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1. Introduction

This paper is a contribution to the idea of embedding of Lagrangian systems
initiated in [3]. A review of the subject is given in [2]. An embedding of an
ordinary or partial differential equation is a way to give a meaning to this equa-
tion over a larger set of solutions, like stochastic processes or non-differentiable
functions. As an example, Schwartz’s theory of distributions can be seen as
an embedding theory. In this paper, we consider an extension of a partic-
ular class of differential equations which are Euler-Lagrange equations over
non-differentiable functions described in [5]. The Euler-Lagrange equations
are second order differential equations whose solutions correspond to critical
points of a Lagrangian functional, [1]. Lagrangian systems cover a large set
of dynamical behaviors and are widely used in classical mechanics. In [10, 9],
Nottale introduce the idea that the space-time structure at the microscopic
scale becomes non-differentiable. His goal is to recover the classical equations
of quantum mechanics from those of classical mechanics. Using the fact that
at the macroscopic scale the space-time is differentiable and the equations of
mechanics are governed by a variational principle, called the least-action prin-
ciple, he formulates a scale-relativity principle. Namely, the equations of mo-
tions over the non-differentiable space-time are given by the classical equation
extended to non-differentiable solutions. This extension is done by choosing
a different operator of differentiation on continuous functions. In [5], we de-
fined the notion of non-differentiable embedding of differential equations and
proved that the solutions of an embedded Euler-Lagrange equation correspond
to critical points of a non-differentiable Lagrangian functional. In particular,
the classical Newton’s equation of Mechanics transforms into the Schrédinger
equation by a non-differentiable embedding. This is summarized by the fol-
lowing diagram:

Lagrangian _ND. Emb, N.D. Lagrangian

L.A.P.l J{ N.D.L.A.P.

Euler-Lagrange equation XD Fmb, N . Euler-Lagrange equation
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where N.D. stands for non-differentiable, Emb. for embedding and L.A.P for
least-action principle.

In this paper, we pursue our study of the non-differentiable embedding of
Lagrangian systems. A classical result of Emmy Noether provides a relation
between groups of symmetries of a given equation and constants of motion, i.e.
first integrals. Precisely, if a Lagrangian system is invariant under a group of
symmetries then it admits an explicit first integral. In the framework of the
non-differentiable embedding of Lagrangian systems, we have then a natural
question: Assume that the classical Lagrangian system is invariant under a
group of symmetries, what can be said about the non-differentiable embedded
Lagrangian system? In particular, do we have a non-differentiable notion of
constants of motion? If yes, is it possible to extend the Noether’s theorem?

These questions can be summarized by the following diagram:

. . . N.D. Emb_ . . .
invariance of Lagrangian ———— invariance of N.D Lagrangian

Noether’s thml l N.D. Noether’s thm.

N.D. Emb
—_—

First integral N.D. First integral

In this paper, we prove a non-differentiable Noether’s theorem. Previous at-
tempt in this direction has been made in [4] using a different formalism over
non-differentiable functions and not in the context of the non-differentiable
embedding of Lagrangian systems. In particular, the problem of the persis-

tence of symmetries under embedding was not discussed.

The outline of the paper is as follows: first, we recall the framework of
the non-differentiable calculus of variations introduced in [5]. In section 3,
we remind classical results about group of symmetries, first integrals, and
Noether’s theorem. We then introduce the notion of invariance for a non-
differentiable Lagrangian functional and discuss the problem of persistence
of symmetries under a non-differentiable embedding. Section 4 is devoted
to the proof of the non-differentiable Noether’s theorem. We conclude with

application to the Navier-Stokes equation.
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2. Reminder about non-differentiable calculus of variations

We recall some notations and definitions from [5].

2.1. Definitions. — Let d € N be a fixed integer, I an open set in R, and
a,b € R, a < b, such that [a,b] C I, be given in the whole paper. We denote
by F(I,R?) the set of functions = : I — R? from I to RY, and C°(I,RY)
(respectively CO(I,C%)) the subset of F(I,RY) (respectively F(I,C%)) which
are continuous. Let n € N, we denote by C*(I,R%) (respectively C"(I,C%)) the
set of functions in C°(I,R?) (respectively CO(I,C%)) which are differentiable

up to order n.

Definition 1. — (Hélderian functions) Let w € CO(I,RY). Lett € I.

