−1] (recall our convention for labelling the nodes in the case of SO(d, d)

groups shown in figure 1)(ii). These are analogous to the Epstein series discussed ear-

lier in the case of SL(d) groups. In this case the series depend on the coset SO(d) ×
SO(d)\SO(d, d).

In order to define these Eisenstein series we will consider various integrals involving

the lattice sum Γ(d,d)

Γ(d,d) =
√

det g
∑

(mi,ni)∈Zd×Zd

exp(− π

τ2
(gij + bij)(mi − τni)(mj − τ̄nj)) , (C.1)

which typically arises in compactifications of string or field theory loop integrals on T d.

We will introduce the volume of the d-torus, V(d) =
√

det g and the rescaled metric, g̃,

defined by gij = V
2
d

(d) g̃ij , so that det g̃ = 1. A sensible definition of the SO(d, d) Eisenstein

series of relevance to us is the manifestly invariant function

E
SO(d,d)

[1,0d−1];s
=

πs

2ζ(2s + 2 − d)Γ(s)

∫

FSL(2,Z)

d2τ

τ2
2

Es+1− d
2
(τ) (Γ(d,d) − V(d)) . (C.2)

The analysis in the body of the paper and in the following demonstrates that, for the ap-

propriate values of s, this has the correct behaviour in the appropriate limits. Furthermore,

it satisfies a Laplace eigenvalue equation of the appropriate form, as well as the correct

functional equation.

[The definition of the Eisenstein series in (C.2) differs from that given in (3.10) of [15]

and in [11,14].]

We are particularly interested in the series with s = d/2 − 1, which is given by

E
SO(d,d)

[1,0d−1]; d
2
−1

=
π

d
2
−1

Γ(d
2 − 1)

∫

FSL(2,Z)

d2τ

τ2
2

(Γ(d,d) − V(d)) , (C.3)

where we have used E0(τ) = −1. Instead of subtracting the volume factor we could have

regularised the series by analytically continuing in s as in appendix D.
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Using the differential equation for the lattice factor given in [15]

(∆SO(2)\SL(2) − ∆SO(d)×SO(d)\SO(d,d) −
d(d − 2)

4
)Γ(d,d) = 0 (C.4)

we find that

∆SO(d)×SO(d)\SO(d,d)E
SO(d,d)

[1,0d−1];s
= 2s(1 − d + s)E

SO(d,d)

[1,0d−1];s
. (C.5)

These equations are particular cases of (B.2) for the value of the weight vector λ specified

by the Dynkin label [s, 0, . . . , 0].

Using the method of orbits [11, 15, 29, 37–39] reviewed in appendix A, this Eisenstein

series can be expanded in terms of SL(d) series as

E
SO(d,d)

[1,0d−1];s
= V(d)

πs

Γ(s)

∑

mi∈Zd\{0}

∫ ∞

0

dτ2

τ2
τ

s− d
2

2 e
−π

migijmj
τ2 (C.6)

+ V(d)
ζ(2s + 1 − d)

ζ(2s + 2 − d)

πs+ 1
2

Γ(s)

Γ(s + 1−d
2 )

Γ(s + 1 − d
2)

∑

mi∈Zd\{0}

∫ ∞

0

dτ2

τ2
τ

d
2
−s−1

2 e
−π

migijmj
τ2

+ V(d)
πs

ζ(2s + 1 − d)Γ(s)

∑

(mi,ni)∈Z2d\{0}

∫

C+

d2τ

τ2
2

Es+1− d
2
(τ) e

− π
τ2

(gij+bij)(mi−τni)(mj−τ̄nj) ,

leading to

E
SO(d,d)

[1,0d−1];s
= V

2s
d

(d) E
SL(d)

[0d−2,1];s
(C.7)

+ V
2− 2(s+1)

d

(d) π
d−1
2

ζ(2s + 1 − d)

ζ(2s + 2 − d)

Γ(s + 1−d
2 )

Γ(s)
E

SL(d)

[1,0d−2];s+1− d
2

+ O(e−gij ) ,

where we have made use functional equation (B.9) for the SL(d) series. This expansion

corresponds to the constant term of the series for the parabolic subgroup obtained by

deleting the node αd with Levi subgroup GL(1) × SL(d).

For the d = 3 case comparison of the expansion in (C.7) with the expansion of the

SL(4) series, E
SL(4)
[010];s in (B.27) leads to

E
SL(4)
[010];s = ζ(2s − 1)E

SO(3,3)
[100];s . (C.8)

In the case of s = d/2 − 1 we get15

∫

Pαd

E
SO(d,d)

[1,0d−1]; d
2
−1

= V
1− 2

d

(d) E
SL(d)

[0d−2,1]; d
2
−1

+
V(d)

3

π
d
2

Γ(d
2 − 1)

, (C.9)

where we have used E
SL(d)

[1,0d−2];0
= −1.

15This expansion matches the one of appendix C of [15] which uses SL(d) series with non unit determinant.

We would like to thank Boris Pioline for a clarification about this point.
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C.1 Constant term on the Parabolic subgroup Pα1

The constant term of the series defined in (C.2) on the parabolic subgroup obtained by

removing the first node of the Dynkin diagram in figure 1(ii) is expressed in terms of series

for the parabolic subgroup with Levi component GL(1)×SO(d−1, d−1). This is analysed

by splitting the metric of the d-torus in the form

gIJ =

(

g̃ij 0

0 r2

)

. (C.10)

so that the lattice factor Γ(d,d) = Γ(d−1,d−1) × Γ(1,1),giving

∫

Pα1

E
SO(d,d)

[1,0d−1]; d
2
−1

=
π

d
2
−1

Γ(d
2 − 1)

∫

FSL(2,Z)

d2τ

τ2
2

(

Γ(d−1,d−1)Γ(1,1) − V(d)

)

. (C.11)

Since Γ(1,1) is given by the sum

Γ(1,1) = rd

∑

(m,n)∈Z2

e
−πr2

d
|m+nτ |2

τ2 , (C.12)

one can evaluate this integral by unfolding the Γ(1,1) factor as in [37], to get

∫

Pα1

E
SO(d,d)

[1,0d−1]; d
2
−1

=
π

d
2
−1

Γ(d
2 − 1)

rd

(

∫

FSL(2,Z)

d2τ

τ2
2

(Γ(d−1,d−1) − V(d−1))

+
∑

m∈Z\{0}

∫ ∞

0

dτ2

τ2
2

e
−π

r2
dm2

τ2

∫ 1
2

− 1
2

dτ1Γ(d−1,d−1)

)

(C.13)

where V(d) = rd V(d−1). Using the second representation in (A.5) for the lattice sum in the

second line we find
∫

Pα1

E
SO(d,d)

[1,0d−1]; d
2
−1

= 2ζ(d − 2) rd−2
d + rd

√
π

Γ(d
2 − 3

2)

Γ(d
2 − 1)

E
SO(d−1,d−1)

[1,0d−2]; d−1
2

−1
. (C.14)

For the SO(5, 5) case used in the main text we have
∫

Pα1

E
SO(5,5)

[1,04]; 3
2

= 2ζ(3) r3
5 + 2r5 E

SO(4,4)
[1000];1 . (C.15)

D. Genus-one integrals in string theory

In this appendix we evaluate the one-loop integrals arising in the derivative expansion of

the genus-one four-graviton amplitude in 10 − d dimensions, which was discussed in [4].

