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Abstract

We demonstrate the significance of the Jacobi last multiplier in Hamiltonian theory
by explicitly constructing the Hamiltonians of certain well known first-order systems
of differential equations arising in the activator-inhibitor (AI) systems. We investigate
the generalized Hamiltonian dynamics of the AI systems of Turing pattern formation
problems, and demonstrate that various subsystems of AI, depending on the choices of
parameters, are described either by conformal or contact Hamiltonian dynamics or both.
Both these dynamics are subclasses of another dynamics, known as Jacobi mechanics.
Furthermore we show that for non Turing pattern formation, like the Gray-Scott model,
may actually be described by generalized conformal Hamiltonian dynamics using two
Hamiltonians. Finally, we construct a locally defined dissipative Hamiltonian generating
function [13] of the original system. This generating function coincides with the “free
energy” of the associated system if it is a pure conformal class. Examples of pattern
formation equation are presented to illustrate the method.
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1 Introduction

Many second-order ordinary differential equations (ODEs) of the form ẍ = F (t, x, ẋ) admit a
Lagrangian description because of the existence of a Jacobi Last Multiplier (JLM), µ, which
can be shown to be equal to ∂2L/∂ẋ2. In a recent article Nucci et al [26] have shown how
one can obtain the Lagrangians for certain well known biological models described by planar
systems of ODEs using Jacobi’s last multiplier. Although in some cases the corresponding
Lagrangians are known, it may not always be possible to reduce a given planar system of
ODEs

ẋ = f(x, y, t), ẏ = g(x, y, t), (1.1)
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to an equivalent second-order ODE. Therefore, the derivation of even a singular Lagrangian
for such a system is interesting from the mathematical point of view. A singular Lagrangian
is one for which the Hessian matrix

H =

(
∂2L

∂ui∂uj

)
is singular. In such cases it is not possible to express the equation of motion in the form
ẍ = F (x, ẋ, t). For such singular Lagrangians the usual definition of the conjugate momentum
turns out to be velocity independent and consequently one cannot define a Hamiltonian by the
usual Legendre transformation.

The JLM is a useful tool for deriving an additional first integral for a system of n first-
order ODEs when n − 2 first integrals of the system are known. Besides, the JLM allows us
to determine the Lagrangian of a second-order ODE in many cases [14, 15, 34, 9]. In recent
years a number of articles have dealt with this particular aspect [18, 25, 6]. However, when a
planar system of ODEs cannot be reduced to a second-order differential equation the question
of interest arises whether the JLM can provide a mechanism for finding the Lagrangian of the
system.

In an interesting paper Nucci and Tamizhmani [26] showed that the method used by
Trubatch and Franco in [32] and Paine [27] for finding Lagrangians of certain representative
biological models actually relies on the existence of a JLM. Nucci et al have re-derived the linear
Lagrangians of these first-order systems using JLM. They have also obtained the Lagrangians
of the corresponding single second-order equations which the earlier authors had failed to do,
for example in the case of the host-parasite model.

In this article we apply JLM to find the Lagrangian and the Hamiltonian of certain
systems of differential equations which appear in spatio-temporal studies and in biology. It
may be noted that a variational problem with a Lagrangian L and configuration space Q
may fail to satisfy the Legendre condition, i.e., the fibre derivative map FL : TQ → T ∗Q
may fail to be a local diffeomorphism. Therefore direct Hamiltonization of a nonlinear system
based on the JLM [3, 12] offers a distinct advantage over the usual process using Legendre
transformations. In fact it also yields the canonical coordinates in terms of which one can
express the underlying system in canonical form. A similar though more restricted result is
given by Lucey and Newman [16], who have shown that for a given system of autonomous
ODEs there exists, locally at least a symplectic structure and a Hamiltonian function such
that the given system of equations can be expressed in Hamiltonian form.

In a seminal paper, Turing [33] proposed that the problem of pattern formation could
be understood using a simple system of reaction-diffusion equations representing interactions
of chemicals. In these models, a system of chemicals react with each other and diffuse across
a space. These chemical reactions need an inhibitory agent, to suppress the reaction, and an
existory agent to activate the reaction. The application of the pattern formation has been
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linked to research in development biology. Morphogenesis [?] means the generation of tissue
organization and shape in animal and plant embryos in the context of developmental biology.
It is the evolution of shape of an organism together with the differentiation of its parts. The
spatio-temporal distribution of gene expression patterns during morphogenesis together with its
key regulators which are again given by gene expressions is one of the main recent achievements
in developmental biology. Turing was the first to offer an explanation of morphogenesis through
chemistry showing that differences in the diffusion constants of activator and inhibitor species
can bring about destabilization of the uniform state and lead to spontaneous emergence of
periodic spatial patterns.

Turing patterns emerge in various areas of biological systems, for example a very famous
model is the Gierer-Meinhardt [8] system. Gierer and Meinhardt developed a model of two
coupled reaction-diffusion equation for the production and diffusion of two different kinds of
substances, called the activator and inhibitor (see for example, [28]). Let u(t, x) and v(t, x)
stand for the concentration of the activator and inhibitor at (x, t) respectively, then the so
called Gierer-Meinhardt model of morphogenesis is

ut = Duuxx + ρρ0 + λρ
u2

v
− bu ,

vt = Dvvxx + λ′ρ′u2 − cv , (1.2)

where Du and Dv are the diffusion constants of the activator and inhibitor, ρρ0 stands for
the source concentration for the activator and ρ′ is the one for the inhibitor, b and c are
respectively denote the degradation coefficients of the activator and inhibitor, λ and λ′ are
related to activator and inhibitor productions. In the absence of diffusion the model takes the
form of a system of ODEs. The crucial idea of Turing was that it is possible to have such steady
states which are stable in the absence of diffusion, but which turn unstable in the presence of
diffusion and form spatially heterogeneous patterns, hence the name diffusion-driven instability
or Turing pattern formation Normally diffusion tends to spread out concentrations as to create
a homogeneous distribution and not a spatially heterogeneous mixture, so in this respect it is
a counter intuitive.