1. w is Holder of Hélder exponent o, 0 < o < 1, at point t if
Je>0,In>0st.V el |[t—t |<n=||wlt)—wlt)|<c|t—t]*,

where || - || is a norm on RY,

2. w is a-Hélder and inverse Holder with 0 < o < 1, at point t if

Je,C eR™, c<C,In>0st.V €I |t—t|<n
clt—=t"1"< fw(t) —w@)|[| <C 1t -1 |".

A complex valued function is a-Holder if its real and imaginary parts are a-
Holder. We denote by H*(I,R%) the set of continuous functions a-Holder. For
explicit examples of a-Holder and a-inverse Holder functions we refer to ([11],

p.168) in particular the Knopp or Takagi function.

2.2. The quantum derivative. — Let = € C°(I,R%). For any ¢ > 0, the
e-scale derivative of z at point ¢ is the quantity denoted by 2 : CO(I,RY) —
C%(1,C%), and defined by
DDE: = % [(djx +d_x) +ip(dfz — de_:r)},
where p € {1,-1,0,4, —i} and
xz(t + o€) — x(t)
€

d?z(t) =0 ,o==x, Vtel.




A NON-DIFFERENTIABLE NOETHER’S THEOREM 5

Definition 2. — Let x € C°(I,C%) be a continuous complex valued function.

For all e > 0, the e-scale derivative of x, denoted by D‘:‘f 1s defined by
Oz ORe(x) N iDglm(aj)

1 =

Ot Ot ot

where Re(z) and Im(x) are the real and imaginary part of x.

Let C0 .. (Ix]0,1], R?) be a sub-vectorial space of C°(Ix]0, 1], R%) such that

for any function f € CO . (Ix]0,1],R%) the limit hH(l) f(t,e) exists for any
€e—

conv

t € I. We denote by E a complementary space of C° . (Ix]0,1],R?) in

conv

C%(Ix]0,1],R%) and by 7 the projection onto C% ., (Ix]0,1],R%) by

conv

. 0
e Ccom)

(Ix]0,1,RHY e F — (Y

conv

(Ix]0,1], RY)
feonv + fE = feonw -
We can then define the operator (.) by
(.):C%Ix]0,1,RY) — F(I,R%Y
o Am(f)) st lima(f)(t,e).

Definition 3. — Let us introduce the new operator D% (without €) on the space
CO(I,R%) by:
Ox Ocx
2 — = .
©) = = (r(=0))
The operator \:1% acts on complex valued functions by C-linearity.
For a differentiable function z € CY(I,R%), 2= = 9 which is the classical
derivative. More generally if DDTIZ denotes STIZ = D% 0...0 D% and z € CF(I,RY),
k k
k €N, then 27 = &L,

The following lemma is an analogous of the standard Leibniz (product) rule

for non-differentiable functions under the action of D%:

Lemma 1 (O-Leibniz rule). — Let f € H*(I,R%) and g € HP(I,R?), with
a+p5>1,
O _of Og
(3) Dit(f‘g)_ﬂit'g—i—f.ﬂit'
We refer to [5] for the proof. Let us note that for § = «, we must have

1
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2.3. Non-differentiable calculus of variations. —

Definition 4. — An admissible Lagrangian function L is a function L : R x
R?x C? — C such that L(t, z,v) is holomorphic with respect to v, differentiable

with respect to x and real when v € R.

Let us consider an admissible Lagrangian L : RxR¢xC? — C. A Lagrangian
function defines a functional on C'(I,R?), denoted by

b
d
4 L£:C'I,RY)—-R, zelYI,RYr— / L(s,x(s),d—f(.s» ds.
a
The classical calculus of variations analyzes the behavior of £ under small
perturbations of the initial function . The main ingredients are a notion of
differentiable functional and extremal. Extremals of the functional £ can be
characterized by an ordinary differential equation of order 2, called the Fuler-

Lagrange equation.

Theorem 1. — The extremals x € CY(I,R%)of L coincide with the solutions
of the Euler-Lagrange equation denoted by (EL) and defined by

% BI; (t,x(t), dfif) (t)ﬂ _ gi; <t,a:(t), dzgf) (t)) . (EL)

The non-differentiable embedding procedure allows us to define a natural

extension of the classical Euler-Lagrange equation in the non-differentiable

context.

Definition 5. — The non-differentiable Lagrangian functional Lo associated

to L is given by

Oxz(s)
Ot

b
(5) Lo:CL(I,RY) =R, xECé(I,Rd)H/L(S,x(s), )ds.

where CL(I,R) is the set of continuous functions f € C°(I,R) such that DD—{ €
Co(1,C).

