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ABSTRACT: This paper explores the moduli-dependent coefficients of higher derivative
interactions that appear in the low-energy expansion of the four-supergraviton amplitude
of maximally supersymmetric string theory compactified on a d-torus. These automorphic
functions are determined for terms up to order 9°R* and various values of d by imposing
a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or
without source terms, whose solutions are given in terms of Eisenstein series, or more
general automorphic functions, for certain parabolic subgroups of the relevant U-duality
groups. The ultraviolet divergences of the corresponding supergravity field theory limits
are encoded in various logarithms, although the string theory expressions are finite. This
analysis includes intriguing representations of SL(d) and SO(d, d) Eisenstein series in terms
of toroidally compactified one and two-loop string and supergravity amplitudes.
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1. Introduction

In this paper we will pursue a programme of elucidating exact properties of the four-
supergraviton scattering amplitude! in the low energy expansion of string theory compact-
ified from 10 to D = 10 — d dimensions on a d-torus, 7¢. Although this is a very small
corner of M-theory it is one in which precise statements can be made. In particular, the
combination of maximal supersymmetry and U-duality is very constraining [2]. The low
energy expansion of the scattering amplitude in D-dimensional space-time has the general
form

Ap(s,t,u) = ADWI (s 1 ) + AT (st u) (1.1)

where we have separated analytic and nonanalytic functions of the Mandelstam invariants,
s,tand u (s = —(k1 + k)%, t = —(k1 +k4)?, u = — (k1 +k3)? and s+t +u = 0). Although
it is not obvious that such a separation can be made in a useful manner to all orders in the
low energy expansion, it is sensible and useful at the orders to be considered in this paper.
The analytic part of the amplitude has the expansion (in the Einstein frame)

4 (e e} (e}

ytic _ (D) R (D) 4

AR = €57 (M) ot YN €y Mi\c) o5 0§ RY, (1.2)
p=0 q=0

which is the general symmetric polynomial in the Mandelstam invariants, which enter in

the dimensionless combinations

€2n

on = (s"+t"+u") 4% , (1.3)
where /p is the Planck length in D dimensions. The factor of R* in (1.2) indicates the
contraction of four powers of the Riemann curvature tensors linearised around flat space
and contracted with a standard sixteen-index tensor, tgtg [3]. The coefficient functions
are necessarily automorphic functions that are invariant under the D-dimensional duality
group, G4(Z), appropriate to compactification on a d = (10 — D)-torus. These groups are
listed in table 1. They are functions of the symmetric space, M\, defined by the moduli,
or the scalar fields, of the coset space K\G. It is often convenient to express the analytic

part of the amplitude in terms of a local one-particle irreducible effective action.
Although this paper will be concerned almost entirely with the analytic part of (1.1),
Acnalytic it is important to consider its relationship to the nonanalytic part, A”°"%"  This
part of the amplitude contains the information about the massless thresholds that arise
in perturbation theory and contribute to the nonlocal part of the effective action. Such
contributions include the threshold structure of supergravity scattering amplitudes, and
depend on the space-time dimension, D, in a sensitive manner. At sufficiently high values
of D, a L-loop perturbative contribution in supergravity has ultraviolet divergences that are
power-behaved in a momentum cut-off, A. Such divergences are absent in string theory and
the dependence on a power of A is replaced by a finite analytic term with a corresponding

'The term “supergraviton” refers to the supermultiplet of 256 massless states. The dependence on the
helicities of these states arises in the amplitude through a generalised curvature, R [1].



D | Ga®) = Egpraen)(®) K Ga(Z)
10A GL(L,R) 1 1
10B SL(2,R) S0(2) SL(2,7)

9 GL(2,R) S0(2) SL(2,7)

8 | SL(3,R)x SL(2,R) | SO(3) x SO(2) | SL(3,Z) x SL(2,Z)
7 SL(5,R) SO(5) SL(5,7)

6 50(5 5,R) SO(5) x SO(5) SO(5,5,7)

5 ©)(R) USp(8) Eg6)(Z)

4 7) (R) SU(8)/Z Er(7)(Z)

3  (R) SO(16) Eys)(Z)

Table 1: The duality groups of maximal supergravity in D = 10 —d < 10 dimensions. The groups
Ga(R) = Ey(q)(R) are the real split forms of rank d+1 and K are the maximal compact subgroups.
In string theory these groups are broken to the discrete subgroups, G4(Z) as indicated in the last
column.

As D is decreased it reaches a critical

power of /71, where /4 is the string length scale.

value at which supergravity develops a logarithmic ultraviolet divergence. Introducing
a momentum cutoff now produces a nonanalytic factor of the schematic form A7"" ~
R* s* log(—s/A?), which is replaced in string theory by

A RASF log(—2 ), (1.4)

where p is a dimensionless scale, which is independent of the moduli and may be determined
by a detailed string loop calculation. This expression is merely illustrative — the detailed
dependence on the Mandelstam variables and pattern of logarithms is more complicated.
For a discussion of such effects in the expansion of the genus-one contribution see [4]. Of
course, there is some ambiguity in how such constant terms are assigned to the analytic and
non-analytic pieces since  may be changed to yu/ji by adding R*s* log fi to the analytic
term. In the subsequent discussions in this paper our convention will be to associate
all such moduli-independent logarithms with the scale of non-analytic s* log(—¢2 u/fi s)
contributions to the amplitude. Furthermore, we will not discuss the precise values of the
constant scales such as p, which can be determined by explicit string perturbation theory
computations, such as that carried out at genus-one in [4]. As D is decreased to values
D < D, the nonanalytic terms are proportional to inverse powers of s, ¢t and u. For
D < 4 the four-supergraviton amplitude possesses the standard infrared divergences of a
perturbative gravitational theory, which will not be discussed here.

The first term in the expansion (1.2) (p = 0,¢ = —1) has coefficient 5((511) = 3 and
is the classical supergravity tree-level term, with poles in s, ¢, u, and is determined by
the Einstein—Hilbert action. This has trivial dependence on the moduli. The subsequent
terms have a rich dependence on M that encodes both perturbative and non-perturbative
information. This contrasts with supergravity, in which the continuous G4(R) duality
symmetry is unbroken, and amplitudes are independent of the moduli. The simplest non-
trivial examples of automorphic functions arise in the ten-dimensional IIB theory, where

the coset is SO(2)\SL(2), so there is a single complex modulus, = Qy + i€, and the



duality group is SL(2,Z). In this case the first two terms in the expansion beyond the
classical term are given by particular examples of non-holomorphic Eisenstein series for
SL(2,7)
Q5
E,(Q) = _— 1.5
S( ) Z ‘m 4 nQ|2$ ) ( )
(m,n)#(0,0)

which satisfies the Laplace equation
A B (Q) = Q3 (93, +03,) By(Q) = s(s — 1) B,(Q), (1.6)

and where s is a (generally complex) index. Some important properties of these functions
are reviewed in appendix B.3. The Fourier expansion of Eg in (B.38) has a zero mode or
“constant term” that consists of the sum of two powers,

D(s -~ 3)

/_5 dQ Eg = 2¢(25)Q5 + Qﬁw ¢(2s —1)Q5°, (1.7)

NI

which correspond to a tree-level and genus-(s — 1/2) contribution to the interaction in
string perturbation theory. The non-zero modes correspond to exponentially suppressed
D-instanton contributions to the interaction. The first term of this type is the lowest order

term beyond the Einstein-Hilbert term, which is the R* interaction for which p = ¢ = 0
(10)
(0,0)
contributions [5,6]. The next term in (1.2), with p = 1,¢q = 0, corresponds to a 9*R*

interaction in the effective action, with a coefficient 5((11%))(9) = 1/2E;(Q) that has tree-
} 2

level and two-loop contributions [7]. Both the R* and 9* R* interaction coefficients can be

and the coefficient is £, () = E3(Q) that has tree-level and one-loop perturbative
2

determined by imposing constraints implied by modified supersymmetry transformations
that incorporate higher-derivative contributions [8,9].
The next term has p = 0,¢ = 1 and corresponds to the 9°R* interaction. Its coefficient

& (%(1)) (€2) is not an Eisenstein series [10], but satisfies the interesting inhomogeneous Laplace
eigenvalue equation,?
10 10 2
(Mg —12)EL0 () = - (5507(})(9)) , (1.8)

where the right-hand side is a source term proportional to the square of the coefficient of
the R* interaction. In this case the constant term has power-behaved terms corresponding
to perturbative string theory contributions at genus 0, 1, 2, 3, as well as exponentially sup-
pressed contributions corresponding to an infinite set of D-instanton — anti D-instanton
pairs.

There is a certain amount of information about terms of order 9® R* and higher, but
these terms raise issues that go beyond the scope of this paper and will not be discussed here
(see [1] for particular examples). Our main aim will be to extend the results up to order
O%R* to the higher-rank duality groups that arise upon compactification to D dimensions
on a d = (10 — D)-torus. There has been some work in this direction for the R* term
in [6,10,11] and for the 9*R* and 95R* terms in [12,13]. Here we will not only amend

*We have rescaled this interaction by a factor of 6 compared to [10].



these and extend their scope, but more importantly, set it in the general framework of
automorphic functions for higher-rank groups. Some of our ideas overlap with suggestions
in [11,14,15] and related papers [16,17], but they differ in important respects.

Our procedure, outlined in section 2, will be to constrain the expressions for the au-
tomorphic coefficient functions by requiring them to reproduce the correct expressions in
three distinct degeneration limits:

(i) The decompactification limit from D to D+1 dimensions. When the radius,
rq, of one compact dimension becomes large the part of the D = (10 — d)-dimensional

(D)

(pa
to reproduce the (D + 1)-dimensional coefficient function, &£

coefficient function, & ) that leads to a finite term in the ry — oo limit is required

(D+1)
(p,9)
suppressed terms with powers of 7;™* (where the values of n; > 0 depend on D) multiplying
5(D+1)
(v',q)
S 7"2 that are necessary to account for the non-analytic thresholds in D + 1 dimensions (see

. In addition there are

, where 2p’ + 3¢ < 2p + 3q. There are also specific terms with positive powers of

the discussion in [18] for more details). The remaining terms are exponentially suppressed
in rq and will not be constrained in any direct fashion.
(ii) Perturbative string theory limit. In the limit in which the D-dimensional

(D)
(p,9)
string coupling, yp, is required to reproduce the known perturbative string theory results.

string coupling constant becomes small the expansion of £ in powers of the D-dimensional
In order to make this comparison the contributions from genus-one string theory are derived
in appendix D using the methods of [4]. Furthermore, the leading low energy contribu-
tion to 0*R* from the genus-two string theory amplitude compactified on 72 is derived in
appendix E.

(iii) The semi-classical M-theory limit. In the limit of decompactification to
eleven-dimensional supergravity on 79*! the part of the modular function that depends on
the geometric moduli of the torus, which parameterise the coset space SO(d+1)\SL(d+1),
should be reproduced. This will give the part of the coefficient function that transforms
under SL(d 4+ 1,Z). This is the limit in which the effects of wrapped p-branes are sup-
pressed and the Feynman diagrams of compactified eleven-dimensional quantum super-
gravity should give a valid expansion in powers of the inverse volume of the torus, Vg
[1,6,7,10]. The analysis of one-loop and two-loop expressions is reviewed in appendix G.

As we will emphasize, our analysis of these three limits makes contact with properties of
the “constant terms” of the generalised Eisenstein series associated with various parabolic
subgroups of the U-duality groups [19]. This viewpoint indicates the extent of the very
powerful symmetries that relate these three limits for any value of n. Furthermore it gives
a unified view of the relation between the theory in different dimensions by considering a
nested set of (maximal) parabolic subgroups *

Egg) D Erry - D Eyqy = SL(2), (1.9)

where the sequence corresponds to successive decompactifications, as outlined in point (i)
above. We are here using the usual economic notation for the duality groups in Table 1 in

3We here restrict our attention to the classical Lie groups relevant to supergravity theories in D > 3,
although there are likely to be interesting extensions to affine and hyperbolic cases [20, 21].



which G4 = Eg41(4+1) refers to the real split form of the classical group of rank d +1 (and
so is related to the coset for string theory compactified on a d-torus).

In other words, we will use the explicit properties of string/M-theory in higher dimen-
sions to constrain the particular automorphic functions that arise as coefficients in lower
dimensions. We will therefore be focussing on very special cases of the general Eisenstein
series. We will see that these particular cases have many interesting properties.

This analysis of the coefficients in various dimensions is somewhat complicated, as well
as repetitive, so the casual reader could choose to skip the details in the bulk of the paper
and read the brief summary in section 6.

The main arguments will begin in section 3, where we will describe the results for the
(D)
(0,0)
terms of Eisenstein series that satisfy Laplace eigenvalue equations on moduli space space,

R* interaction. The explicit € coefficients in dimensions D > 6 will be obtained in

building on the work of [6,10,11,15] . The D = 8 case is of interest because it contains

the logarithmic dependence that encodes the one-loop logarithmic ultraviolet divergence of

maximal supergravity. The fact that string theory is finite is manifested by the cancellation
®)
(0,0
the sum of two Eisenstein series that each have poles in the parameter s at appropriate

of an apparent divergence, subject to suitable regularisation. This arises because & ) is
values of s. A suitable analytic continuation leads to a cancellation of the poles in these
two terms, leaving a logarithmic dependence on a modulus that can be identified with the
logarithm that arises in the low energy supergravity limit. Formally these considerations
extend to lower dimensions D > 3, in which the duality groups are those in the Eg;1(441)
sequence, where d = 10 — D. In all cases these series are finite, despite apparent poles,
which cancel leaving crucial logarithmic dependence on moduli that are also expected for
a consistent string theory interpretation.

In section 4 this analysis will be extended to the 9*R?* interaction, for which the
(D)

(1,0)*
9,8 cases. The D = 7 expression will then be analyzed. This is particularly interesting

coefficients are £ Building on the analyses in [10, 12] we will first discuss the D =
since it reproduces the two-loop logarithm characteristic of the ultraviolet divergence of
maximal supergravity [22]. In order to satisfy the conditions (i)-(iii) we are led to a
specific combination of two Eisenstein series for SL(5). As before, the precise combination
of Eisenstein series is one for which the divergent pole terms cancel, reflecting the absence
of ultraviolet divergences in string theory. The analysis of the D = 6 case with duality
group SO(5,5) will be left for the discussion in section 6, since our analysis is incomplete.
In this case we make strong use of results for constant terms of Eisenstein series by Stephen
Miller* and is not as complete. There is no obvious obstacle to the extension to D < 6
higher-rank duality groups, although this will not be discussed in this paper.

Section 5 concerns the 95R?* interaction in D = 9, 8 and 7 dimensions. To some
extent the D = 8,9 cases overlap with the analysis in [13], demonstrating how the Laplace
equation with a source term generalizes for the larger duality groups. In each case the

(D)

0.0)° In D = 8 this source possesses both

source term is the square of the R* coefficient, £

4We are very indebted to Stephen Miller for many illuminating discussions concerning the general struc-
ture of Eisenstein series and their specific form for the cases of interest to us.



log and (log)? terms that are required for the solution to have requisite interpretation in
the low energy limit of string theory. For example, maximal supergravity has a two-loop
logarithmic ultraviolet divergence multiplying 0°R?*, as well as a logarithmic contribution
from the one-loop D = 8 counterterm, which are reproduced by our modular coeflicients.

Section 6 will summarize our results and describe some issues relating to the extension
to higher-rank groups and higher derivative interactions. In particular, we will summarise in
a compact manner the set of homogeneous and inhomogeneous Laplace eigenvalue equations
satisfied by the coefficient functions for values of D discussed in this paper, but which we
argue should be valid in any dimension in the range 3 < D < 10. We will also make
comments about the form of certain coefficients in D < 6 dimensions.

Technical details are given in several appendices.

2. Degeneration limits and Eisenstein series for parabolic subgroups

Oo—0O0——0O

€31 Qg Qy Qs Qaq Qy [e% <o Qg—2 oy [e%} a9 e oy

(i) (i) (iii)
Figure 1: The Dynkin diagrams relevant to: (i) the Eyq) (d < 8) type II duality groups
of type II string theory compactified to D = 11 — d dimensions on a (d — 1)-torus. Successive
decompactifications to higher dimensions are obtained by deleting the nodes «g, ag—1 ... in (i);
(ii) The T-duality groups SO(10 — D, 10 — D) obtained by deleting the left node «; of (i) are the
symmetries of string perturbation theory in D dimensions; (iii) The SL(11 — D) groups obtained

by deleting node «s in (i) are associated with the geometric compactification of eleven-dimensional
supergravity on a (11 — D)-torus.

The duality groups of maximally supersymmetric closed-string theory are associated
with the series of Dynkin diagrams in figure 1(i) that may be obtained from the FEgs)
diagram by deleting the right nodes in a sequential manner. This generates the diagrams
for the Egy series. In terms of string theory compactified on a d-torus, 7 @ the deletion
of a right node labelled ag41 corresponds to the decompactification of a radius, rq — oo
(d > 2). This is the degeneration limit (i) of the previous section. The limit of small string
coupling, or string perturbation theory, corresponds to deleting the left node labelled ;.
This is the degeneration limit (ii) and gives a series of terms with symmetry SO(d,d)
(where the right node is again agy1). The 7¢ compactification of string theory may be
viewed as the 79! compactification of eleven-dimensional M-theory. The limit (iii) is one
in which the M-theory volume of 79! becomes large, V.1 — 00, in which semiclassical
eleven-dimensional geometry is a good approximation and the duality symmetry reduces
to SL(d). This is the degeneration limit in which the node as in figure 1(i) is deleted.

2.1 Parabolic subgroups
Parabolic sub-algebras of a semisimple Lie Algebra g = Lie(G) with h a Cartan sub-algebra



are defined as follows [23,24]. If A is the set of simple roots (a basis of roots) and R™ the
set of positive roots spanned by A. Then b = § + ®,cr+ 9o, Where g, is the root space
associated with the root «, is the associated Borel sub-algebra. Consider a partition of the
positive root space A into disjoint sets A; and Ag so A = Ay LI As. We define, R; the set
of positive roots spanned by A; and Rs the set of positive roots spanned by As. Define

pA, = h + @ Ja, [Az = h + @ Ja, na, = @ Jas (21)

aER"'U(*Rl) a€R1U(—R1) acRo

This defines the parabolic sub-algebra pa, associated with the set of positive roots Ry, [a,
is its Levi factor and na, the unipotent radical. Clearly if Ay C A, then PA, Cha,.

e When pa = b, Ry is the set of all the positive roots (and R; = )) the associated parabolic
is the minimal parabolic sub-algebra.

e When p; = g (equivalently when Ry = (), Ry is the set of all the positive roots the
associated parabolic sub-algebra is the Lie Algebra g.

e Maximal parabolic sub-algebras different from g are defined by singling out one
simple root «; and taking Ay = {a;}. We denote the maximal parabolic sub-group by P,,,
with rank P, = rank(G) — 1.

e The (standard) parabolic subgroup of GL(n) is defined as the group of matrices of the
form, for n = ny +--- +ny,

U1 * ok
Pni,....ng) =10 . % |, where U; € GL(n;), (2.2)
0 0 U,
which can be factored in the form
P(ni,...,ng) = L(ni,...,ng) N(n1,...,ng) . (2.3)
Here
Iy, * *
N(ni,....,ng) =1 0 "-. « where I, = diag(1,...,1) (2.4)
0 0 Ip,
is the unipotent radical and
Uy 0 0
L(ni,-..mg) =10 . 0 | (2.5)
0 0 U,
is the Levi component. The minimal parabolic subgroup is given by P(1,...,1). A given

maximal parabolic subgroup has a characteristic pattern of zeroes in the upper off-diagonal



elements of N. For example, the SL(3,R) maximal parabolic subgroup [25],
k ok ok
P(1,2) = | 0 %
0 * %
has a unipotent radical of the form
1 V1 Vo
N1L2)=|o1 0],
00 1

where v and v are real angular variables.

(2.6)

(2.7)

Three cases will be of particular interest in this paper. These concern the maximal

parabolic subgroups given in the table 2, which are obtained by deleting the left node, the

right node and the upper node of the Dynkin diagrams shown in fig. 1.

deleted node | Eg | E7 | Eg | E5s = Ds | By = Ay | E3 = Ay A,
left D7 D6 D5 D4 D3 D2
upper A7 Aﬁ A5 A4 Ag A2
I‘ight E7 E6 D5 A4 A2A1 A1A1

Table 2: Maximal Parabolic subgroups of Eg(4) arising in string theory are of the form GL(1) x
X4-1, where the rank-(d — 1) subgroups are listed. We use the notation Ay = SL(d + 1), Dy =
SO(d,d). Each parabolic subgroup can be decomposed as the product P, = N,L, of a unipotent
radical N, and a Levi factor L,. The Levi factors determine the Lie groups generated by the

remaining nodes of the Dynkin diagram, which are listed in the table.

There are several interesting coincidences.

e In D =7, where the U-duality group is Ey4) = SL(5), the symmetry group of string

perturbation theory is SL(4) = SO(3,3), which is also the symmetry of M-theory on

7% in the decompactification to eleven dimensions.

® E5isy = SO(5,5) arises in the D = 6 theory, for which the group SL(5) arises
both as the symmetry of M-theory on 7° limit and as the U-duality group upon

decompactification to D = 7.

e SO(5,5) arises both as the symmetry of string perturbation theory in the D = 5

theory and as the decompactification limit to the D = 5 theory, which has duality

group FEjs).

o L) arises as the U-duality group in D =5 and is symmetric under the interchange

of nodes 1 and 6. This symmetry interchanges the limit of decompactification to

D = 6 with the perturbative string theory limit.



2.2 Eisenstein series for maximal parabolic subgroups and their constant terms.

The general Eisenstein series are automorphic functions of d complex parameters, s; (i =
1,...,d) associated with different parabolic subgroups of the Ey4) groups. Their definition
may be found in [19,26] and is briefly reviewed in appendix B. The construction of the
minimal parabolic SL(d) series, is also described in appendix B, based closely on notes by
Stephen Miller and extensions of [25].