Granero-Porati and Porati [10] considered the ODE version of the Gierer-Meinhardt model in
the form

u̇ = ρρ0 + λρ
u2

v
− bu ,

v̇ = λ′ρ′u2 − cv . (1.3)

Not all reaction-diffusion systems generate patterns through Turing’s prescription. In
fact, small changes in parameters other than just spatial one can lead to very different patterns,
one of the famous example is the Gray-Scott (GS) model [11, 4]. Unlike the Gierer-Meinhardt
model which has one chemical acting as an activator and the other as an inhibitor, the GS
model has two chemicals u and v, where v is transformed to an inert product and u and v react
together to produce more v. Thus we find that the activator-inhibitor equations play a very
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important role in the study of Turing pattern formation which provides a credible theoretical
explanation of animal coat patterns (see for example [22]).

Result of this paper In this paper we study the generalized Hamiltonian mechanics, based
on conformal or contact Hamiltonian geometry, of nonlinear ODEs appearing both in Turing
and non-Turing pattern formations. We compute the Lagrangian and Hamiltonian of these
equations using Jacobi’s last multiplier.. It is well known that vector fields whose flows preserve
a symplectic form, up to a constant, such as simple mechanical systems with friction, are called
conformal. The Duffing oscillator being a typical example of this class. In fact, interestingly
enough, the system also turns out to be a conformal Hamiltonian system [20, 23]. Tourigny
[31] recently viewed two-component feedback loop equations as a deformed (q-deformation)
Hamiltonian system using q-deformed symplectic form and standard separable Hamiltonian.
Unfortunately in most physical cases Hamiltonians are non-separable or non-standard one,
our approach is based on conformal or contact geometry and the Hamiltonians involved here
are non-standard one. In particular, we map the pattern formation equation to generalized
classical mechanics based on conformal and contact Hamiltonian method [1, 2, 23]. Both
conformal and contact structures belong to a larger class, known as Jacobi structure. Jacobi
manifolds were introduced independently by Kirillov [17] and Lichnerowicz [19], who used
different but equivalent notions.

Following [13] we study the local equivalence problem between a given autonomous
vector field associated to pattern formation equation and a pre-defined Hamiltonian dissipative
realization, viewed as a reference system. Method uses a homotopy operator to decompose the
(possibly) non-closed one-form into its exact and anti-exact parts on a star-shaped domain. It
is known from Gardner [5] that exact part is used to derive a dissipative potential, while the
anti- exact part associated with a nondissipative potential does not contribute to the dissipative
potential on the star- shaped region.

Our goal is to study these generalized geometries so that non-conservative biological processes
can be mapped to the classical formalism. We consider three different examples describing
both Turing and non-Turing pattern formations. We illustrate how all these equations can be
mapped to conformal and contact mechanics. The purpose of the paper is two fold: people from
the field of biology may find it profitable to study pattern formation using the Hamiltonian
formalism while for the mathematical physics community new examples of conformal/contact
Hamiltonian dynamics are provided. We attempt to illustrate our results in such a way as to
be intelligible to both these communities.

The paper is organized as follows. In Section 2 we describe the Jacobi Last Multiplier (JLM)
formulation for singular Lagrangian equations illustrating our construction through examples.
Section 3 is devoted to computation of the Hamiltonians of such singular activator-inhibitor
type systems. Section 4 is devoted to conformal Hamiltonian description and descrition via
contact Hamiltonian mecahnics is given section 5. We complete our paper with a modest
conclusion in section 6.
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2 Preliminaries: Illustrations of finding Lagrangians us-

ing JLM

Let us briefly recall the procedure described in [26] for finding Lagrangians for a planar system
of ODEs from a knowledge of the last multiplier. We assume that the system (1.1) and (??)
admits a Lagrangian and class of systems which we wish to deal in this paper are linear or
affine in velocities, so that

L(t, x, y, ẋ, ẏ) = F (t, x, y)ẋ+G(t, x, y)ẏ − V (t, x, y). (2.1)

Then the Euler-Lagrange equations of motion

d

dt

(
∂L

∂u̇

)
=
∂L

∂u
, with u = x and y

yield

ẏ =

(
Ft + Vx
Gx − Fy

)
= g(t, x, y), (2.2)

and

ẋ = −
(
Gt + Vy
Gx − Fy

)
= f(t, x, y), (2.3)

where the subscripts on F,G and V denote partial derivatives while the overdot represents
derivative with respect to time. It is obvious that one must have Gx 6= Fy. In order to introduce
the notion of Jacobi’s last multiplier we assume that Gx = −Fy and assign a common value,

µ(t, x, y) := Gx = −Fy. (2.4)

From (2.2) and (2.3) we have

2µf(t, x, y) = −(Gt + Vy) (2.5)

2µg(t, x, y) = (Ft + Vx). (2.6)

It is clear that the construction
∂

∂x
(2µf) +

∂

∂y
(2µg)

leads to the following equation,

d

dt
log µ+

∂f

∂x
+
∂g

∂y
= 0. (2.7)

using the original system of ODEs ẋ = f and ẏ = g. However, (2.7) is precisely the defining
relation for JLM [34]. Thus we see that given the solution of this equation one can easily
construct from (2.4) the coefficient functions F and G occurring in the expression for the
Lagrangian since

F (t, x, y) = −
∫
µ(t, x, y)dy and G(t, x, y) =

∫
µ(t, x, y)dx. (2.8)
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Once these functions are determined one can obtain an expression for the partial derivatives
of V from (2.2) and (2.3) as follows

∂V

∂x
= 2µ(t, x, y)g(t, x, y) +

∂

∂t

(∫
µdy

)
, (2.9)

∂V

∂y
= −2µ(t, x, y)f(t, x, y)− ∂

∂t

(∫
µdx

)
. (2.10)

In view of (2.7) it is easy to check the equality of the mixed derivatives,

∂2V

∂x∂y
=

∂2V

∂y∂x
.

