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INTRODUCTION

Within a couple of years from now, the Large Hadron Collider (LHC) will begin operation at
CERN, providing proton-proton collisions at 14 TeV center of mass (COM) energy and opening a
new window into physics at the shortest distance scales. The luminosity should be ~ 10— 100 times
greater than at Fermilab’s Tevatron and the combined rise in energy and luminosity will hugely
increase the production of particles with masses in the range 10? to 10° GeV, including electroweak
vector bosons, top quarks, Higgs bosons, and perhaps new particles representing physics beyond
the Standard Model (SM). In this context, a detailed quantitative understanding of both the new
physics signals and the SM backgrounds is required.

The SM backgrounds for e. g. processes that may contain several jets and (perhaps) a few
electroweak bosons are very complex, but a simplifying feature is that the masses of the observed
final-state particles in these reactions are generally negligibly small (except for the cases of the
W, Z, or top quark, which however immediately decay to essentially massless quarks or leptons).
So if we include the decay processes in the description of the event, every final-state particle is
approximately massless. We can also (usually) neglect the masses of the colliding partons (the
quarks and gluons). Thus the backgrounds (and many signals) require a detailed understanding of
scattering amplitudes for many ultrarelativistic (massless) particles, in particular of the quarks and
gluons of quantum chromodynamics (QCD).

In principle, Feynman rules are all we need to evaluate the tree and loop amplitudes. In practice,
although Feynman rules are very general and apply to any local quantum field theory, the standard
method of drawing up all diagrams, computing them using the Feynman rules and then summing
all the terms becomes extremely inefficient and cumbersome as the number of external legs grows.
The development of new analytic and computational methods in the perturbative approach to
Yang-Mills (YM) theories is thus of great and imminent experimental importance: without clear
theoretical predictions from perturbative QCD, there would be difficulties in interpreting LHC
data. Some new and exciting progress has recently been made in this direction using a variety
of field theoretic and string theory-inspired techniques which provide very efficient and powerful
alternatives to the usual Feynman diagram expansion. These gauge theory breakthroughs and many
others were directly inspired by the recent development of twistor string theory, which is a new
form of string theory defined on supertwistor space.

The main reasons for the inefficiency of the Feynman diagram expansion are:

 Too many diagrams: many diagrams are related by gauge invariance.
« Too many terms in each diagram: nonabelian gauge boson self-interactions are complicated.

« Too many kinematic variables (allowing the construction of arbitrarily complicated expres-
sions).

Consequently, intermediate expressions tend to be vastly more complicated than the final results,
when the latter are represented in an appropriate way. In order to fix ideas, let me give two examples
of this:

1. In QCD, the tree-level amplitudes for the scattering of n gluons all vanish if the helicities of
the gluons (considered as outgoing particles) are either a) all the same b) all the same, except
for one of opposite helicity. Using parity, we can take the bulk of the gluons to have positive



helicity, and write this vanishing relation as
Alree(1E 2% 3T nT)=0.

This vanishing is somewhat mysterious from the point of view of Feynman diagrams.

2. The first sequence of nonvanishing tree amplitudes has two gluons with negative helicity,
labelled by j and /, say, and the rest of positive helicity. This sequence of maximally helicity-
violating (MHV) amplitudes has the exceedingly simple Parke-Taylor (PT) form [1]:
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in terms of SU(2) invariant spinor products
(ij) = B A Ay A=0,1 A=0,1.

Here we have conveniently written the massless momenta ki2 = 0 of the gluons as the product
of a left-handed spinor with a right-handed one using the 2-spinor notation:

k' (0u)an = (Mi)a(Ai)ar-

The PT expression above gives the piece of the full amplitude in which the n gluons have a
definite cyclic ordering; the full amplitude can be built out of permutations of such partial
amplitudes. The formula is extremely simple, and in particular it is ‘holomorphic’ in the
spinor variables, a fact which is very mysterious from the point of view of Feynman diagrams.

TWISTOR SPACE AND TWISTOR STRINGS

A breakthrough in the interpretation of such properties of YM scattering amplitudes came when
Witten transformed the PT amplitude from the traditional momentum-space variables into Pen-
rose’s twistor space [2]. The twistor transform is a kind of Fourier transform, and there are many
examples where transforming a problem into the right variables can expose its simplicity. In this
case, Witten found a remarkable interpretation of the formula and of its ‘holomorphy’ properties
in terms of a particular string theory on a particular supersymmetric (SUSY) version of twistor
space.

