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Abstract

We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-
duality Lie algebra of maximal supergravity in D dimensions, for 3 < D < 7. The level
decomposition with respect to the U-duality Lie algebra gives exactly the tensor hier-
archy of representations that arises in gauge deformations of the theory described by
an embedding tensor, for all positive levels p. We prove that these representations are
always contained in those coming from the associated Borcherds-Kac-Moody superal-
gebra, and we explain why some of the latter representations are not included in the
tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does
not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra.
Instead the Hodge duality relations between level p and D — 2 — p extend to negative
p, relating the representations at the first two negative levels to the supersymmetry
and closure constraints of the embedding tensor.
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1 Introduction

Gauged supergravity has generated much interest since it can be used to describe
compactifications of string theory, or possibly even M-theory, to lower dimensions.
Already thirty years ago a four-dimensional theory with an SO(8) gauge group was
constructed [1], and recently it has been shown that there exists a continuous one-
parameter family of such theories [2] (see also [3H9]). This development made use
of the embedding tensor approach, which has proven to be a powerful tool in the
systematic study of gauged supergravity in various dimensions [10-18].

We will in this paper consider gauged supergravity theories with maximal super-
symmetry in D spacetime dimensions, where 3 < D < 7. These theories are defor-
mations of the corresponding ungauged theories, which in turn can be obtained from
eleven-dimensional supergravity by dimensional reduction. The global symmetry



(or U-duality) that arises in the reduction is then broken by the deformation, which
promotes only a part of it to a local symmetry. The embedding tensor describes how
the corresponding gauge group Gq is embedded into the global symmetry group G.
Treating it as a spurionic object makes it possible to formulate the theory in a G-
covariant way, although the G-invariance is broken down to Gy as soon as the values
of the embedding tensor are fixed, and thus the gauge group specified.

The G-covariant formulation requires a hierarchy of p-form fields, transforming in
a sequence of representations of the global symmetry group G, or of its (complexified)
Lie algebra g = ¢11_p, which is simple and finite-dimensional for 3 < D < 7 [20-22].
This sequence can be considered as infinite, although the p-form fields themselves
collapse to zero whenever the number p of antisymmetric spacetime indices exceeds
the dimension D.

Remarkably, the tensor hierarchy can be derived from the Lie algebra g by ex-
tending it to either a Borcherds-Kac-Moody (BKM) superalgebra [23,24], or to the
Kac-Moody algebra ej; [24-30], both infinite-dimensional. Up to the spacetime limit
p = D, the representations are then found at the positive levels in the level decom-
position with respect to g or g @ sl(D), respectively (in the ej; case restricted to
antisymmetric s[(D) representations) This ‘empirical’ fact that was explained in [31].
The same representations appear in other contexts as well, where it is important to
know how the sequence continues beyond the spacetime limit p = D, for example
in exceptional generalized geometry [32-34]. It is also important from a superspace
point of view [35-37], since p-forms in superspace can be non-zero even if p > D.
However, it is less clear how the tensor hierarchy is related to the BKM superalge-
bra beyond the spacetime limit. A deeper understanding of its algebraic structure is
needed, something that we aim to reach in this paper.

The representations at levels between (and including) p = —-D +2 and p=D — 2
in the BKM superalgebra are ‘reflected’” in two different points at the p-axis: p = 0
and p = (D — 2)/2. With this we mean that the representation at level p is the
conjugate of both the representation at level —p and the one at level D — 2 — p. The
latter symmetry has a physical meaning in the sense that it corresponds to the Hodge
duality between p-forms and (D — 2 — p)-forms. The symmetry around zero has of
course no such meaning in the interpretation where only the positive levels correspond
to p-forms, but on the other hand it is related to a local symmetry, corresponding
to the maximal compact subgroup of G, that makes this interpretation possible as a
gauge choice. When going to levels p > D — 1 the symmetry around (D — 2)/2 gets
broken, whereas the symmetry around zero remains, being a fundamental property of
the algebra.