In the next sections we demonstrate the construction of the Lagrangians for spatio-
temporal autocatalysis system and the celebrated Gierer-Meinhardt model, these are all auto-
catalytic systems. We apply Jacobi’s last multiplier method to compute there Lagrangians.

2.1 Lagrangians for Spatio-temporal autocatalysis system

The following is an example of an auto-catalysis and activator inhibitor system.

ẋ =
a

b+ y
− cx := f(x, y) (2.11)

ẏ = dx− hy := g(x, y). (2.12)

From the defining relation (2.7) for the last multiplier, we have

d

dt
log µ− (c+ h) = 0,

which gives µ = e(c+h)t. It must be noted that µ is not necessarily a purely temporal function,
µ is defined up to a factor that is a constant of motion. It follows that the functions G(x, y)
and F (x, y) are given by

G(x, y) = xe(c+h)t, F (x, y) = −ye(c+h)t. (2.13)

From (2.9) and (2.10) we have therefore

∂V

∂x
= 2e(c+h)t(dx− hy)

∂V

∂y
= −2e(c+h)t(

a

b+ y
− cx)

whence from the equality of the mixed derivatives we obtain the condition c + h = 0. Using
this condition the expression for the potential term becomes

V (x, y) = 2cxy − 2a log(b+ y) + dx2
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and hence a Lagrangian for the reduced system

ẋ =
a

b+ y
− cx, ẏ = dx+ cy

is given by
L = xẏ − yẋ+ 2a log(b+ y)− dx2 − 2cxy. (2.14)

Notice that the condition c+ h = 0 causes the last multiplier to reduce to unity.

2.2 Lagrangians for the Gierer-Meinhardt model

Our second example is provided by the following system

u̇ = a− bu+
u2

v
, v̇ = u2 − v, (2.15)

which is known as the Gierer-Meinhardt model. Here u is a short-range autocatalytic sub-
stance, i.e., activator, and v is its long-range antagonist, i.e., inhibitor. In other words, this
scheme considers autocatalytic activation of chemical u and self inhibitation of v. The model
was formulated by Alfred Gierer and Hans Meinhardt in 1972 [8].

From the defining relation (2.7) for the last multiplier, we find that when the parameter
a = 0 the multiplier is given by

µ =
1

u2
e(1−b)t.

In this case proceeding in the same manner as above one finds that a consistent expression for
the potential term exists provided the parameter b = 1 and the final expression for a singular
Lagrangian may be given by

L =
v

u2
u̇+

1

u
v̇ + 2(u+

v

u
− log v), (2.16)

under the condition a = 0 and b = 1. The reduced system therefore has the appearance

u̇ = −u+
u2

v
, v̇ = u2 − v. (2.17)

3 Time dependent Hamiltonian systems and the Jacobi

Last Multiplier

Let M denote a real two dimensional manifold with local coordinates x and y. Consider the
following non autonomous system of differential equations:

ẋ = f(x, y, t), ẏ = g(x, y, t), (3.1)
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where f and g are smooth real valued functions. We can associate with the system (3.1) the
following:
(a) a vector field

X :=
∂

∂t
+ f

∂

∂x
+ g

∂

∂y

defined onM×R whose integral curves are determined by the system (3.1), (b) alternatively
we may consider the following set of one forms on M× R

α(1) := dx− f(x, y, t)dt, α(2) := dy − g(x, y, t)dt

and finally, (c) a two-form on M× R given by

α(1) ∧ α(2) = dx ∧ dy + (fdy − gdx) ∧ dt.

The classical Poincaré-Cartan form [29, 30] for a Hamiltonian H is given in the standard
extended phase space coordinates {t, qi, pj 1 ≥ i, j ≥ n}, by

Θ = pidq
i −Hdt. (3.2)

The Poincaré-Cartan form consists of two terms - the standard “symplectic” 1-form pidq
i and

the Hamiltonian term. The duality between the Hamiltonian and Lagrangian formulations
is well known by means of the Legendre transformation. Let L : R × TQ → R be a non-
autonomous Lagrangian. Let us recall that the Legendre transformation FL : R × TQ −→
R× T ∗Q, is a fibre derivative. Given f ∈ C∞(TQ,R) and a restriction fq := f |TqQ to the fibre
over q, the fibre derivative of f is a mapping defined by

FL(f) : TQ→ T ∗Q, FL
(
f(q, q̇)

)
:= Dfq(q̇).

The function f is said to be hyperregular if FL(f) is a diffeomorphism. Therefore a Legendre
transformation is locally given by

FL(t, qi, q̇j) ≡ (t, qi, FL(q̇j)) = (t, qi, pi = ∂L/∂q̇).

In terms of the jet coordinates {t, qi, q̇j} the one form Θ has a Lagrangian of the form

Θ = Ldt+
∂L

∂q̇i
(
dqi − q̇idt

)
. (3.3)

When L is hyperregular, i.e., FL is a diffeomorphism, then in such a situation both formulations
are completely equivalent. Our focus here is on the Hamiltonian formulation. In Hamiltonian
coordinates we have

dΘ =
(
dpi +

∂H

∂qi
dt
)
∧
(
dqi − ∂H

∂pi
dt
)

so the differential system takes the well-known Hamiltonian form

dpi +
∂H

∂qi
dt = 0, dqi − ∂H

∂pi
dt = 0.
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In other words, if (3.1) admits a Hamiltonian description then

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (3.4)

An alternative description is given in terms of the Euler vector field

XE =
∂

∂t
+
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
, (3.5)

defined by
iXE

dΘ = 0 and iXE
dt = 1. (3.6)

Thus XE = ∂
∂t

+ XH , where XH is the standard Hamiltonian vector field defined by the
canonical symplectic form ω = dp ∧ dq. In fact the first equation yields the Hamiltonian
equation in the following form

dH + iXH
ω = 0.