Witten defined twistor string theory as a topological B-model with target the supermanifold
CP3* akaN =4 projective supertwistor space. What is projective N = 4 supertwistor space CP3149
First, consider complexified flat spacetime C*. Spacetimes of signature (4,0), (3,1) or (2,2) can be
obtained by restricting to suitable real slices of the complexification. Complexified twistor space T
is another copy of C* with coordinates Z* = (Z°,Z", 2, Z3). Projective twistor space PT is CP?
(Z* ~ AZ* for some A € C*) and a point Z in PT has homogeneous coordinates [2°,Z!, 7%, 77].
T can be defined as the representation space of spinors of the complexified conformal group
SL(4,C). The Z%* transform as a 4 of SL(4,C) and decompose into 2-component spinors under
the complexified Lorentz group SL(2,C) x SL(2,C) C SL(4,C); we write Z* = (o, m/) with
A=0,1andA’' =01,

Twistor theory has many important and useful applications, including the Ward construction [3]
solving the self-dual (SD) YM equations and Penrose’s ‘nonlinear graviton’ construction [4]
solving the self-dual Einstein equations. Most stem from the following basic relationship. A point
A e CM corresponds to a 2-dimensional linear subspace of T given by the incidence relation

ot =My

and to a projective line (a copy of CP') in PT.



The basic correspondence between twistor space and spacetime is:

| PT | CM |
| complex projective line | point |
| point | alpha-plane |

|

\ intersection of lines \ null separation of points

Complexified Minkowski space CM can be thought of as the moduli space of complex projective
lines, while (projective) twistor space PT can be thought of as the moduli space of &-planes [5].

One remarkable application of twistor space is the Penrose transform [5]. This identifies solu-
tions to (massless) free field equations for spacetime fields of arbitrary helicity —7 on a suitable
region U C CM with the cohomology group H! (PT(U), &(n—2)), where PT(U) C PT is the
corresponding subset of PT. The N =4 SUSY generalisation of the above constructions is more
or less straightforward [2, 9].

The B-model on CP** (or any Calabi-Yau target) describes — for open strings — holomorphic
bundles and more general sheaves, together with their moduli. Via the Penrose transform, the
open strings (for ‘space-filling branes’ [2]) reproduce the perturbative spectrum of N = 4 super
YM (SYM). The interactions can also be reproduced, although this is somewhat harder to see.
For closed strings the vertex operator for the physical (0, 1)-form on CP3* describes linearised
deformations of the complex structure of a suitable region of CP? * (. g. a neighbourhood PT
of a projective line in CP31*). Penrose showed that such complex structure deformations lead
to nontrivial deformations of the flat twistor correspondence wherein space-time is deformed
from flat space to one with a curved conformal structure with anti-selfdual Weyl curvature. The
construction provides a correspondence between curved twistor spaces and conformally anti-
selfdual space-times, yielding a general construction of such space-times. This ‘nonlinear graviton’
construction establishes that space-time C.Z together with its anti-self-dual conformal structure
can be reconstructed from the complex structure of curved twistor space .7 together with (Y,Q),
where T denotes the Euler homogeneity operator and Q the holomorphic 3-form, or from P.7" and
its complex structure. The existence of the correspondence is preserved under small deformations,
either of the complex structure on P.7, or of the anti-self dual conformal structure on C.Z .

In Witten’s twistor string theory, the twistor space string field theory action has a term with
a Lagrange multiplier imposing N(J) = 0, where N(J) is the Nijenhuis tensor of the complex
structure J of the deformed region. Via the nonlinear graviton construction, these integrable
complex structure deformations of e. g. PT( describe solutions of the ASD Weyl equations in
spacetime:

Wapcp =0

where Wy p 6 denotes the Weyl tensor with SD and anti-SD (ASD) parts Wagcp and Wypicrpr. This
describes one helicity of conformal gravity, and leads to an action of the form
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with U symmetric in all its indices and of Lorentz spin (2,0). In addition there is a term

/ d*x \/GUABPU pep

which arises from D-instantons in Witten’s topological B-model. Integrating out U gives an action
which is equivalent to the conformal gravity action
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(the difference between the two being a topological term). Thus one gets both the spectrum and
the interactions of N = 4 conformal supergravity (CSUGRA) [6].

Similar results can be derived using an alternative formulation of the twistor string due to
Berkovits [7, 8]. The Berkovits model reproduces the correct tree-level SYM amplitudes using



ordinary string tree amplitudes as opposed to D-instanton contributions. The construction uses the
fact that in split spacetime signature + + —— there is a 3-real dimensional submanifold P of
complex twistor space, e. g. the standard embedding RP* € CP? in the flat case, and the data about
deformations of the complex structure is encoded in an analytic vector field f on P.7%.

