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Abstract

We analyze the properties of the non-minimal pure spinor formalism. We show that
Siegel gauge on massless vertex operators implies the primary field constraint and the
level-matching condition in closed string theory by reconstructing the integrated vertex
operator representation from the unintegrated ones. The pure spinor integration in the
non-minimal formalism needs a regularisation. To this end we introduce a new regulator
for the pure spinor integration and an extension of the regulator to allow for the saturation
of the fermionic d-zero modes to all orders in perturbation. We conclude with a preliminary

analysis of the properties of the four-graviton amplitude to all genus order.
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1. Introduction

The pure spinor formulation of perturbative string theory [1,2] has proved to be a
powerful tool for implementing the role of maximally extended N' = 8 supersymmetries in
various amplitude computations. Because this formalism makes use of a constrained ghost
variable it allows to construct superspace invariants over fraction of superspace coordinates
that are difficult to construct in conventional superspace approaches. In an extended
formulation of the pure spinor formalism, Berkovits was able to avoid the complications
associated with the picture changing operators of the original multiloop prescription [2,3]
and to obtain a new class of partial superspace integrals [4] giving the leading contribution

to the low-energy limit of the four-gravitons amplitude at genus order g < 6
F, = /d169d16§912_29512_29 (Wap)* ~ 0% R* 4 susy completion (1.1)

Where W,z is the Ramond-Ramond spin 1 superfield [5,4]. The fact that these quantities
give the leading contribution to the low-energy limit of the four-graviton amplitude, up to
genus-six order, confirms the non-renormalisation conditions for the 9?9 R* contributions
with g < 6 to the ten dimensional low-energy effective action for type ITA and type IIB
string derived from string dualities in [6].

Since these superspace integrals arise from the zero mode saturation they give a direct
indication of the leading ultra-violet divergence structure of the field theory four-graviton
amplitude in N’ = 8 supergravity. A four-graviton amplitude with the leading low-energy

limit given by Fj in (1.1) has the following dimensions by
[A9] = [0%9 R*] mass(P~49~6 g<6 (1.2)

where [- -] gives the mass dimension. We used that a g-loop gravity amplitude has mass
dimension [A9] = mass(P~2)972 that [0] =mass and [R?] = mass®. It is remarkable that
the explicit four-graviton amplitudes performed in field theory up to and included three
loop order in [7,8] can be presented in a form that has the manifest ultra-violet behaviour
given by (1.2). This formula indicates that the g-loop four-graviton amplitude in (1.2)

develops ultra-violet divergences from

D2D6:4+§; g<6. (1.3)
g

When g = 6 the integration in (1.1) is over all the full superspace (all the 32 € variables)

and supersymmetric protection is exhausted. But at precisely this order the amplitudes
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are ill-defined because of singularities in the integration over the pure spinor ghosts [3,4]
and no firm conclusions could be drawn about the structure of the amplitude at higher-
genus order. In this work we discuss an alternative modification of the non-minimal pure
spinor formalism leading to well defined amplitude at any genus order. A regularisation
of the singularities from the tip of the cone has been given in [3] but the resulting formu-
lation makes very difficult to extract information about the structure of the higher-loop
amplitudes. In order to understand the systematics of the higher-loop multigraviton am-
plitudes we introduce an alternative regulator. With this regulator we give a preliminary
analysis of the structure of the four-graviton amplitude at higher-genus. We hope that this
analysis is a step toward understanding the systematics of N’ = 8 supergravity amplitudes
and the role of the surprising simplifications occurring the structure of the higher-loop
amplitudes [6,8,9,10,11,12,13].

In section 2 we review the basics of the minimal pure spinor formalism and its relation
to the non-minimal formalism. In section 3, we discuss the massless vertex operators in the
non-minimal formalism. We derive the relation between the integrated and unintegrated
representation of the vertex operators. Using a Siegel gauge we derive the physical state
condition on massless vertex operators, and the level-matching condition in the case of
the closed string. A different analysis of the Siegel gauge condition on vertex operators
appeared the recent preprint [14]. In section 4 we analyze the origin of divergences in the
pure spinor integration. Because the heat kernel regularisation introduced in [3,14] leads
to vanishing four-point massless amplitudes after genus 12 (see the end of section 4.4),
which is not compatible with unitarity, we introduce a new regulator that regulates the
singularities from the large values and the origin of the pure spinors integral without
modifying the non-minimal by,m,-ghost. We show that in order to be able to saturate the
fermionic zero modes to all orders in perturbation one needs to consider an extension of
the regulator with more d-zero mode contributions. In section 5 we turn to multiloop
amplitudes and give the form of the integrand of the leading low-energy contribution to
the multiloop four-graviton amplitude at all genus order. We conclude by showing that
the massless N < 4-point amplitudes are vanishing to all order in the non-minimal pure
spinor formalism. This implies finiteness of string perturbation in the absence of unphysical

singularities in the interior of the moduli space.
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2. Pure spinor measure of integration in the minimal and non-minimal formal-

ism

The action for type II superstring in the pure spinor formalism in flat ten-dimensional

space is given by [1]

S = / 2z < 2730/ 020 + Pal® + P00 + wa N + @35X3> (2.1)
The matter fields are organized into ten bosonic fields of conformal weight zero ™ with
m = 0,...,9 and two sets of fermionic fields (pa,0%) and (pz, 58) of conformal weight one
and zero with « in 16 and @ in 16 or 16 of SO(16) depending if one treats the type ITA
or type IIB string. In the following we will only mention the left-moving sector, but there
are identical contributions from the right-moving sector. The pure spinor ghost A% of

conformal weight zero is constrained by

Ay™A = 0 (2.2)

where (7™)qp are the 16 x 16 gamma matrices of SO(10). The pure spinor space defined
by the constraint (2.2) is the non-compact conical space defined by a C* bundle over
SO(10)/U(5). The scale of the pure spinor varies between 0 and oo.

The constraint leaves 11 independent components for the pure spinor A* and implies
that the conjugated pure spinors w, of conformal weight one has the following A-gauge
invariance daw, = Ay (7™ A)o with A, a gauge parameter. The physical quantities are

described as the cohomology of the pure spinor BRST charge

Qm = fv do (2.3)

where do = po — 3 (7"8)00Zm — 5 (07m00)(7™8)4 is the Green-Schwarz constraint, which
satisfies the OPE d,(2)dg(0) ~ —(v™)ap Il /2 where II,,, = Oz, + (07,00)/2 is the
supersymmetric momentum. Analogously for the right-moving sector.

