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Abstract

We show that the action potential signals generated inside axons prop-
agate as reaction-diffusion solitons or as reaction-diffusion waves, refuting
the Hodgkin and Huxley (HH) hypothesis that action potentials propagate
along axons with an elastic wave mechanism. Action potential signals are
solitary propagating spikes along the axon, occurring in a type I intermit-
tency regime of the HH model. Reaction-diffusion action potential wave
fronts annihilate at collision and at the boundaries of axons with zero flux,
in contrast with elastic waves, where amplitudes add up and reflect at bound-
aries. We calculate numerically the values of the speed of the action poten-
tial spikes, as well as the dispersion relations. These findings suggest several
experiments as validating and falsifying tests for the HH model.

Keywords: Action potential waves, Hodgkin-Huxley model, reaction-diffusion
waves, reaction-diffusion solitons.



1 Introduction

The electrophysiological states of cells and axons are characterised by an electric
potential drop across the cellular membrane, which is maintained through the ex-
change of ions between the cytoplasm and the intercellular space, [17], [18], and
[19]. To describe the electrical properties of axonal signalling, in a sequence of
papers, Hodgkin and Huxley (HH) introduced a mathematical model aiming to
describe the propagation of action potentials in the axoplasm and which they have
compared with voltage clamp data taken from the axon of the squid Loligo, [9].

In current clamp experiments, one of the electrodes is located in the extracel-
lular space and the second one is a thin wire introduced longitudinally into the
axon, [22], [14, p. 143]. When the axon is electrically excited away from inner
electrode, the measured electrical potential drop is a spiky (negative) signal that
evolves in time, [10, p. 24]. In principle, this signal results from a longitudinally
propagating signal — the action potential — measured by the inner electrode in-
side the axon.

The derivation of the HH mathematical model for the action potential phe-
nomenon is based on the analogy between the potential difference measured on
both sides of the cellular membrane and an electric circuit containing a variable
resistance and a power source in series, both in parallel with a capacitor. This anal-
ogy 1s phenomenological, aiming to explain the gating mechanism of ion channels
across a cellular membrane through a variable resistance. The power source and
the capacitor describe, respectively, a source of energy and a potential energy
storage reservoir. The biological functions of the three electric components are
unspecified, [22, p. 152], [14, p. 152].

In a synthetic form, the HH model equations are
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where ¢ is time, x is the position coordinate along the axon, V (x,t) is the potential
drop across the cellular membrane, D is a diffusion coefficient of the potential
drop along the axoplasm, C is the phenomenological capacitance of the cellular
membrane, and i is a current eventually describing an external forcing, as in cur-
rent clamp experiments, or simply a neuronal signal originated in the main body
of a neurone. The vector function 7i(x,¢) = (n,m, h) contains gating variables, spe-
cific to ion types. The functions F(V,7) : R* — R and G(V,7) : R* — R3 describe,
respectively, the local response to the potential drop changes across the cellular
membrane and the gating mechanisms of ion channels, [20], [12], [8], [13] and
[11].



In [9, p. 522], Hodgkin and Huxley conjecture that the propagation properties
of the action potential must be analogous to those of a propagating elastic wave.
In fact, they assume the existence of an unknown mechanism which would im-
pose an elastic wave type propagation mechanism inside the axon, such that the
transmembrane potential would propagate according to the wave equation
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where 0 is an unknown ad hoc longitudinal propagation speed constant. Despite
the fact that the solutions of equations (1) and (2) are generically incompatible
(equation (1) is of parabolic type and equation (2) is of hyperbolic type), they
have substituted the first term of (2) by the first term of (1), obtaining
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which is an ordinary differential equation. Hodgkin and Huxley integrated nu-
merically the ordinary differential equation (3), for guessed choices of the free
parameter 0, and compared them with voltage clamp data. Even though they
were able to obtain numerical results similar to their experimental data for some
values of the chosen parameters, it should be clear that an ordinary differential
equation cannot fully describe a time dependent spatial phenomenon such as the
propagation of an electric signal along the axon.