3.1 Jacobi’s last multiplier and Hamiltonians

Our basic aim is to study the generalization of Hamiltonian mechanics and to construct an
exact expression for dH using Jacobi’s last multiplier. The algorithm to be employed for this
purpose is based on an application of the exterior algebra and is described below. Let

β(1) := dq − ∂H

∂p
dt, β(2) := dp+

∂H

∂q
dt. (3.7)

Clearly the two-form

Ω := β(1) ∧ β(2) = dq ∧ dp+ (dH − ∂H

∂t
dt) ∧ dt = dq ∧ dp+ dH ∧ dt, (3.8)

and is closed. It is obvious that when (3.1) is expressible in the form of (3.4) then the two-form
α(1)∧α(2) must be proportional to the closed two-form β(1)∧β(2), so that there exists a function
σ(x, y, t) such that

σ−1[dx ∧ dy + (fdy − gdx) ∧ dt] = [dq ∧ dp+ dH ∧ dt]. (3.9)

Since the two-form on the rhs is necessarily closed it follows that we must have

σ−1

(
∂σ

∂t
+ f

∂σ

∂x
+ g

∂σ

∂y

)
=

(
∂f

∂x
+
∂g

∂y

)
. (3.10)

The last equation may be written as

d log σ

dt
=

(
∂f

∂x
+
∂g

∂y

)
,
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and a comparison with (2.7), the determining equation for the JLM, shows that σ−1 = µ.
Hence from (3.9) we see that the existence of σ satisfying (3.10) implies that

σ−1(fdy − gdx) = dH + terms proportional to dt, (3.11)

provided ∂σ
∂t

= 0. The latter condition being true for autonomous differential equations.

For nonautonomous cases satisfying (3.9) form one must modify (3.11) by introducing
two auxiliary functions ψ and φ [3] such that

σ−1((f − ψ)dy − (g − φ)dx) = dH + terms proportional to dt, (3.12)

when ∂σ
∂t
6= 0. This essentially removes the explicit time-dependent terms and allows for

the construction of a Hamiltonian for the remaining autonomous part. However, the time
dependence is not altogether lost; it being manifested in the the data of the new coordinates.

Note that (3.12) implies

∂

∂x

(
σ−1(f − ψ)

)
+

∂

∂y

(
σ−1(g − φ)

)
= 0. (3.13)

It will now be observed that one may write (3.9) in the following manner

σ−1[dx∧dy+ (fdy−gdx)∧dt] = σ−1[(dx−ψdt)∧ (dy−φdt) + (f −ψ)dy∧dt− (g−φ)dx∧dt],

which in view of (3.12) becomes

σ−1[dx ∧ dy + (fdy − gdx) ∧ dt] = σ−1(dx− ψdt) ∧ (dy − φdt) + dH ∧ dt. (3.14)

But a comparison of (3.14) with (3.9) shows that

σ−1(dx− ψdt) ∧ (dy − φdt) = dq ∧ dp. (3.15)

In view of (3.10) and (3.13) it is clear that the lhs of (3.15) is indeed closed. Thus the problem of
recasting (3.1) into the form of Hamilton’s equations reduces to a determination of the auxiliary
functions φ and ψ such that H is identified from (3.12). As for the canonical variables q and
p these are to be identified from (3.15) once φ and ψ are known and σ has been obtained by
solving (3.10). We illustrate the application of the above procedure with a few examples.

4 Conformal Hamiltonians dynamics and

activator-inhibitor system

Let (M,ω) be a symplectic manifold, where M is a differentiable manifold endowed with a
symplectic form ω. Consider a diffeomorphism φ such that (φk)∗(ω) = kω, where k ∈ R. The
space of diffeomorphism {φk} form the pseudogroup Diffkω . Let Xk ∈ V ectkω = TidDiff

k
ω .
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The vector field Xk is said to br conformal with parameter k ∈ R if the Lie derivative satisfies
LXk

ω = kω.

We obtain diXk
ω = kω using Cartan’s magic formula, which imples ω must be exact,

ω = −dθ. We assume H1(M) = 0, then given Xk there exist a Hamiltonian function H ∈
C∞(M) such that Xk = Xk

H be a conformal vector field, which satisfies

iXk
H
ω = dH − kθ.

Let Z be the Liouville vector field, given by iZω = −θ or LZω = ω. We know for any
H ∈ C∞(M), we have LXH

ω = 0, hence it is clear LXH+Zω = ω. Thus conformal vector field
on M is given by Xk

H = XH+kZ. Conversely, given Xk
H and H1(M) = 0, using iXk

H
ω = dH−kθ

and bundle morphism ] : T ∗M → TM , we abtain (dH − kθ)] = XH + kZ. Here we tacitly use
the nondegeneracy of ω and LZω = −dθ = ω.
Putting all these arguments together we obtain the following result.

Theorem 4.1 The conformal vector field Xk
H on the symplectic manifold (T ∗R, ω) ' (R2, ω =

dx ∧ dy) can be expressed XH + kZ, where Z is the unique vector field defined by iZω = −θ.
Here θ = −ydx is the canonical one form of T ∗R. The equation described by the vector field
Xk
H is given by

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
− ky. (4.1)

In this section we analyse Hamiltonian structure of both the activator-inhibitor systems.
In the first case we map it to conformal Hamiltonian dynamics, but the Gierer-Meinhardt case
yields almost conformal Hamiltonian structure.