Let HY := {h € HP(I,RY), h(a) = h(b) = 0}, and = € H*(I,R?) with
a+0>1. A Hg—variation of = is a function of the form = + h, with h € ng.
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For x € H*(I,RY) and h € HY, we denote by DLp(z)(h) the quantity

lim Lo(x + eh) — La(z)

e—0 €

if it exists and called the differential of Lo at point x in direction h. A Hg—

extremal curve of the functional Ly is a curve x € HY(I,RY) satisfying
DLp(z)(h) =0, forany h e Hoﬂ.

Theorem 2 (Non-differentiable least-action principle)

Let 0 <a<1l,0< B <1, a4+ >1. Let L be an admissible Lagrangian
function of class C®. We assume that x € H*(I,R?), and Z£ € H*(I,R?). A
curve x € H(I,RY) satisfying the following generalized Euler-Lagrange equa-

tion

oL T oL x
= (ta(0), Dm(tt))—; (av(t,az(t), DD(:))> 0. (NDEL)

is an extremal curve of the functional (5) on the space of variations HOB,

We refer to 5] for a proof.

3. Group of symmetries and invariance of functionals

3.1. Group of symmetries. — Symmetries are defined via the action of

one parameter group of diffeomorphisms.

Definition 6. — We call {¢s}ser a one parameter group of diffeomorphisms
b5 : RE— R?, of class C' satisfying

1) ¢o =1d,

ii) @50 du = Pstu-

iii) ¢s is of class C* with respect to s.

Classical examples of symmetries are given by translations in a given direc-
tion u
bs: x>+ su, xR
and rotations

bs:x—x+s, xel0,2m]h
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In [4] we use the related notion of infinitesimal transformations, instead
of group of diffeomorphisms. They are obtained using a Taylor expansion of
yi(8) = ¢s(x(t)) in a neighborhood of 0. We obtain

d
yi(s) = 4(0) + - 2(0) + ofs).
As ¢o = Id, we deduce that denoting by &(t,z) = %(0) an infinitesimal
s

transformation is of the form

2(t) = x(t) + s§(t, 2(1)) + o(s).

3.2. Invariance of functionals and Noether’s theorem. — In this sec-
tion, we recall a classical result of E. Noether, [8, 7|, which provides a relation
between symmetries and first integrals, i.e. constants of motions. The classical
notion of first integral for a dynamical systems can be defined in various ways
leading to different generalized concepts of first integrals for non-differentiable

dynamical system. We consider the following one:

Definition 7 (First integral). — Let J : RxR? — R be a function of class
CY, then J is said to be a first integral of the ordinary differential equation
@(t) = f(t,z(t)), with f € CO(R x R%,R?) if for any solution x of the ordinary
equation we have

%(J(t,g;(t))): 0 foranyteR.

The Euler-Lagrange equation is a second order differential equation. There-
fore, a first integral for the Euler-Lagrange equation is a function J : R x RY x

R? — R such that for any solution x of the Euler-Lagrange equation, we have

d
a(J(t,x(t),jc(t))): 0 for any t e R.
Definition 8 (Invariance). — Let ® = {¢s}ser be a one parameter group

of diffeomorphisms. An admissible Lagrangian L is said to be invariant under
the action of ® if it satisfies:

©)  L(ta), %(t)): L (1 6ux (1), %((ﬁs(:v(t)))), Vs R, Vi€ R,

for any solution x of the Euler-Lagrange equation.
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A Lagrangian satisfying (6) will be called classically invariant under {¢s}ser-
The Noether’s theorem is based on the notion of invariance of Lagrangian un-

der a group of symmetries. Let us recall the classical Noether’s theorem, |7].

Theorem 3 (Noether’s theorem). — Let L be an admissible Lagrangian of
class C% invariant under ® = {¢s}secr, a one parameter group of diffeomor-
phisms. Then, the function
. dos(z) oo

ds s=0

is a first integral of the Euler-Lagrange equation (EL).

J:(t,x,v) — gf(t,x,v)

3.3. The non-differentiable case. — The generalization of the notion of
invariance of the Lagrangian to the non-differentiable case is quite natural and
is deduced from the non-differentiable theory in [5]. This leads to the following

definition.