Besides the mathematical inconsistency just described, from the physical and
biological points of view, there is a lack of the specific biochemical mechanisms
that lead to the electric analog of the model, as evidenced by experimental data,
[14]. Several authors, based on physical and chemical principles, provided plau-
sible evidence of the inadequacy of the HH model, [3], [5], [16] and [15] .

These simple remarks show that model equations (1) can eventually describe
action potential propagation. However, the argument used for its calibration based
on equations (3) should be reformulated.

The diffusion free HH model (D = 0 in (1)) has been extensively analysed
from the point of view of its bifurcations, [20], [12], [8] and [4]. This approach
has been used as a starting point to obtain simplified models, where parameters
lose some of their biological meaning. These simplified models cannot produce
predictions about the spatial propagation of action potentials, nor can the existence
of Hopf bifurcations predict the generation of action potential signals. In fact, it
has been shown in [4] that action potentials are originated by a type I intermittency
phenomenon associated with a saddle-node homoclinic bifurcation of limit cycles,
which does not exist near Hopf bifurcations.
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Some propagation properties of action potential signals have been studied in
[1]. These authors have analysed localised high amplitude perturbations of the
transmembrane potential of the HH equation and, by manipulating the initial dis-
tribution of the membrane potential along the axon, found that action potential
fronts propagate as solitary waves, identifying the collisional annihilation of ac-
tion potential solitary spikes. This has been analysed for several values of the
potassium Nernst potential VII(V , with i = 0. These findings are important for the
understanding of the fluctuation dynamics of the transmembrane potential, but
difficult to observe in axons with voltage clamp experimental techniques. In the
present paper, we show that solitary or spiky perturbations only appear in the in-
termittent regime of the diffusion free equation (1).

More recently, due to the solitary characteristics of action potential signals
observed by Hodgkin and Huxley, several authors attempted to explain the soli-
tonic properties of the action potential as a non-linear elastic wave similar to the
Korteweg-de Vries equation (eq 9.14 in [2]). This approach is independent from
the HH ionic mechanism and has no connection with biological parameters. On
the other hand, solitary (elastic) waves of Korteweg-de Vries type are charac-
terised by very precise mechanisms of interaction, with specific rules for ampli-
tude behaviour at interaction and at spatial boundaries, [23]. As we will show
below, the waves generated by the HH model equations are reaction-diffusion
waves, with different laws of interaction. These different interaction characteris-
tics also appear in chemical kinetics models with reaction-diffusion waves, [21]
and [6].

The goal of this paper is to characterise reaction-diffusion waves, reaction-
diffusion solitary waves, and reaction-diffusion solitary wave packets in the HH
model. Moreover, the analysis of the properties of the HH model and the compar-
ison with experimental data provide a test of the validity and falsifiability of the
model.

The paper is organised as follows. In section 2, we review some of the results
of the HH partial differential equation model (1), and some of the properties of
its solutions, [4]. We also define the parameter settings of the model and sum-
marise the numerical setting of simulations. In section 3, we show numerically
that the HH model equations (1) have in fact solitonic and oscillatory solutions,
behaving as solitary waves or as solitary wave packets in the intermittent dynam-
ical regime of the diffusion free equation (1), or as oscillatory solutions of the
reaction-diffusion equations (1). These results emerge simply as solutions of the
equations and it is not necessary to introduce additional mechanisms to explain
their propagation inside the axon. We derive the interaction properties of this type
of reaction-diffusion waves, and calculate wave speeds and dispersion relations of
asymptotic regimes. Finally, in section 4, we propose several experiments for the
validation of the HH model and we summarise the main conclusions of the paper.
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2 Action potentials propagate as reaction-diffusion
waves