First we will introduce some notation appropriate for the evaluation of the terms that

contribute to the analytic part of the amplitude at any order in α′ = ℓ2
s on a genus-h

world-sheet. This expansion involves integration over the world-sheet moduli, M, with

measure dµ(M). In principle, this leads to integrals of the form

I
(d)
h (j

(p,q)
h ) =

∫

Mg

dµ(M) j
(p,q)
h (M) Γ(d,d) , (D.1)
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where Γ(d,d) is the genus-h generalisation of the (even) Lattice sum defined in (A.5) and

the function j
(p,q)
h (M) is a specific modular function of the world-sheet complex structure.

This integral is invariant under SO(d) × SO(d)\SO(d, d).

For genus-h ≤ 3 the integration over the moduli space of Riemann surfaces can be eval-

uated directly by integration over the fundamental domain for Sp(h, Z), which is evaluated

in appendix F. Beyond that order the dimension of the (complex) moduli space of Riemann

surfaces 3(h − 1) is strictly smaller than the number of parameters in the period matrix

h(h + 1)/2, which leads to technical difficulties in defining the integration over moduli for

genus h ≥ 4.

Much more is known about the genus-one function j
(p,q)
1 than other values of h16.

In the genus-one case (h = 1) there is a single modulus so M → τ and
∫

M1
dµ(M) =

∫

FSL(2,Z)
d2τ/τ2

2 . The functions j
(p,q)
1 (τ) are invariant under SL(2, Z) transformations of

τ . Although the genus-one string amplitude is finite, when performing the derivative

expansion the separation of the analytic contribution from the non-analytic contribution

may introduce divergences in each term separately, which cancel in the total amplitude. In

particular, (D.1) diverges for large τ2. Following the method of [4, 33] one can cut off the

fundamental domain so that τ2 ≤ L. The total string amplitude is independent of L and all

dependence on L cancels between I
(d)
1 (j

(p,q)
1 ) and the non-analytic part of the amplitude.

This is a fairly simple procedure and in this appendix we will only quote the result for the

L independent contributions.

Determining the form of the functions j
(p,q)
1 was a major part of [4]. At low orders in

the expansion j
(p,q)
1 is simply a linear combination of SL(2) Eisenstein series Es and one

can apply the results of appendix C, giving s manifest SO(d, d) invariance

I
(d)
1 (Es) =

2ζ(2s)Γ(s + d
2 − 1)

πs+ d
2
−1

E
SO(d,d)

[1,0d−1];s+ d
2
−1

+ V(d)

∫

FSL(2,Z)

d2τ

τ2
2

Es(τ) . (D.2)

The last term is divergent for ℜe(s) > 1 but can be regularised by cutting off the fun-

damental domain at τ2 = L, where L ≫ 1, as in [33]. As mentioned above, terms that

diverge as positive powers of L can be dropped since they cancel with contributions from

nonanalytic terms in the amplitude, which we are not considering here. The only real

concern might have been log L terms, which arise at poles in s – but these are regularised

by subtracting them. For ℜe(s) ∈]0, 1[ the integral of Es converges, and since this function

is an eigenfunction of the SL(2) Laplacian in (B.39) we deduce that

∫

FSL(2,Z)

d2τ

τ2
2

Es(τ) = 0, for ℜe(s) ∈]0, 1[ . (D.3)

By analytic continuation we set to zero the value of this integral for all values of s different

from s = 0 and s = 1 so that

I
(d)
1 (Es) =

2ζ(2s)Γ(s + d
2 − 1)

πs+ d
2
−1

E
SO(d,d)

[1,0d−1];s+ d
2
−1

. (D.4)

16This notation identifies j
(p,q)
1 with j(p,q) introduced in the h = 1 case in [4].
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Substituting s = 0 in the expansion of the SO(d, d) series (C.7), and using the fact that

E
SL(d)
[10···0];s=0 = E

SL(d)
[0···01];s=0 = −1 and that the volume of the fundamental domain for SL(2, Z)

is π/3 we find that

I
(d)
1 (1) =

Γ(d
2)

π
d
2

E
SO(d,d)

[1,0d−1]; d
2
−1

=
V(d)

π

(

4ζ(2) + V
− 2

d
d

Γ(d
2 − 1)

π
d
2

E
SL(d)

[0d−2,1]; d
2
−1

+ O(e−gij )

)

.

(D.5)

We will now consider the d = 2 and the d = 3 cases in more detail.

D.1 The genus-one amplitude on a two-torus

For the special case with d = 2 an application of the method of orbits of appendix A,

together with the regularisation by analytic continuation described above, gives

I
(2)
1 (Es) =

∫

FSL(2,Z)

d2τ

τ2
2

Es(τ) Γ(2,2) =
Γ(s)

πs
Es(T )Es(U) , (D.6)

where T and U are respectively the Kähler and complex structure of the T 2 of compact-

ification. This leads to the following expressions for the one-loop contributions to the

higher-derivative interactions.

• The coefficient of the R4 interaction [4] is given by the lowest order term in the ex-

pansion of the genus-one diagram, which has j
(0,0)
1 = 1. Setting s = ǫ and considering

the small ǫ expansion of (D.6) gives

I
(2)
1 (Eǫ) =

∫

FSL(2,Z)

d2τ

τ2
2

Eǫ(τ)Γ(2,2) =
1

ǫ
− 1

π
(Ê1(T ) + Ê1(U) + log µ) + o(ǫ) (D.7)

where the hat notation again denotes the subtraction of the pole part of Es and

log µ = π(γE − 4 log(2) − 3 log(π)). The 1/ǫ-pole corresponds to the ultraviolet

divergence of the one-loop supergravity amplitude. This pole cancels against an

equivalent non-analytic contribution in the genus-one amplitude [4]. The same finite

expression is obtained by decompactifying the analytic D = 7 R4 coefficient shown

in (D.18). Therefore, the analytic contribution is given by

I
(2)
1 (j

(0,0)
1 ) =

1

π
(Ê1(T ) + Ê1(U) + log µ) , (D.8)

The log µ term is interpreted as the scale of the massless threshold contribution,

R4 log(−ℓ2
s s), to the nonanalytic part of the amplitude in eight dimensions.