In the case of the minimal formalism [1] at genus g order, the 11 zero modes of the
pure spinor ghost A* and 11¢g zero modes for the conjugated ghost w, are saturated by the
insertions of delta-functions §(A\*) and é(w,). The BRST-invariant and A-gauge invariant
version of these delta-functions is given by the picture lowering Y and the picture raising

Zp operators



Yo = Cof® 5(C ), Zp = [Qm, @([wB)\])] — (dB\) §(wB)) (2.4)

where © is the Heaviside step-function, and we have made use of the following notation
1
[WBA =: we B3 \° := BJ + o1 Bran N7 (2.5)

where the gauge-fixing parameters are the constant spinor C,,, and the 46 constants B and

B,,,. We have as well introduced the currents
J =1 we A N™? = wy™"\ (2.6)

are conformal weight one A-gauge invariant quantities.

The integration over the bosonic moduli is taken care by the picture raised conformal
weight two by,-ghost which satisfies [by,, Qm] = Zp Tm where Ty, is the minimal formalism
stress energy tensor. This field is integrated over the Riemann surface ¥, with the help
of the Beltrami differentials (u|bym) = fz d?z §17 s by, ». and the prescription for a genus-g
amplitude, with ¢ > 2, in type ITA/IIB string theory is given by [1]

:/dlox’/dwé/[d)\]i[l[dwl] gj_]j (14i]ben) ] ij 2ZB HYCk) f[l P20

V; are the integrated vertex operators. At tree-level there is no w-zero mode and the
amplitude is given by 3 unintegrated vertex operators and no insertions of by,-ghost of
picture changing operators Zp. At genus one there are 11 w-zero mode to be integrated
over, there is one insertion of the by,-ghost and one vertex operator is unintegrated. The
insertion of the picture changing operators Yo cuts off the large value of the pure spinor
Ao localizing the integration measure in a point.

The pure spinor measure of integration is defined as

[dA] = (e771)07,  dAFY -+ dA1 03003600 (2.8)

11

where we have introduced the following tensor totally antisymmetric on the k; indices and

fully symmetric y-traceless on the a8~ indices [2]

(€T )k = by hnmams (ymy (7 il (F)a)yrs (Ymnp)rars - (2.9)
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Such a definition of the measure of integration using derivatives is natural from the super-
geometry point of view as shown in [15]. This measure satisfies the requirement that the

overlap between the vacuum |0) and the highest state in the zero momentum cohomology

|C) = (AY0)(AY™8) (AYPO) (0 mnpf) is a constant

11

0[C) = / d19 / @ TT 00000 (0" 0) 00 0np) = 1. (210

This gives the rules for computing tree-level amplitudes [1]. We will return to this compu-
tation in section 5 when analyzing the effect of the regulator on the non-minimal formalism
amplitude prescription.

This minimal formalism with only one set of pure spinor ghost, only a picture raised
version of the b-ghost can be constructed which make the analysis of the multiloop am-
plitude difficult beyond two-loops. As well in this formalism the integration over the pure
spinor variables has to be done over patches of the pure spinor space and one needs to
analyze the Cech-cohomology on this space for global properties [16]. As well because of
the presence of picture changing operators the amplitudes are Lorentz and supersymmetric
invariant up to boundary term.

The delta-function insertions provided by the picture changing operators in (2.4) can
be exponentiated by introducing extra new variables [17,18,2]. Let start by considering
the case a single fermionic variable § whose BRST transformation is Q8 = A and then by
adding a new doublet » and A and their conjugated ghost w and s so that [w, A] = 1 and
{r,s} = 1. In order that physical observables do not depend on these new variables,! we
introduce a new nilpotent BRST operator A = ¢ wr so that (r,s; A\, W) is a topological
quartet under the total BRST-charge ) + A. We can now express the delta-function
insertions as follows

05(\) do(w) = / [dr][dN][ds][d@] N (2.11)

where
N — 6—A5\—T’9—wﬂ)—sd . (212)

1 The physical vertex operators do not depend on the non-minimal sector because the non-
minimal ghost number J = A\ — s7 = [Qnm, SaA*], and as well [@nm, J] = 0. And the physical
states are eigenvalues of the non-minimal ghost number J ¥ = n W. Since J is Q-exact all states
with non-zero non-minimal ghost charge are Q-exact ¥ = [Qnm, sA ¥]/n. Therefore the physical

states are in the zero oscillator sector with n = 0. This is the so-called quartet mechanism.
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The exponent can be rewritten as A\ + 70 + ww + sd = [Q, ¥] with the gauge fermion
U=\ + sw . (2.13)

The form of the exponent as BRST-exact quantity ensures that the amplitudes do not
depend upon the extract form of the gauge fermion ¥ unless some singularities in the
amplitude forbid the decoupling of BRST-exact quantities.

This procedure can be seen as a motivation for the introduction of the non-minimal
ghosts by Berkovits in [2] for defining the non-minimal pure spinor formalism. He intro-

duced the complex conjugate extra ghosts A, and r, satisfy the relations

MMA=0, M"r=0 (2.14)

In this case and the conjugated variables transform under the gauge symmetry x4, w® =
A (Y™ N)® + Ly (Y™r) and 61,8% = Ly, (Y™ M) where A,, and L,, are the gauge param-
eters. Therefore the conjugated ghost w® and s® can only appear through the conformal

weight one A- and L-gauge invariant quantities

Nmn = @D'ymnj\ — S$YmnT; J = W\ — sr
(2.15)

ST = gyMNN; S =s\.