However, we are here primarily interested in very special cases corresponding to Eisen-
stein series for maximal parabolic subgroups, defined with respect to one particular node
associated with the simple root a,. Such a series may be obtained by taking residues of
the minimal parabolic series on the poles at s; = 0 for all ¢ except ¢ = u, so the series
depends on only one parameter, s = s,. The series can be indexed by the Dynkin label
[0“=1,1,097%], where the 1 is in the w’th position. The particular values of u of interest

to us will be determined on a case by case basis. Such a series for a maximal parabolic
G
[0v—1,1,0d—u];s"

The simplest example is provided by the SL(d) series with u = 1 (the Epstein zeta

subgroup of the group G will be denoted E

function), which can be expressed as a sum over a single integer-valued d-component vector,

SL(d ; -
Bl = Y (migym!), (2.8)
mi€Z\{0}
where the sum is over all values of m? with the value m! = m2 = ... = 0 omitted. The

metric g;; is the metric on SO(d)\SL(d). Our conventions for labelling the SL(d) Dynkin
diagrams are shown in figure 1(iii). A less trivial case that we will also need to consider is
the SL(d) Eisenstein series with u = 2, which is given by

/

SL(d i B
E[0,1(,0)d—3];s: Z (m[nﬂgikgjlm[knl]) °, (2.9)

miniczd
where 3~ here indicates the sum is over integers subject to the constraint that at least
one minor 67 = mlinil is non-zero. For SL(3) this series is proportional to the Epstein
series, (2.8) with a shifted value of s, as we show in appendix B.4. More generally, the
SL(d) series E%{;YQH;S
simple consequence of the symmetry under s — d/2 — s, which follows from the Weyl

is proportional to the Epstein series with a shifted value of s, a

symmetry of the weight lattice of SL(d). Some relevant properties of the SL(d) series are
deduced in appendix B.

The other cases that will be considered explicitly in this paper are particular cases of
Eisenstein series for SO(d, d). In particular, these symmetries arise as T-duality groups of

string perturbation theory in 10 — d dimensions, and SO(5,5) is the full U-duality group
50(d,d)

[1,04-1];s7
where the distinguished node is the one on the left in figure 1(ii) — i.e., associated with the

for D = 6. We will discuss the maximal parabolic Eisenstein series of the form E

vector representation. A number of properties of these series are obtained in appendix C
based on a novel representation motivated by compactified two-loop Feynman diagrams.
Although the series with more general Dynkin indices are relevant, we will not discuss them
in this paper.

~10 -



Constant terms.

The three degeneration limits (i), (ii) and (iii) that we are interested in correspond to
decompositions of the Eisenstein series, E[GO“_I,l,Od_“];S7 with respect to parabolic subgroups
of the form, P, = GL(1)xG,, associated with one of three distinct nodes, ay,, of the Dynkin
diagram, as described earlier. The GL(1) factor is parameterised by a real parameter r,
which corresponds in limit (i) (v = d) to the radius of the compact dimension, 74, in limit
(ii) (v = 1) to the string coupling in D dimensions, yp, and in limit (iii) (v = 2) to the
volume of the M-theory torus, Vi1_p. In considering these limits we will retain all the
terms that are power behaved in r. These are contained in the ‘constant terms’ obtained
by taking the zero Fourier mode with respect to the components of the unipotent radical,
N,, associated with the parabolic subgroup P,, (defined in section 2.1). This is an integral
over the entries, v;, in the upper triangular matrix, N,

A (4, v; g) = / A EG, . 4 girups(gn). (2.10)
Nuo/G(Z)NNy

where dn = [], dv; is the Haar measure on N,. In order to avoid complicated notation, we
will replace [ 6NN, 4n by [p, so that

G — G
A (u,v;59) = /P Efu-1 1 gd-u];s - (2.11)
The angular integral (2.10) generalizes the SL(2,7Z) case of (1.7). The constant terms
are expansions in powers of r with coefficients that are Eisenstein series (or products of
Eisenstein series, in the non-simple case) of the schematic form

AS (u,v59) =Y P B (2.12)
)

where the values of the parameters s;, p; depend on uw and v, and r is a scale factor
associated with the GL(1) subgroup. This integration projects out the non-zero modes

of the Eisenstein series, which are non-perturbative in r and exponentially suppressed
(D)
(0,1
series and their constant terms do contain exponentially suppressed pieces corresponding

in the appropriate degeneration limit. The coefficients &£ ) of 9%R* are not Eisenstein
to instanton—anti-instanton pairs.

The Eisenstein series for other maximal parabolic SO(d, d) series, as well as those for
the higher-rank Fj4) groups, are much more difficult to construct in terms of explicit sums
over integers but their explicit properties can be obtained from their basic definition given
in (B.1). Starting from that definition, the constant terms of their parabolic subgroups
have been derived in [27], which is likely to be of use in developing these ideas further.

2.3 The expansion parameters.

In considering M-theory on a (d+1)-dimensional torus, 79!, length scales are measured in
units of the eleven-dimensional Planck length, ¢11, whereas for string theory compactified
on a d-dimension torus, 7%, scales are measured in units of the string length, ¢, or the
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ten-dimensional Planck length scales of the ITA and IIB theories, Eﬁ), 6{30. These length
scales are related by the well-known relations,

1 1 1
ly = g3 L, Gy = g4 Ls, 0 =gh s, Riyt = gals, (2.13)

where g4 and gp are the type ITA and IIB coupling constants and Rp; is the radius of the
extra M-theory circle.
Compactifying from 10 to D = 10 — d dimensions on 7% leads to the relations

tp 2 =yptd?, (2.14)

where the quantity yp is defined by the (10 — d)-dimensional T-duality invariant dilaton,
which defines the D-dimensional coupling,

20p _ 9,24@ . g%ﬁg

Yio-a =€ VA T VR (2.15)

where VdA is the volume of the d-torus in ITA string units while VdB is the volume in IIB
units. Note further that he relation between the Planck length in D dimensions and D + 1
dimensions is

(p =100 rq, (2.16)

where 74 is the radius of the (d = 10 — D)’th direction of 7¢ in IIB string units.

The parameters that we will use to define the three degeneration limits will be the
following.

(i) The decompactification of a single dimension is given by the limit r4/¢; — oo in
the string frame. We will be interested in expressing the result in the Finstein frame in
(D +1) dimensions at fixed coupling, in which case we will need to consider r4/¢p41 — o0
with ypy1 fixed. It will also be useful to introduce the U-duality invariant quantity defined
in terms of the dimensionless volume of the string theory d-torus,

1
v, 2 =—VP, (2.17)

where we have set E{% = {10 in this and all subsequent expressions since we will not need
to use £{j. It is easy to deduce the useful relations

Tq =

= 7, Yp+1

1 D
=y, 2P0 2.18
{p1 d Td-l ( )

(ii) String perturbation theory is an expansion in powers of the D-dimensional string
coupling, 9D = y]l)/Z when yp — 0.

(iii) Decompactification to semiclassical eleven-dimensional supergravity arises in the
limit of large volume of the (d + 1)-dimensional M-theory torus. This volume, Vi1, is

defined by

2

Guis =V Gui, (2.19)
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where Garry (I,J = 1,...,d) is the M-theory metric on 79! and G has unit determi-

nant. The dimensionless volume, ]>d+1, can be expressed as
A 1 1 e 2a VA4
11 11 s

This can be converted to type-1IB units by compactifying one dimension of radius r4 so
that VdA = r4 X V41 and introducing the volume VdB =rp X V4_1, where rg = fg/’l”A,

Var1 = g4° 7 =95’ <€—S> 7 <E) e (2.21)

The M-theory decompactification limit is given by the limit l}dﬂ — 00.

giving

3. The R* interaction

The first term in the low energy expansion of the maximally supersymmetric string theory
amplitude beyond the tree-level term is the R* term in (1.2), which is described by a term
in the effective action of the form

Sps =650 [ dPu/-GUO £(7) R (3.1)
In D = 10 dimensions the coefficient function is given by [5]
(10) _ @SL(2)
E(O,O)(Q) - E[l];% (9)7 (32)

which is the standard Eisenstein series for SL(2,7Z), that is conventionally denoted Es ()5
2
and satisfies the Laplace equation

10) £(10) _ 3 4(10)
Al )5(0,0) =3 El0.0) * (3.3)
where A(19) is the SO(2)\SL(2) Laplace operator,
A =023 +03,). (3.4)
The string frame expression for this interaction involves the identification
1 a0 1.1
%5(0,0)(9) = @922 E%(Q)v (3.5)

using the relation between the ten-dimensional Planck length and the string scale ¢, =
20 Qé/ 4 The perturbative expansion is associated with the constant term,

o / 1 a0 £ () :% <2C(3) +4<(2)> : (3.6)

2
1o -3 Y10

where y19 = 9123. This exhibits a tree-level term and a one-loop term.

We will here discuss the theory after compactification on 7¢ for d = 1,2,3,4. In each
case we will present a candidate expression and verify that it has the correct properties
in the three degeneration limits described in section 1. Several aspects of this discussion
reproduce earlier work, but our analysis will stress the framework that generalizes to other
terms in the low energy expansion and to the larger U-duality groups.

5We will follow the convention of writing Eﬁﬁf) as E;.
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3.1 Nine dimensions
The coefficient function in the nine-dimensional effective action ((3.1) with D = 9) was
determined in [5,6] to be

€0 TR, (Q) 4 4C(2) v (3.7)
0,0) 7 "1 75 Lo ’

with 11 = (rg/f10)~2, which is invariant under the U-duality group SL(2,7Z). This coef-
ficient function can straightforwardly be seen to satisfy the SO(2)\SL(2) x RT Laplace
eigenvalue equation,

(A® —2) e — 0, (3.8)

where the Laplace operator for the nine-dimensional compactification has the form given
in (H.6),

AO) = Aqg + Zulayl (119,,) + %ulayl . (3.9)

In order to see how the action behaves in various limits we write v; in terms of the other

parameters as

v =V3, (3.10)

1 0N\ 1 [ I
. (—B) gl (—B) , (3.11)

() - () 12
Vv = _— = _— . .
! Lo Lo

We will now review the manner in which the expression (3.7) reproduces the expected

or

where yg = £5/(Q37g), or

expressions in the three degeneration limits of interest.

(i) Decompactification to D = 10
This limit is obtained by letting r5/¢19 — oo in (3.7)

L) _ 7B (10 4¢(2)

lg(0.0) = 72 €(0.0) g

(3.13)

The term proportional to rp survives the limit to give the D = 10 expression (3.2).

(ii) D =9 perturbative string theory.

The perturbative expansion of (3.7) in the string frame is given by evaluating the

1
L 0 _ 1 (2(3) Tl
7 /é dy 5(0,0) = < " +4¢(2) 7 + . , (3.14)

where yg = g% {s/rp = g% ls/r4 is invariant under T-duality and r = rp or r4 (where

constant term,

rg = £?/ra). This expression is manifestly invariant under » — ¢2/r, as expected at
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this order in string perturbation theory®. The coefficients are the same as those obtained
directly from tree-level and one-loop string scattering amplitudes.

(iii) Semiclassical M-theory limit

The coefficient (3.7) is expressed in eleven-dimensional M-theory units by

1 (9) 1
—¢ -
by (00 ¢y

This expression coincides with that obtained by evaluating the one-loop contribution of

(V;%E%(Q) +4¢(2) f@) . (3.15)

eleven-dimensional supergravity compactified on 72 [6]. This calculation has a A® divergent
piece (where A is a momentum cutoff) that is regularised by adding a counterterm, ¢ R?,
where the value of ¢ = 4¢(2) is determined by imposing the equality of the ITA and IIB
one-loop contributions [6]. Furthermore there are no higher-loop corrections to R*, so the
result (3.7) is exactly given by the supergravity expression.

3.2 Eight dimensions

The effective action of the form (3.1) with D = 8 was considered in [6, 10], based on
evaluation of the contribution of one-loop eleven-dimensional supergravity compactified on
T3. This takes into account the effect of super-supergravitons winding around the torus
and has a manifest invariance under the modular group of the three-torus, SL(3,Z). This
was completed to the full duality group E33) = SL(3) x SL(2) by extending the expression
to include the effects of wrapped M2-branes, giving

~SL(2)

(8) _ £SLEB3)
€00) = E[m];g + 2B, (3.16)
which is the form presented in [11]. The expressions B2 — ]:]1 and B°E®) are regularised

151 [10];3

Eisenstein series (specifically, Epstein series) for the groups SL(2) and SL(3), respectively’.
Some properties of these series are discussed in appendix B and may be summarised as

SL(2) SL(3)
s — s and By

which correspond to the presence of logarithmic singularities in the one-loop graviton scat-

follows. The series E have poles at s = 1 and s = 3/2, respectively,
tering amplitude in D = 8 dimensions — which may be expressed as poles in € in dimensional
regularisation, where D = 8 4+ 2¢. The hat " indicates that the pole part is subtracted,
leaving only the finite part.

The Eisenstein series Eﬁgﬁ) is a special case of the most general minimal parabolic
Eisenstein series for SL(3) and is discussed in (B.3). The general series has two param-
eters, s; and s9, corresponding to the non-compact Cartan directions of the quotient
SO(3)\SL(3), but the series of interest here has s; = s, sy = 0. Appendix B.4 pro-
vides more details concerning this series, which is defined by (B.7) in the case d = 3. The

SL(3)

expression for the series E in (B.49) is written with an explicit parameterisation of

(10];s
the metric in terms of the U-duality invariant mass for D = 8 [11],
—S
SL(3) _s |m1 +mQQ+Bm3|2 m%
E[lO};s - Z Vy 3 < QZ + I/_2 . (317)

(m1,ma,m3)€Z3\{0}

5The ITA and IIB four-graviton scattering amplitudes are known to be equal up to at least genus-four [28].
"The series Eﬁg](,i) was denoted ng;(g) in [15].
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The divergence at s = 3/2 is regularised by setting s = 3/2 + € and subtracting the pole
(see appendix B.4 for details),

SL) 2w ~ SL(3)
E[lO];%Jre = ? + 47T(7E - 1) + E[lO];% + O(E) , (318)
where the regularised series Eﬁg}(? is derived in (B.55) and is given by
2
B i, (o) + 2 O 72 )3 3.19
) = vy By (@) + 5 logln) + O % e ) (319)

In type IIB variables the U modulus is acted only by the SL(2) factor of the U-duality
group SL(3) x SL(2). The SL(2) Eisenstein series has a pole at s = 1 as shown in (B.41),

E14o(U) = = — wlog(Ua[n(U)|*) + 2n (5 — log(2)) + O(e), (3.20)

and the regularised series is obtained by subtracting the pole,

E,(U) = —mlog(Uz|n(U)[*) . (3.21)

So far we have discussed the singularities of the individual Eisenstein series E4(U) and

Eﬁg}gi). However the coefficient 5((3)0)

factor (not discussed in past work) is that the singularities of the separate Eisenstein series

(3.16) is a linear sum of these functions. A crucial

should not be regularised independently. In fact, the singularities in (3.16) cancel each
other when regularised in a manner consistent with the considerations that follow later
later in this paper. This implies that (3.16) should be written as

eY = lim (Eﬁ§]<3+€ +2E) _€> —log 1(0,0) » (3.22)
where the hats have been removed since this expression is finite and log p(o,0) = 47(27E —
1 —log(2)) in order for (3.22) to agree with (3.16). We will later obtain this result from
the decompactification limit for the coefficient of the R* coefficient in D = 7 dimensions,
which is finite and reduces to (3.22) when 73 — oo to give the D = 8 expression. This
is the first of several cases in which divergences in different contributions to a coefficient
function cancel with a suitable regularsation.
The SL(2) Eisenstein series at s = 1 satisfies the Laplace equation (B.40)

~SL
Aso@)\se) By f) =T, (3.23)
while the SL(3) series satisfies
\SL
ASO(3)\SL(3) E[lo}(’gg) =dm, (324)

where the SO(3)\SL(3) laplacian is given in (B.50). Therefore, applying the total SO(3)\SL(3)x
SO(2)\SL(2) Laplacian of the eight-dimensional theory gives

A® g® SL oY =6 . (3.25)

_ S SL() ST
0.0) = BsoE\sze Bgs +28s0\s1@ By
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We will now verify that the expression (3.16) gives the correct expression in each of the
three degeneration limits under consideration.
(i) Decompactification to D =9

The nine-dimensional limit is obtained by taking one of the radii of the two-torus to
infinity, ro/fg — oo. This is seen by setting Ty = 71 19/¢2, Uy = r9/r1 and

vyt =T =0, 7 <—> : (3.26)
ly
Using the expansions for Eﬁf)](i) in (B.52) and E4(U) in (B.38), and the general definition of

constant terms in (2.10), the constant term of the combination (3.16) in the GL(1) x SL(2)
subgroup has the form

1
2 (8) T2 4(9) 147 9
/_ dBrrdDBNs 5(070) =% 5(070) -3 log <€9 #8> , (3.27)

3
where the double integral is over the elements of the unipotent radical corresponding to
this subgroup. At large ro and fixed ry the nonpertubative contributions are exponentially
suppressed and only this constant term survives. The term proportional to 7y gives the
contribution to the D = 9 action, in agreement with those in (3.7) with r; = rp. The
log(re/fg) term in (3.27) is an important contribution to the massless threshold behaviour
of the nonanalytic term in the one-loop four-supergraviton amplitude in eight dimensions,
which has the form log(—¢2s) R*. The log(r2/fy) term in (3.27) combines with this con-
tribution into log(—r3s) R* which is part of the infinite series (r3 s)* log(—r2s) R* that
resums into the nine-dimensional massless threshold, /s R*, as analyzed in [4]. The term
proportional to log(ug) is a scale contribution.

(ii) D = 8 perturbative string theory
The perturbative string expansion of the R* coefficient in D = 8 is obtained from the
expansion of (3.16) in powers of yg 1 3Ty, which is associated with the constant term

1
2 2¢(3 - A 2 .

[ o amnlyy = 20 2@ B0 + Flostw/i) . (29)

3
after using the expansion of the regularised SL(3) series Eﬁg}(? in (B.56),
2
. 2 . 2 _1 1 1
Eﬁﬁ](,gg) = Cy(3) + 2E1(T) + ?W log(ys) + O(e~Ws T2)"2 =T’ us *) (3.29)
1) 8

The first term is the correctly normalized tree-level contribution and the one-loop contri-
bution is given by

(B (1) + By (U) = Ba(T) + B () — 2 log(). (3.30)

where log(fig) is a constant scale determined in the appendices. This expression matches
the one derived from the analytic part of the string amplitude in (D.18) obtained by
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decompactifying the genus-one amplitude on a three-torus. The presence of the logys
term is important. As explained earlier and in [1], this logarithmic term arises from the
Weyl rescaling of a R* log(—¢2s) contribution in passing from the string frame to the
FEinstein frame. This is the non-local contribution of the massless states in D = 8 one-loop
supergravity. More generally, the presence of logarithms of moduli is characteristic of the
presence of infrared thresholds. This expression can also be derived by making use of the
regularisation of [29].

As with the complete R* coefficient, the genus-one part, (3.28), is finite without the
need to regularise the divergent individual terms — the poles at s = 1 cancel between the
two terms. This follows directly from an analysis of the string theory one-loop calculation
as sketched in appendix D.1, and is a symptom of the finiteness of perturbative superstring
amplitudes.

(iii) Semi-classical M-theory limit

The one-loop four-supergraviton amplitude in eleven-dimensional supergravity com-
pactified on 72 was considered in [6,30] (see appendix G.1 for details). This is expected to
reproduce the SL(3)-dependent part of the amplitude on a three-torus. The zero Kaluza—
Klein mode contribution in the loop gives rise to the non-analytic logarithmic terms char-
acteristic of the onset of one-loop ultraviolet divergences in D = 8 supergravity. Using
dimensional regularisation by evaluating the amplitude in D = 8 4+ 2¢ dimensions, and
subtracting the e pole, this has the symbolic form (which is reviewed in detail in [7]),

12 =R (log(—S €3)) + log(—=T €63)) + log(—U £3,) — 2log(us)) , (3.31)

where the Mandelstam invariants of the eleven-dimension theory are denoted by capital
letters (and the invariants 7' and U should not be confused with the complex structure and
the Kéahler structure of the two-torus!). Translating to eight-dimensional units this gives

AP = R (log(—s€3) + log(—t £3) + log(—u £3)) + « R* log(Vs/ ), (3.32)

where (3 = (5, ]A/g_l.

The analytic part of the one-loop supergravity amplitude is evaluated in appendix G.1.
In order to regularise the ultraviolet divergence this contribution is evaluated in D = 8+ 2¢
dimensions and is given by

1
2 (8+2¢) _ @SLB) V& S
/_ LA EG =ELOR VT +4C(2) Vs (3.33)

[

This only depends on the 72 moduli, which form the “geometrical” part of the moduli
space. The “stringy” dependence on the Kéhler structure, U, is due to M2-brane windings
and is not apparent in the supergravity calculations. More generally, this is consistent

with the SL(d) invariance of toroidal compactifications of perturbative supergravity on
SL(3)

[10];3+e
regularised by subtracting the pole at € = 0 since it is no longer cancelled. This reflects

a T torus. However, the divergence of the SL(3) expression lim. .o E must be
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the presence of a one-loop logarithmic ultraviolet divergence in supergravity. Therefore,

€ 2m < %
/ dUy £y ) = = + Efﬂ“” +4¢(2) Vs — 2 log(Vs/us) + O(e) . (3.34)

=

After subtracting the pole, the regularised interaction is given by the SL(3) invariant

1

2 N A

[ dvnelin, =B+ 4c@)Vy — 2mlog (/). (335)
T2

where E[ 10]( %) is the regularised Eisenstein series defined in appendix B.4. The log(Vs3/(3,)
term in this equation cancels against the one in (3.32).
The correspondence with string theory follows by using the string theory/M-theory

dictionary, which implies

+moQ®  mj
mi R}y +m3Riy + miRE = <% + %> = m?S*L(?)) ; (3.36)
2 V2
so that Eﬁﬁ](gg) in (3.35) is identified with the expression in (3.16). Expressing the volume,

Vs, of the M-theory torus in terms of the string theory variables using (2.21) we have

R VQA VQ
= 3.37
V3 gg 7“%, ) ( )

SO ]>3 is identified with the volume of the two-torus Ty = rare/f? on the type IIA side
and to the complex structure parameter Us = ry/rp on the type IIB side. Thus (3.34) is
written as

1
2
/ AU EGy, = fﬂ@ +4¢(2) Uy — 27 log(Us/ ps) - (3.38)

2
In type IIB variables the U modulus is acted only by the SL(2,Z) group of the U-duality
group Ejiy = SL(3) x SL(2). The Us-dependent part is completed into the SL(2,Z)-
invariant expression, Ei(U) = —xlog(Us|n(U)|*) (see appendix B.3) by the M2-brane
contributions in the full theory.

3.3 Seven dimensions

Compactification to dimensions D < 8 raises a new issue since the leading dependence
on s, t, u no longer comes from the analytic R?* interaction. The one-loop supergravity
contribution in 4 < D < 8 dimensions is finite and gives a well-studied nonanalytic contri-
bution, symbolically of the form determined by dimensional analysis A" ~ gD/2-4 R4
(suppressing a plethora of logarithms depending on ratios of Mandelstam invariants) [31].
Infrared divergences arise for D < 4. We are interested in subtracting this contribution in
order to isolate the analytic R* interaction.