• The ∂4R4 coefficient is determined by the function j
(1,0)
2 = E2(τ)/(4π)2 [4,33], which

gives

I
(2)
1 (j

(1,0)
2 ) =

1

16π4
E2(T )E2(U) . (D.9)

• The genus-one contribution to the ∂6R4 coefficient [4] is determined by the function

j
(0,1)
1 = 10E3(τ)/(4π)3 + ζ(3)/32, resulting in

I
(2)
1 (j

(0,1)
1 ) =

10

32π6
E3(T )E3(U) +

ζ(3)

32π
(Ê1(T ) + Ê1(U) + log µ) . (D.10)

– 64 –



The log µ term contributes to the massless threshold contribution, ℓ6
ss

3R4 log(−ℓ2
s s), to

the amplitude in eight dimensions.

D.2 The genus-one amplitude on a three-torus

In this section we evaluate the genus one contributions to the R4, ∂4R4 and ∂6R4 interac-

tions for the special case of a three-torus compactification d = 3.

By definition of the SO(d, d) Eisenstein series in section C.1 the one-loop integral of

the three-dimensional torus gives

I
(3)
1 (Es) =

2ζ(2s)Γ(s + 1
2)

πs+ 1
2

E
SO(3,3)

[100];s+ 1
2

. (D.11)

For ℜe(s) large this integral would divergence for large-τ2 and it needs to be regulated

either by subtracting the term proportional to the volume as in (C.2) or equivalently by

using the analytic continuation in s as above. Applying (D.4) to the d = 3 case and using

the relation (C.8) between the SO(3, 3) and SL(4) series, I
(3)
1 (Es) can be expressed in

terms of SL(4) series,

I
(3)
1 (Es) =

2Γ(s + 1
2)

πs+ 1
2

E
SL(4)

[010];s+ 1
2

. (D.12)

• The R4 interaction [4, 33] is given by the lowest order term in the expansion of the

genus-one diagram, which has j
(0,0)
1 = 1. Applying the result in (D.5) to the case

d = 3 and comparing to the expansion of the SL(4) series into SL(3) series given

in (B.12) gives

I
(3)
1 (1) = E

SO(3,3)

[100]; 1
2

= 2E
SL(4)

[010]; 1
2

=
2

π
E

SL(4)
[100];1 (D.13)

where we have made use of the relation π E
SL(4)

[010]; 1
2

= E
SL(4)
[100];1 derived in appendix B.

• For the ∂4R4 interaction [4, 33] the function j
(1,0)
2 = E2(τ)/(4π)2 which gives

I
(3)
1 (j

(1,0)
1 ) =

ζ(4)

960
E

SO(3,3)

[100]; 5
2

=
1

960
E

SL(4)

[010]; 5
2

(D.14)

• For the ∂6R4 interaction [4] the contribution to the analytic part of the interaction

is given by the function j
(0,1)
1 = 10E3(τ)/(4π)3 + ζ(3)/32, resulting in

I
(3)
1 (j

(0,1)
1 ) =

25ζ(6)

8!
E

SO(3,3)

[100]; 7
2

+
ζ(3)

32
E

SO(3,3)

[100]; 1
2

=
25

8!
E

SL(4)

[010]; 7
2

+
ζ(3)

16π
E

SL(4)
[100];1 .

(D.15)

Upon decompactification, r3 → ∞, the results of the previous section must be recov-

ered. This is the limit corresponding to the constant term of the SO(3, 3) Eisenstein series
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on the parabolic subgroup obtained by deleting the node α1 in Dynkin diagram represented

in figure 1(ii),

∫

Pα1

I
(3)
1 (Es) = r3 I

(2)
1 (Es) + 4r1+2s

3

ζ(2s)ζ(2s + 1)Γ
(

s + 1
2

)

πs+ 1
2

+ r3−2s
3

ζ(2s − 2)ζ(2s − 1)Γ(2s − 2)

22s−5πs−2Γ(s)
.

(D.16)

Equivalently, using the SL(4) representation, this expression corresponds to the parabolic

P (2, 2) obtained by deleting the node α2. The constant term of the SL(4) series E
SL(4)
[100];s

on the parabolic subgroup P (2, 2) is given by

∫

P (2,2)
E

SL(4)
[100];s = rs

3 Es(T ) + r2−s
3 π2s−2 Γ(2 − s)

Γ(s)
E2−s(U) (D.17)

The SL(4) representation makes explicit the factorized dependence on the Kähler modulus

T and the complex structure modulus U . The equivalence of the two formula is due to the

fact that SO(2, 2) = SL(2) × SL(2).

For the case of the R4 interaction in (D.13) we have

∫

Pα1

I
(3)
1 (Eǫ) = r3 (I

(2)
1 (Eǫ) −

1

ǫ
+ 2 log(r3) − log(π) − γE) + O(ǫ)

= r3 (E1+ǫ(T ) + E1−ǫ(U)) + ǫ log(r3) (E1+ǫ(T ) − E1−ǫ(U))

+ 2ǫ r3 (γE + log(π))E1−ǫ(U) + O(ǫ)

= r3

(

Ê1(T ) + Ê1(U) + 2 log(r3/π) − 2γE

)

+ O(ǫ)

(D.18)

leading to a finite answer in the decompactification limit (apart from the log r3 term which

is needed to build the correct eight-dimensional thresholds [4]). The explicit 1/ǫ pole in

the first line cancels against the 1/ǫ pole of I
(2)
1 (Eǫ) evaluated in the previous section.

E. Genus-two string integrals

In this section we consider the genus-two partition function arising from the compacti-

fication of string amplitudes on d-torus T d. The leading term in the s, t, u → 0 limit

is

I
(d)
2 (1) =

∫

FSp(2,Z)

|d3τ |2
(detℑmτ)3

Γ(d,d) . (E.1)

This integral [34,35] is over the Siegel upper half-plane for Sp(2, Z). The resulting expres-

sion is an automorphic form invariant under the T -duality group, SO(d, d; Z). The lattice

factor for a compactification on a two-torus is given by a theta series summed over the

even-lattice,

Γ(d,d) = (V (d))2
∑

(mi
a,nia)∈Z2d×Z2d

exp
(

−π(gij + bij)(m
i
a − τabn

ib)(ℑmτ−1)ac(mj
c − τcdn

jd)
)

.