The non-minimal BRST-charge is

Qnm = ]{/\“da + ]{wa T - (2.16)

3. Vertex operators in the non-minimal

The physical state vertex operators are in the cohomology of Qnm defined in (2.16).
For the massless sector of the type II superstring the vertex operators come into the

integrated and the unintegrated representations
V= /d2z|vopen|2 e X U = |Uppen|® e (3.1)
where Uppen, = A“A, and

Vipen = 00 Ag + 1™ Ay + dog W + N F,0 (3.2)
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where A,, A,,, W* and F,,, are the N' =1 D = 10 super-Yang-Mills superfields

Aa,0) = 5 (7 0)am + 5 000m0) (70)a — 35 fn(p0)a(07"70) + - (33)

and
(’ym)aﬁAm = DaAg —+ DgAa

("Ym)aﬂwﬁ = DaAm - amAa (3.4)
1
DaWﬁ = Z(’Ymn)aﬁan

Acting with Qnm on Vper, the computation is the same as in the minimal formalism leading

to
[Qnma Vopen] = 8U(Uopen) + e.o.m. (35)

where e.o.m. are the N'=1 D = 10 super-Yang-Mills equations-of-motion given in (3.4).
The vertex operator Uspe, satisfies [Qnm, Uopen] = 0. Notice that, since Vi,pen and Ugpen
are independent of the non-minimal fields only the minimal part of the BRST charge acts
on the vertex operator.

Because {Q@nm;bnm} = Thm, one can use the bym-ghost to construct the integrated
vertex operator from the unintegrated vertex operator. If we denote b_; = [ do bum, we
have that {Qnm,b—1} = [do Tum = J5. So, acting with b_; on Uppe, we can derive the
integrated vertex operator Vipep.

The non-minimal by,y,-ghost takes the form [2,3]
_ 1.
bam = 507+ Ao B (3.6)

where we have introduced the notations

. T
Ao = 0y = 3.7
VR P YOy 0

and
b = G +igH + 757 K7 + g7 i L0 (3.8)

and the operators

1
G* = 2" ()™ = Ny (77" 99) = JOO° — 50°6°

(6% 1 mn (e}
H* = 196 (y™"P) b ((d'ymnpd) + 4!Nmnnp) (3.9)
1 )
K7 = 1 )2 ) N
1
L = )P (P NN
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It was shown in [19] that the non-minimal byy,-ghost and the by-ghost of the Y-formalism

are related by o
Vo GY

v

where v, is a constant reference pure spinor so that vy™v = 0 and v - A # 0. Here €,

bnm - bY + [Qnma Qv]y bY - (310)

which expression can be found in [19], depends on the non-minimal sector and the reference
Spinor v .

We want to derive the integrated vertex operators V,,e, by acting with bym —1 on
the unintegrated vertex operators Ujpen, = A*A,. This amounts into taking the first
order poles of the OPE between the b,m,-ghost and the vertex operator. For doing this
computation we will use the relation (3.10) and compute the OPE between the Oda-Tonin
by-ghost with the vertex operator.

Using the ten-dimensional identity [19]
1 mn a 1 B a a3 1 m a
_§(37 A)(YmnC)* — Z(BﬁA )C* = BgA“C” — 5(7 B)*(Ay,C) (3.11)

where A%, B, CB are three spinors of different chirality. It follows from the usual Fierz
identities and the OPEs

2(y —=2)
1 (67
y_zk(@

(3.12)

J(y) A% (2) ~

and the equations of motion given in (3.4) and the Feynman gauge condition 0,, A™ = 0

we get

fﬁyg)@-Axm:quAy+nmAm+ddva+ﬁ%nNmn+@;m”m (3.13)

¥4

where (all the pieces should be normal ordered)

(vry™A) (vy™d) (0" A) O(V-A) | o @Y W) 1 (v - W)

Q= II,, — A, — N™he—— 4 —J——= (3.14
2w N) N N (v-n) w2 oy B

This gives for the action of the full non-minimal by,,-ghost that
%(bnmUopen + [Qnm; Q]) - Vopen (315)

where the Q-exact part assures that V., does not depend on the non-minimal sector.
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3.1. Siegel Gauge for open string

Within the pure spinor formalism, one can verify that the BRST cohomology at ghost
number one gives the superspace equations for N = 1 D = 10 the super-Yang-Mills.
However, these equations are not enough to impose the primary field constraint on the
vertex operator. This situation is well-known for example in String Field theory where the
equations of motion are manifestly gauge invariant (see also [20]). In order to impose the
primary field condition, we impose the Siegel gauge condition.

For this we use the Oda-Tonin by-field given in (3.10). We define the zero mode of it
as by g = f dz z by and we act on the vertex operator Uspen, = A4, (2, 0). Computing the

contributions of the double poles yield

VAP myany
by oU) = S22 ()0, D, A

= — 0N (") (= Dadn Ay + (1) 0m Ay

1
o Ié] m\«a - B(Am e
=l Dﬁ(”a(v ) VamAQ + o Ve AT (YY) B0m Ay (3.16)
vy A L
( VA +v')\(m 7)\)amAp

m\ oy
:_Ql’lm (’UOZ(7 ) 3mA’Y>+amAm+
v A

20\ (UVmp)\) Frnp

and finally, using again the equation of motion 4 D,W* = (v™")," F,,.,, we have

(3.17)

m\ary o o
bYO(U) = amf4m - Qnm (Uoz(")/ ) 8mA'Y QUOCW ) .

VA

Thanks to the relation (3.10) between the Oda-Tonin by -ghost and the non-minimal byp,-
ghost we deduce that as well by o(U) = 0™ A, + QumS2. This leads to the usual gauge
fixing for the Maxwell field which has been derived from the Siegel gauge condition. As a
consequence of the Siegel gauge fixing, the Virasoro constraints must follow and the vertex
operator is primary. Indeed, we act with the BRST charge from the left on (3.17) and we
get

Qnm<bnmo(U)> — Qnm (amAm) , (3.18)

then using the relation [Qnm,bnmo] = Lo and QumU = 0 we finally obtain that
Lo(U) = Qum (amAm) (3.19)
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Evaluating the right-hand-side

Qum (0" Ay ) = 20" (Do ) = X20™ (0 A = (Ym) s W)

(3.20)
= X0? Ay + A (V™) 030 WP

and choosing the gauge 0™ A,, = 0, using 0’4, = 0 and the Dirac equation W = 0, we
end up with the Virasoro constraint Ly(U) = 0 and the vertex operator is primary. Notice
that if it were that Lo(U) = pU where p is a proportionality constant, then U would not
be in the cohomology. In addition, it can be proved that, at least on the vertex U, by is

nilpotent.