4.1 Autocatalysis system and conformal Hamiltonian mechanics

Let us start our analysis with the autocatalysis system. One can check directly that Lie
derivative of the dynamical vector field of the autocatalysis system satisfies LΓω = (c + h)ω,
hence Γ is said to be conformal vector field with parameter c+ h. When we impose c+ h = 0,
Γ becomes symplectic or Hamiltonian vector field. When we restricted to the symplectic case,
i.e., c = −h, the associated Hamiltonian is given by

H = a log(b+ y)− dx
2

2
− cxy, (4.2)

with standard Poisson Brackets {x, y} = 1 with the equations of motion given by

ẋ = {x,H} =
∂H

∂y
=

a

b+ y
− cx

ẏ = {y,H} = −∂H
∂x

= dx+ cy.
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When the manifold is R2 with coordinates (x, y) and ω = dx ∧ dy, the conformal vector
fieldsthose whose flow is conformalhave the form:

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
+ κy

where H : R2 → R is the Hamiltonian. Their flow has the property φ∗ω = eκtω, so the
symplectic inner product of any two tangent vectors contracts exponentially if κ < 0. If ω
is an locally symplectic structure (l.c.s.) then two l.c.s. ω and ω′ = eκtω are conformally
equivalent.

Thus general activator-inhibitor system can be expressed

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
− (c+ h)y.

Given H ∈ C∞(M), the vector field Γ ( or Xc
H- usual notation) satisfies

iXc
H
ω = dH − (c+ h)θ, θ = ydx

is conformal. The conformal vector field is given by XH + (c + h)Z, where Z is defined by
iZω = −θ. Here it turns out Z = y∂y.

4.2 The Gierer-Meinhardt model and almost conformal Hamilto-
nian structure

At first we study b = 1 case, then the integrating factor becomes µ = u−2. Consider planar
Hamiltonian system

u̇ = J(u, v)Hv, v̇ = −J(u, v)Hu,

where J is associated with the symplectic structure. Using last multiplier equation we obtain

d

dt
log µ+

J̇

J
= 0,

which yields µ = 1
J

. Thus symplectic matrix is given by

J =

(
0 µ−1

−µ−1 0

)
.

Thus only multiplying with the inverse integrating factor µ−1 = u2 admits a Hamiltonian
structure

H = log v − u− v

u
, (4.3)

with fundamental Poisson Brackets given by

{u, u} = {v, v} = 0, {u, v} = µ−1 = u2. (4.4)
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In general for any arbitrary nonsingular function f(u) it is possible to change the nonstandard
Poisson structure to standard Poisson structure by substituting v 7−→ f−1(u)v. Then the
“new” Poisson bracket satisfies

{u, v}f = f−1(u){u, v} = 1.

It is now easy to verify that the Hamiltonian ( for nonstandard Poisson structure) equa-
tions

u̇ = {u,H} = u2∂H

∂v
= −u+

u2

v
, (4.5)

v̇ = {v,H} = −u2∂H

∂u
= u2 − v, (4.6)

reproduce the equations of the reduced system (2.17). Furthermore as dH/dt = 0 the Hamil-
tonian H is also a first integral of the reduced system (2.17). The Poisson structure associated
with (4.4) is called nonstandard Poisson structure. It is clear that the equations (4.5) and (4.6)
are not divergence free. The multiplication by the JLM µ yields volume preserving condition

2∑
i=1

∂

∂wi
µ
dwi
dt

= 0, where wi = u, v,

so the phase space volume is preserved.

Let µ be the multiplier and the dynamical vector field associated to b = 1 Gierer-
Meinhardt equation is given by

Γ = (−u+
u2

v
)
∂

∂u
+ (u2 − v)

∂

∂v
. (4.7)

We consider transformation of vector field Γ corresponding to the transformation of Poisson
bracket, Γ 7−→ µΓ, which satisfies

iµΓΩ = dH, where Ω = du ∧ dv. (4.8)

Here µ can be identified with the inverse integrating factor. The terminology “integrating
factor” for the function V comes from the fact that 1/V is an integrating factor for the vector
field Γ, i.e., that V Γ is divergence-free. These allow the use of techniques from the theory of
(local) Hamiltonian differential equations.

The vector field Γ̃ associated to the general equation satisfies

iµΓ̃Ω = dH − (b− 1)
dv

u
. (4.9)

Hence the conformal vector field can be decomposed into

µΓ̃ = XH − (b− 1)u−1 ∂

∂u
, (4.10)

where

XH = (−1

u
+

1

v
)
∂

∂u
+ (1− v

u2
)
∂

∂v
. (4.11)

Thus we give a Hamiltonian description of the Gierer-Meinhardt model.
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4.3 Application to non-Turing pattern formation: Gray-Scott model

Self-replicating patterns have recently been found in the reaction-diffusion of chemical species.
Examples of such systems include the Gray Scott model, the Schnakenberg model etc. Nu-
merical simulations show that the irreversible Gray-Scott model exhibits a broad array of new
patterns, The irreversible Gray-Scott model governs the chemical reactions U + 2V → 3V and
V → P in a gel reactor, where V catalyses its own reaction with U and P is an inert product.
Letting u = u(t) and v = v(t) denote the concentrations of the two chemical species U and V ,
the pair of ordinary differential equations governing these reactions is :

u̇ = −uv2 + α(1− u) (4.12)

v̇ = uv2 − βv. (4.13)

Here α denotes the rate at which u is fed from the reservoir into the reactor and β is the sum
of α and the rate constant while k is the rate at which v is converted to an inert product.

We choose β = −α, so the reduced Gray-Scott equation becomes

u̇ = vu2 + αu, v̇ = −vu2 + α(1− v), (4.14)

This equation may be expressed in Hamiltonian form in the following manner:(
u̇
v̇

)
= (J(u, v)

(
∂H1

∂u
∂H1

∂v

)
−R(u, v)

(
∂H2

∂u
∂H2

∂v

)
, H1 = u+ v, H2 = α(1− v)u. (4.15)

where

J =

(
0 vu2

−vu2 0

)
R =

(
0 α
−α 0

)
.