(E.2)
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It was remarked in [15] that the lattice factor satisfies the differential equation17

(

∆SO(d)×SO(d)\SO(d,d) − ∆Sp(2) + d(d − 3)
)

Γ(d,d) = 0 , (E.3)

so that the integral in (E.1) satisfies the differential equation

(

∆SO(d)×SO(d)\SO(d,d) + d(d − 3)
)

I
(d)
2 (1) = 0 . (E.4)

• For d = 2 the SO(2, 2) Laplace operator is a sum of the SL(2) Laplace operators acting

on the T and the U moduli and (E.4) gives

(∆T + ∆U − 2) I
(2)
2 (1) = 0 , (E.5)

which is solved by

I
(2)
2 (1) =

1

6π
(E2(T ) + E2(U)) . (E.6)

The normalisation has been determined from the large-volume limit The normalisation is

determined by the large volume limit the integral (E.1) behaves as

lim
T2→∞

I
(2)
2 (1) =

ζ(4)

3π
T 2

2 + O(T2) , (E.7)

where we have used the value of the fundamental domain for Sp(2, Z) given in [41]

∫

FSp(2,Z)

|d3τ |2
(detℑmτ)3

=
ζ(4)

3π
. (E.8)

• For d = 3 the eigenvalue in (E.4) vanishes as expected since there two-loop supergravity

amplitude has an ultraviolet divergence in D = 7. In this case the integral in (E.1) needs

to be regulated and the finite part is given by

I
(3)
2 =

1

6π

(

Ê
SO(3,3)
[010];2 + Ê

SO(3,3)
[001];2

)

=
1

6π

(

Ê
SL(4)
[100];2 + Ê

SL(4)
[001];2

)

.

(E.9)

The normalisation has been fixed using the large-volume limit and the expansion (B.12).

• For d ≥ 4 the differential equation is not sufficient to determine the solution. The

Eisenstein series E
SO(d,d)

[0d−1,1];s
, E

SO(d,d)

[0d−2,1,0];s
associated with the nodes αd−1 and αd of the Dd

Dynkin diagram of figure 1(ii) satisfy (B.2)

∆SO(d)×SO(d)\SO(d,d)E
SO(d,d)

[0d−1,1];s
=

ds(1 − d + s)

2
E

SO(d,d)

[0d−1,1];s
, (E.10)

∆SO(d)×SO(d)\SO(d,d)E
SO(d,d)

[0d−2,1,0];s
=

ds(1 − d + s)

2
E

SO(d,d)

[0d−2,1,0];s
(E.11)

17Our normalisations for the SO(d, d) laplacian differ by a factor of 2 compared to [15].
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The series associated with the other nodes αu with 1 ≤ u ≤ d − 2 satisfy the differential

equation

∆SO(d)×SO(d)\SO(d,d)E
SO(d,d)

[0u−1,1,0d−u];s
= u s(2s − 2d + u + 1)E

SO(d,d)

[0d−1,1,0,0];s
. (E.12)

Therefore, (E.4) is satisfied by E
SO(d,d)

[0d−1,1];2
, E

SO(d,d)

[0d−2,1,0];2
, E

SO(d,d)

[0d−3,1,0,0];1
, E

SO(d,d)

[0d−3,1,0,0];d/2
for all

values of d. With other solutions for each value of d.

It would be interesting to confirm the conjecture in [15] the only solution is the sum

of E
SO(d,d)

[0d−1,1];2
, E

SO(d,d)

[0d−2,1,0];2
.

F. Integrals over Siegel fundamental domains

For genus h ≥ 4 the parametrisation of the moduli space Mh of genus h curves is given by

period matrices supplemented by the Schottky relations [42], and the integration is not over

the Siegel fundamental domains for Sp(h, Z). The quantities protected by supersymmetry,

such as the R4, ∂4 R4 and ∂6R4 interactions evaluated in the main text receive perturbative

contributions up to genus-three and are given by integrals over the Siegel fundamental

domain for Sp(h, Z).

For the case of the two-torus we consider the integral

I
(2)
h =

∫

FSp(h,Z)

|dh(h+1)
2 τ |2

(detℑmτ)h+1
Γ(2,2) . (F.1)

This integral is an automorphic function invariant under the T-duality group SO(2, 2). By

applying the SO(2, 2) Laplace operator we obtain [15]

(∆T + ∆U) I
(2)
h = h(h − 1) I

(2)
h , (F.2)

where ∆SO(2)×SO(2)\SO(2,2) = ∆T + ∆U . The large-volume limit of I
(2)
h is given by

lim
T2→∞

I
(2)
h = vol(FSp(h,Z))T h

2 , (F.3)

where vol(FSp(h,Z)) is the volume of FSp(h,Z) computed in [41]

vol(FSp(h,Z)) = 2

h
∏

k=1

ζ(2k)Γ(k)

πk
. (F.4)

With this boundary condition the solution to (F.2) is given by

I
(2)
h =

vol(FSp(h,Z))

2ζ(2h)
(Eh(T ) + Eh(U)) . (F.5)

Now consider the case of the three-torus compactification,

I
(3)
h =

∫

FSp(h,Z)

|dh(h+1)
2 τ |2

(detℑmτ)h+1
Γ(3,3) . (F.6)
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This is a SO(3, 3) automorphic function, which satisfies the differential equation derived

in [15] ,

∆SO(3)×SO(3)\SO(3,3) I
(3)
h =

3

2
h (h − 2) I

(3)
h , (F.7)

which is satisfied by I
(3)
h = aE

SO(3,3)
[010];h + bE

SO(3,3)
[001];h for any a and b. The large-volume limit

lim
V3→∞

I
(3)
h = vol(FSp(h,Z))V h

3 , (F.8)

determines the solution to be

I
(3)
h =

vol(FSp(h,Z))

2ζ(2h)

(

E
SO(3,3)
[010];h + E

SO(3,3)
[001];h

)

(F.9)

=
vol(FSp(h,Z))

2ζ(2h)

(

E
SL(4)
[100];h + E

SL(4)
[001];h

)

.

G. Supergravity loop amplitudes

G.1 One-loop amplitudes in D = 11 and the Epstein series

In this appendix the expressions for the scalar box function and the scalar triangle function

reduced on a d + 1-dimensional torus T d+1 will be evaluated. The scalar box function

arises as the coefficient of R4 in the four-graviton one-loop amplitude in eleven-dimensional

supergravity [6]. This diagram has a one-loop divergence that is subtracted by a R4

counterterm. The scalar triangle function arises from the contribution of this counterterm

as a vertex in a one-loop four-graviton amplitude, which cancels the sub-divergences of

the two-loop eleven-dimensional supergravity amplitude. and multiplies ∂4R4 [7]. These

results generalize the d = 1 discussion given in [1] to higher values of d.