Definition 9 (O-invariance). — Let ® = {¢s}scr be a one parameter group
of diffeomorphisms. An admissible Lagrangian L is said to be O-invariant
under the action of ® if

(7) Lt a(t), =2(8) = L(t, bs(2(t), %(gf)s(az(t)))), VseR, Viel.

Ot

for any solution x € CL of the non-differentiable Euler-Lagrange equation
(NDEL).

Remark 1. — The regularity assumption on the family {¢s}scr is related to
the classical definition of invariance (6). In our case, we can weaken this
assumption using for example family of homeomorphisms of class Cl. However,
as we have no examples of natural symmetries of this kind, we keep the classical
definition.

A natural question arising from the non-differentiable embedding theory of
Lagrangian systems developed in [5] is the problem persistence of symmetries

under embedding.
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Problem 1 (Persistence of invariance). — Assuming that a Lagrangian L
is classically invariant under a group of symmelries {¢s}ser. Do we have the

O-invariance of the Lagrangian L under {¢s}ser ?

This problem seems difficult. However, there exits one case where we can

prove the persistence of invariance.

Definition 10 (Strong invariance). — Let ® = {¢s}ser be a one parame-
ter group of diffeomorphisms. An admissible Lagrangian L is said to be strongly

mwvariant under the action of @ if
L(t,z,v) = L(t, ¢s(x), ps(v)), Vs €R, Vt €I, Yo € RY, Vo € R

As an example we can consider the following Lagrangian L, given by:
1

1
L(t,z,v) = 5”””2 I

If ¢, is a rotation, ¢s(z) := %z, then the Lagrangian L is strongly invariant.

Definition 11 (O-commutation). — Let ® = {¢s}secr be a one parame-
ter group of diffeomorphisms, such that ¢ : C* — C?. & satisfies the O-

commutation property, if

O Oz
(8) = (0s(2) =6s( 57 ), VseR.
Lemma 2 (Sufficient condition). — Let ® = {¢s}ser be a one parameter

group of diffeomorphisms, ¢, : C* — C%. If the Lagrangian L is strongly
mwvariant and © satisfies the O-commutation property, then the Lagrangian L

is O-invariant under the action of ® = {¢ps}scr.

Proof. — Let ® = {¢s}secr a one parameter group of diffeomorphisms. Let z
be a solution of the non-differentiable Euler-Lagrange equation. Let s € R,

applying definition 11 and condition (8), we obtain:
L(1,0sa(0), 55 (0s(a0)) = (1. 6,(2(0), 05(57 1))
=),

which concludes the proof. O
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Problem 2 (Commutation). — Let ¢ € C1(CY,CY%). Under which condition

do we have the O-commutation

O O

- — o = ?

5 (6@)=6(5; @)
Lemma 3. — Let ¢ be a linear map, then ¢ satisfies the property of O-
commutation.
Proof — As ¢ is linear on C¢, there exists a matrix A such that ¢ : & — A-z.

Hence, we have:

O6(z) :D(A.x):A'%:qb(

Ot Ot 0t

Oax
o)

O]

As a consequence, if L is strongly invariant under a linear group, then L is
O-invariant.
We finish this section with a technical lemma which will be usefull in the proof

of the non-differentiable Noether’s theorem.

Lemma 4. — Let ® = {¢ps}ser be a one parameter group of diffeomorphisms
bs 1 R* — R?, then we have

d 0O g/d
(9) (S (0s@®)) ) ls=0 = =7 (5 (95((1)) =0 ).

Proof. — Using a Taylor expansion of ¢5(x(t)) in s = 0, since ¢o(x(t)) = x(¢),

we obtain

60(2(1)) = 2(0) + 5 (802 lomo + 75, 2(0),

with liH(l) r(s,-) = 0. Then, since 5; is linear, we obtain
§—>

s(@ x d r(s,x
SOL0) B0 |8 (4, ) D)

Taking the derivative with respect to s gives:
d (O¢s(x(t)) O d O d (Or(s,z(t))
()= 5 (G @a®)lao)+ 5 (r(s,a () 4 (522 ).

then, for s = 0, we deduce

A (EEON| = D (L 0ufalt)aco) + o (r(s,2(0))) o

ds Ot T ot
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This concludes the proof. ]

4. Non-differentiable Noether’s theorem

As we have a notion of O-invariance of non-differentiable functionals, we
can look for an analogous to Noether’s theorem. This means that we need to
define the corresponding notion of first integrals for O-differential equations.
A generalization of definition 7 to non-differential curves comes from the non-

differentiable theory of [5], and leads to the following definition.