Note that the (full) Gray-Scott model is given by(
u̇
v̇

)
= (J(u, v)

(
∂H1

∂u
∂H1

∂v

)
−R(u, v)

(
∂H2

∂u
∂H2

∂v

)
− (β + α)

(
u
0

)
. (4.16)

5 Contact geometry and Generalized Hamiltonian dy-

namics

The idea of using contact geometry in the context of classsical irreversible thermodynamics
is an exciting area. This space permits us to encode thermodynamical constraints. We will
see that all these activator-inhibitor equations can also be given Hamiltonian formalism using
contact geometry.

Recall that a contact manifold is a pair (M, η) where η is a 1-form in the manifold M
such that η ∧ (dη)∧n is a volume form in M . There is a uniquely defined vector field E (called
Reeb or characteristic vector field) such that (see e.g. [19, 21])

i(E)η = 1, i(E)dη = 0. (5.1)
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For each function f in M there is a contact Hamiltonian vector field Xf such that

i(Xf )η = f, i(Xf )dη = df − E(f) η. (5.2)

It is easy to check that if c ∈ R, then Xc = cE and in particular X1 = E, and that Xf1+f2 =
Xf1 + Xf2 , while Xf2 f1 = f2Xf1 + f1Xf2 − f2 f1E. Furthermore, Xf (f) = f E(f) and more
generally, Xf (f

k) = k fk E(f).
Consider the morphism ]Λ : Ω1(M)→ X induced by Λ between C∞-modules of one forms

Ω(M) and vector fields X defined onM . This contact structure defines a Jacobi structure where
the bivector field Λ is defined by Λ(df2, df1) = dη(Xf2 , Xf1).

A Jacobi structure is the triplet (M,Λ, E) which satisfies the following integrability
condition

[Λ,Λ] = 2E ∧ Λ, LEΛ = 0, (5.3)

where LE stands for Lie derivative with respect to E. If we drop the integrability conditions
we obtain almost Jacobi structure. The bivector Λ defines a Jacobi bracket

{f, g} = Λ(df, dg) + fE(g)− gE(f), f, g ∈ C∞(M), (5.4)

where the bracket is that of Schouten-Nijenhuis. This satisfies the weaker Leibnitz identity
condition

supp {f, g} ⊆ supp {f} ∩ supp {g},

i.e., the support of {f, g} is contained in the intersection of the supports of f and g. We recall
that the support of a function is the closure of the set of points at which the function does not
vanish. This condition imples that the Jacobi bracket is not a derivation in each argument,
hence, the Leibniz derivation rule is weakened, but the Jacobi bracket satisfies Jacobi identity.

Vector fields associated with functions f on the algebra of smooth functions C∞(M) are
given by

Xf = ]Λ(df) + fE.

This is known as Hamiltonian vector field with respect to Jacobi structure. The characteristic
distribution D of TM is defined by Λ and E, given as

Dx = ]Λx(T ∗xM) + Ξ, (5.5)

where Ξ denotes the subspace generated by the vector field Ep.

The analogous to Darboux theorem for symplectic manifolds establishes the existence of
a set of coordinates (s, qi, pi), with i = 1, . . . , n, such that

η = ds−
n∑
i=1

pi dq
i (5.6)
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In such a coordinate set the expressions of E, Λ, {·, ·} and Xf are:

E =
∂

∂s

Λ =
n∑
i=1

(
∂

∂qi
∧ ∂

∂pi
+ pi

∂

∂s
∧ ∂

∂pi

)
{f1, f2} =

(
f1 −

n∑
i=1

pi
∂f1

∂pi

)
∂f2

∂s
−

(
f2 −

n∑
i=1

pi
∂f2

∂pi

)
∂f1

∂s
+

n∑
i=1

(
∂f1

∂qi
∂f2

∂pi
− ∂f2

∂qi
∂f1

∂pi

)
Xf =

(
n∑
i=1

pi
∂f

∂pi
− f

)
∂

∂s
+

n∑
i=1

∂f

∂pi

∂

∂qi
−

n∑
i=1

(
∂f

∂qi
+ pi

∂f

∂s

)
∂

∂pi

(5.7)
In the particular case of the damped harmonic oscillator the manifold M is R3 and η is then
η = ds− y dx, and then the contact Hamiltonian vector field defined by the function f is:

Xf =
∂f

∂y

∂

∂x
−
(
∂f

∂x
+
∂f

∂s

)
∂

∂y
+

(
y
∂f

∂y
− f

)
∂

∂s
.

Suppose (M,Λ, E) is a Jacobi manifold and f ∈ C∞(M). Then it defines another Jacobi
structure which is said to be f -conformal to the given one or almost Jacobi structure. The
Reeb vector field Ef and the Poisson bivector Λf are modified by [21]

Ef = fE + Λ](df), Λ = fΛ, (5.8)

where Λ] : T ∗M → TM stands for bundle morphism. This can be equivalently described in
symplectic language when the Jacobi structure on M comes from a symplectic 2-form Ω, then
almost Jacobi structure or f -conformal Jacobi structure is given by

Λ]
f = f(Ω[)−1, Ef = (Ω[)−1(df) = Λ](df). (5.9)

One of our example, the Gierer-Meinhardt equation, belongs to this class.

5.1 Contact Hamiltonian description of conformal dynamics and
reduced equations

We now reduce the original system (2.11) in a different way. We consider now a = 0, i.e.