The expression for the scalar box function is,

I
(D−d−1)
4 (S, T ) =

π
D−d−1

2

Vd+1

∫ ∞

Λ−2

dt

t
t

d−D+9
2

∫

TST

3
∏

r=1

dωr

∑

mI∈Zd+1

e−π t gIJmImJ+π t Q4(S,T ) ,

(G.1)

where D = 11 + 2ǫ, TST = {0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ 1}, and the function Q4(S, T ) is defined

by [7]

Q4(S, T ) = −Sω1(ω3 − ω2) − T (ω2 − ω1)(1 − ω3) , (G.2)

with an equivalent definitions for the (S,U) and (T,U) regions. The scalar triangle function

is given by

I
(D−d−1)
3 (S) =

π
D−d−1

2

Vd+1

∫ ∞

Λ−2

dt

t
t

d−D+7
2

∫

0≤ω1≤ω2≤1

2
∏

r=1

dωr

∑

mI∈Zd+1

e−π t gIJmImJ+π t Q3(S) ,

(G.3)

where the function Q3(S, T ) is defined by [7]

Q3(S, T ) = −Sω1ω2 . (G.4)
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The masses of the Kaluza–Klein states running in the loop are denoted gIJmImJ and the

volume of the d + 1-torus is Vd+1.

We will first analyze the momentum expansion of the scalar box function. This expres-

sion contains a non-analytic contribution from the massless supergravity states in (10− d)

dimensions together with analytic terms,

I
(D−d−1)
4 (S, T ) = I

(D−d−1)
4,nonan (S, T ) + Î

(D−d−1)
4 (S, T ) . (G.5)

The non-analytic part is the usual field theory contribution,

I
(D−d−1)
4,nonan (S, T ) ∼

∫

TST

3
∏

r=1

dωr (Q4(S, T ))
d−D+9

2 . (G.6)

For d = −1 this is the eleven-dimensional supergravity contribution, M4;1 ∼ (−ℓ2
11S)3/2;

for d = 0 it is the ten-dimensional supergravity contribution M
(10)
4;1 ∼ S log(−ℓ2

11 S); for

d = 1 it is the nine-dimensional contribution M
(9)
4;1 ∼ (−ℓ2

11 S)−1/2, with an extra power

of S−1/2 for each extra compact dimension. A detailed discussion of the relation between

these various expressions obtained by decompactifying successively from d = 1 to d = 0

and d = −1 is given in [6, 7, 18].

It is convenient to separate the zero-momentum part of the analytic part of the am-

plitude

I
(D−d−1)
4 (S, T ) = I

(D−d−1)
4 (0, 0) + Ĩ

(D−d−1)
4 (S, T ) . (G.7)

In order to isolate the divergences one must perform a Poisson resummation over the

Kaluza–Klein modes mI in I
(D−d−1)
4 (0, 0) [6, 7]. Evaluating this integral with D = 11 and

a momentum cut-off Λ gives

I
(10−d)
4 (0, 0) = π

10−d
2

∫ Λ2

0
dt̂ t̂

1
2

∑

{m̂}∈Zd+1

e−πt̂ gIJm̂Im̂J

= π
10−d

2 Λ3 +
π

10−d
2

2πV
3

d+1

d+1

E
SL(d+1)

[1,0d−1]; 3
2

,

(G.8)

where gIJ = V2/d
d g̃IJ is the metric of the d-torus and det g̃IJ = 1. The ultra-violet diver-

gence is now localised in the zero winding sector m̂I = 0. The finite part is the contribution

from the non zero winding, which is invariant under large diffeomorphisms, described by

the action of SL(d+1, Z) on the d+1 -dimensional torus and is proportional to the Epstein

series, E
SL(d+1)

[1,0d−1];(D−8)/2
. The same integral evaluated in dimension D = 11 + 2ǫ gives

I
(10−d+2ǫ)
4 (0, 0) = π

10−d
2

+ǫ

∫ ∞

0
dt̂ t̂

1
2
+ǫ

∑

{m̂}∈Zd+1

e−πt̂ gIJm̂Im̂J

= π
10−d

2
1

V
3+2ǫ
d+1

d+1

Γ(3
2 + ǫ)

π
3
2

E
SL(d+1)

[1,0d−1]; 3
2
+ǫ

.

(G.9)
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The higher-order terms in the expansion in powers of the external momenta give

Ĩ
(D−d−1)
4 (S, T ) = 2

∑

n≥1

(V
2

d+1

d+1 )n−
D−d−1

2
Gn

ST

n!

Γ
(

d−D+9
2 + n

)

πd+5+n−D
E

SL(d+1)

[0d−1,1]; d−D+9
2

+n
, (G.10)

where

Gn
ST ≡

∫

TST

3
∏

r=1

dωr (Q4)
n . (G.11)

Similarly, the triangle diagram will be written as the sum of analytic and non-analytic

terms,

I
(D−d−1)
3 (S) = I

(D−d−1)
3,nonan (S) + Î

(D−d−1)
3 (S) , (G.12)

where

I
(D−d−1)
3,nonan (S) ∼

∫

0≤ω1≤ω2≤1

2
∏

r=1

dωr (Q3(S))
d−D+7

2 , (G.13)

and the analytic part will be separated into a zero-momentum part and a momentum-

dependent part,

Î
(11−d)
3 (S) = Î

(11−d)
3 (0) + Ĩ

(11−d)
3 (S) . (G.14)

The zero-momentum part is given by

I
(10−d)
3 (0) = π

10−d
2

∫ Λ2

0
dt̂ t̂

3
2

∑

{m̂}∈Zd+1

e−πt̂ GIJm̂Im̂J

= π
10−d

2 Λ5 + π
10−d

2
1

V
5

d+1

d+1

3

(2π)2
E

SL(d+1)

[1,0d−1]; 5
2

.

(G.15)

The momentum expansion of Ĩ
(D−d+1)
3 (S) is given by

Ĩ
(D−d+1)
3 (S) = 2

∑

n≥1

(V
2

d+1

d+1 )n−
D−6

2
Sn

n!

Γ
(

d−D+7
2 + n

)

π3+d+n−D
E

SL(d+1)

[0d−1,1]; d−D+7
2

+n
, (G.16)

where

Sn ≡
∫

0≤ω1≤ω2≤1

2
∏

r=1

dωr (Q3)
n . (G.17)

G.2 Two-loop amplitudes in D = 11 and Eisenstein series

The finite part of the L = 2 four-graviton amplitude in eleven-dimensional supergravity

compactified on T d will be evaluated in this appendix. The leading term in the low-energy

limit has the form [22] (s2 + t2 + u2) IL=2. Following [7] IL=2 can be rewritten in the form

of a genus-one string theory amplitude, which has the low energy limit

I
(11−d)
2 =

∫ Λ2

0
dV V 3

∫

FΛ

d2τ

τ2
2

∑

(mi,ni)∈Zd×Zd

e
−V V

2
d
d

π
τ2

gij(mi−τni)(mj−τ̄nj)
, (G.18)
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where FΛ = {τ = τ1 + iτ2| − 1/2 ≤ τ1 ≤ 1/2, |τ1|2 + |τ2|2 ≥ Λ2}. Using the method of

orbits this integral has three kinds of pieces [7]