After compactification of type II string theory the effective action, (3.1) with D = 7 is
invariant under the U-duality group SL(5). The natural conjecture is that the coefficient
function, 5(((?0), is a SL(5)-invariant Epstein series, similar to the one in [11]. According to
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this conjecture the coefficient of the seven-dimensional R* interaction in the Einstein-frame
action is

(7 _ SL(G)
Eom) = Epooopss (3.39)

As before, our notation implies that the series is given by the minimal parabolic Eisenstein
series for SL(5) at a special value of the parameters (see, (B.3) in appendix B). Setting
s9 = s3 = s4 = 0 gives the Epstein zeta function, which has the general form of (B.7) with

d = 5. Using a familiar U-duality invariant parameterisation of the metric in terms of the
SO(5)\SL(5) moduli gives

N

2 |lmy+meQ+B-nl2 nl-gln
SL(S)@ _ Z V3 Imy 2 | 4 92
[1000];3 Q, 2

(m1,ma2,n1,n2,n3)7#0 V3

E (3.40)

The term in brackets is proportional to the SL(5)-invariant mass squared in a parametri-
sation that makes manifest the string theory three-torus with SL(3) metric g; (§ =
g (det g)~'/3, where g is the GL(3) metric) and associated Kaluza-Klein charges, n;. The
three scalar fields

B' = Big + QBks i=1,2,3, (3.41)
arise from the reduction of the complex two-form C® + QBNS on the three two-cycles of
the three-torus 7°3.

Although this series appears to be divergent and in need of regularsation, analyticity
in s guarantees that it is well defined by meromorphic continuation. In other words, it
does not need to be regulated (which is a different interpretation from that of [11]). A
detailed analysis of its behaviour is given in appendix B.5. Furthermore, as we will soon
see, decompactification to D = 8 leads to precisely the finite combination of terms that
was determined in the previous section.

(i) Decompactification to D =8

The r3/ls — oo limit is associated with the constant term in the maximal parabolic

subgroup P,, = P(3,2) with Levi subgroup GL(1) x SL(3) x SL(2), which is the U-duality
SL(5)

[1000);s W€ will make use of the relations

group for D = 8. In considering this limit in E

-1 § 1 2 —é T3 2
vy =3 @(7“17“2?”3) =1y ° <g> ; (3.42)

recalling that v, ' = Qg (r172)2 /02,

The SL(5)-invariant mass that enters the exponent of (3.40) decomposes into the sum
of a SL(3)-invariant term and SL(2)-invariant term under the decomposition 73(ry,72,73) D
T2(r1,7m9) x S'(r3), which is relevant for the P(3,2) parabolic. The quantity in brackets in
the definition of the series in (3.40) then becomes the sum of the SL(3) and SL(2)-invariant
mass squared, m%L(S) = m%L(:g) + m%L(Q), where

1 \ml +m2§2+m33|2 m2
m%L(?)) = vy < 0, + V—;’ ; (3.43)
9 1 |n1 + n2U|2
MsLe) = 7

1%} UQTQ
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with TQ = 7“1?”2/5? and U2 = 7“1/’!”2.
Details of the evaluation of the constant term of the SL(5) Eisenstein series on this
maximal parabolic are given in appendix B.5, with the result

' gSL6)  _ <ESL(3) 9, () — 41 (T_?’)) 3.44
7/}3(372) noooz =73 ( Epgs + 1(U) — 4 log Totin (3.44)

where log pi7 = log(4m) — vg. This shows that the R* interaction in D = 7 dimensions
decompactifies to the D = 8 interaction

(M _ (8) 3 e/l
7€) =73 (5(0,0) — 4 log <@)> +O(e /). (3.45)
The term proportional to rs contains the requisite D = 8 coefficient together with a

rglog rs term that is essential for cancelling a similar term in the sum of the infinite series
of (s72)™ terms that reproduces the eight-dimensional slog(—¢2 s) R* threshold behaviour
(as described in [4,18] and the introduction).

(ii) D =7 perturbative string theory.

The D = 7 perturbative expansion parameter is y- = 03 v3, where vg = (r17213)/03.
The invariant mass is given in terms of y7; and v3 by

utl=

m?S‘L(5) =y <y7 (m1 + Brr - n + Q1 Bys - n)? + m?gLM)) , (3.46)
where we have introduced the SL(4)-invariant mass

9 _ ‘mg-i-BNs-n‘?
mMgsr@) =

1
+vd'n-g-n. (3.47)
v3

In the perturbative string theory limit the U-duality group reduces to its maximal parabolic
subgroup P,, = P(1,4) with Levi subgroup GL(1) x SO(3,3).
The results of appendix B imply

BSED ¥ g+t HE2) i g (3.49)
P(14) [1000];s — Y7 C(2s) +m Wgﬁ 001 '
Setting s = 3/2 this gives
2¢(3) SL(4)
e/ &) :gs< oSO o
" I TOO yr [100);1 (3.49)

The overall normalisation has been chosen so that the first term is the standard tree-
level contribution, while the second term, which is independent of y7, is the genus-one
contribution. This agrees with the perturbative genus-one string theory contribution to
R* evaluated in (D.13).

(iii) Semiclassical M-theory limit
We will now discuss the relation between the R* interaction in D = 7 dimensions

and the interaction obtained by considering the one-loop (L = 1) amplitude of eleven-
dimensional supergravity on a four-torus (derived in appendix G.1). This limit corresponds
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to the maximal parabolic subgroup P,, = P(4,1) with Levi subgroup GL(1) x SL(4) of
the U-duality group.

In this limit the SL(5)-invariant mass reduces to

-3/10 6/5
mi) = Vim0 (3.50)

where we have used V; = (R11R10/€%1)5/4 Vs 12 and by = l11 V4 15,

Therefore the constant term of SL(5) series evaluated in appendix B.5 implies that
the R* interaction is given by

™ _ 57 SL(4) s
07 /P - Eoy = <V4 E[wo};% +4¢(2) V4> . (3.51)

which is invariant under the SL(4) symmetry associated with the geometry of 7% and
precisely matches the expansion of the M-theory L = 1 amplitude on a four-torus in
appendix G.1.

3.4 Six dimensions

For D = 6 the U-duality group is E55) = SO(5,5) and the conjectured coefficient of the

R* interaction is
£® _ g6

0,0 — [10000] (3.52)

which corresponds to the suggestion in [11, 15] although our analysis will be somewhat
different (in particular regarding the regularisation). The Eisenstein series depends on the
moduli parametrizing the coset SO(5)x.SO(5)\SO(5,5). The Dynkin diagram of figure 1(i)
with n = 5 is symmetric under the interchange of nodes 2 and 5, which means that the
decompactification limit to D = 7 and decompactification to M-theory are each described
by a constant term associated with a SL(5) maximal parabolic subgroup of SO(5,5) (see
table 2).

(i) Decompactification to D =7
Equation (C.9) together with the relation V(5 = (r4/€7)°/? gives the explicit relation

between the SO(5,5) Epstein series E[loég}) 3 and the Epstein series associated with one

of the SL(5) maximal parabolic subgroups. The decompactification limit is obtained by
deleting the last node a5 of the Dynkin diagram for Ej5s) = Ds in figure 1(i). The
decompactification limit r4/¢7 — oo is associated with the constant term of the parabolic
subgroup, P,., which has the form

T4 7
I i ESh = trma <4g( Vo (“)) : (3.53)
ag

where we have used the relation between the Planck lengths in six and seven dimensions
lg = f?/ 4 7“4_1/ . The coefficient of the term proportional to 74 is the expected D = 7 R4
coefficient and the term proportional to ri combines once more with terms in an infinite

series of (r3s)™ terms to build the threshold behaviour in the nonanalytic term in D = 7.
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(ii) D = 6 perturbative string theory

We may now check agreement with the D = 6 perturbative string theory expansion.
This is obtained by deleting first node «a; of the Dynkin diagram, resulting in a series of
terms with SO(4,4) T-duality invariance. The associated parabolic subgroup is denoted

P,,. Substituting the relation between the SO(5,5) Eisenstein series, Eﬁ%g(’)?) nd Eﬁ%g} 4)
1

(given in C.15)) and transforming to string frame using ¢ = 5 y¢, we obtain

> © _ 2 (2€06) SO(4.4)

7 5(070) =/ < + 2E[1000};1 . (3.54)
Pa, Y6

The first term on the right-hand side of (3.54) is the tree-level string theory term and the

second term gives the genus-one contribution, in agreement with the explicit string theory

calculation given in (D.5) evaluated for d = 4.

(iii) Semiclassical M-theory limit

Finally, we may check the M-theory limit, Vs — 00, where Vs is the dimensionless
volume of the M-theory torus, 7°. This limit is obtained by deleting node aw of the Dynkin
diagram in figure 1(i). The associated parabolic subgroup is denoted P,,. In this limit we
can use the relation between the Planck lengths, £§ = ¢4, V5!, and the relation (C.9) to
show that

. .
I /P Eoh) = B Vs <4<( )+ V5 E[wéoi > (3.55)
ag

This equation agrees explicitly with the regularised one-loop amplitude in eleven dimensions
of appendix G.1. Note that the symmetry between the nodes as and as of the Dynkin
diagram for Es) in figure 1(i) means that the decompactification limit in (3.53) and the
M-theory limit in (3.55) take similar forms.

More generally, compactification of string theory on a higher-dimensional torus, 7¢
(or M-theory on 79*!) with d > 4, leads to a D = (10 — d)-dimensional theory with
exceptional U-duality group Eg,i(441)- Consideration of limits (i), (i) and (iii) should

again pin down the details of the R* coefficients, £ (D) "in these cases. Although we have

(0,0)?
not completed a detailed analysis of these coefficients, we have a sketchy understanding of
some of their properties, including the Laplace eigenvalue equations that they satisfy, as

will be described in the discussion section 6.

4. The 0*R* interaction

The next contribution to the low-energy expansion of the local part of the four-supergraviton
effective action (or, equivalently, to the analytic part of the low-momentum expansion of
the four-supergraviton S-matrix) in the D-dimensional type IIB theory after the ¢! R*
term is of the form

Sprps =3P [ dPu/-GD) ) 'RE. (4.1)
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The duality-invariant coefficient function in D = 10 dimensions is a familiar non-
holomorphic Eisenstein series for SL(2) evaluated at s = 5/2,

1
(1L0) = 5 B2

= Q). (4.2)
This coefficient function was initially obtained directly by considering the two-loop (L = 2)
amplitude of eleven-dimensional supergravity compactified on 72 in the limit in which the
volume, Vs, vanishes [7]. This follows from the nine-dimensional expression to be presented
in (4.9). Its perturbative expansion is given by the constant term,

1
3 2¢(5 8
&y / dn 1Y) = £ <% +3C(4) y10> : (4.3)

1
2

which contains the correct tree-level and two-loop terms (and the absence of a one-loop
contribution also agrees with string perturbation theory). The expression (4.2) can also be
strongly motivated by supersymmetry arguments [9] that extend those of [8].

The coefficient 58 %)) satisfies the SO(2)\SL(2) Laplace equation
10)¢10) _ 15 o(10)
AETS = — Erg)- (4.4)

In the following subsections we will discuss the generalisation of the 9*R* interaction
to D =9, 8 and 7 dimensions. Comments about the D = 6 will be made in the discussion
in section 6 with some more details in [32].

4.1 Nine dimensions

The effective 9* R* action in D = 9 dimensions ((4.1) with D = 9) has the coefficient
function,

o _ 1, %(2) 2 1(2)¢E) -2

((1,)0) = 5 Sl ! E%(Q) + 1—5 V17 E%(Q) + T 21 [ (45)
Making use of the laplacian on nine-dimensional moduli space (3.9) we see that 5((3)0)
satisfies the differential equation

_ 30

)
(A% - =

© _
)€y =0 (4.6)

(i) Decompactification to ten dimensions.
In the rg/l1p — oo it is useful to write (4.5) as

4 2
3009 _ g2 1) | 20(2) (lio\" ~0) | 4(2)¢(3) (rB

The term linear in rp gives the finite ten-dimensional result. The term proportional to 7“% is
known to be necessary [1,4] in order to account for the ten-dimensional normal threshold
proportional to slog(—¢%,s) R%. As described in the introduction, this arises from the
interchange of limits needed in making the transition from the D = 9 low energy limit
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r%s < 1 and the D = 10 low energy limit 1 < 7“%8 < r% 0725 8. The term proportional

((é%))7 which is the coefficient of R* in

D = 10. This fits in with the general statement that terms suppressed by powers of rp are

to r§3 multiplies the modular invariant function &

coefficients of interactions with fewer derivatives.

(ii) D =9 perturbative string theory.
The perturbative limit is simply obtained by expanding the Eisenstein series in powers
of yg = g2l /7, giving

% 5 4 3 63
% / 0 £y =1 (@ +-2¢(2)¢(3) (;—3 + 73)

1
b S
4 r2 02
204 T s
+3cm (+ %) )

This reproduces the tree-level term proportional to 1/yg, the genus-one terms in (3.28),

(4.8)

which are independent of y9 and genus-two terms proportional to yg. The coefficients of all
these terms are consistent with direct calculations in string perturbation theory. Further-
more, since yg is invariant under T-duality, the expression exhibits the known equivalence
of the perturbative ITA and IIB theories for genus less than or equal to four.

(iii) Semi-classical M-theory limit.
The M-theory limit is also easy to establish. Indeed the complete expression (4.5)
can be obtained directly by adding together the L = 1 and L = 2 contributions to the

four-supergraviton amplitude of eleven-dimensional supergravity compactified on a two-
torus [7], giving (in M-theory units),

1 41

Be g3 By () + 15 55¢(2)C(3) — 8¢ (Vi E_
2

(1,0)

)] . (4.9)

>

[

1
2 3
2
The last term is the contribution of one-loop supergravity (L = 1), while the second term
comes from the finite part of the two-loop (L = 2) supergravity amplitude. The first term
is the sum of the L = 2 sub-divergences and the triangle diagram in which one vertex
is a R* one-loop counter-term. The divergences cancel between these terms leaving the
displayed finite contribution. Upon converting from M-theory units to nine-dimensional
Planck units this expression coincides with (4.5).

4.2 Eight dimensions

Compactification on 72 gives rise to the 9*R* effective action (4.1) with D = 9, which is
invariant under the D = 8 duality group, E33) = SL(3) x SL(2). Since this is a product
group the automorphic function is generally, by separation of variables, expected to be

8The amplitude compactified on a circle has an infinite series of massive square root thresholds of the form
dopcp(s+ p/rE)VERY ~ 3 dn (rs)”/rs RY. In the limit 7%s >> 1 this series sums to the logarithmic
singularity. However, this infinite series of powers of 7% s is relevant in the low energy limit r5s < 1 in the
D = 9 interactions. The r% term in (4.8) is the n = 2 term in this series.
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the sum of products of eigenfunctions of the SO(2)\SL(2) and SO(3)\SL(3) Laplacian
operators. As argued in [12], the modular function has the explicit form
1
c® _ 2 psSLB)

—-E 4B

(1,0) = 9 [0);3 [10];,1E2(U)- (4.10)

2

Interestingly, we find by explicit computation that the total interaction Séf )0) is an eigen-
function of the total SO(3)\SL(3) x SO(2)\SL(2) Laplacian

A® g® " — 13—0 £

(8)
(1,0) — 1

&) (4.11)

However, the total interaction is not an eigenfunction of the cubic Casimir (whereas the
Eisenstein series are). The evidence that (4.10) is the correct expression is based on the
fact that it reduces to the expected expressions in the three degeneration limits described

earlier, as we will now demonstrate.
(i) Decompactification to D =9
This is the constant term corresponding to the ry/fg — oo limit. Using the expansions

of Eﬁg](?; and E; it is straightforward to obtain the constant term,

1 3 3
4 [? ® _ 43 © 1 (Ll oo  4C(4) (r2
I / dBrrdBys €)'y, = lora <5(1,0) +35 < ) Sont 55 (%) |- 412

1 r
3 2

The term linear in 7y reproduces the D = 9 9*R* coefficient, while the term proportional
to ry 2 is proportional to the R?* coefficient. The term proportional to 7“‘21 is the expected
contribution to the nonanalytic R* threshold term.

(ii) D = 8 perturbative string theory.

The coupling constant associated with string perturbation theory, ys is a modulus in
the SO(3)\SL(3) part of the moduli space. The weak coupling expansion can therefore be
obtained using properties of the SL(3) Eisenstein series described in (B.53)

1
3 20(5) 4 1
/  dBrrdME] () = <) + 5 v Ba(T), (4.13)
-3 ’2 y83
1
’ sy Lo 1L
/ ABrrdEL 7 = — oyl — 5 — Ba(T). (4.14)

Wl=
<
oo

The perturbative expansion in terms of SL(2) x SL(2) functions is given by the constant
term,

1

2 8 ¢(5) 2 2
gé/ dBgrr d{l 5((1,)0) =4 <— + 5 E2(T)E2(U) + 3 Y8 (Ex(T) + Ex(U)) ), (4.15)

1
2

which contains tree-level, genus-one and genus-two contributions, All three of these terms
can be verified directly from the low-energy expansion of the four-supergraviton scattering
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amplitude in string perturbation theory compactified on 72. The tree-level term is stan-
dard. Higher loops are briefly discussed in appendix D. The 9*R* interaction extracted
by expanding the genus-one integrand has a factor of Eq(7), where 7 is the world-sheet
modulus that has to be integrated over the fundamental domain, Fgr2) [4,33]. Upon
compactifying, the integrand is multiplied by the lattice factor, giving

&>t 2
IfZ) = / — Ea(7) T29)(T,U) = ) Ey(T)E2(U), (4.16)
FsL(2)

7'2

in agreement with (4.15). We refer to appendix D.1 for the evaluation of this integral.
The two-loop amplitude given in [34,35], when compactified on 72 is proportional to *R*

9 |d37'|2
17 :/ (det Smr)? L22), (4.17)
Fsp(a)

multiplied by

det Smr)

where I'(5 9y is the genus two lattice sum. This integral was evaluated in [15] (also reviewed
in appendix E), giving

1) = L (Bo(T) + () (4.18)

(iii) Semiclassical M-theory limit

The expression (4.10) may be motivated by analyzing the M-theory limit obtained by
compactification of the four-supergraviton amplitude in eleven-dimensional supergravity on
T3 at one and two loops. This builds in the SL(3,7Z) invariance as the geometric symmetry
of T3, whereas compactification of perturbative supergravity does not build in the SL(2,Z)
part of the duality group, which is sensitive to the effects of euclidean M2-branes wrapped
around 73. This results in the following expression for the 9*R* interaction [1,7]

1
1 11 /1 SLE) 2 SL(E3) WC()
I /2 qU. e® — 1 <—E 42 - , | »
8 1 Le,0 — 128 %g 2 T[10;3 [01];2 (4 ) 5 V3 ( )

The first term arises from the two-loop (L = 2) counterterm calculation given by the trian-
gle diagram evaluated in the appendix G.1. The second term arises from the the M-theory
one-loop (L = 1) and the last term arises from the finite part of the two-loop amplitude
and is evaluated in appendix G.2. Transforming to the eight dimensional FEinstein frame

51/6 LG) _ _ 4gSLO)

using ¢11 = {3 V5’ and V3 = Uy and using the relation E[lO] = o)1 given in (B.9)

gives

) SL() SL(3) WC(3)
o /_ au, €8 )_g4< L0 4 2 E[01]2 <2g() =) (4.20)

1
2

It is easy to see that (4.20) has the unique SL(3,Z) x SL(2,Z) completion given in (4.10).

4.3 Seven dimensions

In this subsection we will show that the seven-dimensional 9*R* effective action, (4.1) with
D =7, contains the coefficient function

e _ 1 £SLEG) 3 ~SL(5)

(1,0) — 9 ~[1000};3 + EE[oom};g : (4.21)



The symbol ~ signifies that each SL(5) Eisenstein series is regulated by evaluating the
series at s = 5/2+ € and subtracting the pole in the limit € — 0. These poles are a signal of
the ultraviolet divergence of the supergravity two-loop amplitude in D = 7. The detailed
evaluation of the series close to the pole in appendix B.5 gives

T T i
B0, = MBSO 2 (ot 11n? 4 360/(2) + O(e).
It is significant that the poles cancel in the combination
i (B0 1.+ B0t ) = Bt moBaing loalin) (429
which is therefore finite. The constant
log fir = 16¢'(2) + 167%vg /3 — 767%/9 (4.24)

can be absorbed into the definition of the scale of the logarithm in the nonanalytic part of
the amplitude, leaving the combination of Eisenstein series on the right-hand side of the
ansatz (4.21).

Using the properties of the SL(5) Eisenstein series in appendix (B.5) it follows that
this combination of Eisenstein series satisfies

A 5( 0= "3 >

(4.25)

As with the coefficient 5((§ )0) in (3.25) the presence of the inhomogeneous term on the right-

hand side of this equation implies the presence of an additive logarithm in 5((17 )0), which
is in this case a sign that the low energy supergravity limit has a two-loop logarithmic
ultraviolet divergence.

(i) Decompactification to D =8

The r3/fg — oo limit again involves the constant term in the P(3,2) parabolic. Using
the relation between the Planck length in seven and eight dimensions, E? = €g Ty ! and the
formulas of appendix B, we have

T3
2 T3 1
L5 ()

The term proportional to rs reproduces the eight-dimensional interaction (4.10) and the

7 1 T 287 B
0 / Elly =t (5((1)0) + ( 8) : (5((3*’0) + T1og(eg,,t7/rg))
P32) ’ (4.26)

coefficient of the 1/r3 term is the R* interaction in D = 8 dimensions. The term with a
positive power 73 is needed to contribute to the series of (r2 s)" terms that sums to give

the R*log(—¢2 s) threshold in eight dimensions.
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(ii) D =7 perturbative string theory

Using the relation between the seven-dimensional Planck length and the string scale
by = £ y;/ 5, in D = 7 the string perturbative expansion, which is associated with the
P,, = P(1,4) parabolic with Levi component GL(1) x SO(3,3), has the form

2 4m?
i / gD =45 <@ A (B0 + Bloih) + 1
P(1,4)

(1,0) Y7 [010];3 [100];2 [001];2 15 77 10%(97/ﬁ7)> )

(4.27)
which matches the direct string perturbation theory calculations of the tree-level, genus-one

terms in (D.14) and the genus-two contribution in (E 9) The tree-level term and the first
L(5)

genus-two term come from the P(4, 1) parabolic of E[ 1000);3 2

n (4.21), while the genus-one

L(5)
[0010];3
in (4.21). Thew logy7 term is the genus-2 ultraviolet threshold, which has a coefﬁment

term and the second genus-two term come from the P(4,1) parabolic of the series E°

that is proportional to the inhomogeneous term on the right-hand side of (4.21).

(iii) Semi-classical M-theory limit

As before, the compactification of the eleven-dimensional supergravity amplitude pro-
vides the data for the constant term for the parabolic subgroup associated with node as
in fig. 1(i), which gives a series of SL(4)-invariant terms.