In [4], we have exhaustively analysed the solutions of the HH partial differential
equations (1), in a spatial one-dimensional domain 7 = [0, L], with L < oo, and with
zero flux boundary conditions. We have chosen the current function: i(x,t) =
ig, for x = 0 and every ¢ > 0, and i(x,#) = 0, otherwise, and we have done the
bifurcation analysis of the solutions of the reaction-diffusion equation (1), as a
function of the diffusion coefficient D and of the parameter iy. This particular
choice of the external function i(x,#) simulates current clamp experiments and, for
the calibrated parameters, propagating action potentials and action potential wave
packets are generated near the left boundary of an axon. Some major conclusions
derived from the HH model are important to recall:

1) For different choices of the parameters ig and D > 0, we have found propagat-
ing action potential spikes. For positive but small values of iy, the shape of
the action potentials is caused by a type I intermittent response of the HH
equations associated to a saddle-node bifurcation of limit cycles of the dif-
fusion free system of equations (D = 0). This particular response is caused
by a transient process which anticipates a transition from a dynamics with
a unique stable steady state to a dynamics with two limit cycles, one stable
and the other unstable. These isolated spikes propagate without attenuation
and therefore can be called solitary fronts, solitary waves or solitons. Near
the bifurcation, it is possible to obtain single action potential spikes or pack-
ets of propagating action potential spikes, depending on the intensity of the
perturbation ip.

2) For larger values of iy when compared with case 1), and D > 0, we have found
propagating periodic waves of action potentials spikes. We have measured
numerically the propagation speeds, which depend on the parameters of the
model. This propagation speed is not an external parameter, as assumed in
equation (2).

3) For larger values of i when compared with case 2), and D > 0, we have found
solutions behaving chaotically and solutions with a long chaotic transient,
which, as time passes, converge to a steady homogeneous state (chaotic
intermittency) — dynamic summary in figure 1.

4) The action potential propagation phenomenon only occurs if the current stim-
ulus ip at the x = 0 boundary of the axon is large enough and persists for
long enough time for the action potential do be fully formed at the current
injection point. Once this happens, even if iy is set to zero during the spatial
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propagation, the action potential will reach the right boundary of the axon
without suffering any attenuation.

All these properties of the HH partial differential equation model (1) are pre-
dictions about the dynamics of action potentials and should be used to validate the
HH model.

To test the above mentioned dynamic features of the HH model, we use the
following parameterisation of equation (1)
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In this equations, V' is the transmembrane potential drop measured in mV, i is a
transmembrane current density injected into the axon, measured in gA/cm?, and
time is measured in ms. Positive values of i correspond to currents flowing from
outside to inside the axon. In equation (4), the membrane potential is defined in
accordance with the original HH paper, [9], where the action potential voltage
spikes are negative. The gating variables n, m and h describe the opening and
closing of the channel gates, are specific to the ion type and are dimensionless.
The ionic conductances across the cellular membrane are gnj, and g, and gy is
a constant measuring “leak” conductance. C is the membrane capacitance and D
is a constant inversely proportional to the resistance (£2), measured along the axon
of nerve cells.

The model equations (4)-(5) have been calibrated for the squid giant axon
at the temperature 7 = 6.3 °C, [9], and the values of the parameters are: C =
1 pFlem?, gNa = 120 mS/cm?, gK = 36 mS/cm? and g, =03 mS/cm?, where
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S=Q~! (siemens) is the unit of conductance. The Nernst equilibrium potentials,
relating the difference in the concentrations of ions between the inside and the
outside of cells with the transmembrane potential drop, are Vll\Iva = —115 mV,

Vg =12 mV and Vﬁv = —10.613 mV. This choice of parameters is rescaled in
such a way that at rest (i = 0), the steady state of the transmembrane potential is
V*(0) = 0 mV. Hodgkin and Huxley have shown that the transmembrane diffusion
coefficient is D = a/(2R;), where a is the radius of the axon (considered as a
cylinder) and R; is the specific resistivity along the interior of the axon. For the
case of the squid giant axon, a =238 um, R, =35.4 Qcmand D =3.4x 10748,