I
(11−d)
2 = Λ8I(0) + Λ5 I(1) + Ifin . (G.19)

We are interested in the finite part of the integral, which can be evaluated by the method

of orbits as detailed in appendix A and is given by

Ifin = 2

∫ ∞

0
dV V 3

∫

C+

d2τ

τ2
2

∑

1≤k≤d−1
[M0,k]

e
−V V

2
d
d

π
τ2

gij(mi−τni)(mj−τ̄nj)

=
2

V
2
d
d

∑

1≤k≤d−1
[M0,k]

1√
detM

∫ ∞

0
dV V 2 e−2πV V

2
d
d

√
detM

=
1

2π3 V
8
d
d

∑

1≤k≤d−1
[M0,k]

1

(detM)2
=

1

2π3 V
8
d
d

E
SL(d)

[0,1,0d−3];2
, (G.20)

where the sum is over the representatives M0,k in (A.9) and the matrix M is defined

in (B.18).

H. Laplacians on K\G manifolds

In the next subsection we will discuss the Laplace operator on some of the cosets of explicit

relevance to the discussions in the text. In the subsequent subsection we will use an iterative

method to relate the Laplace operator and its eigenvalues for different values of D, which

leads to equations (6.2)-(6.4).

H.1 Explicit examples for D = 8, 9, 10

These cosets are parameterised by scalar (moduli) fields. These scalars enter in the super-

gravity in the form of a sigma model with action

Sscalar =
1

ℓD−2
D

∫

dDx
√

−G(D) hij(σ) ∂µσi∂µσj , (H.1)

and the associated Laplace operator is given by

∆σ =
1

√

h(σ)
∂σi

(
√

h(σ) hij∂σj

)

. (H.2)

The explicit expressions for these Laplacians in terms of our choice of fields in the Einstein

frame in various dimensions is as follows.

• The scalar field action of D = 10 type IIB is

Sscalar
10d =

1

2ℓ8
10

∫

d10x
√

−G(10)
∂µΩ∂µΩ

Ω2
2

. (H.3)
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The SL(2, R) symmetry acts on the complexified coupling constant Ω, and the SO(2)\SL(2)

Laplacian is defined as

∆Ω ≡ 4Ω2
2 ∂Ω∂̄Ω̄ = Ω2

2 (∂2
Ω1

+ ∂2
Ω2

) . (H.4)

Note that our normalisation conventions are such that the Eisenstein series Es(Ω) has

eigenvalue s(s − 1).

• The nine-dimensional scalar field action with GL(2, R) = SL(2, R) × R+ invariance is

Sscalar
D=9 =

1

ℓ7
9

∫

d9x
√

−G(9)

(

2

7
∂µ log ν1∂

µ log ν1 −
1

2

∂µΩ∂µΩ̄

Ω2
2

)

. (H.5)

Here the SL(2, R) symmetry acts on Ω and R+ acts as a shift on log ν1 → log ν1 + λ. The

Laplace operator acting on scalars in D = 9 is

∆(9) ≡ ∆Ω +
7

4
ν1∂ν1(ν1∂ν1) +

1

2
ν1∂ν1 . (H.6)

• In eight dimensions the U-duality group is SO(3)\SL(3, R) × SO(2)\SL(2, R) where

SL(3, R) acts on Ω, the eight-dimensional volume ν2, and the combination of Ramond–

Ramond and Neveu–Schwarz—Neveu–Schwarz B-fields, B = BRR + ΩBNS. The SL(2, R)

group acts on the complex structure U . The SO(3)\SL(3) laplacian is given by [11]

∆SO(3)\SL(3) = 4Ω2
2∂Ω∂̄Ω̄ +

|∂BNS
− Ω∂BRR

|2
ν2Ω2

+ 3∂ν2(ν
2
2∂ν2) . (H.7)

The full Laplacian for the eight-dimensional theory is the sum of the SO(3)\SL(3) and the

SO(2)\SL(2) Laplacians,

∆(8) ≡ ∆SO(3)\SL(3)+∆SO(2)\SL(2) = 4U2
2 ∂U ∂̄Ū+4Ω2

2∂Ω∂̄Ω̄+
|∂BNS

− Ω∂BRR
|2

ν2Ω2
+3∂ν2(ν

2
2∂ν2) .

(H.8)

H.2 Connections between Laplace equations in different dimensions.

In this appendix we will give a derivation of (6.2)-(6.4). We will take the dimensionless

radius of the (d+1)’th dimension on the string theory torus to be large, i.e., large rd+1/ℓs.

This corresponds to deleting the last node of the Dynkin diagram in fig. 1(i) for the group

Gd = Ed+1(d+1), which reduces its rank. In this limit the Laplace operator, ∆(D) ≡ ∆Gd

decomposes as (where d = 10 − D)

∆(D) → ∆(D+1) − aD(rd∂rd
)2 − bD(rd∂rd

) , (H.9)

where aD and bD are numerical coefficients whose determination is discussed below. In the

decompactification limit

ℓD−1
D+1 = ℓD−2

D rd . (H.10)

We will now determine the Laplace equations, (6.2)-(6.4), by a recursive method, as

follows. Given a modular function E(D)
(p,q) in dimension D, the modular function E(D+1)

(p,q) in

D + 1 dimensions can be obtained via the relation

ℓ8+2k−D
D

∫

dDx
√

−G(D) E(D)
(p,q) ∂2kR4 = ℓ7+2k−D

D+1

∫

dDx
√

−G(D) (rdE(D+1)
(p,q) + · · · )∂2kR4 ,

(H.11)
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where k = 2p + 3q and the ellipsis “. . . ” stands for the terms that either grow faster than

rd or vanish in the limit rd → ∞. As we have seen in the examples in the body of the

paper the divergent terms contribute to the threshold behaviour, and not to the analytic

part of the D + 1 dimensional amplitude. They can therefore be ignored. Therefore,

the rd dependence in (H.11) is completely determined by the requirement that the term

decompactifies to D + 1,

E(D)
(p,q) =

(

rd

ℓD+1

)
4p+6(q+1)

D−2

(E(D+1)
(p,q) + · · · ) . (H.12)

The formula (H.9) then establishes a recursive relationship between the eigenvalues λ
(D)
(p,q):

knowing the eigenvalues in ten dimensions, one can derive the eigenvalues in all lower

dimensions.