The validity of the ansatz for the 9* R* coefficient, (4.21), can be checked in this

limit by using the relation between the seven-dimensional Planck length and the eleven-
dimensional Planck length ¢7 = £1; ]A/4_ 1/ the 9*R*. This leads to

2 ™) ! SL(4) T ISL(4) 2 .50 67 N
“ /13(4 1) Eao = V2 ( V4 ooz T 30V4 Ejgo2 + 2 Bowz — 5~ log(V4/fir)
(4.28)

This series of terms again coincides with contributions from Feynman diagrams in eleven-

dimensional supergravity. The first term arises from the finite part of the two-loop L = 2
diagrams in D = 11 supergravity on 7*. This finite contribution is given by the integral of

the I' 4 4) lattice over the fundamental domain of the torus, which leads using the techniques
ES0B3) _ pSL()

[100];5/2 — [010);5/2"
from the one-loop L = 1 diagrams and the last term from the triangle diagram that contains

of appendix G.1 to the series ((4 ) The second term in (4.28) arises
the one-loop counterterm.

In order to understand the coeflicients in dimensions D < 6 in detail we need to make
use of the properties of the constant terms that have not yet been obtained in detail.
However, we have pinned down the combination of two Eisenstein series that arises in
D = 6 (with U-duality group SO(5,5)) although we have not determined their relative
coefficient. Further comments will be made in the discussion in section 6, where we will
also present the Laplace eigenvalue equations that we believe these series should satisfy for
all D > 3.

5. The 0°R* interaction

The next order in the analytic part of the momentum expansion of the amplitude is encoded
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into the local effective action,

Spors =P [ dPu /-G ) ORE. (5.1)

At this order in the low energy expansion the structure of the equation satisfied by the
coefficient functions changes, as is evident from the D = 10 SL(2,Z) case (1.8), which has
a source term on the right-hand side [10]

(Asoenszi — 1257 = —(Egg)? - (5:2)

Although this has not been derived explicitly from supersymmetry, it is easy to argue for
the qualitative structure of the equation based on a generalisation of the arguments of [§]
used to determine the coefficient of the R* interaction. The constant term is given by

43&0/21 40, £09) _ gt (24( Pz 4 K@KE) | 827 +m9 4O tr))

©.1) 3 3 5
(5.3)
which has perturbative contributions up to genus three and has contributions from D-
instanton/anti-D-instanton pairs with zero net instanton number.
Once again, we will see that the generalisation to higher-rank groups does not change
the structure of the equation although the eigenvalues of the homogeneous equation change.

(D)

The structure of the coefficient 5(0 1) was determined for D = 10 in [8] and generalisations

to D = 9,8 were suggested by Basu [13]. We will demonstrate that in each case 5(((? 1))

satisfies an inhomogeneous Laplace eigenvalue equation. In D = 8 dimensions subtle effects
due to the regularisation of the R* term in the source imply additional contributions to
the solution given in [13]. We will later determine the D = 7 equation and properties
of its solution. The D = 6 9°R*, which is of particular interest since it contains the
three-loop ultraviolet logarithm characteristic of the ultraviolet divergence in maximal
supergravity [36], will not be discussed here although a few comments will be made in the
concluding discussion section 6 (and in [32]).

5.1 Nine dimensions

In this case the effective action, (5.1) with D = 9, contains the coefficient function deter-
mined in [13] to be
c® _ % (o) 20(2) fE 2¢(2) » 4C(2)C(5) -2 8¢C(2)? vlg |

7
st T

(5.4)

The function 5((0 1)) is the ten-dimensional coefficient that satisfies the inhomogeneous
Laplace equation, 5.1.

It is readily checked that 5((3 )1) satisfies

90
(A =) &y = ~(Ep)” (5.5)

The source term is again quadratic in the modular function that arises for the coefficient
of the R* interaction, as it was for D = 10 in (1.8).
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(i) Decompactification to ten dimensions.

The contribution (5.4) can be reexpressed in ten-dimensional units recalling that £y =
8 1

éfo r;f and 1] = (TB/€10)_2, giving

2 6
; (9) 1) | 20(2) (w0~ .a0) , 4(2) (40 .00
4¢(2)¢(5 18¢(2)% [to\*
+ 7«6)34() <%‘Z> + Cé) (7%;) +O(e‘7°3)> . (5.6)

The term proportional to rp gives the ten-dimensional expression in the rg — oo limit.
Once again, there is a growing term with the expected power of %, which contributes a
term proportional to (s 'rB) R* to the expansion of the ten-dimensional s R*log(—¢%, s)
threshold in the limit s 72 B — 00.

(ii) Perturbative string theory.

The perturbative expansion of this coefficient is given by expanding in powers of the
string coupling,

68/;d§25(())—€§?“3<3(?l (2(3)<1+%>+%<ﬁ+%>
g 0 () 20 () o)

(5.7)

This expression is symmetric under the T-duality transformation rg — 1/r4 and gp —
ga/ra. The genus-three term proportional to g4B comes from expanding () and was
shown to match the ITA results in [18]. The symbol O(e~1/97) indicates schematically the
presence of instanton/anti-instanton pairs in the zero D-instanton sector.

(iii) Semi-classical M-theory limit.
The contributions to the 9°R?* interaction obtained by compactifying the one-loop
and two-loop Feynman diagrams of eleven-dimensional supergravity on 72 were evaluated

n [10]. Collecting the L = 2 and L = 1 modular functions along with the genus-one terms
of (3.28), we find the modular invariant expression,

e = y(Ton L GO L ¢ O Oginy g

(0.1) 12 180 P53 8370

This expression sums all the contributions determined from the analysis of the L =1 and
L = 2 loop amplitude on a torus, to which has been added the contribution ¢(5)¢(2)/V8,
which arises from a A3 divergence of the L = 3 amplitude. This contribution has been
regularised by matching the string-theory genus-one contribution determined in (3.28), and
is a prediction for the three-loop supergravity contribution to the 9% R* interaction.

In the next sub-section we will see how this nine-dimensional interaction arises by
decompactifying the eight-dimensional term proposed in [13] and discuss further properties
of this expression.
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5.2 Eight dimensions

In this section we analyze the eight-dimensional 9% R* interaction, which has an effective
action (5.2) that is invariant under the U-duality group Fy3) = SL(3) x SL(2). We will
show that the modular function proposed in [13], satisfies the differential equation

A (8) 5(8)

(8) (8)
ohy = 12€ (Eoy)’ - (5.9)

01)
where A®) is the SL(3) x SL(2) Laplacian. The source term appearing in this equation
again involves the square of the eight-dimensional R* coefficient.

The systematic solution of this equation will be obtained in appendix I, where we will
see that it is uniquely specified by matching the known properties of string perturbation
theory. The solution is close to the one argued for in [13] on the basis of consistency with
the higher-dimensional interaction (our normalisation differs by a factor 2/3 from [13]),

40 _ s, 1513 ¢
eN =g+ 5 uoﬁ?% Es(U) + gE[mg E (U) + f(U)
5.10
P IESIO | T 0 4 SO o
T36 o T o 9
where the function f(U) is defined as the solution of the equation
(Ay —12) f(U) = —4E}(U), (5.11)

where Ay = U2 (8[2]1 + 8[2] ). It is straightforward to extract the power-behaved terms in

its expansion (see (1.19)). We have also introduced g5LE)

0.1) satisfying

SL - SI
(Aso@)\sL) — 12)5(0,1()3) = —(E[w%))Z : (5.12)

The last three terms in (5.10) (absent in the solution presented in [13]) arises from the
regularisation of the R* interaction.

We will now consider the limits (i) and (ii), but since we have not evaluated the
derivative expansion of the L = 2 amplitude on higher-dimensional tori the limit (iii) will
not be discussed.

(i) Decompactification to D =9

In the decompactification limit 9/l — oo the SL(3,Z) modular functions in (5.10)
have the form

1

SL<3> _ 9 3 T 9
/é dBrrdBNs E[ 102 = 1,4 Vs E%(Q) + 315 ) (513)
1
_1
/ dBrrdBxs EfL}(S) = v, P B3 (Q) + 7 logrs. (5.14)
1
2
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Substituting the latter expansion into the source term in (I.5), one finds that the interaction
coefficient becomes

1
20 -1 3 _5
/ dBRRdBNS 5£SL()3) = 5(%01)) + < 2 log(l/g) + 011/22 + C2ly 2) E%(Q)

1
2

10}
i) 3,02 -1
T (5 + 4log(1/2) + 810g2(1/2)) + 0(6*92 ) ’e*(QQW) 2 ) ,

(5.15)

where c¢1, co are integration constants. They are determined by taking at the same time
the perturbative string limit and comparing with the expressions of appendix I. We find
c1 = ((5)/(127) and ¢o = 0. In this case the zero instanton sector contains instanton/anti-
instanton pairs consisting of D-instantons and wrapped (p, q)-string world-sheets as indi-
cated by the last term.

The SL(2,7Z) modular functions have the expansions

/21 AU E3(U) = 2¢(6) US + SWC( )U2 : (5.16)
/21 dULEL(U) = 2¢(2) Uy — wlog(Us), (5.17)

and the expansion of the function f(U) given in [13] and in (1.19) is’

2 3)C(5
150 (03— 207Uz +487°0y) + %UCE(’) (5.18)

—2¢(2)log Uy (47U — 6log Us + 1) + O(e72).

6f(U) =

Therefore, the constant term associated with decompactifying to nine dimensions is

ES/ dBrrdBns 5((0)1) 0 7“25((3,)1)

2

4 6
6 (9) Ly 15¢(5) (9) 167¢(6) T2
Tt (36 E0.0) <7“2> 15 C00) T ey lo

iy log ( ;) (75(%’}0) —4¢(2) ul) By 44”241( ) Jog(11) (5.19)

7 37 86 ra\ 20 ro
*72“2)(36*?1 <@>‘61 (@))

_ g @ log(yl)(l + 4log (%) — 4—78 log(ul)) +0(e ™).

2 21

The term linear in 75 reproduces the nine-dimensional 9°R* interaction, the term indepen-
dent of 5 is proportional to the nine-dimensional R* interaction, and the term proportional
tory 4 is proportional to the nine dimensional 8*R* interaction. The term proportional to
73 is needed to reproduce the D = 9 threshold of the form (—5)% R

9We correct a missing 1/7 factor in the 1/U3 term in [13].
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(ii) D = 8 perturbative string theory
The perturbative expansion of the coefficient 5(((?)1) in increasing powers of yg =
(Q22T,)~! is performed in appendix I. We may summarise the result in terms terms of

the functions I ,(L )( 12 q>) that would be obtained by evaluating the appropriate terms at

(P9 s the expansion of the inte-

genus-h in string perturbation theory. The function j,
grand of the genus-h string loop diagram to order o} o R* (the notation is explained in

appendix D).

6 8) 6 (2€(3)> 641 () 0,1),  2mC(3)
68/_%dQldBRR€( =0 3oty G+ T loa(ys)
2
2),.(0,1 ™ 2) 5.20
+§?JS—72()(]§ ))+§ (2 + I ) s 1og(ys) +E?JS log(ys)? (5:20)
1
+20y§I§2)(j§°’”)+0<e*<T2y8> T >)-
The genus-one contribution to this expression has the form
) 10 3) - .
12G0Y) = 2 B B0 + S (1) + Bu0) logp). (521)
327 327

This follows both from the expansion of the coefficient 5((3 )1

) and from the direct evaluation
of the genus-one string theory amplitude in (D.10).

There is also a logarithmic correction to the genus-one term of the form logys in
(5.20). This is a manifestation of a logarithmic ultraviolet divergence in supergravity that
originates from the one-loop R* subdivergence of the two-loop supergravity diagram. As
before, the origin of the logyg is in the transformation of log(—¢2 s) from string frame to
Einstein frame.

Comparing (5.20) with the expansion of &®)

(0.1) in appendix I.1 we see that the genus-two

contribution is given by
11¢(2)
36
In principle it should be possible to check (5.22) with the expansion of the genus-two string
theory amplitude of [34,35] at order 9°R?, but this has not been done.
There is also a logarithmic term of the form yg logys in (5.20). As described earlier,

D GED) = 2By (1) By(U) + & (By(T) + Ba(U)) + F(T) + F(U) + (5.22)

such a term signifies the presence of a two-loop supergravity logarithmic ultraviolet di-
vergence. In other words, there is a £8 s3 R* log(—/2 s) contribution to the amplitude in
string frame, which generates the yglog ys term in (5.20) upon transforming to the Einstein

frame.
The genus-three contribution in (5.20) extracted from the expansion of 5((0)1) in ap-
pendix 1.1 is
17 (5"") = 375 (Ba(T) + Ea(U)). (5.23)

270
Little is known in detail about the genus-three superstring amplitude apart from the fact

that its leading low energy behaviour contributes to 9°R* [28]. However, it is interesting
to note that this genus-three expression is given by the evaluation of the two-dimensional
lattice integrated over the Siegel fundamental domain for Sp(3,Z) evaluated in appendix F.
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5.3 Seven dimensions

The construction of the coefficient of the 9R* interaction in the effective action (5.2) with
D = 17, follows the same logic as in D = 8, so this section will be brief. The modular
function multiplying the 9%R* interaction in D = 7 is determined by

42
(1) _ 2N (M) _ (7)) 2
(A =) €01y = ~(Epo)” (5.24)
where
(M _ @gSLO)
5(0’0) = E[looo};g . (5.25)
As in the D = 8 case, the solution can be written as
(1) _ oSL(B) | 29 L SL(5)
Eon =%01) 5500102 - (5.26)
where 5(%];1()5) is a particular solution and E%ﬁié?? /2 is the only solution of the homogeneous

equation that has perturbative terms consistent with string theory. The relative coefficient
in (5.26) will now be confirmed by studying the decompactification limit.

(i) Decompactification to eight dimensions
In the limit r3/fs — oo the (3,3) entry in the matrix in (B.62) (after setting rs = r2)
becomes
T @) () 8 ()"
SL(5) r3 7T s sr@), 8 (73 SL(3)mSL(2)
(5.27)
that decompactifies to eight

SL3) pSL2)
[01];3 3
dimensions. The other possible solutions to the homogeneous equation (with Dynkin labels

From this expression we recognise the term E

[1000] and [0100]) are ruled out because in the perturbative string limit they give rise to
terms that cannot be identified with perturbative string theory (i.e. they give wrong powers

of the string coupling). The rgm/ % term in (5.27) contributes to the D = 8 threshold.

(8)

Comparing with the eight-dimensional expression for £ ) given in section 5.2, and

(0,1
using E*[%%(? = 271°/3 E*[%%(,?:):g /o> fixes the relative coefficient in (5.26), as follows. In ad-
dition, we recognise the term Eﬁg}(? in (5.27), multiplied by 75 8/ 5, which is part of the
2
O*R* interaction in eight dimensions. The other part of the 9*R* interaction is a term
T &/ E’E[fﬁ](g)EgL(Q), which does not show up in (5.27), but arises from Eng()S), as follows.
The large-r3 limit of the source term is obtained with the use of
6 6
SL(5) 3\ % L(8) r3\° T3
E =(-=] & —4r (=] 1 — . 5.28
/P(g,z) [1000]; 3 <58> o) = <f8> % <€8/~t7> (5:28)
In this limit, the constant term of the particular solution 5(%];1()5) contains the contributions
5 1 s\ !
sy _ (T3 SLE3) |, 1 pSLEg £y 9
/13(372) o) <£8> <5(0,1) MERIDE () + 1)+ <7~3> Ent ) - (5:29)
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The first three terms reproduce the eight-dimensional result (once added to the contribu-

. SL(5) 8/5
tion of E[0010};7/2)'

homogeneous equation for the SL(3) x SL(2) Laplacian with eigenvalue 10/3, which is the

Since the source term does not contain the power r4 /", &, solves a

same as the eigenvalue of E[lO](:?/2 (5.27). The term we are expecting is of the form

k:E*[%%(z)EQ @ ), where the coefficient k is fixed by comparing with the 9*R* interaction,
which gives k = —872((2)/5.

(ii) Perturbative string theory

L(5)
(01) >
subgroup of relevance to limit (ii), the limit of perturbative string theory. In this limit, the

We will now find the constant part of the particular solution, &3 in the parabolic

result is expressed in terms of functions invariant under SO(3,3) ~ SL(4), the T-duality
group. We will need the expansions

Mo = L()

/P(4,1) E[1ooo] : 2(3) vr + 2y 5]3[100},1 ; (5.30)
L) _ sp@a) | 8mC(4) 2 s

/P(4 1) E[0010] T E[Olo] Tt 15 y75E[001L37 (5.31)

which can be found in entries (1,1) and (1,3) of (B.62) (setting y; = 1/r*). Thus the
homogeneous solution provides part of the genus-one and genus-three contributions.

In order to study the perturbative string theory limit we will also need the decomposi-
tion of the SL(5) Laplace operator into the SL(4) Laplace operator plus the second-order
differential operator associated with y7,

)
AT = Agoensre) = Asounsca) + 5 (Wr0y7)” + 5(yrdyr) (5.32)

The coefficients 5/2 and 5 in this equation have been determined by using the known
D = 8,7 R* and 9*R* interaction coefficients. The R* coefficient is given in (5.30),
whereas the 9*R* case can be checked using

SL(5) 4_sra)
/P o E 003 = 200) 7 - B0 (5.33)
SLE) - 1pSLE) 47C(2) _sr(a)
/13(4,1>E[0010%3 B E[OlOWJr 3 E[001},2 (5.34)

The constant term of the particular solution associated with the parabolic subgroup of
relevance to the perturbative expansion is a series of the form

0 / SL(5 = (TN 5L yn-1 5.35
"o Z (5.35)

(SL(4)

The coefficient functions &, can be determined by substituting this genus expansion
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into the Laplace equation (5.24) and using (5.26), which gives

655 Y = 4¢(3)2, (5.36)
<ASO(4)\SL(4) - %) M = 8¢(3)E [%04)1 ; (5.37)
(Asownsca — 10) &Y = —4(Eﬁ§éi)1)2» (5.38)
<ASO(4)\SL(4) - g) e" = 0. (5.39)

Equation (5.36) gives the tree level contribution. The genus-one coefficient is determined
by (5.37), which is solved by

SL(4)  SL(4) 1S L(4) L(4) 2C(3) SL(4)
& o aE[1001;1+2ﬁ aE[ocn] 1+2f+bE[010} 3 E[100];1’ (5.40)

for any a,a’,b. The constants a,a’ must be zero to match the genus-one contribution in

D = 8, and b can be fixed by the decompactification limit. Equation (5.38) defines the
genus-two function 525 L) which, by construction, in the decompactification limit becomes
the genus-two contribution E(T)E(U)+ f(T,T)+ f(U, U) of the 3R* interaction in eight

SL) 1 pSL@)
[001];3 [100];3"
The first one combines with the solution of the homogeneous equation, see (5.31).

Thus, the complete perturbative expansion of the modular function 58 )1) is given by

dimensions. Finally, (5.39) has two independent admissible solutions E

7 (7) 7(2603)° 1 | 2((3) sn) ESL L(a)
“ /13(41)5(01) gs( 3 y7+( 3 E“OO] +(A+HE [010);% D)+ uiEs

+ 297 (E[ooi}) + E[loéi)> + n'p'> ’

(5.41)

where n.p. indicates non-perturbative contributions. By construction this reproduces (5.20)
in the decompactification limit since, as discussed above, in this limit the differential equa-
tion becomes the eight-dimensional one. The genus-one contribution in string perturbation

(0, 1))

theory is given by I (3)( evaluated in (D.15) is given by

25 3
G = Bt + S B (542
which determines the value of b = 57/756 — 1. It would be interesting to determine the
genus-two coefficient by expanding the string theory amplitude [34, 35].
Interestingly, as in D = 8, the value of the genus-three contribution is given by inte-
grating the three-dimensional lattice factor over the Siegel fundamental domain for Sp(3,7Z)
evaluated in appendix F,

o _ SL(4) SL(4)
/&p@ » (det Sm7)? Lo =575 (E[lom;s + E[001];3> : (5.43)
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6. Discussion

In this paper we have extended earlier analyses of the nonperturbative structure of the
coefficients of terms in the low energy expansion of the four-supergraviton amplitude to
the higher-rank duality groups that arise in toroidal compactifications of maximally su-
persymmetric string theory or M-theory. We have considered terms up to order 9R? in
the derivative expansion of the effective action and compactification on 7¢ to D = 10 — d
dimensions. The R* coefficient has been understood in cases with d < 7. The 0*R* coef-
ficient has been understood in detail for d < 3, with partial results for d = 4 (see below).
The 9%R* coefficient, which has the richest structure, has been understood for d < 3.

The derivation of the coefficient functions necessarily followed a rather tortuous path
since the aim is to discover the modular invariant coefficients for low-dimension string the-
ory (high-rank duality groups) from information in higher dimensions (low-rank duality
groups), which involves checking many limits. Nevertheless the results may be stated com-
pactly. The three terms in the low energy expansion of the four-supergraviton amplitude
can be expressed as local terms in the effective action of the form

Spor g = CAH3D [P /—GD) £[7) 9 RY, (6.1)

where (p,q) = (0,0), (1,0) and (0,1) and k = 2p + 3¢ = 0,2,3. The coefficient functions
E(Ifq) are automorphic functions of the coset space coordinates that transform as scalars
under the appropriate duality groups. Starting from the known structure of these functions
we have determined their form in the compactified theory by demanding consistency in
the three limits described in the introduction: (i) decompactification from D to D + 1
dimensions; (ii) known properties of string perturbation theory in the limit of small string
coupling; (iii) The limit of large volume of the M-theory torus, 7¢+!, which is described
by loop diagrams of eleven-dimensional supergravity.

Clearly many, if not all, of the properties of the coefficients are highly constrained by
maximal supersymmetry combined with the dualities. In particular we have found that
they satisfy Laplace eigenvalue equations, with or without source terms, which are known
to be consequences of supersymmetry in the simplest examples [8,9], although we do not
have a general proof. Given such an equation for g(p,q)) it is easy to derive similar equations
satisfied by the constant terms for maximal parabolic subgroups of any given duality group.
These follow from the decomposition of the Laplace operator with respect to the same
subgroups as described in appendix H. In summary, we found that the coefficients are
solutions of

3(11 — D)(D — 8
<A(D) = D _)(2 )> Eog) = 67 Op—s (6.2)
o, 5(12=DYD—-T7)\ .oy 207>
<A(t_ D—2 €10 = T3 op-o 63
6(14 — D)(D — 6
<A(D) _ ( 5 _)(2 )> 5((51)) = —(5((58))2 +cdp-60, (6.4)

where the Laplace operators are defined on the appropriate moduli space and c is a constant
that remains to be determined (see below). The overall scale of the Laplace operators (and
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hence, the eigenvalues) of any one of the above equations is convention-dependent!?, but
the relative normalisations in the three equations is convention-independent

The coefficients satisfying (6.2)-(6.4) were discussed in detail in the body of this paper
for various values of D. In particular, the inhomogeneous Kronecker delta terms on the
right-hand side of these equations contribute in the ‘critical’ dimensions, D = D, = 4+6/L
— the lowest dimensions in which the L-loop diagrams of low-energy supergravity have
logarithmic ultraviolet divergences. These are L = 1, D, = 8 for R* (see (3.25)) and
L =2, D, =7for 0*R* (see (4.25)). In addition, (6.4) gives the L = 3 D, = 6 case for
O5R*, which was not discussed here but will be described in [32]. Tt is also notable that
the eigenvalues in all these cases vanish in the critical dimensions. This structure implies
that the solutions have logarithmic terms characteristic of the ultraviolet divergences of
maximal supergravity. The coefficients of these logarithms, suitably normalised, should
equal the residues of the epsilon poles in dimensionally regularised supergravity, up to
convention-dependent normalisations. This is straightforward to verify for the D, = 8 and
D, =T cases (L =1 and L = 2, respectively), where the analysis has been carried out in
detail. The value of the constant ¢ in the D. = 6 case determines the coefficient of the

6

genus-three logarithmic term in 5((0)1).