In this paper we will investigate the possibility of keeping the symmetry around
(D — 2)/2 instead of the one around zero. Our investigations result in an algebra
where the embedding tensor can be interpreted as the components of an element © at
level —1 that squares to zero, {©,0} = 0, and the intertwiners that define the tensor



hierarchy [38,[39] are then simply the components of the adjoint action of ©. As a
consequence, the representations at all positive levels in this algebra exactly coincides
with those coming from the tensor hierarchy. Furthermore, we show that they are
always contained in the representations coming from the BKM superalgebra. There
are representations in the level decomposition of the BKM superalgebra that the tensor
hierarchy misses (not only for D = 3) but never the other way around.

Since the algebra that we introduce gives exactly the tensor hierarchy, we call it
a tensor hierarchy algebra. In our construction it depends on an arbitrary simple
finite-dimensional complex Lie algebra g, a certain extension of g to an affine Kac-
Moody algebra gk, and an integer D > 3. We are particularly interested in the cases
g = e11_p corresponding to maximal supergravity in D dimensions, and many of our
results can be obtained explicitly for each of these cases, but we make an effort to be
as general as possible.

This paper is organized as follows. We start with a very brief review of the em-
bedding tensor formalism and the tensor hierarchy in section [2, to give a physical
motivation to the mathematical results in the rest of the paper. Section [3| then pro-
vides the necessary tools for the construction and study of the Lie superalgebras that
we consider in the following two sections: The BKM superalgebra in section [ and
the tensor hierarchy algebra in section [} We end with some concluding remarks in
section [0} A few proofs are relegated to appendix [A] and some useful formulas for the
cases g = ¢;;_p are collected in appendix

2 The tensor hierarchy in gauged supergravity

In this section we will very briefly review how the tensor hierarchy arises in the embed-
ding tensor approach to maximal gauged supergravity. We will follow [38] and refer to
this paper (and the references therein) for more information. The section is a slightly
shortened and rewritten version of section 2 in [31].

We start with the vector field in D-dimensional maximal supergravity, which trans-
forms in an irreducible representation r; of the global symmetry group G, or of the
corresponding Lie algebra g. We write the vector field as A,™, where the indices
M are associated to ry and p = 1,2,..., D are the spacetime indices. By the gauge
deformation, a subgroup Gq of the global symmetry group G is promoted to a local
symmetry group, with the vector field as the gauge field. Accordingly, the Lie algebra
of the gauge group is spanned by elements X ,,, with an r; index downstairs. How-
ever, the elements Xy, need not be linearly independent, so the dimension of the gauge
group G can be smaller than the dimension of r;.

We let t,, be a basis of g, with an adjoint index a that we can raise with the inverse
of the Killing form. Since the gauge group Gg is a subgroup of G, the elements X,
must be linear combinations of ¢, and can be written X = O ,*t,. The coefficients



of the linear combinations form a tensor ©* which is called the embedding tensor
since it describes how Gg is embedded into G.

It follows from the index structure of the embedding tensor that it transforms in
the tensor product of Ty, the conjugate of r;, and the adjoint of g. This tensor prod-
uct decomposes into a direct sum of irreducible representations, but supersymmetry
restricts the embedding tensor to only one or two of them. We will refer to this restric-
tion as the supersymmetry constraint. In addition, gauge invariance of the embedding
tensor leads to the condition

0= 6m(On") = —Or" (ts)A"OP" + O " f5,°ON", (2.1)
which contracted with ¢, turns into
[X/Vl? XN] - (XM)NPXP7 (22)

and thus ensures that the gauge group closes under the commutator. It is therefore
called the closure constraint. In the components (X )n” = O (ta)n” look like
structure constants for the gauge group, but because of the possible linear dependence
in the set of elements X, the components (X ()a” are in general not antisymmetric
in the lower indices. Only when we contract (X )" with another Xp the symmetric
part vanishes.