ẋ =
a

b+ y
, ẏ = d x− h y. (5.10)

This equation can be well described by conformal Hamiltonian vector field XHt +hZ, where the
“truncated Hamiltonian” is Ht = a log(b+y)− d

2
x2. In this section we describe this equation in

terms contact Hamiltonian formalism. The mixed term xy of the actual Hamiltonian acts like
an entropy function. This can be viewed as the thermodynamical description of the equation
(5.10).
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The corresponding Hamiltonian Hs = a log(b + y) − d
2
x2 + hxy of the reduced system (5.10)

can be expressed as Hs = H + hS. Here

H = a log(b+ y)− dx
2

2
, with S = xy ≡ xẋ.

Thus from the contact Hamiltonian equations of motion

ẋi =
∂Hs

∂y
, ẏ = −∂Hs

∂x
− ∂Hs

∂S
y Ṡ = y

∂Hs

∂y
−Hs,

we obtain the equations of the reduced activator-inhibitor model (2.11). Unlike the damped
oscillator or Liénard system here the entropy function S flow satisfies

Ṡ =
ya

b+ y
− a log (b+ y) +

d

2
x2.

A simple calculation shows

∂Ṡ

∂y
= − y2a

(b+ y)2
and

∂Ṡ

∂x
= dx.

Reduced GM equation Similarly, we can study the reduced form of the Gierer-Meinhardt
equation u̇ = u2

v
, v̇ = u2− kv using contact Hamiltonian framework. This equation can also be

described via (almost) conformal Hamiltonian vector field J̃XHt + kZ, where Ht = log v − u
is the truncated Hamiltonian and J̃ = u2 stands for multiplier.

We take away the mixed term v/u from the Hamiltonian H = log v − u − v/u just like the
previous example. We identify the mixed term s = −v/u as the entropy function. The contact
Hamiltonian is defined as

Hs = log v − u+ S(s) = Ht + S̃(S), where S = ks.

Thus using

u̇ = u2∂h

∂v
, v̇ = −u2∂h

∂v
− v∂S

∂s
we obtain

u̇ =
u2

v
, v̇ = u2 − kv, ṡ = 1− u+ k

v

u
. (5.11)

Hence we recast equation (5.11) in contact Hamiltonian form.

5.2 Full activator-inhibitor system and general Jacobi bracket

The full activator-inhibitor equation given in (2.11) can be described using the generalized
Jacobi bracket formalism. We recall that on the compact set of R2n+1 we can define the
contact one form as

η = ds+
n∑
j=1

(
qjdpj − pjdqj

)
.
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This yields

Ker η =
{

(
∂

∂pj
− qj ∂

∂s
), (

∂

∂qj
+ pj

∂

∂s
)
}
.

In this setting the Jacobi vector field is defined as

X̂f =

(
n∑
i=1

pi
∂f

∂pi
− f

)
∂

∂s
+

n∑
i=1

(
∂f

∂pi
− qi∂f

∂s

)
∂

∂qi
−

n∑
i=1

(
∂f

∂qi
+ pi

∂f

∂s

)
∂

∂pi
(5.12)

The vector field X̂f is the lifting of the Jacobi vector field to the generalized contact
space (Λ̃, E), where

Λ̃ =
n∑
i=1

(
∂

∂qi
∧ ∂

∂pi
+ pi

∂

∂s
∧ ∂

∂qi
− qi ∂

∂s
∧ ∂

∂pi

)
. (5.13)

In general, the flow X̂f of (5.12) can be explicitly written in contact coordinates
q̇i = ∂f

∂pi
− qi ∂f

∂s
,

ṗi = − ∂f
∂qi
− pi ∂f∂s ,

ṡ = pi
∂f
∂pi
− f

(5.14)

Now we choose contact Hamiltonian Hs = H +S(s), and the two parameter generalized
Jacobi vector field is defined as

X̂c,h
s =

(
y
∂Hs

∂y
−Hs

)
∂

∂s
+

(
∂Hs

∂y
− cx∂Hs

∂s

)
∂

∂x
−
(
∂Hs

∂x
+ hy

∂Hs

∂S

)
∂

∂y
, (5.15)

This coincides with the usual one when c = h = 1. We obtain our equation using this two
parameter deformed Jacobi vector field.

We can recast these equations as

ẋ =
∂h

∂y
− c∂S

∂y
, ẏ = −∂h

∂x
− h∂S

∂x
, (5.16)

where

h = a log (b+ y)− 1

2
dx2, and S = xy.

This is a metriplectic way of writing the activator-inhibitor equation. If we include the “en-
tropy” s equation, then the system contact lift of metriplectic systems. The idea of lifting a
n-dimensional vector field to the contact phase space was introduced in the context of con-
trolled irreversible systems by Eberard et al., where the contact lift was generated by the
contact Hamiltonian function.

Illustration 2 : The (full) Gierer-Meinhardt equation

u̇ = a− bu+
u2

v
, v̇ = u2 − v,
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where as usual u and v stand for activator and inhibitor respectively. The two parameter
(almost) generalized Jacobi vector field is given by

X̂c,h
s =

(
v
∂Hs

∂v
−Hs

)
∂

∂s
+

(
J(u, v)

∂Hs

∂v
− (bu− a)

∂Hs

∂s

)
∂

∂u
−
(
J(u, v)

∂Hs

∂u
+ v

∂Hs

∂S

)
∂

∂y
,

where J(u, v) = u2, Hs = h+ S(s) = log v − u+ s. This equation can also be recasted to

u̇ = u2∂h

∂v
− (bu− a)

∂h

∂s
, v̇ = −u2∂h

∂u
− v∂h

∂s
. (5.17)

6 Equivalence problem and dissipative potentials for pat-

tern formation equations

This section addresses the problem of deriving a generalized Hamiltonian potential for au-
tonomous dynamical systems appearing in Turing pattern formation. Following [13], we know
that for a given vector field one can construct a locally defined dissipative Hamiltonian gen-
erating function for autonomous dynamical systems. In their paper Hudon et al. proposed
to study the local equivalence problem between a known autonomous vector field and a pre-
defined Hamiltonian dissipative realization, viewed as a reference system. We explain their
formalism in the next section.