3.2. Siegel-Zwiebach gauge for closed strings

In the case of closed strings, we have a left- and a right-moving by, -field that can
be used to impose the gauge fixing condition. In that case, on the contrary to the open
strings case, the BRST condition does not impose the Virasoro constraints and the level
matching condition. The level matching condition is obtained by imposing bg;, — bpr on
the physical states (where L/R denote the holomorphic and the anti-holomorphic part).
See for example [21] for a discussion of these points. In the following we will show that
imposing the level matching condition leads also to the Virasoro constraints.

The closed unintegrated vertex operator U is given by the expression
U=A\XAp5(x,0,0), (3.21)

where A% is the pure spinor for the right-moving part. The superfield A,4 depends upon the
two supercoordinates # and 0. This superfield plays the role of the spinorial connection for
the supergravity multiplet. In order to relate this superfield to the conventional superfields
A (whose lowest component is the combination of the metric and of the NSNS two form)

one needs to derive a ladder of differential equations starting from
DaAgy; = (V" apAms s D@aAjgisy = (7™ )as Aam - (3.22)

The complete set of equations were derived in [22]. Acting with the left- by, and right
by r Oda-Tonin by -fields on the vertex operator (3.21), we get

(byr,0E£byro) <>\O‘)\&Aa&(ﬂ?7 0, é))

: (3.23)
= \0"Aa F A0 Ay + (Qan + Qan)<Q)
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where () is a polynomial obtained after Fierz rearrangements. As in the open string case,
these exact terms are irrelevant. Notice that since the right-hand-side involves explicitly

the ghost field A* and A%, this yields the gauge fixing condition
0" Ana =0, 0" Agm =0. (3.24)
Using the equations

D(&Amﬁ) - (VH)dﬁAm”’ ﬁ(aAa)m = (7n>aﬁAnm- (3.25)
By separating the symmetric and antisymmetric part of A,,,, these equations lead to the

usual De Donder gauge for the metric and Landau gauge for the NSNS two form
0" Apn =0, 0" Apn =0. (3.26)
Finally, using

~

DaAmn - 6m14om - (’Ym)aﬁwﬁn 5 DdAmn - amAnE - (’Vm)dﬁwﬁn 5 (327)
where W%, is the gravitino superfield. This implies the set of equations
Do0™ Apyy — 2 Aan =W,y Dad" Ay — 00" Aan = (Ym)apd" WP, ,  (3.28)

Using Dirac equation gW<,, = 0 and the gauge fixing condition 0" W%,, = 0 we obtain
that 924,, = 0 and 9°W<%,, = 0. In the same way, one can derive the gauge fixing
condition for the other gaugino. The Dirac equation for the gravitino using the present
framework was discussed in [22]. Notice that unlike the case of bosonic string, we naturally
impose both conditions on the vertex operator by o and by g since they depends upon
the independent left- and right-moving pure spinor ghosts that implies the independence
of the left- and right-moving b-fields. This means that besides the Virasoro constraints

also the level matching is automatically imposed.

4. Regulating the non-minimal pure spinor amplitudes

Because the non-minimal by,y,-ghost has 1/(\- ) pole and measure of integration over
the conjugated ghosts bring some inverse powers of A\ and A (see below for details) the
amplitudes can develop singularities [2,3] from the tip of the pure spinor cone A, A ~ 0.

In order to understand the effect of the choice of the regulator on the amplitudes we

analyse the effect of the general regulator

~ ~ 1 g g
U= Xab"f(AN) — 5 > 85,0 +> 5o, (4.1)
I=1 I=1

for f is a real function. And O7*" and O; are ghost number zero A- and L-gauge invariant
version of (2.12) that that will depend on the zero-modes conformal weight one fields and

will be discussed in section 4.4.
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4.1. The vacuum of the pure spinor theory

The normalisation of the vacuum of the pure spinor theory |0) is defined by considering

its overlap with the highest ghost number state in the zero momentum cohomology |C) =
(Ay™0) (A" 0) (AP 0) (0ymnp0)

©01C) = [ @ [NaXIar & )0 OB rmmd) . (42
with the measures of integrations given in (2.8) and

[dN][dr] = dhay A -+ AdAg,, X Ory N+ NO

Tall Y

(4.3)

The integration over the pure spinor cone requires that one regulates the integral. A
generic regulator

~

N =exp (=(A-A) fF(A - X) + 1o M*50°) (4.4)

where M5 = 3% f(A - A) + A%\g f/(A - A). This quantity (4.2) gives the normalization
of the amplitudes and the prescription for evaluating the integration over the pure spinor
ghosts [1].

Two detailed evaluations of this integral are given in the appendix A. Setting h(A-)\) =
(A-A)f(A-X) the amplitude takes the form

(0|Cc) = 11'5'/de* e, (A-A)0ePAN B X0 (A X) (4.5)

This expression is proportional to

(01C) o (—0,)° / do e @ ()|
0 a=

ccam(CL )|

We see that the value of the amplitude (4.2) is controlled by the value of the regulator at

(4.6)

the boundary of the pure spinor space A- A = 0o and A- X = 0. Therefore any regulator so
that lim, .. exp(—h(x)) = 0 and lim,_,¢ exp(—h(z)) = 0 is too strong and will lead to a

vanishing amplitude trivializing the theory.?

2 We thank Nathan Berkovits for an important discussion concerning this point.
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In the rest of this paper we will make the choice of a gauge fermion which is strongly

dumped at zero

U = ~ 4.7
and the regulator takes the form
- 1 5@ PEDY
N = L S, B _ 9 2 70 ) gp 4.8
@ |-ois e (a7~ 2a0) 4

With this regulator any divergences from the tip of the cone A - A ~ 0 will be regularized
by the exponential factor, and the region X - A — oo will be regulated by the powers of
1/(A - )) coming from the r-zero mode contributions. For this regulator the amplitude
in (2.15) is a constant

(0|C) = 11115 (47)*°. (4.9)

that determines the normalisation of the amplitudes.

4.2. Tree-level Amplitudes

The prescription for N-point tree-level amplitude given in [2,3] is

ARee = /dloa:/\dw@/[d)\][d)‘][dr] NP U(21)U(22)U (23) HV(Z@') (4.10)

j=4
with the measures of integrations given in (2.8) and (4.3).