The Berkovits model is a theory of open strings with boundaries on PTk and action

S = / d’c (Y,éz’ + Y077 —AJ—AJ”) +Sc.
x

Here the Y’s are variables conjugate to the Z/ = (Z% w*) (with the y*, a = 1,...4 fermionic

coordinates on the ‘soul’ of CP3*), A is a GL(1,C) world-sheet gauge field and J is the associated
conserved current on the world-sheet £. The GL(1,C) invariance insures that the theory is defined
on projective twistor space PT rather than on twistor space T. The world-sheet theory includes
a left and right-moving current algebra S¢ reminiscent of heterotic string constructions, and this
plays a key role both in the quantum consistency of the model and in determining its spacetime
symmetries. In particular, it insures cancellation of conformal anomalies: in addition to the usual
Virasoro ghost (b,c) system with ¢ = —26 there are ghosts (u,v) and (i, v) for the GL(1,C)
symmetry of the action which contribute ¢ = —2.
N =4 SYM physical states are created by the dimension one GL( 1, C)-neutral primary field

V(b = jr‘Pr(Z)
where ¢”(Z) are functions of GL(1) charge zero and the j, with r = 1,...dimG are the (left-
moving) Kac-Moody algebra currents. G becomes a spacetime SYM gauge group. The superfields
¢(Z) are functions of homogeneity degree zero and have an expansion of the form ¢(Z) =
Ay +...+A_;y*, which gives an N = 4 SYM multiplet via the Penrose transform.
Similarly (I will not give the details here) N = 4 CSUGRA physical states are created by an
open string vertex operator constructed from a vector field f defined on PTg, corresponding to

deformations of the embedding of PTg in PT, together with a vertex operator constructed from a
1-form g;dZ' on T

Ve =Yif'(2) Ve =g1(2)07".
The physical state conditions are
af' =0 Zlg =0
and the gauge invariances are
Sfl=27IA Sg1=0ix.

The emergence of CSUGRA is disappointing from the point of view of Witten’s original goal of
describing pure N =4 SYM: e. g. at tree level the topological B-model computes the amplitudes
of N =4 SYM as desired [2], but at loops it computes the amplitudes of N =4 SYM conformally
coupled to N = 4 CSUGRA [6]. Moreover there does not seem to be any obvious limits which
one could take in the B-model or in the Berkovits model in order to decouple the gauge and
gravitational sectors. So CSUGRA seems unavoidable in the Witten and Berkovits models, but
this theory is generally considered to be inconsistent: it leads to 4th order PDE for the fluctuations
of the metric, and thus to a lack of unitarity.

On the other hand, N = 4 SYM makes sense without CSUGRA, and it would be desirable to
find a perturbative string theory description of it. A twistor string that gave Einstein SUGRA (with
2nd order field equations for the graviton) coupled to SYM would be much more useful, and might
have a limit in which the gravity could be decoupled. The spacetime conformal invariance would
be broken in such a theory, and in particular this would introduce a dimensionful parameter which
could be used to define the decoupling limit.

NONLINEAR GRAVITON AND NEW TWISTOR STRINGS

In fact there is an important variant of the Penrose construction that applies to conformally SD
spaces that are also Ricci-flat, so that the full Riemann tensor is self-dual:

Wapcop =0, Ryv =0 = Rapcop = 0.



The corresponding twistor spaces P.7 then have extra structure. In particular, they have a fibration
P — CP'. The holomorphic 1-form on CP! pulls back to give a holomorphic 1-form on P.7
which takes the form Ia/gZO‘dZB in homogeneous coordinates Z%, for some I,g(Z) = —Igy(Z)
(which are the components of a closed 2-form on the non-projective twistor space 7). The dual
bi-vector /%8 = %EO‘B Yalyg defines a Poisson structure and is called the infinity twistor. Choosing a
point at infinity, corresponding to such an infinity twistor, breaks the conformal group down to the
Poincaré group; e. g. on Minkowski space, the infinity twistor determines the light-cone at infinity
in the conformal compactification. A similar situation obtains more generally: the infinity twistor
breaks conformal invariance.

Self-dual space-times are obtained by seeking deformations of the complex structure of twistor
space as before, but now Ricci-flatness in space-time places further restrictions on the deformations
allowed [4, 10]. The vector field f on RP3 is required to be a Hamiltonian vector field with respect
to the infinity twistor:

1o = [Oﬂﬁﬁ
dZB
for some function / of homogeneity degree 2 on RP?. In the linearised theory, such a function A
corresponds to a positive-helicity graviton in space-time via the Penrose transform, and the non-
linear graviton construction gives the generalisation of this to the non-linear theory [4, 10].