The direct determination of the numerical coefficients aD and bD in low dimensions is

complicated, due to the complicated structure of the Laplace operator. However, a simple

way to find them is by using as input the eigenvalues for the R4 and ∂4R4 interactions in D

and D+1 dimensions where they are known. Then the eigenvalue for the ∂6R4 interaction

is a prediction. It is actually sufficient to determine aD and bD in 7 ≤ D ≤ 9. We find

(a7, b7) = (− 5

12
,
5

2
) , (a8, b8) = (−3

7
,
9

7
) , (a9, b9) = (− 7

16
,
1

4
) . (H.13)

With this information one can consider the ansatz

λ
(D)
(p,q) =

A(p,q)(B(p,q) − D)(D − C(p,q))

D − 2
. (H.14)

The (D-independent) coefficients A(p,q), B(p,q), C(p,q) are determined by substituting the

relation (H.12) between the coefficients into the Laplace equation satisfied by E(D)
(p,q). It

follows that, for 7 ≤ D ≤ 9,

λ
(D)
(p,q) = λ

(D+1)
(p,q) − aD

(4p + 6(q + 1))2

(D − 2)2
− bD

4p + 6(q + 1)

D − 2
. (H.15)

For the three cases under consideration

λ
(D)
(0,0) =

3(11 − D)(D − 8)

D − 2
, (H.16)

λ
(D)
(1,0) =

5(12 − D)(D − 7)

D − 2
, (H.17)

λ
(D)
(0,1) =

6(14 − D)(D − 6)

D − 2
. (H.18)

Assuming that (H.15) holds for (p, q) = (0, 0) and (p, q) = (1, 0) in any generic dimension

3 ≤ D ≤ 10, one can determine aD and bD

aD = − D − 2

2(D − 1)
, bD = −D2 − 3D − 58

2(D − 1)
. (H.19)

– 74 –



As a check that this extrapolation to arbitrary dimensions 3 ≤ D ≤ 10 makes sense,

one verifies that (H.19) also solves (H.15) for (p, q) = (0, 1). Another check is that (H.16)–

(H.18) (or, equivalently, (H.15) with (H.19) and 0 ≤ 2p+3q ≤ 3) give the correct eigenvalues

in six dimensions. Since the information about the D = 6 eigenvalues was not used at all,

this is a non-trivial check.

Summarizing, the basic rule behind the above derivation is the requirement that a

modular function in D dimensions decompactifies to a finite term in D + 1 dimensions.

This determines the rd dependence, and hence the shift in the eigenvalues. Since this rule

applies equally to the 3 ≤ D < 6 modular functions, we expect that in these dimensions

the modular functions for the interactions R4, ∂4R4 and ∂6R4 satisfy the differential

equations (6.2)–(6.4). It should be noted that the source term in (6.4) is also determined

by the decompactification procedure since E(D)
(0,0) decompactifies appropriately.

I. Determination of E (8)
(0,1).

We will here solve the inhomogeneous Laplace equations that define the coefficients of

the ∂6R4 interactions in D = 8 dimensions. In each case we will find a unique solution

satisfying certain boundary conditions obtained from string perturbation theory.

We wish to solve (5.9),

∆(8) E(8)
(0,1) = 12 E(8)

(0,1) − (E(8)
(0,0))

2 . (I.1)

The general form of the solution is the sum of a particular solution and a solution of the

homogeneous equation. The homogeneous equation (∆(8)−12)F = 0 has one solution that

is compatible with string perturbation theory,

f− 3
2
,3 = E

SL(3)

[10];− 3
2

E3(U) . (I.2)

There are other solutions, such as E
SL(3)
[10];s with s± = 3/4(1 ±

√
17) and E4(U). However,

none of these solutions is compatible with string perturbation theory. Therefore

E(8)
(0,1) = α− 3

2
,3 E

SL(3)

[10];− 3
2

E3(U) + P (I.3)

where the particular solution P can be expressed by separation of variables as

P = ASL(3) + BSL(2)(U) + CSL(3) DSL(2)(U) (I.4)

where ASL(3) and CSL(3) are SL(3, Z) automorphic functions and BSL(2)(U) and DSL(2)(U)

are SL(2, Z)-invariant functions of U . By expanding the source term, each piece is found

to satisfy the following equations

(∆SO(3)\SL(3) − 12)ASL(3) = − (Ê
SL(3)

[10]; 3
2

)2 , (I.5)

(∆SO(2)\SL(2) − 12)BSL(2)(U) = −4 (Ê1(U))2 , (I.6)

(∆SO(3)\SL(3)×SO(2)\SL(2) − 12)CSL(3)DSL(2)(U) = −4 Ê
SL(3)

[10]; 3
2

Ê1(U) . (I.7)
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The SL(3, Z) functions can be expanded using the variables (ν2,Ω) with an explicit SL(2, Z)

invariance acting on Ω or using the variables (y8, T ) with an explicit SL(2, Z) symmetry

acting on T . The T-duality group in eight dimensions is SO(2, 2) = SL(2)×SL(2), where

the SL(2) factors act on T and U respectively. This ensures that the perturbative answer

is symmetric under exchange T ↔ U .

The first differential equation in (I.5) defines an SL(3, Z) invariant function

ASL(3) ≡ ESL(3)
(0,1) . (I.8)

The SL(3) functions will be written as functions of the (y8, T ) variables, in terms of which

the SO(3)\SL(3) Laplacian takes the form

∆SO(3)\SL(3) ∼ T 2
2 (∂2

T1
+ ∂2

T2
) + 3∂y8(y

2
8∂y8) . (I.9)

Using the expansion given in (B.55) for Ê
SL(3)
[10];3/2, one can determine the perturbative ex-

pansion of ESL(3)
(0,1) . The ansatz

∫ 1
2

− 1
2

dΩ1dBRR ESL(3)
(0,1) =

a0

y2
8

+
1

y8
(A1(T ) + a1 log(y8)) + A2(T, y8)

+
∑

n≥3

An(T )yn−2
8 ,

(I.10)

leads to

a0 =
2ζ(3)2

3
, a1 =

2π

9
ζ(3) , (I.11)

and the set of equations

(∆T − 12)A1(T ) = −8ζ(3) Ê1(T ) +
2π

3
ζ(3) , (I.12)

(∆T + 3∂y8(y
2
8∂y8) − 12)A2(T, y8) = −(2Ê1(T ) +

2π

3
log(y8))

2 , (I.13)

(∆T − 6)A3(T ) = 0 , (I.14)

(∆T − 3(2 + 3n − n2))An(T ) = 0; n ≥ 4 , (I.15)

with ∆T = T 2
2 (∂2

T1
+ ∂2

T2
).

• Equation (I.12) gives the genus-one contribution. Because the source term is lin-

ear (I.12) is solved by

A1(T ) = a′1 E4(T ) +
2

3
ζ(3) Ê1(T ) . (I.16)

An explicit evaluation of the genus-one contribution in (D.10) shows that a′1 = 0.