The advantage of using the regulator (4.8) is that the amplitudes are less diverging
at for A ~ oo than at A ~ 0. Because it is possible to generate 1/(\ - A)-poles of any order
by inserting enough bym-ghost (which happens at higher loop order [2,4]), but by ghost
charge conservation because the b,m,-ghost has ghost charge —1 and the physical vertex
operators appear at ghost charge +1 or zero, the integrand of the amplitude divergence at
most like (X - ) for A - A — oo.

We show that with the regulator (4.8) the amplitudes will converge at the boundary
A -\ ~ oo of the pure spinor cone.

By computing the tree-level amplitude with 3 unintegrated vertex operators and N —3
integrated vertex operators as in (4.10), the 11 r-zero modes must come from the regulator.

Therefore the integrand becomes dAdA/() - A)? which converges for A - A — oo. Using the
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representation with all unintegrated vertex operators and N — 3 bym,-ghost insertions, from
seven point N > 7 it is possible to saturate the 11 r-zero mode from the bym-ghost only
and the integrand seems to behaves as dAd\/(\ - \) which corresponds to a logarithmic
singularity at infinity. But as remarked in [3] all the terms in the bym,-ghost commute with

the conserved charges

¢ = j{ (ras® = Xwa); @2 = j{ Aas®, (4.11)

which imply that the terms of the bym-ghost (3.6) have opposite r-charge and A-charge
and are invariant under the shift symmetry dr, = ¢\, where ¢ is a constant. Therefore to
saturate all the 11 r-zero modes we need to pick 12 r from the byy,-ghost or 11 r from the
bnm-ghost and one r from the regulator and contract the left over r-ghost with s-ghosts.
In either case this brings enough powers of 1/(A- ) so that the integral converges for the

large values of the pure spinor ghost.

In the non-minimal formalism it is possible to construct the following quantity & =
A-0)/(A-X+7-0) so that Qumé = 1. If this state is allowed it will trivializes the
theory by making all physical state Q-exact, and all amplitude vanishing. By evaluating
the amplitude (0|¢) we see that the contribution with 11 r-zero mode lead to a logarithmic
divergence at infinity. Because the terms in the expansion of the ¢ do not commute
with conserved charges ¢; and ¢ and the divergence is not protected by the symmetry

070 = ¢ Ao. Therefore the state ¢ is not allowed in the physical Hilbert space of the theory.

We can compare with the prescription given by Berkovits in [2] where the following

gauge fermion and regulator are used

U = \,0% Nzexp(—)\~5\—r9> . (4.12)

The regulator (4.8) takes the form given in (2.15) with

) A (4.13)

This matrix satisfies the property that Mz MP, = §%,/(X - A\)* that implies that
(M=) = (A= A)* M.

14



In the amplitude one can eliminate the dependence on this matrix in the regulator by
performing the change of variable 7, = 73(M~1)?,. This induces a non-trivial Jacobian
factor depending only on the A and A pure spinor ghosts

11
[dN][dr] — dAa, A+  AdAa,, NO~ A~ NO~ M%ig . (4.14)
81 TB11 Bi

i=1

We should stress here that this transformation preserves the pure spinor conditions

since Ay™A = 0 and M7 = 0. Because M3 = 0Ag/05_ this Jacobian factor is exactly
the one for the transformation 5

Ao = —=— | 4.15

therefore the measure of integration over the pure spinor ghost with the regulator (4.8)

takes the form N
/ [N [dN[dr] e o M0 = / [dA][dN][dF] e >0 (4.16)

which is the original regulator (4.12) introduced by Berkovits in [2] expressed in terms of
the inverted variables. This shows that our regulator is making the pure spinor A massive
using X instead of A.

The massless vertex operators do not depend on the non-minimal variables. This
shows that the tree-level amplitudes defined with only three unintegrated vertex opera-
tors (4.10) are the same with the regulator (4.8) and the regulator introduced in (4.12)
in [2].

Remarking that

/_\,yman—I?: ()\ . 5\)2 (j\vmnp;:)

v - R (4.17)
(M ) Q2 )\053] = ()\ ’ )\) T[OQTOCQ )\043}

T rg, (M1,

and introducing s® = 5% M 3 the bym-ghost transforms as the non-minimal bym-ghost of

eq. (3.8) transforms as

bowe = SON + i Aa_pa
AA o o (4.18)
b =G+ gl ¢ I ety T pains
(A=) (A- )2 (A- )3

Since the operators G, H*?, K87 and L*?7° do not depend on the non-minimal sector,

this shows that this expression is identical to the one in (3.8) and shows the equivalence
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of the amplitudes with the insertion of the bym,-ghost. It is important that the bypm,-ghost
keeps the same functional dependence in the 7, 3¢ and A, variables are in the r,, s* and

A\, variables.

Because we are not transforming the conjugated ghost w, and w® and because the
measure of integration over these variables bring inverse powers of the pure spinor ghost,

we show that this regulator provides divergence free amplitudes that converge at A\, A ~ oc.

4.8. Regulating the higher-loop amplitudes

The prescription for a genus-g amplitude in this formalism is given by [2]

g 3(g—-1)
A = / 105 / {5967 / d19 / dA [N T / dw!)[d!|[ds’] [] (uilbamm) & H V.
I=1 i=1
(4.19)
The integration over the conjugated ghosts is given by
[dw ] Mr?zlmu mmnmd‘]\[mln1 Lo gNmomo IdJI Oxer -+ - Oxes
_ 10 (4.20)
[dw!][ds"] Hd w NAT AT 051 A Og
i=1
where we set Mﬁzllnlasmmnlo - (7m1n1m2m3m4)((a1a2 (’Ym5n5n2m6m7>a3a4 (’Ymsngnsnemg)asaG

(Ymyonionansmg )27 and ((---)) means that one considers the symmetrized 7-traceless
part.
In order to regulate the integration over the zero mode of the conjugated ghosts we

make the following choice
OF™ = (w7™ )

01— (wr) (4.21)

The zero modes are defined by integration over the homology a-cycles ® = fal ® for
1<7I<g.