To validate the Hodgkin-Huxley model predictions, we simulate the solu-
tions of the reaction-diffusion equation (4) in a domain of length L = 100 cm,
with zero flux boundary conditions. The spatial region has been divided into
M = 800 small intervals of length Ax, where L = MAx. We have used an ex-
plicit numerical method minimising the global error of the solution, [7]. Let D
be the diffusion coefficient, given by D = D/C. With the minimising condition
D = Ax*/(6At) = L?/(6M?At), and the choice At = 0.00765931 ms, we obtain
the diffusion coefficient D = 0.34 cm?/ms, or D = 3.4 x 107* S, in agreement
with the value suggested by Hodgkin and Huxley, [9].

3 Results

3.1 Opverall behaviour of the HH equations

If an axon is initially at rest (V = 0, for all x), it can be perturbed through the
transmembrane current i(x,7) = iy, for x = 0 and every ¢t > 0, and i(x,t) = 0,
otherwise. In figure 1, we show how these regions of behaviour depend on the
value of iy for the chosen diffusion coefficient.
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Figure 1: Bifurcation diagram of the solutions of the HH equations (4)-(5), for
D =3.4x10"* 8, as a function of the parameter iy. For this parameterisation,
I} =58.44, I; = 296.23, I = 307.85, I} = 351.21 and I5 = 351.55.



For iy < I}, the system responds with type I intermittency, generating a fi-
nite number of action potentials that propagate along the axon before returning to
rest. For ig € [I},IZ], the system oscillates indefinitely, never returning to rest. For
io € [I{,I;]U[I5,I;], the oscillations asymptotically in time converge to a periodic
solution. For the small regions [I5,I5] and [I}, 5], the oscillations show chaotic
behaviour with period bifurcations. For iy > I3, the system shows chaotic inter-
mittency, [4], generating a finite number of action potentials before returning to
rest.

3.2 Action potential solitary waves

Since in the HH model the action potentials propagate without attenuation, we can
define the characteristic curve of the action potential by the condition dV = 0. As
dV = a—‘;dx—i— %—‘t/dt = 0, then % = —(%—‘;)/(%—‘;), implying that action potentials
may have a well defined speed. Taking the maxima of the functions —V (x,#) as a
reference point, we can follow their space-time evolution. We shall call the curves
defined by this condition dV = 0 the characteristic curves of the solution of the
HH equations (1).

In figure 2, we show the solution of the HH system of equations (4)-(5), re-
sponding to an injected current in the type I intermittency parametric region seen
in figure 1. In this case, a single action potential spike is generated at the injection
point, propagating along the axon and disappearing at the boundary x = L. The
characteristic curve of the solutions of the HH equations has a linear profile, which
means the action potential propagates along the axon with a constant speed. The
slope of the characteristic curve corresponding to the peak of the action potential
signal translates to a propagation speed v = 12.14 m/s.

In figure 3, we show the solution of the HH system of equations (4)-(5), again
in the region of type I intermittency, generating a total of three action potential
sequential signals — packet of spikes. This figure has been obtained for a larger
value of ip, when compared with the simulations in figure 2. The speed of the first
action potential is the same as in figure 2. Even though the characteristic curves
corresponding to the second and third spikes appear to also have a linear profile,
we will later show that that is not the case, so we refrain from calculating their
slope here.