The existence of the nonlinear graviton construction suggests seeking twistor strings that are
modifications of the Berkovits or the Witten model with explicit dependence on the infinity twistor,
such that there are extra constraints on the vertex operators imposing that the deformation of the
complex structure be of the form given above. Then the leading term in the action analogous to
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should have a multiplier imposing self-duality, not just conformal self-duality, and further terms
quadratic in the multiplier (from instantons in Witten’s approach) could then give Einstein gravity.

A formulation of Einstein gravity of just this form was discussed in [12], and an N = 8 SUSY
version was constructed some time ago by Siegel [13]. In [9], we constructed new twistor string
models which appear to give Einstein (super)gravity coupled to (super) Yang-Mills. The new
theories are constructed by gauging certain symmetries of the Berkovits twistor string which are
defined by the infinity twistor I%? (or its appropriate SUSY generalisation /). Their structure is
very similar to that of the Berkovits model, but the gauging adds new terms to the BRST operator
so that the vertex operators have new constraints and gauge invariances. I will shortly describe the
spectra and some of the interactions of 2 classes of theories for which the world-sheet anomalies
cancel.

The corresponding target space theories can be expected to be anomalous in general, with
the anomalies arising from inconsistencies in the corresponding twistor string model, though
the mechanism for this is as yet unknown. This may rule out some of the models we construct,
or restrict the choice of gauge group G. The situation is similar to that of the Berkovits and
Witten models, which give target space theories that are anomalous in general, with the anomalies
canceling only for the 4-dimensional groups G = U (1)* or G = SU(2) x U(1).

The 1st class of anomaly-free theories is formulated in N = 4 supertwistor space. Gauging a
symmetry of the string theory generated by 1 bosonic and 4 fermionic currents gives a theory with
the spectrum of N = 4 Einstein SUGRA coupled to N =4 SYM with arbitrary gauge group G.
Gauging a single bosonic current gives a theory with the spectrum of N = 8 Einstein SUGRA,
provided the number of N = 4 vector multiplets is 6. In the YM sector, the string theory is identical
to that of Berkovits, so that it gives the same tree level YM amplitudes. Both gauged theories have
the MHV 3-graviton interaction (with 2 positive helicity gravitons and 1 negative helicity one) of
Einstein gravity. The other interactions are still being computed, and the results should determine
the form of the interacting theories [14].

There are different interacting theories with the spectrum of N = 4 Einstein SUGRA (coupled
to N =4 SYM): the standard non-chiral Einstein SUGRA and Einstein SUGRA with chiral
interactions. For the theory with dimG = 6 and the spectrum of N = 8 SUGRA, the interactions
could be those of the standard N = 8 SUGRA or those of Siegel’s chiral N = 8 SUGRA.



The 2nd class of string theories is obtained by gauging different numbers of bosonic and
fermionic symmetries so that anomalies are cancelled against ghost contributions for strings in
twistor spaces with 3 complex bosonic dimensions and any number N of complex fermionic dimen-
sions, corresponding to theories in 4-dimensional spacetime with N supersymmetries. Analysing
the spectrum of states arising from ghost-independent vertex operators, one finds:

« For N = 0, a theory with the bosonic spectrum of SD gravity together with SD YM and a
scalar.

« For N < 4, supersymmetric versions of this N = 0 SD theory.

« For N = 4, a (second) theory with the spectrum of N = 4 Einstein SUGRA coupled to N =4
SYM with arbitrary G.

Consistent non-linear interactions are possible classically for the N = 0 theory. The field equations
are given by a scalar-dependent modification of the equations for SD gravity coupled to SD YM,
and the (noncovariant) action is presumably of the Plebanski type. This N = 0 theory may be
closely related to the interacting theory of SD gravity coupled to SD YM arising from the (Ooguri-
Vafa) N = 2 world-sheet supersymmetric string [11]. The theories with N < 4 are supersymmetric
extensions of the N = 0 theory, and could be consistent at the interacting level if the N = O theory
is. The determination of the precise form of the interactions must await a detailed investigation of
the scattering amplitudes in the new twistor string models [14].

An important point here is that if one scales the infinity twistor I/ — RI'/ | €48 — ReAB, while
keeping f!,g; fixed, then # — R~'h and i — Rh. Then the amplitude scales as R~!, so that R~!
sets the strength of the gravitational coupling. Thus there is a decoupling limit of gravity in our
models, which should be useful in computing YM amplitudes at loops using the twistor string. In
the case of the model giving the spectrum (and some of the interactions) of N = 8 SUGRA, we
hope to use the string theory to calculate N = 8 SUGRA loop amplitudes as well as to investigate
the conjectured ultra-violet finiteness of this very special SUSY field theory of gravity, and the
fascinating and intimate connection of its scattering amplitudes to those of N =4 SYM.
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