Definition 12 (Generalized first integral). — A map J : R x C? — C is

a generalized first integral of an ordinary O-differentiable equation

P20 _ ft, (1))

Ot
with f € CO(R x C%,C) if for any solution x

DEt(J(t,x(t))): 0 VieR.

A non-differentiable Euler-Lagrange equation is a second order O-differentiable

equation, consequently an associated generalized first integral is a function
J :R x R? x C? — C such that for any solution = of (NDEL), we have

DEt (7(t2(0), D;it))): 0 VieR.

Theorem 4. — Let L be a Lagrangian of class C?> O-invariant under ® =
{¢s}ser, a one parameter group of diffeomorphisms, such that ¢s : C* — C¢,
for any s € R. Then, the function

(10) J:(t,z,v) — g—i(t,:p,v) . d¢§ix)

15 a generalized first integral of the non-differentiable Fuler-Lagrange equation
(NDEL) on H*(I,RY) with 3 < v < 1.

|s:0

Proof. — Let x be a solution of the non-differentiable Euler-Lagrange equa-

tion. Let s € R. As the Lagrangian is O-invariant under @,

L(1,65(x(0)), = (8s(a(0))) )= L(1.2(0), S,2(0)) , Ve € 1.
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As a consequence, we obtain for any s € R

(1) @ (Lt SHos0)))) =0

On the other hand, we have for any s € R

%(L(f,qﬁs(x(t)),DEt(qu(x(t)))) gi( (I)).Cws;f’;@%i(*s(@).i(W),

where
xo(@) = (1.65(a(0), 52 (65(2))) ).
Since (9) holds, we obtain for s = 0

& (o) oo = S LD B a5, (2,

Therefore, using (11) and since z is a solution of the non-differentiable Euler-

Lagrange equation leads to

Ot

Asxz € HY, 2 i

1 we obtain

€ H* and 4 qbs, $¢ continuous, with 2« > 1, applying lemma

oL dos
DEt (av(t,x(t) Dt) bol® ;5( ) |s:0) = 0.

This concludes the proof. ]

5. Application

In [5] we define non-differentiable characteristics of a classical PDE. For the
Navier-Stokes equation these non-differentiable characteristics coincide with

critical points of a non-differentiable Lagrangian functional of the form
1
(12) L(t,a;,v) - 5”2_p(x7t)7

where z € R?, v € C% and t € R over H'/2. We refer to [5] for details.

Let d = 3, we now study the Lagrangian (12) assuming that p is invariant
with respect to the group of rotations around the vertical axis. With respect
to our work on non-differentiable characteristics of the Navier-Stokes equation,

this corresponds to consider the axisymmetric Navier-Stokes equations studied
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in [6]. Using the non-differentiable Noether’s theorem we have the following

result:

Theorem 5. — Let L be the Lagrangian (12) where p is assumed invariant
under the group of rotations ® = {¢pg}ecr around the vertical axis given by

R3 — RS,
(r,y,2) +— (xcosf —ysinf,zsinf + ycosb, z).

b0 :

Then the function

R x R3 x C? — C3,
(t7 (957?/7 2)7(Uxavyavz)) — _yUI +£U’Uy

J:

18 a generalized first integral of the non-differentiable Fuler-Lagrange equation
O (Ox
o () = Ve

over H* with 1/2 < o < 1.

Proof — First, we extend ® to C? trivially. As p is invariant under the group
®, and ¢y is an isometry for each § € R, the Lagrangian L is strongly invariant
under ®. Moreover, as ¢y is linear for each 8 € R, using lemma 3 we deduce that
the group @ satisfies O-commutation. Hence, applying lemma 2, we deduce
that L is O-invariant under the action of ®. We then apply theorem 4 to

conclude. O

This result can be extended using the same argument on rotations, to the
Lagrangian underlying the Schrodinger equation view as a non-differentiable
Euler-Lagrange equation over H 1/2 Indeed, in this case, the function p is given
by 1/v/22 4 y2 4 22 defined on R?\ {0} and is invariant under each groups of

rotations with respect to a fixed axis.

However, due to the limitation 1/2 < «, we cannot applied our result directly
to give more informations on the non-differentiable characteristic of the Navier-
Stokes equations or for the Schridinger equation. The constraint on « is mainly
due to the O-Leibniz rule.
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