In both figures 2 and 3, the action potentials all propagate without attenuation
in their amplitudes and annihilate at the boundary of the axonal domain, never
being reflected. This effect cannot be observed with elastic waves. These action
potentials behave as solitary reaction-diffusion waves. After the annihilation of
the action potentials at the boundary, the axon stays in a non uniform and non
excitable state (ip # 0). For a signal to propagate in the axon it is necessary that
the electric state of the axon returns to the rest state V = 0 and i = 0, and that the
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Figure 2: We show five time snapshots of the solutions —V (x,) of reaction-
diffusion equations (4)-(5). The bottom snapshot was taken at t = 5 ms, and the
succeeding snapshots differ by time intervals Ar = 25 ms. We have considered
that the axon is initially at the zero state V (x > 0,# < 0) = 0 and the injected cur-
rent at x = 0 has the value iy = 55.0 uA/cm?, during the entire simulation. The
system is in the type I intermittency region (figure 1), generating one spike. The
dotted line shows a characteristic curve of the solutions of the HH equations. The
propagation speed of the action potential is v = 12.14 m/s. The action potential
spike annihilates at the boundary x = L, where no reflection occurs.

neurone is again excited with a current above threshold.

In figure 4, we analyse the case where two current sources are injected in the
interior of the axon, at the longitudinal coordinates x = L/3 and x =2L/3. Ateach
injection point, one action potential spike response is generated, and then each of
them splits into two action potential spikes, propagating in opposite directions.
These four action potentials have the same amplitude as the action potentials in
figures 2 and 3. Then, at a later time, the two action potentials that travel towards
the center of the axon collide at x = L/2, and annihilate each other — another ef-
fect characteristic of reaction-diffusion waves, [6] and [21]. The value of injected
current chosen is also within the type I intermittency region. After the collision at
the boundaries, all the spikes disappear and the axon stays in a non uniform and
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Figure 3: Snapshots of the solutions —V (x,7) of (4)-(5). The conditions are the
same as in figure 2, except that the injected current at x = 0 is ip = 57.7 uA/cm?,
during the entire simulation. The system is in the type I intermittency region,
generating a total of three spikes. The dotted lines are three characteristic curves
of the solutions of the HH equations. The speed of the front action potential spike
is the same as in figure 2. During this observation time, the characteristic curves
appear to be approximately parallel. Action potential signals annihilate at the
boundary x = L.

non excitable state, with no more spikes being generated at the injection points.

Through the results illustrated in figures 2, 3, and 4, we have shown that the
solutions of the HH equations do not propagate as elastic waves, as conjectured
by Hodgkin and Huxley, but behave instead as reaction diffusion waves. In all
three cases analysed, we have shown that the action potentials are never reflected
at the axon boundary. Furthermore, the behaviour seen in figure 4 is also not
compatible with that of elastic waves, where the amplitudes would be halved when
the action potential splits in two and the collision of two waves would not result
in annihilation.
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Figure 4: Snapshots of the solutions —V (x,7) of (4)-(5), for two injected currents
at axon positions x = L/3 and x = 2L/3. The injected currents have a value of
57.0 wA/cm?, during the entire simulation. The characteristic curves are repre-
sented by the dotted lines.

3.3 Action potential waves

In order to better perceive how the action potential changes as it propagates along
the axon, in this section we have extended the spatial domain of the simulation
to L = 250 cm, discretized in M = 2000 small intervals. In figure 5, the axon is
excited at x = 0 with a large current iy, in three different oscillatory regions of
figure 1. In subfigures a), we show the same diagram seen in figures 2 to 4. In
b), we show the speed with which the first 40 action potentials propagate at the
beginning of the axon (x << L) — we called this initial velocity speedy, and the
n™ action potential to be generated by the system is identified by the horizontal
axis N. In subfigures c), we show how the speed of the action potentials evolves
as they propagate along the axon — the dashed lines represent the first 29 action
potentials, and the full lines represent action potentials 30 to 40. So, we are able to
distinguish the transient behaviour of the first spikes from that of the later spikes,
which correspond to an asymptotic state of the system.