€ pole in the three-loop supergravity calculation in [36], which is proportional to ((3). A

This has to be consistent with the residue of the

preliminary study indicates this is the case [32].

Although our considerations are for the most part limited to D > 6, in appendix H.2
we argue that (6.2)-(6.4) probably apply for all D > 3. This follows simply by requiring
that the Eisenstein series continue to satisfy a Laplace eigenvalue equation for all D < 6.

Having obtained a coefficient function in D dimensions, all results in dimensions greater
than D follow, after some work, by expanding in the radius, r, of a compact dimension.
Importantly we find that potentially divergent terms cancel in this process, once account is
taken of terms of the form (r?s)", which diverge in the large-r limit in a manner associated
with the presence of non-analytic thresholds of the scattering amplitude. It appears to be
very nontrivial that whenever a coefficient function contains divergent Eisenstein series the
divergences cancel between different terms. The presence of such cancelling divergences is
indicated by logarithms of the moduli that are signals of logarithmic ultraviolet divergences
in the low energy field theory.

As a detailed example of these results, consider the SL(5)-invariant coefficients of the
D = 7 interactions, which was the lowest dimension considered in full detail. The solutions
we obtained were as follows,

SL(5)

M _

o) = E[looo};g ’ (6.5)
M _ 1 asie) 3 ~SL(5)

5(1,0) o 5 [1000};% + FE[0010]% ) (66)
(M _ gSL() SL(5)

5(0,1) - E[oom};g + 5(0,1) (6.7)

YThe formula for the R* eigenvalues differs by a factor of 2 from equation (4.11) in [15], since our
conventions differ.
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In particular, the coefficient 5((17’)0) multiplies 9*R*, which has a non-analytic two-loop
threshold in D = 7 supergravity, accompanied by a logarithmic divergence. This is mani-
fested in the string expression in (6.6), which illustrates the cancellation of divergences men-
tioned earlier. We have subtracted the constant log 1(1 ) from the epsilon regularised 5((17’)0)
because this quantity is the scale factor of the threshold contribution s>R* log(—¢2 s/ 1(1,0))-
The higher-dimensional interactions can be deduced by considering the sequence of decom-
pactifications corresponding to limit (i).

We can also make some comments about Eisenstein series for the groups Gg = Egy1(441)
with 4 < d < 7 (of relevance to 3 < D < 6, where D = 10 — d). These are more difficult to
analyze by elementary methods, but by making use of some relations derived by Miller [27]

we find the following in dimensions 3 < D < 6:

e The D = 6 R* interaction with symmetry SO(5,5) has a coefficient 5(((? )0) = Eﬁ%g(’)?)g /2

as described in section (3.4), but the analysis for 3 < D < 5 has not been com-
pleted. However, the eigenvalues in (6.2) coincide with those of the Eisenstein series

5((53) = E[Cl'vfioﬂ."’o};?)/w as can be seen directly from (B.2) setting A = [3/2,0,...,0].
This strongly suggests that the R* coefficient is given by 5(((? 8) = Eﬁdo 032 for all

D > 3, as suggested in [15].

e Although the D = 6 9*R* interaction has not been determined in detail, by looking at

the decompactification limit it can be inferred that it must be of the form Eﬁ%g(’)?)S 2t
cEﬁ)%g’l?)g, where our knowledge of the second series is based on [27]. The value of

¢ is determined by the cancellation of the poles of these series at s =5/2 and s = 3
respectively.

e The D =6 9%R* interaction coefficient is uniquely determined from (6.4) by match-
ing the different limits, in the same manner as in earlier sections. In particular, this
determines the constant ¢, which arises as the coefficient of a genus-three logarith-
mic term. This is of special interest since it is proportional to the coefficient of the
ultraviolet divergence of three-loop maximal supergravity in D = 6 dimensions.

e As argued above, in D = 3,4,5 we expect that the modular functions multiplying
the 9*R* and 9°R* interactions are still determined by (6.3) and (6.4), but these
equations alone do not determine the Dynkin labels of the possible Eisenstein series
with the same eigenvalue. These must be found by matching with the different limits,
as done in this paper for the higher D cases. This is an issue that we will return to
using more powerful methods.

Finally, we remark that that the analysis of interactions of higher order that 9% R4
raise interesting new issues. In particular, it was shown in [1] that the coefficient functions
for the 03R4, 0'"R?* and 0'?R* interactions in D = 9 dimensions consist of sums of
modular functions with different eigenvalues. The generalisation to higher-rank duality
groups should be interesting but is beyond the considerations of this paper.
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A. Applications of the unfolding method

This section will present some applications of the unfolding method to the computation
of integrals of modular functions that are used in the main body of the paper. At several
points we need to evaluate integrals of the type

I[B,. f] = /f T Bu(r) £(r), (A1)
SL(2,2)

b

where f(7) is a modular function, Fgr,o) is a fundamental domain for SL(2,Z) and E4(r)
is the S1(2,Z) Eisenstein series defined by

3
(m,n)#(0,0)

The integral (A.1) can be evaluated by means of the standard unfolding method using the

1
fact that Es(7) = ((2) 2o ero\sn2,z) (Sm(y - 7))%, with T'ee = {+ (0 le ,m € Z} is an
incomplete Poincaré series, leading to
°° dr 7
1B £l =20020) [ 52 [ anso). (A3

A second type of integral that we need to consider is integration of a modular function
f(7) multiplied by a Lattice sum,

d?r
I gy, f] = —5 La,a) f(7) (A4)
Fsrizz) 12

where T4 ) is the (even) Lattice sum

P = Vdetg > eXP(—Tl2 (ij + bij)(m' —mn*)(m? —7n?))  (A.5)

(m? ni)eZdx 74

[NJisH

=77 Y. exp(—mma(p] +pR) +imT (P — PR))
(PLPR)EA (4,0
where pr, = (n +m.(b+ g)).e* and pr = (n + m.(b — g)).e* with e defined by g = e’e
provide a basis of the lattice A? so that 7¢ = R%/(2rA?), and e* is a basis of the dual

lattice.
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This type of integral can be evaluated by the method of orbits [11, 15,29, 37-39], as
follows. The exponent in (A.5) can be rewritten as

= (g +b)ij(m" —Tn")(m? —7nl) = Ti? (1 —%) MY (g+b) M (_17> , (A.6)

72
where M is the d x 2-rectangular matrix with integer entries

mi N
M=|: 1. (A.7)

mgq Nq

The SL(2,Z) action, 7 — (a7 4+ b)/(ct + d) represented by the matrix A € Si(2,Z)
transforms the matrix M on the right

mi N
M—MA=| : : < d _c> . (A.8)
. . _b a

mq Nq

Therefore the integral can be decomposed into various orbits with respect to the
SI(2,7Z) action. The orbits are i) the singular orbit that corresponds to m‘ = n' = 0
for alli =1,...,d; ii) the degenerate orbit where all the sub-determinants of the 2 x 2 ma-
trices defined by the ith and jth line of the matrix M are vanishing d” = m'n/ —min’ = 0,
which reduces to nt = 0 for all 1 < i < d; iii) the non-degenerate orbit where at least one
determinant d” is non-zero. Up to relabelling, the representative of the orbit can always
be taken to have the form

0 ngp

0 ng

Therefore the integral in (A.4) can be expanded as

I[F(d,d)af]:/}_ T—ng(T)
SL(2,7)

n Z / dTQ mgum] /é dr f(7) (410

1
mi €24\ {0} 2

P / BT = gig i) (m ) (md ~7nd)
(mé i) dezd\{0}2 cr T2
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We remark that the unfolding has been expressed in terms of the matrix (¢g+0b);;, which im-
plies that the last line of (A.10) contains exponentially suppressed effects of order exp(—g;;)-
If it is necessary to consider an expansion in which exponentially suppressed terms are of
order exp(—g;), then one would apply the same formula starting from the lattice ex-

1

pressed in terms of g7+ after a complete Poisson resummation over all m* and n® integers

in (A.5).

B. Eisenstein series for SL(d)

The minimal parabolic Eisenstein series for a group G is defined by [19]

7€G(Q)/B(Q)

where (-,-) is the inner product on the root system of G. Any g € G can be uniquely de-
composed according the Iwasawa decomposition as g = kan where n € N in the unipotent
subgroup, a is in the maximal Abelian subgroup and A is in the maximal compact subgroup
K. We have identified a with exp(H(g)). Finally, p is half the sum of the positive roots
and A is a vector in the weight space of the lie algebra g of G and B is a Borel subgroup
of G.1! Eisenstein series are eigenfunctions of the invariant differential operators of K\G.

In particular, they are eigenfunctions of the Laplacian,'?

Ag\a ES (9) = 200 X) = (0, 0)) ES (9).- (B.2)

They are also eigenfunctions of higher-order Casimir operators of G.

However, we will only need this general definition in order to discuss the special low-
rank cases of interest here. For large part we are interested in Eisenstein series for SL(d),
which can be analyzed relatively easily in terms of their definitions as multiple sums (see,
for example, [40]), as we will see in this appendix. Although we will not need to explicitly
consider the most general SL(d) series in this paper, it is nevertheless illuminating to
review their construction since the maximal parabolic series can be obtained from it..
The following treatment is based closely on notes by Stephen Miller and extensions of his
thesis [25].

To begin, we consider H = vg~”, where v € SL(d,Z) and g is the SL(d) matrix
parametrizing the coset space SO(d)\SL(d). Letting Hj, be the bottom right k£ x k£ minor
of H the general minimal parabolic Eisenstein series [27] associated with the minimal
parabolic subgroup P(1,...,1),

d—1

SL(d dd—kt1—rd—k~1L

LD DR § (CE2 0 (B.3)
~e€SL(n,Z)/B(Z) k=1

"Because the function g — exp({\ + p, H(g))) is defined on G(A), where A is the ring of Adeles of Q, it
is common to consider the sum defined on the group of Adeles although this will not be necessary for the
considerations of this paper.

2Invariance under K implies that the eigenvalue of the Laplacian is the same as the value of the second-
order Casimir of G (\, A) — {p, p).
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which is a special case of the general formula (B.1). Here we have set 2sp = A\g_g11—Ag—r—1
for 1<k<d-—1,and ¢ =1if s #0 and ¢, = 0 if s = 0.
The SL(d) series that are studied in this paper are

e The series EﬁL()(j22}-s given by Ay = 14+ Ag—1 + 2s and for 2 < ¢ < d — 1 we have

Ad—i = Ag—i—1 — L.

e The series E%Lf?))d%]s given by A\g = 1+ Xg_1, Adg_1 = 1+ g o+2sand for 3 < i < d—1

we have A\g_; = A\g_;_1 — 1.

e The series Eﬁ;ﬁ@l],s given by Ag = 1+ A + 2s and for 1 < i < d — 2 we have

Ad—i = Ag—i—1 — L.

e Since H = yg~T, det Hy, = mlit ... mixlmlin ... mixl Hle Gi,jr» Where (myq,...,mg)
is the last row of v € SL(2,7Z)

Since det H; = 1 in the definition (B.3) one does not need to introduce 2s4 = A\; —X\g—1.
However, in order to make the symmetry more explicit we introduce such variables and
consider the change of variables [40] s; = zj41 —2;+1/2 for j < d and sq = —24+1/2, i.e.,
Zi = — Z?:i 55 + %. The variables z; are related to the \; variables by A\g_; = 22; + 1
for 1 <17 <d. We define

=N 1 SL(d) 1
E(z) = S B e 1<E<d (2 =2+ 3). (B.4)
Then )
SL(d)
E[61,~~~,6d71}5517~~~78d71 H (Zj —at 5) (B.5)
1<i<j<d

can be analytically continued to a holomorphic function for all z € C™ and Z(z) satisfies
the d! functional equations [19]

[1]

(w(z)) =E(2), (B.6)

where w(2) = {2,(1)," " » Zw(@)} 18 a permutation of the z elements of the Weyl group of

SL(d).

The poles of the series | D .

[€1,€a—1]5815--8d—1

residue at s; = 0 is given by the Eisenstein series associated with the parabolic subgroup

P, = P(1,...,1,2,1,...,1) evaluated at the value of (s1,...,8i—1,Si+1,.-,5n). Further-

more, the residue at s; = 1 is given by the Eisenstein series associated with the parabolic

are located at s; = 0 or s; = 1 and the

subgroup P; evaluated at the value of the parameters (si,...,sj—2,8i—1 + 1/2,8;41 +
1/2,si+2,...,5n) [40]. All the series discussed in the main text and the following sub-
sections can be deduced by extracting residues of poles of the minimal parabolic series
(although we shall not exploit this procedure).

We will first present general features of the series Eﬁﬁ)(f_)%s and E%ﬁ(’?d_%s and then
specialise to the particular cases of the SL(2), SL(3) and SL(5) series that are of specific

interest in the main text.
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B.1 The series E[1 O(d)Q] 5

The series E[]L O(d)g] is defined by setting \y = 1 4+ Ag_1 + 2s and A\g_; = A\g_;_1 — 1 for

2 <1 < d— 2. These Epstein series can be written in the usual form as

SL(d 1
002 = > (i) (B.7)

i (migiym)
(ml,...md)ezd\(0,...0) " I

where g;; is the metric with unit determinant detg = 1. Since detg = 1, the inverse
metric g~! = adj(g)” is given by the transpose of the adjugate matrix. The elements of
the adjugate matrix are the determinant of the minors of order d — 1 of the matrix g If we
introduce the dual integers n; = €;,...; d_lmj1 -..mJd-1 we can express the series E[od (?1]

in terms of the inverse of g as

SL(d) 1
E[Od—Q,l};s - Z (ni(g—l)ijnj>s : (B.8)
(n1,...,nq) €Z4\(0,...,0)

Applying the general functional equation (B.6) we find the relation

I(s) so@  LD(E—s) ESL@ . (B.9)

d—21.¢ — d d—2 .d
s [1,0972];s 158 [09-21];5—s

L(d)

The Epstein series E’ 1,09-2]:5 has a single pole at s = d/2 and converges absolutely for large
values of fe(s). It is deﬁned by meromorphic continuation for other values of s [40]. These
series do not have poles at the values s = k/2 for 1 < k < d — 1, which agrees with the
expectation from the string theory arguments given in the main text. Note particularly
that it follows, using analytic continuation and 2¢(0) = —1, that

B} o = 1. (B.10)

Using the integral representation of the series in (B.7),

I'(s) SL(d) © dt 77mii_mj
B gi-2 = Z / A+s¢ 7 e (B.11)

7'['8
(m!,...m4)eZN\{0}

it follows that the constant term on the parabolic subgroup P,, , = P(d —1,1) with Levi
component GL(1) x SL(d — 1) characterized by the matrix of the form

g= diag(r*(dfl)/ dg, p(d=1)?%/ 4) contains the explicit perturbative terms
d—1
SL(d) _  2@=1) _Sr(d-1) ds1 (@magdmn)? I'(s = 5) B
[ B = SPBRY ottt KT (a2
This implies by recursion that the Epstein series EﬁL()(j22}-s has a single pole at s = d/2, so
that
d
SL(d) T2 SL(d)
E[1,Od—2};‘§i+e - F(%) + E[1 0d— 2};31
p (B.13)
i @-T) 4o
+ vE —log(4) — €
(%) (%)

45 —



where g is Fuler’s Gamma constant and we introduced the regularized series EﬁLO(j_)Q]. a-
b ) 2

Using the expression for the SO(d)\SL(d) Laplacian given in [15] it is straightforward
to verify that these series satisfy the following Laplace equations

Sud oo 221 psi@

ASO(d)\SL(d)E[Lod—lLS - 2 d [1,0‘1*1];3 (B14)
SL(d d.2(d—1) s
ASO(d)\SL(d)E[Odg)’l];S = s(s— 5) % E[Od£1)71];s (B.15)

These equations are particular cases of (B.2) for the value of the weight vector A specified
by the Dynkin labels [s,0,...,0] and [0,...,0, s].

For s = d/2 the eigenvalue vanishes and the Epstein series satisfy the differential
equation

[SIioH

~sLd)  (d—1)7
ASO(d)\SL(d)E[LOd,l};g = 7%

) (B.16)

. SL(d
B.2 The Series E[O,l(,o)‘i*3];s

The series E[%Ll(c(l))d,g,},s is obtained by substituting the values \y = 1 + A\g_1, A\gq_1 = 1 +

Ad—2 +2s and, for 3 <i<d—2, \gq—; = A\gq—i—1 — 1 in in (B.3). This gives

SL(d) 1
g5 - — S (B.17)
[0,1,047%);s i (9ijgrad di*)s

[Mo,]

where d = m'n? — m/n’, which can be interpreted as the determinants of the order two
minors of the rectangular d x 2 matrix introduced in (A.7). Setting n” = (ny,--- ,nq) and

T = (mq,--- ,myq), we can introduce the matrix

M ((ngn) (ngm)) ’ (B.18)
.g. .g.m)

m

such that
2det M = 2 ((n.g.n)(m.g.m) — (n.g.m)Q) = gijgud'd’* . (B.19)

The series in (B.17) can then be represented as

SL(d) 1
E g = — (B.20)
[0,1,04=3];s 1<;_1 (det M)s
[Mo,k]

We recognize here the conditions characterizing the non-degenerate orbit when unfolding
the lattice I'g 4) in appendix A.

The expression (B.20) is a generalization of the s = 2 case that arises in the evaluation
of the two-loop contribution to four-supergraviton scattering in compactified supergravity,
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which is evaluated in (G.20). This motivates the introduction of the following integral
representation when s > —1,

A 2 T g;i(mi—Trnt | —7nd
Ig(A)Z/ dVVQs—l/ d_;— Z e—Vggz]( )(m? ])7 (B.Ql)

0 Fsrzz) 12 (mi ,ni)ezd x 74

where Fgr,2,7) is a fundamental domain for SL(2,7Z), so modular invariance is explicit.
Evaluating this integral with the unfolding method of appendix A the finite part that
arises from the non-degenerate orbit leads to the A-independent contribution

Id(A)‘AO = 2/00 av V2871 / dQ_T Z 67% Vgij(mifﬂ'ni)(mjfi-nj)
’ 0

2
ct T 1<k<d—1

(Mo, k]
1 /OO 25—2 —27V+/det M
=2 — [ Ay VP2 zmVVde (B.22)
1<;—1 Vdet M Jo
TMB,k]

I'2s—1) 1 I'(2s—1) s

(27T)25_1 1<;_1 (det M)s (27T)2$—1 [0,1,04-3];s
(Mg ]

Therefore
A% 1 A% I'(2s—1)
d _ SL(d) SL(d)

where the series Eﬁ%@ﬂ-l is finite for d > 2 and is defined by analytic continuation from

the region where e(s) > d/2.

For the d = 3 case the normalisation of the series ESL(d)

0,1,04-3]:5 is different and we have

A% 1 A% '(2s—1)¢(2s—1)

30A\ _ SL(3) SL(3)

I7(A) =2¢(2) P + v E[10];1 +2 Gy E[ou;s (B.24)
In order to evaluate the constant term on the P,, , = P(d — 1,1) parabolic sub-

group characterized by the matrix of the form g = diag(r*(dfl)/ dgd,l,'r(dfl)g/ 4), it is
useful to split the lattice sum in (B.21) into the product of two lattice factors, T’ dd) =
F(M)(r(d*l)Q/d) I‘(d,l,d,l)(r*(dfl)/dgd,l). Unfolding the Iy ;) factor [37] leads to the con-
stant term

2I'(2s — 1) / ESL(d) _ 2I'(2s — 1) ESL(dfl)
2s—1 P(d—1,1) [0,1,04-3];s 2s—1 [0,1,04—4];s
_ 1 B.25)
00 % 4 @=0% o 1 (
+/ dvv2s—1/ N e T /21 dnT (g 1.a-1) -
0 0 T2 cmio 3

The 7 integral projects on the sector p - w = 0 where p and w are the Kaluza-Klein and
winding modes of the lattice. The piece independent of A arises' from the zero winding

13See section B.5.1.3 for detailed example on the SL(5) series.
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sector w? = 0, leading to'*

SL(d) 25(d=1) _ QT,(d—1)
E . =1r a E
/P(d—l,l) [0,1,07=%};s

[0,1,04—4];s
Te41-9) (B.26)
(d—25)(d—2)(d—1) S — 5 _
PRGN P 2 ¢(2s+2 — d)ESHY
S

[170d_3}§57%

We note in particular the d = 4 case, with our normalisations for the SL(3) series, we find

SL(4) _ 3 SL(3) se-s) I'(s—1) SL(3)
/13(3 N E[OlO};s =T?2 C(28 - 1)E[ 01];s +r 2 7 W C(28 - Q)E[IO};S—% 5 (B.27)

which is used in various places in this paper
Therefore the series E%Lf?))d%]s has single pole at s = d/2 so that

ESLW@) o (2n)

~SL(d)
0,1,043); g 4¢ +E

24T (d —1)e =~ 101,043]:4

d .
sy (e +los(an) +120/(-1) — 1 - £ 5=

where we introduced the regularized series E[o l(c(?d 3,4 and similarly
IR] i)

SL(d) (2 S SL(d)
E[Od*S,l,O];%-I—e - 24F(d — 1)_ + E[Od 3,1,0]; % (B29)
(2m) / I'(d-1)

The antisymmetric rank-two d* representation can be converted into the antisymmet-
ric rank-(d — 2) representation, d, ..., _, = €ijri.ry_o d¥ representation, so that

2det M = gijgkleikrlmrd726jl51...8d72 dr, rq_2 ds, Sd—2 (BSO)

gikgji are the rank-two minors of the matrix g, it follows (for matrices with
det g = 1) that gijgkleik””"’d—Q(—:jlsl"'sd—Q are the rank d — 2 minors of g

Since g;;9r1 —

—1. Therefore

4det M =

H B L A P (B.31)

This leads to the series with label [0973,1,0] evaluated for the metric g—*

ic g7*. By Poisson
resummation this sum can be brought back to a sum over g, giving the following functional
equation, which is a particular case of (B.6)

I(s)D(s — 3) ESL@) IRCEDINCE T ESL@ (B.32)
25—1 [0,1,04=3];s — d—2s—1 [04-3,1,0];4 -5’ )

4 Conjecture 5 of [15] states that WE[SZ)Ll(‘é)d a2 = EiLod 21 Comparison of (B.12) and (B.26) implies
that E[SILO(j)z] =27 E[%Ll(‘é)d 2)1)2 for all values of d > 4.
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where use has been made of the replicating formula 2I'(25—1) /(27)%~1 = I'(s—1/2)['(s) /x25=3/2.
Using the expression for the SO(d)\SL(d) Laplacian given in [15] it is easy to verify
that the integral representation implies

SL(d) o d 4(d — 2) SL(d)
Asoanscid B 1 gi-s,s = 5(5 = 5) —a E) 1 0i-3].s (B.33)

SL(d) . d 4(d — 2) SL(d)
Aso\sEga-s 1 g, = 568 = 5) =7 Epi’s g, (B.34)

These equations are particular cases of (B.2) for the value of the weight vector A specified
by the Dynkin labels [0,s,0,...,0] and [0,...,0,s,0].
For the value s = d/2 this gives

o _ (2m)°
Aso@\staEy 1 gz, = Topg —9y - (B.35)

B.3 The SL(2) Eisenstein series

Non-holomorphic SL(2) Eisenstein series are defined by

2
E;(Q) = Z EEEE (B.36)
(m,n)#(0,0)

with Q = Q1 +iQ9 € h = {Q2 > 0,21 € R} in the complex upper-half plane. The modular

function
B.(2) = B, (B.37)

has an analytic continuation for all complex s and has simple poles at s =0 and s = 1. It
satisfies the functional equation E,(Q) = E;_,(Q) which is a particular case of the general
functional equation satisfied by the Eisenstein series (B.6).