The associated regulator
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N = exp [Qnm7 \I/]

r-0 . 0)(r
—e [ 5 oy
X exp [— > (%NLHN””” + JIJI>] (4.22)
I=1
I=1

The third and fourth line are the A and L-gauge invariant version of the regulator exp(—w-
w—s-d).

4.4. Zero mode counting in the non-minimal formalism

For having a non vanishing massless n-point genus g amplitude one needs to satisfy

the fermionic zero modes constrains given by the following equations

11g = ngs + nox

11 =npg + Npg2 + Npgo + 21424 + 30,340
(4.23)
169 = ngs + Navop + Nrog + 2Npg2 + Np2g

3(9 — 1) = Nggx T Npog + Npgz + Nypgo + Nyp2g + Ny go

where ngs is the number of SAd contributions from the regulator, n,¢ is the number of r -6
contributions from the regulator, 140y is the number of d contributions from the vertex
operators and ngyy and n,..q; with (4,7) € {(0,1), (1,0), (1,2),(2,1),(3,0)} are the various
contribution from the by,m,-ghost.

The d-zero mode constraint implies that
29 = Ndvop + Nygz — Nyp3go — 3 — Nyyy (4.24)

Since n,.4g2 < 11 and n,3q0 > 0 we deduce that this system of equation does not have a
solution after genus

1
g > 5 Ndvop +4. (425)

An n-point massless amplitude would vanish for all genus g > 5 + n/2 if there are no
singularities in the pure spinor integration.
With the 1/(\ - A) regulator introduced in the previous section the integration over

the pure spinor ghost A and A behaves as
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0o B\ Y\ Tsox
s = / ddy 1 (A0 (4.26)
AT e A X e A

the ¢; and ¢o invariance of the bym,-ghost implies that n,g + 1,55 > 1 and these integrals
are converging both at A- A =0 and X -\ ~ co.
Therefore unless there are extra sources of d-zero modes the theory cannot be unitary.

We will present a solution to this problem in section 4.5 below.

The heat kernel regulator introduced in [3,14] provides extra sources of d- and s-zero

mode in the multiloop amplitudes from the contribution (see equations (3.20) and (3.29)
of [14])
/d“fd”fd”gd“g o1y (o wa r+g%da 1+ faf +5ast) (4.27)

This extension of the regulator can provide ngs extra s-zero mode and ngyq extra d-zero

modes contributions to the counting in (4.23)

11g = ngs + nyox + Ngs

(4.28)
169 = ngs + nq vop T Npog + 2npq2 + np2q + Ngd
leading to the d-zero mode counting
29 = Ndvop + Nraz — Nypsgo — 3 — Ngax + Ngs — Ngs (4.29)

Since ngs > 0 and ngyq < 11 we deduce that this system of equation does not have a
solution after genus
0> Sngop+ 2 (4.30)
2 2
In particular the heat kernel regulated four-graviton amplitudes of [3,14] will be van-
ishing after genus g > 12, which is not compatible with unitarity. So we conclude on
the basis of zero mode saturation that the heat kernel regularisation does not lead to a

consistent framework for the non-minimal pure spinor theory.

4.5. Adding d-zero mode contributions

Of course, one can wonder if the entire formalism is consistent or not, but we would like
to stress that passing from the minimal to the non-minimal formalism is not straightforward
due to the poles in A- XA = 0 and because \ is treated as the conjugate to A. So, we believe

that a suitable gauge fixing could make the formalism working at any genus.
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In order to resolve the issue of the vanishing of the amplitudes because of the impossi-
bility of saturating all the d-zero modes after some genus order, we introduce the following

piece to the gauge fermion

V=U+va > S (dymrdt) P, (4.31)

1<I,J<g

which modifies the regulator as

/\7 =N x Nd
Ny = exp [— Vo Z N (d' Ynpd”) PY
1<I,J<g (4.32)
X exp [ Vo Z ST (PL (O Yimnpd”) PY 4 (A" Ynpy* A) P PY) }
1<I,J<g

With this addition to the regulator the d-zero mode counting in the n-point amplitude
at genus order g > 4 + n/2 can be satisfied by picking g — (4 + n/2) contributions of
NP (dlypppd”) PY.

Under the change of variables A — X of eq. (4.15), the extension of the gauge fermion

n (4.31) transforms as

o/ > 8L, (d'ymrd’) By, (4.33)

1<1,J<g

where S’;ﬂm =7t 'ymni. But only the second line of the regulator Ny is invariant. This
implies that this extension of the regulator makes a difference between the non-minimal
formalism regulated with a mass A - A introduced in [2] or X - X used here.

We could not justify this extension by a first principle derivation. The difficulty of
saturating d-zero mode at higher loop could be related to a background charge screening
constraint which is not immediately visible, except because of vanishing amplitudes, due

to the gauge fixed definition of the pure spinor formalism.

5. Multigraviton amplitudes at higher-loop

The closed string massless vertex operators is defined as [2,3]

V= /d% (GMN(X)aXMéxN + WP dydy + - ) (5.1)
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where XM = (2™, 02, 5&\)7 the symmetric part of G\(5rn) is the graviton superfield and the
antisymmetric part Gasn) is the NS B-field superfield. Wb (z, 0%, @\0‘) is the dimension one
gauge-invariant superfield whose lowest component is the Ramond-Ramond field strength.

The zero modes saturation of a n4.q.-graviton amplitude at genus g > 2 leads to

-3

g 39
/d“’ /’d169/d)\ 1[d\][dr] H ds'] ] (ui!bnm)/\Af}QV”g””

=1

g _
/d10 /’dm@/d)\ [N [dr] T [dw')[dw)[ds] e~ 55 ~2uim NN 52)
I=1 ’

x (%)M (SAd) <Nd2P> e (aeA 1B + dW + NF)

x(s&X)"s (XHd>”0d<)\rd2) " (Xf»NH> r (szdN)"ﬂd(;\ngQ)nﬂdO 2

where we made use of the variables (3.7). We have schematically written down all possible
terms coming from the regulator N and the bnm-ghost using the notations of eq. (3.7).
When n,¢ is non zero the contribution is given by an integrations over a subspace of the
f-superspace but when n,y = 0 this is a full superspace integral. The various powers

in (5.2) satisfy the constraint
4

3g—3=mns+ Y ni, (5.3)
1=0

that there are 3g — 3 insertions of the (left-moving) bym-ghost. The saturation of the 11g

s*-zero modes, the 16g d,-zero modes, and the 11 r,-zero mode gives

S l1lg=ns+ngqg—n
d: 169 =nsq + 2ng2p + npog + 2npg2 + Np2g + Ngraw (5.4)
T 11 =npg + Npgz + npgo + 20424 + 3Np350 — Ng e

where ng , is the number of contractions between the s-ghost and the r-ghost.