In figures 5.1, we excited the neurone with current ip = 200 ,uA/cmz, in the
periodic oscillatory region (see figure 1). The initial velocity of the action po-
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Figure 5: a) Snapshots of the solutions —V (x,¢) of (4)-(5), for injected currents 1)
ip = 200.0 uA/cm?, 2) iy = 300.0 uA/cm?, and 3) ip = 351.4 pA/cm?, at x = 0
during the entire simulation. We also show some of the characteristic curves of the
solutions. b) Initial velocity (for x << L) of the first 40 action potentials generated
by the system. c) Evolution of the speed of the first 40 action potentials as they
propagate throughout the axon — dashed lines correspond to spikes 1 to 29, and
full lines to spikes 30 to 40. In 1) and 3), we have an asymptotically oscillatory
response, and, in 2), a chaotic response.
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tentials converges quickly to a fixed value, as seen through speedy. While this
initial velocity converges, the action potentials still accelerate while propagating
through the axon. Eventually, all of the action potentials attain the same initial
velocity and final velocity, propagating with constant speed.

In figures 5.2, the neurone was excited with current iy = 300 gA/cm?, in the
chaotic oscillatory region [;,13]. The initial velocity of the action potentials con-
verges to a period-3 solution. However, as the spikes propagate along the axon,
this period-3 disappears, giving way to a constant propagation speed. The appar-
ently chaotic effect of this region in the propagation speeds of the action potentials
is merely transient, dissipating as the spikes advance through the axon.

In figures 5.3, the chosen current was ip = 351.4 /,LA/cmz, in the small chaotic
oscillatory region [/}, /Z]. Even though this small region shows very clear period
bifurcations which give way to a chaotic intermittency regime (as shown in [4]),
the velocity profiles do not give any hint of this. As seen in the figure, the ini-
tial velocity quickly converges to a fixed value, which is maintained as the action
potentials travel along the axon. The chaoticity of signals is present, not in the
velocity of propagation, but in the non uniformity of the distances between con-
secutive action potential spikes.

In figure 6, we show the velocity profiles for different values of current iy for
the whole oscillatory region [I},13].
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Figure 6: Action potential propagation speeds for the entire oscillatory region
I} ,1Z]. The dashed line represents the speed of the first action potential, which is
always constant. The full line represents the final speed of the later action potential
spikes (N > 30), measured at the end of the axon, as in figures 5c).
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It can be seen that the speed of the first action potential spike is the same
(v = 12.14 m/s), regardless of the value of injected current. We had already ob-
served the same value for the type I intermittency region in figures 2 and 3. On the
other hand, the final speed varies as the injected current increases. At first the ve-
locity decreases, reaching its lowest value around 250 ptA/cm?. Then, it increases
until I3, where a transient chaos influences the period and velocity with which
the spikes are generated (as shown in figure 5.2). In [I3,I;], the final velocity of
the system stabilises, only varying slightly as the current keeps increasing, until it
stops existing at the end of the oscillatory region.

In figure 7, we have measured the velocities of the action potentials in the
type I intermittency region, and we have analysed how their profile changes as the
transition to the oscillatory region occurs.

12.4 a) 12.4 b)
ﬁ 12.3 .‘ CTT—
= L
3 .
2122 TT—
12.1 12.1
55 56 57 58 Iy 59 55 56 57 58 Iy 59
io (UAJcm?) io (LA/cm?)

Figure 7: Propagation speeds of action potential spikes in the vicinity of /;. The
horizontal line corresponds to the velocity of the first spike, which remains con-
stant throughout the axon (see figure 5). In a), the speed of the action potentials is
measured at the beginning of the axon; in b), it is measured at the end of the axon.
All of the dots correspond to the measured velocities of the action potentials. The
transition from type I intermittency to periodic oscillations occurs at the vertical
line /;. The top thick line for ip > I} is the full line seen in figure 6.