The Fourier expansion with respect to €y is given by

I'(s—3
ES(Q) = 2C(28) Qg + 2\/%% C(23 _ 1) Q%—s
27T_s 2 -3 —1 2iTnQ
T T Y o Ky @rinl@a) T (B3Y)
70 Jaen

where K(x) is a modified Bessel function of the second-kind. These series are eigenfunc-

tions of the Laplacian,
Aq = Q3(03, +93,) = 4030004 , (B.39)

AQE,(Q) = s(s — 1) E4(Q). (B.40)

Eisenstein series evaluated at special values

e The SL(2) Eisenstein series has a pole at s = 1. Setting s = 1+ € and expanding for

small € gives

Biy(2) = = = wlog(Qaln(@Q)1*) + 2r(vz — log(2)) + O(e), (B.41)
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where vg is Euler’s constant. The regulated series, El(Q), is defined by subtracting the
pole and a constant to give

B1(Q) = — log(Qaln(Q)[*) (B.42)

where 7(€2) is the Dedekind function,

n(©Q) =T ] - e, (B.43)

Since AE11(2) = €(1 + €)E14.(Q), for any € it follows that

AE; = 7. (B.44)

e The series with s = 1/2 appears to diverge, but is finite when defined in terms of a
limit,

E%(Q) = !% E%JFG(Q) (B.45)

1 N |
= 202 (vp + log(Q2/(4m) +203 > Ko(2m|mn|Qy) ¥ 1
(m,n)€Z>2

e The series with s = 0 is defined by analytic continuation to have the finite value
E.(Q) = —1+ ¢ (7 B — 2log(2n)) + O(e?) (B.46)
which is compatible with functional equation of Eisenstein series E14(Q) = E_.(Q).

B.4 SL(3) Eisenstein series

For the d = 3 case it is useful to introduce the integers p; = (—:ijkdjk, where €5 is the
completely antisymmetric symbol (e123 = 1), and (B.19) becomes

2 det M = €™ g, 910 Dmpn = (7)™ Pmpn (B.47)

which uses the fact that ™" g;; gy, are the elements of the adjugate of the matrix g;;
and that g~ = (det g)~'adj(g)”, where detg = 1. Therefore the definition (B.20) gives
the functional relation between Eisenstein series

(s) gsre) _ INCEE) ESLG)

i [01s — ﬂ_%fs [10};%—8 ’

(B.48)

B.4.1 Fourier expansions

Using the parametrisation of SO(3)\SL(3) given in the main text the Eisenstein series

SL(3) .
EjyY s defined by
SLE) _ vy °
EUO};S o Z ImitmaQimsBl2 | m2\°’ (B.49)
(m17m27m3)7é(07070) Qo + Z
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where vyt = QyTF is the inverse volume of the two-torus of compactification defined
in (2.17) expressed in terms of the string variables, and B = Bgrp + 2BNs is the usual
combination of the RR and NS B-field (in the construction from the L = 1 and L = 2
supergravity loops there is no dependence on the three-form of eleven -dimensional super-
gravity therefore we have to set B = 0.)

The SO(3)\SL(3) laplacian is given by [11]

‘8BNS - QaBRR ‘2

Aso@\sie) = 405000p + =5 g T+ 300, (1500,) (B.50)
which gives
sLE3)  25(25 —3) _s1(3)
Aso@n\see) Engs = — 5 Epaps - (B.51)

For s # 3/2 these Eisenstein series can be expanded using Ty % = 150y [11-13]

SL —s I'(s—1 25-3
By = v, 0 By(Q) + 2 ﬁ (25— 2)wy ° (B.52)
me — my Q571

27T5 s—3 1—s
PIEaE Y
F(S) 2 2
(m1,m2)#(0,0)
mg#0

x Koy (2m|ms(mg — myQ)|Ty) e27ms(m BrrtmaBys).

Using the variables (ys, T') (where yg ' = Q373) this can be rewritten as

F(S_ 1) 25—3

SL(3 -2 3
E[m](;s) =2¢(2s)yg * + \/%TS)Q s © B, 1(T) (B.53)
1

2ms 2s—1 _ 2s+3 S—3 ]

+ FE;) T, © yg - Z % K87%(27Tf22|m1m2|)emelmQQl

ma£0,ma0 |2
27° 253 mo —mi Q5!
T 6
+ F(S) VvV 412Yg Z 7m3

(mq,m2)#(0,0)
m3#0

x Ky_1(27|ms(mg — myQ)|Ty) e¥7ms(m BrrtmaBrs)

Series evaluated at special values

e For s = 3/2 the expression has a logarithmic divergence associated with the one-loop
divergence in eight dimensions discussed in the main text. The expression needs to be
regulated, leading (in the (19, 2) variables) to

SL(3 2m ~SL(3
Bkt = o +an(ye = 1) + B +0(0). (B.54)
where the regularised series Eﬁg}(? can be expanded in limit (i) as
2
SL(3) _% 4w —Q%u7% —Qiéuié
E[lo}-§ =1, E%(Q)—F? log(va) + O(e"2"2 " e772 72 ) (B.55)
2
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or in limit (ii) as

RSLG) _ 2¢(3) + 28, (T) + 2, —(Toys) "2 —TQ% ygé
[10);2 Ys ! 3 Blys) +Ole a ) (5:56)
Since 9
B, - 2+ 20 @
we deduce that
N (B.5%)

e For s = 1 the expression using the (€,15) variables in (B.52) appears to diverge
because it involves Eq(£2) and I'(s — 1) and so seems to have a pole in s. But the pole
cancels between the first two terms and no explicit subtraction is needed. This is obvious
from the expansion given in (B.53) where no divergences are met at s = 1. The resulting
expression is therefore

SL(3)
(10];1

SL(3)

E [10];1+€

=lmE

e—0

2 1
=20(2)ys ® +yg CEL(T) + O(e—\/m’ ¢~V

1
2
1

_1 = 1
= v, (B1(9) — mlog(va) + 2n(yp — log(dm))) + O™ (o) 2 (=T 0872
(B.59)

where we have used the expression for E 1 (T') given in (B.45) Using the duality relation

between Kisenstein series this gives a definition of WE[S(;?]('?’Q = Eﬁgﬁ).
i) )

e For s = 1/2 we get

SLB3) 1. SL(3)
[10l;5 !%E[IO};HG
1

_1 _2
=1, 5 ESL(Q)(Q) + %VQ 3 O(e—\/Qg/VQ’e—l/\/QQVQ)

1
2

E

(B.60)

1

1 1
2

1/ 1
= st (BBu(r) ~togtun) + 200 — loglim)) ) + Ol T T

The two set of equations (B.59) and (B.60) are compatible with the functional equation
ESLG) _ _pSLB)
(o)1 = THo1);1/20

B.5 SL(5) Eisenstein series

In the following subsections we will determine the entries in the matrix A;gL@ (u,v;r)
defined in (2.10). Recall that the columns of the matrix are labelled by w, which specifies
the root, «,, which labels which of the s;’s is non-zero. The series associated with a
SL(5)

[0v=1,1,01=u];s

particular parabolic subgroup of the SL(5) series.

particular v is E The rows, labelled by v, specify the node «a, that defines a

The detailed discussion of each entry will be given in subsections (B.5.1) and (B.5.2).
Since this is fairly complicated we will first summarize the results. First note a simple
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consequence of the symmetries of the Weyl group is the set of relations

SL(5) 253 L(3 —5) SL(5)
A (u,137) = w28 22 AT O w, 457) (B.61)

ASSL(5)(U,2;T) = g5 Affi(f))(u 3;r).

I'(s— %)F(s) 2

The explicit expressions for the entries are as follows

(B.76) (B.91) (B.92) (B.80)

| (B97) (B.109) (B.111) (B.100)
SICEE (B.98) (B.110) (B.112) (B.101) |’ (B62)

(B.78) (B.89) (B.93) (B.82)

where the entries number the equations where the constant terms can be found.

Constant terms of Eisenstein series at the special values in main text

Since we are interested in the values of the constant terms at particular values of s we
will here summarize properties of the entries in (B.62) at those values.
e The SL(5) series has a single pole at s = 5/2. Explicitly, setting s = 5/2 + € gives

2 2
sy) AT esne) | 8w
o003 +e = 3¢ T Bpoooyy T 9Bz — 4+ 0(e) (B.63)
The constant terms of E[m(()o]) 5 for the parabolic subgroups considered in the main text are
SLB) o8 4. 504 1672
/P(l 4) E[lOOO];% = C( )+ 3E[100} ;2 15 10g(7“), (B.64)
RSLG) - 2gSL). 6472
/13(4 1) EUOOO];% N E[loo] 15 log(r), (B.65)
GSLG)  _ apSLe) |, AT psie) 1677
/p(g 2) Eiooos =7 Bz T3 Pua 5 log(r) . (B.66)
The series E[ooio}) also has a pole when s = 5/2 + ¢,
ESLG) _ omd 9x3 6 11 36 RSLG) o B.6T
oot e = ge T (67— 17 £36¢(2) +BEIE, £0()  (B6Y)

and the relevant constant terms are

3 5
S L(5) P4 SL(4) 2r° o sray 8w
B =rE R — T log(r), B.68
/P(l 4) [0010]; [010} 9 [001];2 15 g( ) ( )
fSLG) L) | 2masray 167
/13(4,1) E[0010];§ =@ E[oou s+ E[omm 45 log(r), (B.69)

~SL() - sr3) 3210 2rt  S1(3)LSL() 12
/p<32> B3 = 100 By = 5~ 1os(r) + 5 Eip jp By + 20(4)r = (B.70)
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e The SL(5) series E[loég]) is finite when s = 3/2. The constant terms of interest to

us are given by

SL(5) _ 6 SL(4) 16
/13(1 2 E[1000];§ =7 E[om] s +4C(2)r7 (B.71)
SL(5) 12 [ ~SL(3) L( )
/P(3 2) Blooops =77 (Eg + 2B +87f10g('r)> (B.72)
Furthermore, using the functional equation for the SL(3) series (B.48) Eﬁ]]i](i) _
Eﬁﬁ](i)/w one sees that Eﬁgﬁ)ﬂ also contains a logarithmic term in its P(2,3) constant
term.

B.5.1 Parabolic subgroups P(1,4) and P(4,1)

For the maximal parabolic subgroup P,, = P(1,4) obtained by deleting the first node of
the Dynkin diagram in figure 1(iii) the matrix g;; has the block diagonal form

16
5 0
95:<T5 ) ) (B.73)
0 r5gy

where g4 is a 4 x 4 square matrix of unit determinant so that det gs = 1. The parabolic
subgroup P,, = P(4,1) is obtained by deleting the last node of the Dynkin diagram in
figure 1(iii) and is characterized by the matrix of the form

4
—4 0
g5 = (T g4 &) . (B.74)
0 17>

For these parabolic subgroups the Levi subgroup is GL(1) x SL(4).

B.5.1.1 Constant term of the series Eﬁgég]),s The constant term for the parabolic
P(1,4) is given by

T'(s SL(5 © dt T _16 4
758) / E[IO(()O%;S - Z / ﬁ exp (_?[m% P n'- g4 n]) '
P(1,4) (m,n1,...na)€Z\{(0,...,0)} 7 ©

(B.75)
Performing a Poisson resummation on m one gets
/ Eﬁﬁég])s — 20(25) 15 + V7 (s - 3) 2—% pSL@) (B.76)
P(1,4) ’ I'(s) [100);5—3
SL(5)

which gives the element ASEE )(1, 1;7) of the Aj matrix in (B.62).
The constant term in the P(4,1) parabolic takes the form

[(s SL(5 >t oo 4
753) / E[IO(()O});S = Z / irs <P (—?[mQT 5 +r snl gy n]) )
P(4,1) (m,n1,....,na)EZS\{(0,...,0)} 0

(B.77)
Performing the Poisson resummation on the integers (nq,...,ny) gives
SL(5) L(4) [(s—2) g 16
E L= T ED + 27 — 7 5 . B.78
/P(4,1) [1000];s — [100];s *C(2s —4) T(s) ( )

This gives the element ASE®) (4,1;7) of the ASE) matrix in (B.62).
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B.5.1.2 Constant term of the series E[OO((]?]) The constant terms for the parabolic
P(1,4) is given by

F(S) SL(5 o dt T 16 _
s / E[ooél]);s - Z / s XP (-;[m% s 4 anl git -n]) )
PAA " nng,na)eZ5\{(0,...,0)} 7 ©

(B.79)
Performing a Poisson resummation on (nq,...,ny) gives
SL(5) L(4) 2 [(s—2) g 16
ESLO) B g L on2c(0g gy 0 T 2 p8dg B.80
[ Bt = Bl 272020 — ) o (B.50)

which gives the entry AfL(S)(l, 4;r) of the ASE®) matrix in (B.62).
The constant term in the P(4,1) takes the form

['(s) SL(5) > dt T, 16 4 g 4
s / E0001];s = Z / fits exp( 7 —[m =% +r5n’ - gy n]) .
P ny,na)€Z5\{(0,...,0)}

Performing the Poisson resummation on m gives

SL(5 165 C(s—3%) 5 as SL(4)
E =2((28)r s + r“ s E 1, B.82
/13(4 1) [0001] ¢(2s) VT Te) L(s) [001]; ( )

which gives the entry ASE® (4,4;7) of the ASE®) matrix in (B.62).
B.5.1.3 Constant term of the series Eﬁﬁé‘z}),s To evaluate the constant terms for the

parabolic P(4, 1) specified by the metric in (B.74) we will write the lattice sum in (B.21)
in the factorized form

v s m=rn)T gy (m—7n)

—7I'V7’1T56 Ip+qr|?
Tpupy= Y. ¢ ™2 > e ™2 . (B.83)

(p.g)€Z? (m,n)€Z’

Starting from the representation in (B.21) and unfolding the 'y ;) lattice gives

d —TTr e
10 (A) :1§(A)+/O AV V2= 1/ N e Sva /1d71F 4.4) (B.84)
2

m#£0

We are particularly interested in the finite part (order AY) of this integral, which is given
by

I'(2s—1) SL(5)
47 R
IS(A)( 1)‘A0 = 27(2%)25*1 /13(4 | E[OlOO];s’ (B.85)

The finite part of the first term on the right-hand-side of (B.84) is given by

(B.86)

(A o = 2% T2 D st

( 7-(-)2871 [010];s

— 55 —



To analyze the second term we perform a Poisson resummation on half of the integers in the
lattice I'(4 4) giving the representation in terms of Kaluza-Klein momenta p and windings

w,

4\ 2

F(4 v <T2T5 > Z e T2 (Vr_%pQ—l—V’lr% w2)—|—2i7r7—1 pw (B87)

’ v
(pw)€EA(2,2)

The integral over 7; projects onto the subspace p - w = 0 where p?> = m” - g4 - m and

w? =nt. g4*1 -mn. This is solved by either p = 0 or w = 0. So the finite part of the second

term in (B.84) is given by the contribution with w = 0,

16 2 2
—Vrs ™ gt VZ

I,(A) Y] 40 :ri/ dVV283/ it Y e B (B.88)
0

0 m#0
pezt
3 1
_ el (s —35)0(s —3) _sn)
- ¢(25=3) 7252 Eriooris—1

Thus, the constant term for the parabolic P(4,1) is

L(s—3) st

T Bl (B.89)

SL(5 8s 4 _12s
/ E[Ol(()O]);s =TS E[ou()}) + 0 a3 ¢(25—3)
P(4,1)

which gives the entry ASE®) (4,2;7) of the ASE®) matrix in (B.62).
For the parabolic subgroup P(1,4) characterized by the metric in (B.73) the lattice
sum takes the form

16 2 4 T _
) |p+ar| . v 5 (m=71n)” -g4-(m=7n)
Tpag= Y e = Y e E : (B.90)
(p.q)€Z? (m,n)€Z’

Performing a complete Poisson resummation on the I'(y ;) lattice and then using the same
manipulations as before leads to the expression for the constant term

SL(5) SL(4) a8 D(s = 1) _sr)
E =((2s—1 E +7mrtT 5 ——= E B.91

/P(l gy 10100%s =6 " [001];s T(s) = [010)s—3 (B.91)
which gives the entry AEL(S)(L 2;7) of the AEL(5) matrix in (B.62).

SL(5)
[0010];s

(95 1), which is the same series as discussed in the previous paragraphs but evaluated

B.5.1.4 Constant term of the series E
SL(5)
E[OlOO};s
with the inverse metric. Applying the previous results it follows that the constant term on

This series is defined in section B.2, as

the parabolic subgroup P(1,4) is given by

3
SL(5) 85 SL(4) |, 12 (s —35) _sr)

E = E + 2s —3) ——=E B.92

/13(1,4) jootois = 7% Fporofs T w (25 -3 I(s) = [001];5—3 (B.92)

which gives the entry ASSL(S)(l7 3;r) of the ASE®) matrix in (B.62).
On the parabolic subgroup P(4, 1) the constant term is given by

SL(5)  _ SL(4) a_ss D(s—1) _sr)
/P(4 5 E0010]:s =((2s - 1) E[oou + 7t s T E[om} o1 (B.93)

which gives the entry ASE® (4,3;7) of the ASE®) matrix in (B.62).
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B.5.2 Parabolic subgroup P(2,3) and P(3,2)

The maximal parabolic subgroup P,, = P(2,3), obtained by deleting the second node, is

12
“%gy 0
g5 = ("” ° 92 ) , (B.94)

0 r%gg

characterized by the matrix

where g3 is square 3 X 3 matrix and g» a square 2 X 2 matrix both of unit determinant.
The other parabolic P,, = P(3,2) is obtained by considering the matrix

8

rT5 0

g5 = ( B, > . (B.95)
0 7r35g¢g

For these parabolic subgroups the Levi subgroup is given by GL(1) x SL(2) x SL(3).

B.5.2.1 Constant term of the series Eﬁf)égf.s For the parabolic P(2,3) the metric

takes the form given in (B.94), leading to the integral representation

SL(5) e
g0 X (B.96)
/13(2’3) [1000):s = ()
oo dt T, 8 12
X Z / tl?exp(—?[rf)m-gg,-mr[—l—r SnT-gg-n]).
(m1,...,m3,n1,m2)€Z°\{(0,...,0)}

Performing a Poisson resummation on the two integers n; and no one gets one gets for the
constant term for the parabolic P(2,3)

SL(5) 125 _ S1,(2) [(s—1) 4 8 _s53)
E =rsE Y+ —r 5 ED T B.97
/P(273) [1000];s [1];s T(s) [10];5—1 ( )

which gives the entry AfL(S)(Q, 1;7) of the ASE®) matrix in (B.62).

The parabolic P(3,2) is obtained by using the metric (B.95) and performing the Pois-

son resummation (my,...,ms) one gets gives the coefficient ASF®)(4,3;r,s) of the ASEO)
matrix in (B.62).
/ DR GH o ACURIINS | L(s-3) 612 pSL(2) (B.98)
Pz 00 [10];s T'(s) L3 :

which gives the element ASSL(S)(B7 1;7) of the ASE®) matrix in (B.62).

B.5.2.2 Constant term of the series E%ﬁéﬁ%s For the parabolic P(2,3) the relevant
metric is that in (B.95) and the integral representation for the constant term is given by

SL(5) s
E = X B.99
/13(2,3) (00015 T(s) ( )

* dt T, _8 _ 12 _
x > / 5 o (—5 i Emegg om0 F nT gy o))
(m1,...,m3,n1,n2)€Z5\{(0,...,0)}
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Performing a Poisson resummation on the three integers mi, mo and mg one gets the
constant term for the parabolic P(2,3),

3
sue) _ smpste) 1T 75) 6o psie)
/P(2 5 E[oom];s =15 E[Ol];s + 2 ) r—73 E[l} Ny (B.100)

which gives the entry AfL(S)(Q, 4;r) of the ASE®) matrix in (B.62).

In the case of the P(3,2) parabolic we perform the Poisson resummation on the two
integers n; and no one gets
SL(5) 122 pSLER) | [(s—1) 4 8 _50(3)
E ,:7”5E +1m——">=r" 5 E 0 B.101
/P(3 2 [0001];s [1];s F(S) [01];s—1 ( )
which gives the entry AEL(S)(S, 4;r) of the ASE®) matrix in (B.62).