5.1. The four-graviton amplitude at higher-genus g < 6

For the case of the four-graviton amplitude, with ng,,, = 4, the previous conditions

have the following solution valid until genus g < 6 [4]

nerg =12 —2g9, ngg =119, n,q2 =29—1, npog=9g—2

Ng = Npgo = Np2g = Nyp3go = Ngzp = Ng,r =0,
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which corresponds to the partial superspace integral when n,.p = 12 — 2g # 0 giving the

leading contribution to the low-energy limit of the string amplitude [3,4]
Af ~ / d'00d*0012=2991229 (W, 5)* x 19 ~ (&/0*)9R* 1Y + O('K?) . (5.6)

where 19 is a field theory integral which is the low-energy energy of the expression arising
from the integration over the moduli.

For this case the good convergence properties over the spinor variables allowed to
perform the change of variables A — X of eq. (4.15) and use the BRST invariance to set
Ny = 1. By using the same steps as in section 4.2 we can map our amplitude computation
to the one in [4] leading to identical results.

For the solution (5.5) the form of the integrand is given by

2
39—3

#= [ TL et | T o T 6.1)

9 i=1

The expression involves 2(g — 2) insertions of the supersymmetric loop momenta I1™ ~
ox™ 4 (604™90)/2 flowing through the loops. The field theory limit of this amplitude in
ten dimensions has 3g — 3 + 4 = 3g + 1 propagators, and 2(g — 2) are loop momentum
contracted between themselves or to external polarisation or some of the explicit external
momenta in (5.6). The resulting integral has mass dimension (D —4)g — 6 as it should be
by dimensional analysis. Such an expression displays the explicit superficial ultra-violet

behaviour of the amplitude.

5.2. The four-graviton amplitudes at higher-genus g > 7

At genus g > 7 the massless four-point amplitude can develop divergences in the pure
spinor integration at the tip of the cone A - X ~ 0 [4], and the change of variables A\ — X of
eq. (4.15) is not allowed. As well because of the potential divergences in the pure spinor
integration we cannot use the BRST invariance to set Ny = 1. We will see that this extra
contribution to the Ny regulator will bring extra d-zero mode allowing the saturate the
fermionic zero mode after g > 7. Because the new contributions to the regulator come with
one power of o we want to minimize the number of terms coming from this modification
of the regulator to get the leading contribution to the low-energy limit of the amplitude.
This is accomplished by the solution parametrized

ns =1, npog=39—14, ngge =12, ngg =ng2qg=nmsq0 =0,

(5.8)
Nyp = 07 Nsd = 1197 Ngzp = g — 6 .
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where we have taken n,g2 > 11 r-zero mode from the b,,-ghost as required by the invari-
ance under the charges (4.11).

This expression leads to a low-energy expansion of the four-graviton amplitude in ten

dimensions
Af ~ (/)97 / d*%0d'50(W,p)* x I9 ~ (a/)902 R I + O(a'k?) . (5.9)
where now I9 is
4 ) 3g—3 g—2 g—6 2
9 =1 i=1 j=1 I=1791

because this expression contains 2g — 8 powers the supersymmetric loop momenta running
in the loop, this expression has mass dimension (D — 2)g — 18 and taking into account the
dimension twenty operator 92 R* multiplying the amplitude the total amplitude has mass
dimension (D — 2)g + 2. This confirms this is the leading contribution to low-energy limit
of the four-graviton amplitude in ten dimensions.

In the extreme case that all the g — 6 powers of loop momenta from the regulators are
contracted with plane-wave factors, the amplitude with have an extra factor of 2(g — 6)

powers of external momenta and will behaves as

AZN/
>

For this contribution to be the leading low-energy limit of the g-loop four-graviton am-

2
3g9g—3

g—2
1T @yntw) ]| o?0*R* +O('K?) (5.11)
1 j=1

g 1=

plitude at genus order g > 6 many cancellations within the integrals (5.10) beyond the
supersymmetric ones must take place. They could be the consequence of the extra cancel-

lations detailed in [11,12] occurring in the on-shell colorless amplitudes.

5.8. Vanishing of N < 4-point amplitudes

Since the regulator (4.32) or the regularized b.-ghost of [3] bring an arbitrary number
of d-zero modes one needs to make sure that all massless N-point amplitudes with N < 4
vanish to all order in perturbation. The vanishing of the N < 2-point amplitudes imply by
factorisation and the absence of unphysical singularities in the amplitude, the finiteness of

string perturbation [23,24,25,26]. The vanishing of the 3-point amplitude at higher genus
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is not necessary for the finiteness of string perturbation but is required for the absence of
IR singularities when taking the low-energy limit of string amplitudes.

It was shown in [1] that in the minimal pure spinor formalism all the N < 4-point
amplitudes vanish to all order in perturbation.

The vanishing of the vacuum diagram is ensured by the integration over the six-
teen left-moving and right-moving superspace variables. For the following argument
we will assume that all the vertex operators are unintegrated. The vanishing of the
1-point amplitude is a consequence of the on-shell relation. At most the integrand
can bring 11 powers of § and the amplitude takes the form [ |d'®00'|V; where V; =
|(AY™0) @ () + (AY™0) (09 X) + - - - |? is a massless vertex operators where the ellipsis are
for higher-derivative contributions. But one-point on-shell amplitudes have k; = 0 and
all higher order term in V; drops out and the integral vanishes after integration over the
0 variables. The vanishing of the two-point amplitude follows the same argument that
the integration over the superspace #-variables leads to contributions that vanish on-shell
because there is only one on-shell independent momentum.