For low values of current (ip < 55.5 wA/cm?), only one action potential speed
can be seen — the horizontal line around v = 12.14 m/s. This is the speed of the
first action potential, which is the only one that is produced for these values of
current (shown in figure 2, where iy = 55.0 pA/cm?). Once again, the speed of
the first action potential always has the same value and remains constant during
propagation, both in the intermittency and oscillatory regions. This is consistent
with what we have seen in figures 2, 3, 5, and 6. As the current increases (55.5 <
io <I’), we can see additional action potential spike speeds. Atiy=57.7 UA/cm?,
we can distinguish three different propagation speeds, corresponding to the three
action potentials seen in figure 3, where the same current was injected. Whereas
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in figure 3 all of the characteristic curves seemed to be linear, here we can clearly
see that the speed of the second and third spikes do not remain constant during the
propagation, having different values at the beginning (figure 7a) and end (figure
7b) of the axon. As the current approaches /7, we see how the number of spikes
increases exponentially (an effect of type I intermittency, [4]), and the velocity
profile leads into the profile seen in the oscillatory region.

In figure 8, we have calculated the asymptotic dispersion relation for the oscil-
latory region [I7,I;]. In a), we have calculated the period and wavelength between
spikes 30 and 31, at the last quarter of the axon (as shown in figure 5, in this re-
gion, all the action potentials have attained their stable final velocity). In b) we
have calculated the dispersion relation at the same location in the axon, but be-
tween spikes 1 and 2, before the system has reached the asymptotic regime. This
shows that the asymptotic dispersion relation of the oscillatory regime of the HH
equation 1 is not linear.
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Figure 8: Asymptotic dispersion relation for the oscillatory region [I;,I;]. The
measurements were made in the last quarter of the axon. In a), the period and
wavelength (A = 271 /k) were calculated through spikes 30 and 31. For reference,
in b), spikes 1 and 2 were used.

4 Final remarks and conclusions

To test the predictions of the HH model (1) with patch clamp data and without
the assumptions (2) and (3), the first requirement is to measure the current as
a function of the spatial position along the axon. Due to the diffusive nature
of the current propagation along the axon, the second requirement is to test if
action potentials spikes propagate without attenuation along the axon. Without
the fulfilment of these requirements, the HH model can not be validated.

Other important predictions of the HH model (1) about the propagation of
axonal signals is the existence of a saddle-node bifurcation of limit cycles and the
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existence of the type I intermittency phenomenon. This bifurcation is tuned by the
magnitude of the applied current ij to the axon. Let I} be the iy bifurcation value.

For ip < I{, and depending on the electrophysiological state of the axon (trans-
membrane potential, ionic concentrations, etc.), we may have no spikes at all, one
spike or several spike responses up to some maximum number N. This number N
relates with /; and i through the relation InN = C — (In(I} —ip)) /2, characteristic
of type I intermittency, [4]. As far as we know, this multi-spike phenomenon has
never been reported in a voltage clamp experiment. On the other hand, its ob-
servation would corroborate the existence of the bifurcation predicted by the HH
model. If this behaviour is not observed, it can happen that the validity of the HH
model would be for values of iy much below /7. In this case, the only steady state
is the equilibrium associated to the Nernst potentials and, due to the non-linear
nature of action potential signals, the existence of a travelling spiky signal would
be difficult to justify in the framework of the HH model.

The importance of the existence of a saddle-node bifurcation of limit cycles
implies that axonal signals may respond to external stimulus with an approxi-
mately periodic, or even chaotic response. The observation of this type of response
would be an important biological mechanism predicted by the HH model.

Even in the case of negative observations of the several spiky phenomenon
and associated intermittency, it would be important to observe the possibility of
propagation of signals in the two opposite directions of the axon, a phenomenon
that is believed to occur, [17], as well as the action potential dynamics when two
isolated action potential spikes collide. These are intrinsic phenomena associated
with the diffusive nature of the HH model and of reaction-diffusion systems of
equations. If these interaction patterns fail, then we can not say that action po-
tentials are reaction-diffusion waves. In this case, the problem of the derivation
of a more detailed model for the study of electric phenomena in cells and axons
should be reconsidered, [5].
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