SL(5)
[0100];s

decompose the lattice sum (B.21) as I'pa3) = [(99) (r_%gg)I‘(&g) (r%gg). Performing a

B.5.2.3 Constant term of the series E In the case of the parabolic P(2,3) we

Poisson resummation on the Iy 5) factor gives

T% _va1r% (m—n)T g7 1 (m—n7)
Peoy =3z 2. ¢ g , (B.102)
(m,n)eZ*\{0}

and unfolding the lattice sum following the method described in appendix A results in

I3 (A) = I3(A) (B.103)

S

12 nT<g714 1

A 00 n

d —nr’5 ——4—

+ s / v Ve / N ey / dnTss)
0 0 T2 ez (0,0) ~3

- T —1 T
(1 7')]\/[0,192 Mgp,1(17)

A
" 2T%/ v vEs / = Z - e INEER
0 c+ Ts
We are interested in the finite part of this mtegral,

[(2s—1) SL(5)
2,3 _
IC3) (A po = 27(%)28_1 /P s E () 00):s (B.104)

The first term in the right-hand-side of (B.103) leads to

]— 169 F(QS 3)
(2 )25 3

The second term is treated as in the previous section. The integration over 71 projects on

(25 — BEIL® (B.105)

( )a0 = 2r [01];5—1

the sector p-w = 0 of the I'3 3) lattice and the contribution constant in A is given by the
p =0 term

12 —1
r 5 nT 9y M

(2,3) 12 > dv o dTQ - T2 —TT2 w2§
(Is ’ (A)|A0)2nd line = T5 9 - Z e vr5
0

Va=2s Jg 2
)

nez2\(0,0)
peZ3
1 e (Ts—HY SL(2) 1SL(3)
_ 2+ 32 2
= 5 T 5 T E[l] S——E[IO} S—— . (B106)
T2
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In the last line the sum is over the representative [Mj ;] defined in (A.9)

MOJ:(ZLZ) 0<j<mmn#0. (B.107)

The finite contribution from the last line is given by

12 - -1 _
? anmd oy Mg 07T

dTZ L

(I3 (A)|0)3rd time = 215 / dV V23 /
C

0 + T2
_ s T(2s—1)
= 4r T C(25)C(25 — 1), (B.108)

where we have used the fact that this contribution only arises from the sector with I3 3) ~
24/577—3
PV,

Collecting the various contributions, the constant term for the parabolic P(2,3) reads

SL 24s
/ B, =2 ((25)¢(25 —1)
P(2,3)

2 8-1:0(25=3) o o psLe)
+ (2m)“r° s F(2s 1) ¢(2s 3)E[ 0151 (B.109)
VT opa T(s—3) _s0(2) SLG)
T T ) PP oped

which gives the entry ASSL(S)(27 2;r) of the ASE®) matrix in (B.62).

Similar manipulations apply to the analysis of the parabolic subgroup P(3,2), leading
to

SL(5) _ 16s SL(3)
/ Eoi00ps =7 ° ¢(2s — 1)E[01};s
P(3.2)

41 D28 — 2) _51(2) L)

+mr ( s 1) [Wis—17[0)- (B.110)
245 (28 —4)
20om) i L s — 4025 - 8)

which gives the entry AEL(S)(3, 2;r) of the ASE®) matrix in (B.62).

B.5.2.4 Constant term of the series Eﬁ)g&);s Applying the same manipulation as

before one finds the constant term for the parabolic P(2,3)

SL(5) _  16s SL(3)
/ Eioo100s =77 ¢(2s —1) B
P(2,3)

415 (25 —2) _s0(2) SL(3)
Tre s 7F(28_1) [1;s—17"[01];s— 2

_2as ['(25 — 4)
+ 2(27T)37”12 5 m ((2s —3)((25 — 4),

(B.111)

which gives the entry AfL(S)(Q, 3;r) of the ASE®) matrix in (B.62).
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Finally, similar manipulations applied to the parabolic subgroup P(3,2) lead to

S 215
[ B, =2 s 1
P(3,2)

VT opas D(s —3) _s0(2) .SL@)

v B.112

T Ty Bt Fons- (B-112)
_16s I'(2s — 3

e B2 T3 o0 By,

I'(2s—1)

which gives the entry ASSL(S)(B7 3;r) of the ASE®) matrix in (B.62).

C. The SO(d,d) Eisenstein series

We will here consider Eisenstein series for SO(d,d) groups defined with respect to the
Dynkin label [1,097!] (recall our convention for labelling the nodes in the case of SO(d, d)
groups shown in figure 1)(ii). These are analogous to the Epstein series discussed ear-
lier in the case of SL(d) groups. In this case the series depend on the coset SO(d) x
SO(d)\SO(d,d).

In order to define these Eisenstein series we will consider various integrals involving
the lattice sum I'(g g)

Lga) = V/detg Z exp(—

(m?,n?)ezdxz?

T _
py (95 + bij)(mi — Tng)(m; — 7Tny)), (C.1)
which typically arises in compactifications of string or field theory loop integrals on 7¢.
We will introduce the volume of the d-torus, V(4 = /detg and the rescaled metric, g,

2
defined by g;; = V(jli) Gij, so that det g = 1. A sensible definition of the SO(d, d) Eisenstein
series of relevance to us is the manifestly invariant function

s

SO(dd) _ m d*r B
B = KT T 7 et T V) (€2

The analysis in the body of the paper and in the following demonstrates that, for the ap-
propriate values of s, this has the correct behaviour in the appropriate limits. Furthermore,
it satisfies a Laplace eigenvalue equation of the appropriate form, as well as the correct
functional equation.

[The definition of the Eisenstein series in (C.2) differs from that given in (3.10) of [15]
and in [11,14].]

We are particularly interested in the series with s = d/2 — 1, which is given by

41 2
50(d,d) w2 / d°t
E =g —5 (L@a) — Viay) > (C.3)
L0151 (4~ 1) Jrgy . T3
where we have used Eq(7) = —1. Instead of subtracting the volume factor we could have

regularised the series by analytically continuing in s as in appendix D.
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Using the differential equation for the lattice factor given in [15]

d(id—2
(Aso@N\sL2) — As0(d)xSO(d)\SO(d,d) — %)F(d,d) =0 (C.4)
we find that
A50(d)x SO(@)\SO(d,d) ﬁo()(dd Cll]) ,=28(1—d+s)E f%gzd (11}) : (C.5)

These equations are particular cases of (B.2) for the value of the weight vector A specified
by the Dynkin label [s,0,...,0].

Using the method of orbits [11,15,29,37-39] reviewed in appendix A, this Eisenstein
series can be expanded in terms of SL(d) series as

S0(d,d e dry s—4 _ﬁw
E[l,ogfli s = Via) T(s) Z / _7'28 2 (C.6)
m;€24\{0}
((2s+1-4d) ot I'(s+ 12d) Z / dry %—s 1 —wim“’j;mj
(25 +2-d) T(s) T(s 11— 2)

+ Via)
m; €Z\{0}
S 2

™ d“t — T (gij+big)(mi—ng) (mj—7n;)
S LN ——
C(2s+1—d)T'(s) (mini) 2220\ [0) c+ TS 2

leading to
S0(d,d) L(d)
%mwww—W>EW2u D
2240 4 (25 +1-d)T(s+ 15 sp) ~g)
+ Vg TP (@s+2-d) TI(s) By ge-2pepn—g T O,

where we have made use functional equation (B.9) for the SL(d) series. This expansion
corresponds to the constant term of the series for the parabolic subgroup obtained by
deleting the node ay with Levi subgroup GL(1) x SL(d).

For the d = 3 case comparison of the expansion in (C.7) with the expansion of the
SL(4) series, E[oug}) (B.27) leads to

SL(4) _ S0(3,3)
E[OlO];s =((25s-1) E[1oo};s : (C.8)

In the case of s = d/2 — 1 we get!®

d
2

Vi
So(dd) SL(d) Vg m
/ E[1,od—1];gf1_v(d) E[od 21};g71+ 3 W’
xq

SL(d)

[1,04-2];0 — —L

where we have used E

5 This expansion matches the one of appendix C of [15] which uses SL(d) series with non unit determinant.
We would like to thank Boris Pioline for a clarification about this point.
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C.1 Constant term on the Parabolic subgroup F,,

The constant term of the series defined in (C.2) on the parabolic subgroup obtained by
removing the first node of the Dynkin diagram in figure 1(ii) is expressed in terms of series
for the parabolic subgroup with Levi component GL(1) x SO(d—1,d—1). This is analysed
by splitting the metric of the d-torus in the form

G 0
grj = <goj Tg) . (C.10)

so that the lattice factor Iy q) = I'(g—1,4-1) X I'(1,1),81ving

41 2
50(d,d) R / dr
B0, = —  (Pa-ra-nTan — V) - (C.11)
/Pal [1,04-1];4—1 F(%l 1) Jrsron 2 ( )+ (L1) T V()
Since I'(1 1) is given by the sum
o Im4nr?
Capy=ra », e I (C.12)

(m,n)€Z?

one can evaluate this integral by unfolding the I'( 1) factor as in [37], to get

d_1q 9
50(d,d) 2 d T
E 17, = Td (/ (F d—1,d—1) — Vd—l )
/Pa1 [1,04-1];4 -1 F(%l —1) Feron 722 ( ) (d-1)

dT2 —7T 7‘[21777.2 2
Z E ) dTlr(d—l,d71)> (C.13)
o _1

2

where V(g = 74 V(4_1). Using the second representation in (A.5) for the lattice sum in the
second line we find

d_ 3
S0(d,d (_ _) SO(d—1,d—1
/ E[l OEJZ 1}) a1~ 2¢(d — 2) gV (2% i) E[1,0272];%)_1‘ (C.14)
a1
For the SO(5,5) case used in the main text we have
50(5,5) 3 50(4,4)
/ BSO0Y = 20(3) 8 + 2rs Bog ). (C.15)
ay

D. Genus-one integrals in string theory

In this appendix we evaluate the one-loop integrals arising in the derivative expansion of
the genus-one four-graviton amplitude in 10 — d dimensions, which was discussed in [4].

First we will introduce some notation appropriate for the evaluation of the terms that
contribute to the analytic part of the amplitude at any order in o/ = ¢2 on a genus-h
world-sheet. This expansion involves integration over the world-sheet moduli, M, with
measure du(M). In principle, this leads to integrals of the form

1Dy = /M (M) JPD (M) T (D.1)
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where I'(4 4y is the genus-h generalisation of the (even) Lattice sum defined in (A.5) and

the function j,(lp ) (M) is a specific modular function of the world-sheet complex structure.

This integral is invariant under SO(d) x SO(d)\SO(d, d).

For genus-h < 3 the integration over the moduli space of Riemann surfaces can be eval-
uated directly by integration over the fundamental domain for Sp(h,Z), which is evaluated
in appendix F. Beyond that order the dimension of the (complex) moduli space of Riemann
surfaces 3(h — 1) is strictly smaller than the number of parameters in the period matrix
h(h + 1)/2, which leads to technical difficulties in defining the integration over moduli for
genus h > 4.

Much more is known about the genus-one function j%p ‘D than other values of h'6.

In the genus-one case (h = 1) there is a single modulus so M — 7 and fMl dpu(M) =

f Fsnisa, d*r/73. The functions j§p ) (1) are invariant under SL(2,7Z) transformations of

7. Although the genus-one string amplitude is finite, when performing the derivative
expansion the separation of the analytic contribution from the non-analytic contribution
may introduce divergences in each term separately, which cancel in the total amplitude. In
particular, (D.1) diverges for large 7. Following the method of [4,33] one can cut off the
fundamental domain so that 7o < L. The total string amplitude is independent of L and all
dependence on L cancels between I fd) ( jip ’Q)) and the non-analytic part of the amplitude.
This is a fairly simple procedure and in this appendix we will only quote the result for the
L independent contributions.

Determining the form of the functions j§p D s a major part of [4]. At low orders in

the expansion jgp D i simply a linear combination of SL(2) Eisenstein series E; and one

can apply the results of appendix C, giving s manifest SO(d, d) invariance

d 2
(d) C20(28)0(s+ 5 — 1) _s0(d.d) d°r
LY (Ey) = g E it d 1 TV }ELQZ)Z%rEg(Ty (D.2)

The last term is divergent for Re(s) > 1 but can be regularised by cutting off the fun-
damental domain at 7o = L, where L > 1, as in [33]. As mentioned above, terms that
diverge as positive powers of L can be dropped since they cancel with contributions from
nonanalytic terms in the amplitude, which we are not considering here. The only real
concern might have been log L terms, which arise at poles in s — but these are regularised
by subtracting them. For Re(s) €]0, 1] the integral of E, converges, and since this function
is an eigenfunction of the SL(2) Laplacian in (B.39) we deduce that

d*r
— E (1) =0, for Re(s) €]0,1]. (D.3)
Fsr,z) 12
By analytic continuation we set to zero the value of this integral for all values of s different
from s =0 and s = 1 so that
2¢(2s)T'(s + 4 —1)

(d) _ S0(d,d)
e o PR

(D.4)

16This notation identifies j"% with j®% introduced in the h = 1 case in [4].
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Substituting s = 0 in the expansion of the SO(d,d) series (C.7), and using the fact that
Eﬁgf‘%hs: 0= E[%L(gi} «—o = —1 and that the volume of the fundamental domain for SL(2,Z)
is /3 we find that

3) SOl Vi 2 T(§ - 1) .
191y = g ESO(dd),gq:% 1@2)+ V] d27%ESL(d) O ]
™

I(
. [170d—1}.

We will now consider the d = 2 and the d = 3 cases in more detail.

D.1 The genus-one amplitude on a two-torus

For the special case with d = 2 an application of the method of orbits of appendix A,
together with the regularisation by analytic continuation described above, gives

2 S
IWM:A LB T = ) B EW), (D.6)
SL(2,7)

T2
where T and U are respectively the Kihler and complex structure of the 72 of compact-
ification. This leads to the following expressions for the one-loop contributions to the
higher-derivative interactions.
e The coefficient of the R* interaction [4] is given by the lowest order term in the ex-

(0,0)

pansion of the genus-one diagram, which has j; 7 = 1. Setting s = € and considering

the small € expansion of (D.6) gives

2
17 (B) = / d—; Ec(m)l22) = L 2 (BuT) + Bu(U) + log ) + o) (D7)
Fsr2,z) 12 € 7

where the hat notation again denotes the subtraction of the pole part of Eg and
logp = w(ye — 4log(2) — 3log(m)). The 1/e-pole corresponds to the ultraviolet
divergence of the one-loop supergravity amplitude. This pole cancels against an
equivalent non-analytic contribution in the genus-one amplitude [4]. The same finite
expression is obtained by decompactifying the analytic D = 7 R* coefficient shown
n (D.18). Therefore, the analytic contribution is given by

. 1 - .
1A GO0) = = (By(T) + By (U) + log ), (D.8)

™

The log i term is interpreted as the scale of the massless threshold contribution,
R* log(—£2 5), to the nonanalytic part of the amplitude in eight dimensions.

e The 0*R* coefficient is determined by the function jél’o) = Ey(7)/(4m)? [4,33], which
gives

IDGE) = o BT B (). (D.9)

e The genus-one contribution to the 95R* coefficient [4] is determined by the function
jgo’l) = 10E3(7)/(47)3 + ((3) /32, resulting in

IGO0 = 20 By By() + S (B (1) + Ba() +log). (D.10)
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The log it term contributes to the massless threshold contribution, £$s3R* log(—¢2 s), to
the amplitude in eight dimensions.

D.2 The genus-one amplitude on a three-torus

In this section we evaluate the genus one contributions to the R*, 9*R* and 9°R* interac-
tions for the special case of a three-torus compactification d = 3.

By definition of the SO(d,d) Eisenstein series in section C.1 the one-loop integral of
the three-dimensional torus gives

2¢(25)T(s + 3) ES0G3)

(3) _
L7 (Bs) = a5t [100];5+4

(D.11)
For Re(s) large this integral would divergence for large-mo and it needs to be regulated
either by subtracting the term proportional to the volume as in (C.2) or equivalently by
using the analytic continuation in s as above. Applying (D.4) to the d = 3 case and using
the relation (C.8) between the SO(3,3) and SL(4) series, 153)(Es) can be expressed in
terms of SL(4) series,

20(s + 3) ESL®)

1 By (D.12)

Ifg) (ES) =

e The R* interaction [4,33] is given by the lowest order term in the expansion of the
genus-one diagram, which has j§0’0) = 1. Applying the result in (D.5) to the case
d = 3 and comparing to the expansion of the SL(4) series into SL(3) series given
in (B.12) gives

(3) /1y _ wS0(3,3)  GmSLA) 2 L SL()
L1 = E[100];% = 2E[010];% = E[lOO];l (D.13)
where we have made use of the relation E[é(;fé?)l = Eﬁgé?)l derived in appendix B.
) )
e For the 9*R* interaction [4,33] the function jél’o) = Es(7)/(47)? which gives
4 1
1540 C(4) Ls0(33) ESL@) (D.14)

T 960 11003 T 960 1010];3

e For the 9%R* interaction [4] the contribution to the analytic part of the interaction
is given by the function j§ D - 10E3(7)/(4m)3 + ((3) /32, resulting in

st ookl T 32 Mool

_ 25 s5L(4)
-8l E[ow];% +

. 25((6 3
100y = ¢(6) £S06.3) ¢( )ESO(3,3) -
C(3) gSL '
167 ~ 1100];1°

Upon decompactification, r3 — oo, the results of the previous section must be recov-
ered. This is the limit corresponding to the constant term of the SO(3, 3) Eisenstein series
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on the parabolic subgroup obtained by deleting the node a3 in Dynkin diagram represented
in figure 1(ii),

¢(25)¢(2s+ 1T (s + 3)
s-l—%

/ IP(E,) = r3 I (By) + 4rit%
Pay

T
2025 —2)¢(2s = 1)['(2s — 2
—H“g 2 (25 22)8(5;5212(8()8 ).

(D.16)

Equivalently, using the SL(4) representation, this expression corresponds to the parabolic
P(2,2) obtained by deleting the node ap. The constant term of the SL(4) series Eﬁgé?,)s
on the parabolic subgroup P(2,2) is given by

SL(4) s 2—s 252 1(2—5)
E ) =riE (T)+ry °w ——Eo_ (U D.17
[y Bl = ri () 475 F B (U) (D.17)
The SL(4) representation makes explicit the factorized dependence on the Kéhler modulus
T and the complex structure modulus U. The equivalence of the two formula is due to the
fact that SO(2,2) = SL(2) x SL(2).
For the case of the R* interaction in (D.13) we have

[ 1@ = (1 (B0 - ; + 2log(rz) ~ log(r) ) + (e

=13 (E1ie(T) + E1-c(U)) + € log(r3) (E14e(T) — E1-(U))  (p1g)
+2ers (vg + log(m)) E1—e(U) + O(¢)

=y (El(T) + By (U) + 2log(rs/m) — Q’VE) +0(e)

leading to a finite answer in the decompactification limit (apart from the log rs term which
is needed to build the correct eight-dimensional thresholds [4]). The explicit 1/e pole in
the first line cancels against the 1/e pole of £2)(E6) evaluated in the previous section.

E. Genus-two string integrals

In this section we consider the genus-two partition function arising from the compacti-
fication of string amplitudes on d-torus 7%. The leading term in the s,t,u — 0 limit
is | 5 ‘2
d) d’T
Bm=[ T (E1)
Fopaz (det Smr)3 (dd)

This integral [34,35] is over the Siegel upper half-plane for Sp(2,7Z). The resulting expres-
sion is an automorphic form invariant under the T-duality group, SO(d,d;Z). The lattice
factor for a compactification on a two-torus is given by a theta series summed over the
even-lattice,

F(d,d) = (V(d))2 Z exp <—7T(gz‘j + sz)(mfl _ Tabnib)(%mT_l)ac(mZ _ Tcdnjd)) '
(mi nia)ez2d x 72d

(E.2)
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It was remarked in [15] that the lattice factor satisfies the differential equation!”

(ASO(d)st(d)\SO(d,d) — Agp(2) +d(d - 3)) Fiaa =0, (E.3)

so that the integral in (E.1) satisfies the differential equation
d
(ASO(d)st(d)\SO(d,d) +d(d — 3)) Ig( ‘(1) =0. (E.4)

e For d = 2 the SO(2,2) Laplace operator is a sum of the SL(2) Laplace operators acting
on the T" and the U moduli and (E.4) gives

(Ar + Ay —2) 1P(1) =0, (E.5)
which is solved by
1
I(1) = —(Ea(T) + B (V). (E.6)

The normalisation has been determined from the large-volume limit The normalisation is
determined by the large volume limit the integral (E.1) behaves as

lim I1{?(1) = 4354) Ti + O(Ty), (E.7)

To—00 T

where we have used the value of the fundamental domain for Sp(2,7Z) given in [41]

/ e o) )
Fsp(

3
o) (det Smr) 3

e For d = 3 the eigenvalue in (E.4) vanishes as expected since there two-loop supergravity
amplitude has an ultraviolet divergence in D = 7. In this case the integral in (E.1) needs
to be regulated and the finite part is given by

@) 1 (550033  £50(3.3)
137 = 6 (E[om};z +E[001};2 )

1 74SL) | ~SL(M)
~ 6 ( rooj;2 T E[ooﬂ;z)

(E.9)

The normalisation has been fixed using the large-volume limit and the expansion (B.12).

e For d > 4 the differential equation is not sufficient to determine the solution. The
SO(dd)  pSO(d.d)

[04-11];87 T7[09-2,1,0];s
Dynkin diagram of figure 1(ii) satisfy (B.2)

Eisenstein series E associated with the nodes ay_1 and a4 of the Dy

so(d) _ ds(l —d+s) so(d.d)
ASO(d)XSO(d)\SO(d,d)E[Odq,1];5 = #E[Od*,ﬂ;s’ (E.10)

so@d —_ ds(l1—d+s) _so(daq)
As0(d)xs0(@\Ss0(dd) Blgi-21 g, = — 5 Ejga-21 g6 (E.11)

7Our normalisations for the SO(d, d) laplacian differ by a factor of 2 compared to [15].
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The series associated with the other nodes a,, with 1 < u < d — 2 satisfy the differential
equation

d,d 50(d,d
ASO(d)xSO(d)\SO(d,d)E[Ou(1 1)0d ulis us(2s —2d+u+1) E[Od_(171?070];s . (E.12)

. ) S0(d,d) 50(d,d) 50(d,d) 50(d,d)
Therefore, (E.4) is satisfied by E[Od—l,l];2’ E[Od_Q’Lo];Q, E[Od—3,1,0,o];1’ E[(]d_3’17(]’()];d/2

values of d. With other solutions for each value of d.

for all

It would be interesting to confirm the conjecture in [15] the only solution is the sum
SO(dd)  SOdd)

of E[odfl,u;w [09-2,1,0];2°

F. Integrals over Siegel fundamental domains

For genus h > 4 the parametrisation of the moduli space M}, of genus h curves is given by
period matrices supplemented by the Schottky relations [42], and the integration is not over
the Siegel fundamental domains for Sp(h,Z). The quantities protected by supersymmetry,
such as the R, 9* R* and 9°R* interactions evaluated in the main text receive perturbative
contributions up to genus-three and are given by integrals over the Siegel fundamental
domain for Sp(h,Z).