For the case of the massless three-point function we find that using the original reg-
ulator (4.32) that the zero mode constraint can be satisfied for all genus from g > 3. But
we will show that because all the contribution have more than two-derivative (there is no
renormalisation of the Planck mass) the on-shell condition assure the vanishing of these am-
plitudes. For the massless three-point amplitude momentum conservation ki + ko + k3 = 0
and the on-shell conditions k¥ = k2 = k3 = 0 imply that k; - kj =0 for all 7,5 = 1,2, 3.
At genus 3 we have the contribution n,42 = 6, n,.9 = 5 ngg = 33 and all the other integers
being zero and three d, W from the vertex operators. In the case one picks the 11 r-zero

mode from the regulator one gets
/ d*0001 2V Vo Vs ~ K2R3 + - (5.12)

which means that one must distribute two momenta on three powers of linearized Riemann
tensor Rmnpq = Kim Cu[p Kq- This vanishes by the on-shell conditions. In the case where
there is no contributions of r-zero mode from the regulator one get and amplitudes of the
type

/ d*%0)2 Vi VaVs ~ BB RS + - (5.13)
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which has more powers of momenta to contract and this vanished after using the on-shell
conditions. The same conclusion is reached to the contribution involving the supersym-
metric partner of the graviton. This show that the massless 3-point amplitude vanish to
all order in perturbation.

We hope that our considerations help to a better understanding of this intricate and
interesting new field. Higher-loop and multileg computations are important for several
checks in string perturbation theory and beyond, but in addition, they are needed test of
the soundness of the formalism.
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Appendix A. The tree-level amplitude
We consider the general form of the regulator

U =X 0%f(\-X) (A.1)

where f is a real function. With this choice of gauge fermion we have the following regulator

~

N =exp (=(A-A) fF(A - X) + 1o M*56°) (A.2)
where M%5 = 5% f(A-A) + A%Ag f/(A- X). With this regulator we evaluate the tree-level
integral
©0iC) = [ @ NN & (") (PO Brmmd)  (A3)
By performing the integration over the 11 r variables and using that (A - 6)2 = 0 we get
(0lc) = / al / [dNdAa, A A dhayy e ODION (70) (070) (\70) (09 0) %

X FA- X099 001097 (5911 F(X-X) + 11 Xp A® f/(A- X))
(A.4)
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Performing the integration over the sixteen 6 variables leads to

<0’C> = /[d)\]d)\al ARERA d)‘ozn _(A'X)f()\'j\) (’Vm)\)rl ('Yn)\)rz ('Yp)‘)rs ('Ymnp)mrsx

(A.5)
x f(A- AP0 ey anoamrs (5(‘;‘“ FOGA) + 11 A, A4 f (N 5\))
Using the properties of the pure spinor measure
(AN Ny (7" Vs (F N i Vrars = €16 g -vpy AT - AT (A.6)

[ANNNENY NS = 4 €161 oopgyy sy AN - - ANV N (@ (T 1)BYO)TTs

and the relation €i6y,...r €75 ¢ = 16! 67177716 we get that

(0|C) = 11!5! /dw Ao AdA g, A Addg,, e O TN pxL 1
+111614 /dw Ao AAA T ANy A Adhay, € OV TON SO XF X)) F(A- A

« )\(a11<T—1)5fy6)sl-~~35 T(O(ﬁﬂy)hmr5 S 5041 ‘Q100T1 TS

Q11 Y1000 Y1181 S5

(A.7)
Using that (7~1)(@BMri7s] — 0 we find that a;; = o in the last term, leading to

(0[C) = 11'5'/Hd>\0‘ dha, e ONVION X0 (FA-X) + (AN (A-X) (A8)
Setting A(A - A) = (A- A)f(\- A) this gives

(0|Cc) = 11!5!/1‘[&%&% (A= 2) 710 AN B O (AN (A.9)

> We give another derivation of the same result using some Fierz identities derived in [27].

We use the following definition for the normalisations

/ d'%g / [dX][dA][dr] e AN AN=rMONaNGNT £ o (2 0) = (A*APNT fups(2,0))  (A.10)
and the Fierz identity established in [27]

/ 459 / [AN][dN][dr] e AN QD= MO \BATX fe (2, 6)

(N
- 33

(A.11)
(BN DL 5) = (™) e AN fis.5))
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The amplitude in (A.4) takes the form

(0|c) = / d'°0 / [AN][dA][dr] em DTN £(X . 3)10 (19)10
X (FOA-X) (- 0)(2™0) (X" 0) (AP 0) (05 (A-12)
FIL(A-0) (- A /(- D) (A™8) (X™8) (A6) (B ymny6))

The first identity (A.10) gives
(O1C)1 = ((r- )" F(A- N (™) (X" 0) (AP 0) (0 vmanp)) (A.13)

the second identity (A.11) on the second line with f5 5 5 = 075 (Y"0)a(7"0) 3(770)~ (6 Vimnpt)

leads to
(0[C)2 = S ((r-0)" - D)F (- A) (A= M)Ay ) (A" 0) (AP 0) (0ymnp))

(-0 F - N F (A X) (A N)(A°0) 57 AN (770) o (770) (770) (0Ymnp?) )

((r-0)" FOC- X F (A X) (A )M (A"0) (AYP0) (07mnph))
((r- ) F- X)L (X)) (A A (M°0) (rys7™0) (A" 0) (AP 0) (09imanp )
(A.14)

where we used that (Ays60)(AyP0)(07™™°0)(0Vmnpt) = 0. This expression can be reduced
further to

I Wl Wl Wl

(0[C)2 = % ((r- )" FOC- L A) (M- X)) (M™0)(M"0) (MP0) (0Ymnph))
B %W )L N F (A X) (A X)(Ms0) (1™ 0) (A" 0) (AP 0) (0mnp0) )
(A.15)
Using the Fierz using that 3!16 6,03 = (Hyabcﬁ)(fyabc)ag one shows that
(ry°™0)(Avs0) = 4(r)(My™0) + (Ay™0)(r6) (A.16)
And the total amplitude takes the form
_ r- 11 )11 m n ) mnp
O[C) = ((r-0)" fF(A- X)) (M0 (A" 0) (AP 0) (07mnpt)) (A17)

+{((r- O LX) (A )Y (MY0) (AMVPO) (0Yimnp))

which reproduces (A.9) after integration over the r and the 6 variables.
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