• Equation (I.13) is solved by

A2(T, y8) = a′2 E4(T ) + f(T ) +
7π2

216
+

π

18
Ê1(T )

+

(

π2

27
+

2π

9
Ê1(T )

)

log(y8) +
π2

27
log(y8)

2 , (I.17)
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where f(T ) is the particular solution to

(∆T − 12) f(T ) = −4 Ê2
1(T ) . (I.18)

This is the same as the equation for BSL(2)(U) in (I.6) as is required by T-duality

at genus-two. The structure of this equation is similar to that of E(10)
(0,0). This is

complicated to solve explicitly, but it is straightforward to determine the power-

behaved terms in the large-T2 expansion, as given in [13],

f(T ) =
ζ(2)

180

(

65 − 20πT2 + 48π2T 2
2

)

+
ζ(3)ζ(5)

6πT 3
2

− ζ(2)

3
log T2 (4πT2 − 6 log T2 + 1) + O(e−T2) .

(I.19)

Since there cannot be a T 4
2 contribution to the genus-two ∂6R4 we conclude that

a′2 = 0.

• Equation (I.14) is solved by A3(T ) = α3 E3(T ).

• Equation (I.15) has solutions A(T ) = bEs(T ) where s is not real. Therefore they do

not fit with string perturbation theory, so we must set b = 0, which is compatible

with the absence of contributions beyond genus-three.

The perturbative expansion for ESL(3)
(0,1) therefore has the form

∫ 1
2

− 1
2

dΩ1dBRR ESL(3)
(0,1) =

2

3

ζ(3)2

y2
8

+
2ζ(3)

9

1

y8

(

3Ê1(T ) + π log(y8)
)

+ A2(T, y8) + α3 y8 E3(T ) .

(I.20)

By considering the powers of y8 in (I.6) and (I.7) we see that (I.7) has genus-one and

genus-two contributions,

∫ 1
2

− 1
2

dΩ1dBRR CSL(3)DSL(2)(U) =
h1(T,U)

y8
+ h2(T,U, y8) , (I.21)

where

(∆T + ∆U − 12)h1(T,U) = −8ζ(3) Ê1(U) , (I.22)

(∆T + ∆U + 3∂y8(y
2
8∂y8) − 12)h2(T,U, y8) = −8 Ê1(T )Ê1(U) − 8π

3
Ê1(T ) log(y8) . (I.23)

These equations are solved by

h1(T,U) = ĥ1(T,U) +
2

3
ζ(3)Ê1(U) +

π

18
ζ(3) , (I.24)

h2(T,U, y8) = ĥ2(T,U) +
2

3
Ê1(T )Ê1(U) +

π

9
Ê1(U) +

π

18
Ê1(T )

+
2π

9
Ê1(U) log(y8) +

π2

54
log(y8) +

π2

54
, (I.25)
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where

(∆T + ∆U − 12) ĥi(T,U) = 0, i = 1, 2 . (I.26)

The only solution to this equation which is symmetric under T ↔ U , and that can a priori

be compatible with the decompactification limit has the form

ĥi(T,U) = βi E3(T )E3(U) .

General solutions with eigenvalue equal to 12 of the form Es1(U)Es2(T ) + Es2(U)Es1(T )

would have non-rational values of s1, s2 and thus would lead to non-rational powers of

r2 in the decompactification limit. On the other hand, a possible solution proportional to

E4(U) + E4(T ) is ruled out for the reasons explained above.

Finally, the perturbative contributions from the homogeneous solution (I.2) are

∫ 1
2

− 1
2

dΩ1dBRR E
SL(3)

[10];− 3
2

E3(U) =
3

2π5

(

y−1
8 E3(T ) + πζ(4)y8

)

E3(U). (I.27)

This expression contains genus-one and genus-three terms.

Collecting the perturbative contributions to E(8)
(0,1) we have

∫ 1
2

− 1
2

dΩ1dBRRE(8)
(0,1) =

f0

y2
8

+
f1

y8
+ f2 + y8 f3 , (I.28)

with

f0 =
2

3
ζ(3)2 , (I.29)

f1 = (α− 3
2
,3

3

2π5
+ β1) E3(T )E3(U) +

2

3
ζ(3) (Ê1(T ) + Ê1(U)) (I.30)

+
2πζ(3)

9
log(y8) +

π

18
ζ(3) ,

f2 =
2

3
Ê1(T ) Ê1(U) + f(T ) + f(U) + β2E3(T )E3(U) (I.31)

+
11π2

216
+

π

9
(Ê1(T ) + Ê1(U))

+
π

18

(

π + 4Ê1(T ) + 4Ê1(U)
)

log(y8) +
π2

27
log(y8)

2 ,

f3 =
α− 3

2
,3

60
E3(U) + α3 E3(T ) . (I.32)

Strikingly, after combining the different log contributions the final result containing log

parts is symmetric under the exchange of U -T variables.

Symmetry under the T ↔ U also determines the relation

α− 3
2
,3 = 60α3 . (I.33)

Decompactification to ten dimensions and the value of the genus-three coefficient found

in [10] fixes

α3 =
2

27
. (I.34)
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Comparison with the genus-one computation in (D.10) fixes

α− 3
2
,3 +

2π5

3
β1 =

40

9
, (I.35)

which implies that β1 = 0. The large volume limit of the genus-two contribution fixes

β2 = 0. Thus we find

f0 =
2

3
ζ(3)2 , (I.36)

f1 =
20

3π5
E3(T )E3(U) +

2

3
ζ(3) (Ê1(T ) + Ê1(U)) +

2πζ(3)

9
log(y8) +

π

18
ζ(3) , (I.37)

f2 =
2

3
Ê1(T ) Ê1(U) + f(T ) + f(U) +

π

9
(Ê1(T ) + Ê1(U)) (I.38)

+
π

18

(

π + 4Ê1(T ) + 4Ê1(U)
)

log(y8) +
2ζ(2)

9
log(y8)

2 +
11ζ(2)

36
,

f3 =
2

27
(E3(U) + E3(T )) . (I.39)

Finally, the SL(3, Z)×SL(2, Z) invariant expression for CSL(3)DSL(2)(U) that solves (I.7)

and has the above perturbative expansion is given by

CSL(3)DSL(2)(U) =
1

3
Ê

SL(3)

[10]; 3
2

Ê1(U) +
π

36
Ê

SL(3)

[10]; 3
2

+
π

9
Ê1(U) +

ζ(2)

9
.

This has terms that were not present in [13], that originate from the regularisation of the

source term.

The complete form of the solution is given by

E(8)
(0,1) = ESL(3)

(0,1) +
40

9
E

SL(3)

[10];− 3
2

E3(U) +
1

3
Ê

SL(3)

[10]; 3
2

Ê1(U) + f(U)

+
π

36
(Ê

SL(3)

[10]; 3
2

+ 4Ê1(U)) +
ζ(2)

9
.

(I.40)
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