For the case of the two-torus we consider the integral

|dh(h+1) 2
(2)_/
. Qe (F.1)
' Fsp(h.z) (det\SmT)thl (2,2)

This integral is an automorphic function invariant under the T-duality group SO(2,2). By
applying the SO(2,2) Laplace operator we obtain [15]

(A + Ap) I = h(h — 1) TP, (F.2)
where Ago@)xso@)\so@,2) = Ar + Ay. The large-volume limit of I}(ZQ) is given by
lim 1% = vol(Fspnz) T4 (F.3)

TQ —0oQ

where vol(Fgp(,z)) is the volume of Fg,p, 7) computed in [41]

2k
VOl FSp(h Z

||’:]w
=
B

With this boundary condition the solution to (F.2) is given by

@ _ VollFsp(nz)

b T aC(2m) (En(T) + En(U)) - (F.5)

Now consider the case of the three-torus compactification,

h+1)

2
(3) _/ d = 7]
I = A ) (F.6)
h Fspnz) (det SmT)h+1 (3,3)
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This is a SO(3,3) automorphic function, which satisfies the differential equation derived
n [15],

A50(3)xSOBN\SO(3,3) Y = %h (h—2)1, (F.7)
which is satisfied by I, ¥ = E[%?éf 3) + bE[%gl(f’ 3) for any a and b. The large-volume limit
Jim 12 = vol(Fsy,) Vi (F.8)
determines the solution to be
1P = ) (w2 i) ®9)
= gt (D)

G. Supergravity loop amplitudes

G.1 One-loop amplitudes in D = 11 and the Epstein series

In this appendix the expressions for the scalar box function and the scalar triangle function
reduced on a d + 1-dimensional torus 7! will be evaluated. The scalar box function
arises as the coefficient of R?* in the four-graviton one-loop amplitude in eleven-dimensional
supergravity [6]. This diagram has a one-loop divergence that is subtracted by a R*
counterterm. The scalar triangle function arises from the contribution of this counterterm
as a vertex in a one-loop four-graviton amplitude, which cancels the sub-divergences of
the two-loop eleven-dimensional supergravity amplitude. and multiplies 9*R* [7]. These
results generalize the d = 1 discussion given in [1] to higher values of d.
The expression for the scalar box function is,

D—d—1
LED—d—l)(S’ T) — T2 /00 dt d d=D+9 / Hdwr Z e—ﬁtgljm,m1+7rtQ4(SvT) 7
Var1 Ja-—2 t TsT p—1 myeZd+1

(G.1)
where D = 11 + 2¢, Tgr = {0 < w1 < wy < wsg < 1}, and the function Q4(5,7T) is defined
by [7]

Q4(S, T) = —Swl(W3 — (UQ) — T(WQ — wl)(l — w?,) s (GQ)
with an equivalent definitions for the (S, U) and (T, U) regions. The scalar triangle function
is given by

D—d—1 o 2
I?ED—d—l)(S) _rT > / dt td D+7 / H dw, Z efﬂtg”mjmJJrﬂtQB(S) ’
Vi1 Jaz t 0Swr<en<i iy T
(G.3)
where the function Q3(S,T) is defined by [7]
Qg(s, T) = —SW1L<J2 . (G4)
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The masses of the Kaluza-Klein states running in the loop are denoted g’/m;m  and the
volume of the d + 1-torus is Vg4 1.

We will first analyze the momentum expansion of the scalar box function. This expres-
sion contains a non-analytic contribution from the massless supergravity states in (10 — d)
dimensions together with analytic terms,

17708, 1) = Lo (8, 1) + P70 (s,1). (G-5)

4,nonan

The non-analytic part is the usual field theory contribution,

3
D—d—1 d—D+9
161 ~ [ ] der (@, 1) 5 (G.6)
IsT p=1
For d = —1 this is the eleven-dimensional supergravity contribution, My, ~ (—E%l 5)3/ 2,

for d = 0 it is the ten-dimensional supergravity contribution M, 4810) ~ Slog(—#3, S); for
d = 1 it is the nine-dimensional contribution M, i;gl) ~ (=2, S)71/2 with an extra power
of §~1/2 for each extra compact dimension. A detailed discussion of the relation between
these various expressions obtained by decompactifying successively from d = 1 to d = 0
and d = —1 is given in [6,7,18].

It is convenient to separate the zero-momentum part of the analytic part of the am-

plitude
D—d—1 D—d—1 =(D—d—1
1P, 1) = 1PV 0,0) + P V(S.T) (G.7)
In order to isolate the divergences one must perform a Poisson resummation over the
KaluzaKlein modes m; in I.°"*7(0,0) [6,7]. Evaluating this integral with D = 11 and
a momentum cut-off A gives
10—d A2 1 >
00,00 =" [ aiis S ot
0 {m}ezdit1
10—d (G.8)
10—d m™ 2 SL(d
=t A T E D
anvi

where gr; = Vs/ d grj is the metric of the d-torus and det gr; = 1. The ultra-violet diver-
gence is now localised in the zero winding sector mm; = 0. The finite part is the contribution
from the non zero winding, which is invariant under large diffeomorphisms, described by

the action of SL(d+1,7Z) on the d+1 -dimensional torus and is proportional to the Epstein
SL(d+1)

series, By giijp-s),

o- The same integral evaluated in dimension D = 11 + 2¢ gives

(10—d+2¢) R U= Y LS G —ntgrymdmd
I (0,0) =7 2 dit2 > et
0

{m}ezditl (G 9)
_10-a 1 T(3+6) _sn+n) .
=TT 2 WigE[lodfl]'§+€.
vid o™
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The higher-order terms in the expansion in powers of the external momenta give

d—D+9
~(D—d—1) B 2o p-a-1 Gl T (55 +n) _orat1)
I (S,7) =23 Vi)™ S —msmp Ejgigaepan s (G10)
n>1
where

3
Gsr = /7 ] dwr (@)™ . (G.11)

T r=1

Similarly, the triangle diagram will be written as the sum of analytic and non-analytic

terms,
L77(S) = Lo (8) + 157 771(S), (G.12)
where )
a5~ [ TT der (Q5(5)) =5 (@.13)
0SwiSwa<1 .,

and the analytic part will be separated into a zero-momentum part and a momentum-
dependent part,

~(11—d ~(11—d ~(11—d

M) = I 0) + IS . (G.14)

The zero-momentum part is given by

AQ
I§107d)(0) % di s Z ot Grymlm’
0 {m}ezd+1 (G.15)
10-d 10-d 1 3 SL(d+1) '
=TT 2 A5 +mTm 2 — _ .
Vjﬁ (2m)2 L0713
The momentum expansion of f:gD_dH)(S ) is given by
2 n T (d=D+7
=(D—d+1 2 06 ST (5 +n) g1
I J(5)=2Y Wi S E[Odf171}3d_g+7+n : (G.16)
n>1 ’
where
2
S" = / H dw, (Q3)" . (G.17)
0<wi<w2<1 ,._ 4

G.2 Two-loop amplitudes in D = 11 and Eisenstein series

The finite part of the L = 2 four-graviton amplitude in eleven-dimensional supergravity
compactified on 7% will be evaluated in this appendix. The leading term in the low-energy
limit has the form [22] (s? + 2 + u?) I;,—5. Following [7] I —2 can be rewritten in the form
of a genus-one string theory amplitude, which has the low energy limit

—d A? d*r YV E gy (mi—rn)(mI —7nd)
I )=/ dvv3/ — Y e TamuimTTTI o (GB)
0 Fa

T R
2 (mini)ezdxzd
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where Fp = {7 = 71 +im| —1/2 < 7 < 1/2,|11]? + |2|? > A?}. Using the method of
orbits this integral has three kinds of pieces [7]

Ién_d) — AS7(0) 4 A5 () 4 pfin (G.19)

We are interested in the finite part of the integral, which can be evaluated by the method
of orbits as detailed in appendix A and is given by

Ifzn -9 Oodv V3 dQ_T Z e*VVLf _:; gij(mP—7n?)(mI —Fnd)
0 75 i

[Mo,&]
2 3 1 / RN _amVVi Vaet M
= — —_— e
2
Vda <izay Vdet M Jo
[Mo ]
1 1 1 SL(d)
- _E (G.20)
8 d—3
27T3VdE = (det/\/l)2 3Vd [0,1,04-3];27
[Mo ]

where the sum is over the representatives My in (A.9) and the matrix M is defined
n (B.18).

H. Laplacians on K\G manifolds

In the next subsection we will discuss the Laplace operator on some of the cosets of explicit
relevance to the discussions in the text. In the subsequent subsection we will use an iterative
method to relate the Laplace operator and its eigenvalues for different values of D, which
leads to equations (6.2)-(6.4).

H.1 Explicit examples for D = 8,9,10

These cosets are parameterised by scalar (moduli) fields. These scalars enter in the super-
gravity in the form of a sigma model with action

Sscalar = E dD TV — h” me 8 0j, (Hl)
D

and the associated Laplace operator is given by

Vh(o)h9,;) . (H.2)

Ay =

1
——— 0,
Vh(o) (

The explicit expressions for these Laplacians in terms of our choice of fields in the Einstein
frame in various dimensions is as follows.
e The scalar field action of D = 10 type IIB is

8 Q@ Q
stglar _ 258 /dlo v/ —@G(10) . (H3)
10
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The SL(2,R) symmetry acts on the complexified coupling constant €2, and the SO(2)\SL(2)
Laplacian is defined as
Aq = 4030000 = Q3 (05, + 93,) - (H.4)
Note that our normalisation conventions are such that the Eisenstein series E () has
eigenvalue s(s — 1).
e The nine-dimensional scalar field action with GL(2,R) = SL(2,R) x R* invariance is
1 0,008
Sgsalar d’z v/ —GO) < Oy log 10" log vy — 3 T) . (H.5)
2

Here the SL(2,R) symmetry acts on £ and R acts as a shift on logr; — logvy + A. The
Laplace operator acting on scalars in D =9 is

AO) = A+ gulﬁyl(ul&q) + %Vl&,l . (H.6)

e In eight dimensions the U-duality group is SO(3)\SL(3,R) x SO(2)\SL(2,R) where
SL(3,R) acts on €, the eight-dimensional volume v, and the combination of Ramond-—
Ramond and Neveu-Schwarz—Neveu-Schwarz B-fields, B = Brgr + Bngs. The SL(2,R)
group acts on the complex structure U. The SO(3)\SL(3) laplacian is given by [11]

‘aBNS - QaBRR‘Q
2N
The full Laplacian for the eight-dimensional theory is the sum of the SO(3)\SL(3) and the
O(2)\SL(2) Laplacians,

ASO(3)\SL(3) = 49%8{)5@ + + 381,2 (I/2281,2) . (H?)

-0 2
955 = Wunl” 139, (120,,).

(H.8)

A® = Agoensne)TAso@\sLe) = 4U50y05+4030000+

H.2 Connections between Laplace equations in different dimensions.

In this appendix we will give a derivation of (6.2)-(6.4). We will take the dimensionless
radius of the (d+ 1)’th dimension on the string theory torus to be large, i.e., large rq,1/4s.
This corresponds to deleting the last node of the Dynkin diagram in fig. 1(i) for the group
Ga = Eqy1(a+1), which reduces its rank. In this limit the Laplace operator, AD) = AGa
decomposes as (where d = 10 — D)

AP) s APTY 4 (r40,,)? — bp(rady,) (H.9)

where ap and bp are numerical coefficients whose determination is discussed below. In the
decompactification limit
D—1 D-2,.
bpi =4y ra (H.10)

We will now determine the Laplace equations, (6.2)-(6.4), by a recursive method, as

follows. Given a modular function 5((D3) in dimension D, the modular function 5((1??1) in

D + 1 dimensions can be obtained via the relation

(826=D [ gD\ /—G(D) 5((53) R = (D [ gPa/— 5((5;” SR RY
(H.11)
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where k = 2p 4 3¢ and the ellipsis ” stands for the terms that either grow faster than
rq or vanish in the limit r4 — oco. As we have seen in the examples in the body of the
paper the divergent terms contribute to the threshold behaviour, and not to the analytic
part of the D + 1 dimensional amplitude. They can therefore be ignored. Therefore,
the r4 dependence in (H.11) is completely determined by the requirement that the term

decompactifies to D + 1,

4p+6(q+1)

D T D=2 D
5((10711)) - <€Di1 (5( A )- (H.12)

D) .
. . . . . . . . (p7q)‘
knowing the eigenvalues in ten dimensions, one can derive the eigenvalues in all lower

The formula (H.9) then establishes a recursive relationship between the eigenvalues A

dimensions.

The direct determination of the numerical coefficients ap and bp in low dimensions is
complicated, due to the complicated structure of the Laplace operator. However, a simple
way to find them is by using as input the eigenvalues for the R* and 9*R* interactions in D
and D + 1 dimensions where they are known. Then the eigenvalue for the 9°R* interaction
is a prediction. It is actually sufficient to determine ap and bp in 7 < D < 9. We find

b} 39 71

(a7,b7) = (—%, 5) ) (as,bg) = (—? ;) ) (ag,bg) = (_1_6’ Z) : (H.13)

With this information one can consider the ansatz

A (B —D)(D —C,)
(D) _ “pa)\P(p9) (p,9)

The (D-independent) coefficients A, 4y, B(p.g)s Cp.g)

relation (H.12) between the coefficients into the Laplace equation satisfied by 5((511))' It
follows that, for 7 < D <9,

are determined by substituting the

(D) _ o+ (Ap+6(g+1)*  4p+6(g+1)
/\(pvq) () ap (D —2)2 bp D—9 : (H.15)
For the three cases under consideration

(p) _ 3(11—D)(D —38)
ooy = T pog (H.16)

() _ 5(12-D)(D—-T7)
Ao =T pog (H.17)

(p) _ 6(14—D)(D —6)
Aoy = T (H.18)

Assuming that (H.15) holds for (p,q) = (0,0) and (p,q) = (1,0) in any generic dimension
3 < D <10, one can determine ap and bp

D-2 D? —-3D —58

D= ~55 -1 bp = — 20T (H.19)
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As a check that this extrapolation to arbitrary dimensions 3 < D < 10 makes sense,
one verifies that (H.19) also solves (H.15) for (p,q) = (0,1). Another check is that (H.16)—
(H.18) (or, equivalently, (H.15) with (H.19) and 0 < 2p+3q < 3) give the correct eigenvalues
in six dimensions. Since the information about the D = 6 eigenvalues was not used at all,
this is a non-trivial check.

Summarizing, the basic rule behind the above derivation is the requirement that a
modular function in D dimensions decompactifies to a finite term in D + 1 dimensions.
This determines the r4 dependence, and hence the shift in the eigenvalues. Since this rule
applies equally to the 3 < D < 6 modular functions, we expect that in these dimensions
the modular functions for the interactions R?*, 9*R* and 9°R* satisfy the differential

equations (6.2)—(6.4). It should be noted that the source term in (6.4) is also determined

(D)

by the decompactification procedure since 5( 0.0

) decompactifies appropriately.

I. Determination of 5(0 1)

We will here solve the inhomogeneous Laplace equations that define the coefficients of
the 0%R* interactions in D = 8 dimensions. In each case we will find a unique solution
satisfying certain boundary conditions obtained from string perturbation theory.

We wish to solve (5.9),

A (8) 5(8)

(®) (®)
) =12€ (Em)? - (L1)

01)

The general form of the solution is the sum of a particular solution and a solution of the
homogeneous equation. The homogeneous equation (A®) —12)F = 0 has one solution that
is compatible with string perturbation theory,

flag= Efﬂ“”) E3(U). (12)

There are other solutions, such as E[IO]( ) with s; = 3/4(1 +V/17) and E4(U). However,

none of these solutions is compatible with string perturbation theory. Therefore

£®

0,1) — 0‘—%,3E ) E3(U) +P (1.3)

[10];—
where the particular solution P can be expressed by separation of variables as
P = ASH®) 4 BSLO)(1) + €M) DSEA) (1) (1.4)

where ASH3) and C5L6) are SL(3,7) automorphic functions and BS*?)(U) and DS (U)
are SL(2,Z)-invariant functions of U. By expanding the source term, each piece is found
to satisfy the following equations

- ST

(Asopnsi — 12450 = — (@]9 (L5)

(Aso@psre) — 12) B @(U) = —4(E1(U))?, (1.6)
(Aso@nsz@xsoensLe) — 120 DI (1) = —4 E[m]( VB (U). (L.7)
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The SL(3,Z) functions can be expanded using the variables (v, Q) with an explicit SL(2,Z)
invariance acting on € or using the variables (ys,T") with an explicit SL(2,Z) symmetry
acting on T'. The T-duality group in eight dimensions is SO(2,2) = SL(2) x SL(2), where
the SL(2) factors act on T" and U respectively. This ensures that the perturbative answer
is symmetric under exchange T < U.

The first differential equation in (I.5) defines an SL(3,Z) invariant function

SL
ASE®) = g2HO) (L8)

The SL(3) functions will be written as functions of the (ys,T") variables, in terms of which
the SO(3)\SL(3) Laplacian takes the form

Aso@nsie) ~ T3 (07, + 0F,) + 30y (y30ys) - (L.9)

L(3)

Using the expansion given in (B.55) for E[lO] 3/2°

o, 1()3) The ansatz

one can determine the perturbative ex-

pansion of £

1
Qa
/ A0 dBrr £ ) = 5 + — L (A1(T) + a1 log(ys) + As(T, )

: v s (1.10)
+) ATy
n>3

leads to or(3)2 )

ap = C(g) ; ay = ?ﬂC(?)) ; (1.11)
and the set of equations

(Ap —12) Ay(T) = —8¢(3) Ex(T) + —C( ) (1.12)
(A + 30,0 (5203n) — 12) Aa(T, ) = —(2By(T) + %log(ys)) SN REY
(A7 —6) A3(T) = 0, (1.14)
(Ar —3(2+3n—n*)A,(T) =0; n>4, (I.15)

with Aq = T2(02, + 02,).

e Equation (I.12) gives the genus-one contribution. Because the source term is lin-
ear (1.12) is solved by

2 .
A1(T) = df BA(T) + 2¢(3) Bu(T). (1.16)
An explicit evaluation of the genus-one contribution in (D.10) shows that a} = 0.

e Equation (I.13) is solved by

AT ) = Ay Ba(T) + F(T) 4 1o+ T By ()
(25 (7)) tog(us) + o log(us)? (L.17)
o7 9 1 2 (Ys o7 Zys)” .
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where f(T') is the particular solution to
(Ap —12) f(T) = —4EX(T). (1.18)

This is the same as the equation for BSX(?)(U) in (1.6) as is required by T-duality
at genus-two. The structure of this equation is similar to that of 5(%%)). This is
complicated to solve explicitly, but it is straightforward to determine the power-

behaved terms in the large-T5 expansion, as given in [13],

f(T) = % (65 — 207Th + 487715 + 7§%3)§g5)
¢(2) T (1.19)

-3 log Ty (47Ty — 6log To + 1) + O(e™2) .

Since there cannot be a T3 contribution to the genus-two 9%R* we conclude that
ab = 0.

e Equation (I.14) is solved by A3(T) = a3 E3(T).

e Equation (I.15) has solutions A(T) = bE4(T") where s is not real. Therefore they do

not fit with string perturbation theory, so we must set b = 0, which is compatible
with the absence of contributions beyond genus-three.

(5(*)]1()3) therefore has the form

1

3 2¢(3)2 2¢(3) 1 ~

[ el = S0+ SPGB s
— 8 .

+ Ao(T,yg) + az ys E3(T) .

The perturbative expansion for £

[N

By considering the powers of yg in (I.6) and (I.7) we see that (I.7) has genus-one and
genus-two contributions,

1
/2 dQdBgg PO DL (1) = m@U) ho(T, U, ys) , (1.21)
_1 Y8
2
where
(Ar+ Ay —12) (T, U) = =8¢(3) E1(U), (1.22)

. . 8T ~
(A7 + Av + 39y, (1R0y) = 12) ha(T,U.ys) = ~8EL(D)E(U) — 5 B (T)log(ys) . (1.23)

These equations are solved by

M(T,U) = n(T,0) + SEHB0) + 17203), (124
Mo (T, U ) = hal(T,U) 4 SBy(T)B1(U) + £ Ba(U) + 12 B (T)
A 2 2
+ B (U) log(ys) + = log(us) + o (1.25)

— 77 —



where

(A4 Ay —12)h(T,U) =0,  i=1,2. (1.26)
The only solution to this equation which is symmetric under T' <» U, and that can a prior:
be compatible with the decompactification limit has the form

hi(T,U) = B; E3(T)E3(U) .
General solutions with eigenvalue equal to 12 of the form Eg, (U)E,(T) + Eg, (U)Es, (T)
would have non-rational values of s1, so and thus would lead to non-rational powers of
ro in the decompactification limit. On the other hand, a possible solution proportional to
E4(U) + E4(T) is ruled out for the reasons explained above.
Finally, the perturbative contributions from the homogeneous solution (I1.2) are

1
2 3 _
/ ddBrr By Yy Ba(U) = 55 (v Ba(T) + mC(@)ys ) Bs(U).  (127)

N

This expression contains genus-one and genus-three terms.

Collecting the perturbative contributions to 5((5)1) we have
1
’ A0 dBrrE® . = Jo + h + fo+ys [3, (L.28)
_1 O g2 " yg
2
with
2 a2
fo=5¢32, (1.29)
3 2 . .
= (047%,3% + 61) E3(T) E3(U) + 54(3) (E1(T) + E1(U)) (1.30)
27¢(3) T
21539 L
+ g log(ys) + 15 ¢(3),
2 A ~
f2 = gEA(T) E1(U) + f(T) + f(U) + 52Es(T) Es(U) (1.31)
117 7 . .
b T (B(T) + B(U))
2
K 3 3 T 2
+ 15 (7r + 4B (T) +4E1(U)) log(ys) + o log(ys)”
a_sg
fs =~ Bs(U) + as Es(T). (1.32)

Strikingly, after combining the different log contributions the final result containing log
parts is symmetric under the exchange of U-T variables.
Symmetry under the T' < U also determines the relation

a_gg= 60cvs . (1.33)

Decompactification to ten dimensions and the value of the genus-three coefficient found

in [10] fixes
2
a3 = oo (1.34)
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Comparison with the genus-one computation in (D.10) fixes

(1.35)

which implies that ;1 = 0. The large volume limit of the genus-two contribution fixes
B2 = 0. Thus we find

fo= §C(3)2, (1.36)

fi = o (1) B () + 26(3) (Ba(T) + By (1)) + 27D o) + T ¢(3), (17

f2 = FEAT) BA(U) + J(T) + [(U) + 5 (Ba(T) + Ea(V) (138)
b o (4 BT + 4B (0)) Togs) + 2 Tog(u)? + T2

fs = 5= (By(U) + By (T)) (139

Finally, the SL(3,7Z) x SL(2,Z) invariant expression for C*4(3) DSL2) (1) that solves (1.7)
and has the above perturbative expansion is given by

1. . T - T~ ¢(2)
SL(3) /HSL(2) _ 1HSLB) T aSL3) | T
C D (U) 3E[10];%E1(U)+36E[10};% + 9E1(U)+ o -
This has terms that were not present in [13], that originate from the regularisation of the
source term.

The complete form of the solution is given by

) osLi3) 40 _sL(3) 1 ~SL(3) &

S0 = Eon) T g By B(U) 5 g Ea(U) + F(U) (1.40)
T RSB | 4 ¢(2) :
26 Blops TAELU)) + >~
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