6.1 Method and computation of a dissipative potential

It is useful to state the method from an algorithmic point of view. We consider here only
planar systems and refer to [13] for further details.

1. Let Ω = dx∧dy. Obtain a one-form (which is possibly non-closed) by taking the interior
product of Ω with respect to the given vector field Γ = f1(x, y)∂x + f2(x, y)∂y associated
nonlinear dynamical system, i.e., ω = iΓΩ.

2. Let X = x∂x + y∂y be the Liouville vector field given in a star-shaped domain. An open
subset S of Rn is said to be star-shaped with respect to a point p̃ = (x̃1, · · · , x̃n) ∈ S
if the following conditions hold: (a) S is contained in a coordinate neighborhood U of
p̃; (b) The coordinate functions of U assign coordinates (x̃1, · · · , x̃n) to p̃; (c) If p̃ is
any point in S with coordinates (x1, · · · , xn) assigned by functions of U , then the set of
points (x̃+ λ(x− x̃)) belongs to S, for all λ ∈ [0, 1].

3. A homotopy operator is constructed on a star-shaped domain, via(
Hω
)

=

∫ 1

0

iXω
(
λx, λy

)
dλ = F̃ (x, y),

to decompose the non-closed one-form into its exact and non-exact parts. The homotopy
operator H is a linear operator on elements of Λk(Rn) that satisfies the identity ω =
d(Hω) + Hω.
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4. The exact part ωe = ∂F̃
∂x
dx+ ∂F̃

∂y
dy is used to derive a dissipative potential, while the non-

exact part is associated with a non-dissipative potential that does not contribute to the
dissipative potential on the star- shaped region.

5. (Equivalence of closed one-forms [5]) The goal is to compute a change of coordinates to
express ωe and the dissipative function. Suppose there exists a diffeomorphism Φ(x) = z
preserving the exact form

Φ∗(ω̃e) = ωe =
(∂F
∂xi

dxi
)
, where ω̃e =

2∑
i=1

−zidzi.

Locally it is given by

dz1 ∧ dz2 =
(∂2F

∂x2
+
∂2F

∂y2

)
dx ∧ dy.

6. z satisfy dissipative Hamiltonian equation

ż =
(
J(z)−R(z)

)
∇H(z), H(z) =

1

2

(
z2

1 + z2
2

)
,

where J is the standard symplectic matrix and R = id2×2.

We must emphasize here that in order to compute the dissipative potential, we study the
equivalence problem [5] between the closed one-form and a reference closed one-form derived
from a known dissipative Hamiltonian realization. The locally defined dissipative potential for
the original system is then expressed in these coordinates.

Now we state our result:

Claim 6.1 a) The dissipative potential F computed from the homotopy operator H in the star
shaped domain for the Gierer-Meinhardt equation

u̇ = a− bu+
u2

v
, v̇ = u2 − v,

is given by

F = av − 1

2
(b− 1)uv +

u2

2
− u3

3
,

and based on the equivalence of the closed one-forms we obtain new coordinates

z1 =
(
− 1

2
(b− 1)v + u(1− u)

)
z2 =

(
a− 1

2
(b− 1)u. (6.1)

b) The dissipative potential and transformed coordinates of the activator inhibitor sys-
tem.

ẋ =
a

b+ y
− cx, ẏ = dx− hy

are given by

F = −1

2
dx2 +

1

2
(h− c)xy + a log (y + b)− a log b,

z1 = −dx+
1

2
(h− c)y, z2 =

1

2
(h− c)x+ a

dy

b+ y
.
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The dissipative Hamilton generating function F derived for the activator-inhibitor pat-
tern formation equation is the “ free energy” of the associated system. Hence we can write
F = H + λS up to some constant term, where H is the Hamiltonian and S stands for entropy
function:

FAI = HAI −
1

2
SAI , HAI = −1

2
dx2 + a log (y + b), S = (h− c)xy + 2a log b, (6.2)

where the last term of S is a constant one. But this observation is not valid for almost conformal
Hamiltonian system like the Gierer-Meinhardt equation.

7 Conclusion

In this paper we have studied the Hamiltonization of systems of equations appearing in Turing
as well as non-Turing pattern formations. The Hamiltonians described here are true in the
sense that they allow us to reproduce the original equations through the standard Hamilton
equations, although they are non-standard in nature. In fact, the method described here is
specifically suited for systems which are intrinsically described by singular Lagrangians. We
took three different types of systems, activator-inhibitor equation is described by conformal
Hamiltonian mechanics, where as the Gierer-Meinhardt equation and the Gray-Scott equation
are described by almost conformal and conformal with two potentials respectively. In particu-
lar, we have shown all these equations can be mapped to the framework of generalized classical
mechanics using conformal, almost conformal or contact and f -conformal Jacobi geometry.

Using [13] we formulated the dissipative Hamilton generating potential F and study
equivalence of closed one-forms for activator-inhibitor model and the the Gierer-Meinhardt
equation. We have demonstrated that F is free energy function for the first model, which
is a pure conformal class system. We now wish to find its connection to other systems. It
would be interesting to study whether the formulation described here can be applied to other
activator-inhibitor models; in particular to the Thomas model [22], proposed in 1975, which is
an empirical model based on a specific reaction involving uric acid and oxygen. We propose
to take up this issue in future.

Another interesting topic is to investigate the pattern formation equations of non-planar
systems. Indeed in an interesting paper Wojkowski and Liverani [35] have studied the Lya-
punov spectrum in locally conformal Hamiltonian systems and it has been demonstrated that
Gaussian isokinetic dynamics, Nośe-Hoovers dynamics and other systems can also be studied
through locally conformal Hamiltonian systems.
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