Before proceeding we want to make the reader aware of our conventions, which
result in a different sign of the first term on the right hand side of , and of the
only term on the right hand side of (2.2)), compared to [38] (and many other references).
To obtain agreement with [38], (t4)A¢" should be replaced by —(t, )" everywhere.
(Unfortunately this sign was missing in [31].)

When we gauge the theory we replace the partial derivatives with covariant ones,

0, — D, =0, — gAMX 4, (2.3)

where g is a coupling constant. Consistency of the theory then requires a hierarchy of
p-form fields Am...uPMl'“MP which besides the p antisymmetric spacetime indices also
carry p indices associated to ry, and thus each transforms in a subrepresentation r,
of the tensor product (ry)?. Each (p + 1)-form field A, ..., ,,M"Mr+1 arises in con-
tributions to the gauge transformation of the p-form field strength via an intertwiner
y MMy Ni--N,., Where the upper and lower set of indices correspond to the repre-
sentations r, and r,;1, respectively. These intertwiners are defined recursively by the

formula

Y MM MMMy} g (Mry Mo M)

NiNppr = (XN NN NowNppr  (24)

and the initial condition

VP o = (Xan” + (X", (2.5)



where the angle brackets in (2.4) denote projection on r,. The lower indices of the
intertwiner YMl"'/\/‘P/\/l.../\/p+1 then define r,,; C r, X r; so that, by definition,

YMl"'Mp _ YMl'“MP

NiNps1 (N1 Np)- (2.6)

(Obviously we also have Y Mt Moy. = YMiMe) o) The formulas 1}
and (2.5)) define a sequence of representations r, of g for all positive integers p, also
for p > D since no spacetime indices enter. The only input is g itself, r; and the
supersymmetry constraint (which is needed to determine ry). Below we list g and r,
for3< D <T7and1<p<D [3840].

D 1] r Iro I3 ry Iy Ig ry
— _ — 5+ 45
7 ay 10 5 5) 10 24 15 + 40
+70
10 + 126,
6 05 16, 10 16, 45 144,
+320
B 1728
) ¢6 27 27 78 351
+ 27
8645
4 ey 56 133 912
+133
147250
3 es 248 3875
+ 3875

Although no spacetime indices enter in the formula , the table shows that the
representations know about spacetime. The duality between p-forms and (D — 2 — p)-
forms is related to conjugation of the corresponding representations, T, = rp_as_,.
Furthermore, rp_ is always the adjoint adj of g, and the last two representations in
each row are related to the constraints of the embedding tensor: Tp_; is contained
in the subrepresentation of adj x r; in which the embedding tensor must transform
according to the supersymmetry constraint, and rp is the representation in which the
closure constraint transforms.

For each D the sequence of representations r, can be obtained from a graded Lie
superalgebra that we call a tensor hierarchy algebra, and denote by 7. It can in turn
be constructed from a BKM superalgebra B, which also directly defines a sequence of
representations s, such that r, C s, (and thus r, = s, if s, is irreducible). However, it
is not always true that r, = s,, as can be seen for D = 3 by comparing the table above
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with the one in appendix (where also the Dynkin labels of the representations
are written out). In order to explain this in detail, we need to switch to a more
mathematical point of view.

3 Graded Lie superalgebras

Any Lie superalgebra is by definition a Z,-graded algebra, but when we talk about
graded Lie superalgebras in this paper we assume that the Z,-grading is refined into
a Z-grading, consistent with the Zy-grading. For each of the two gradings there is a
decomposition of the algebra into a direct sum of subspaces, labelled by the elements
in the corresponding set. Whenever G is a graded Lie superalgebra, we will write these
subspaces as G,) for p € Z,, and G, for p € Z. Thus

G=G0BGu =BG 1®GBG D, (3.1)

and consistency means that G, C G, whenever p = ¢ (mod 2). An element that
belongs to one of the subspaces of a grading is said to be homogeneous, and for the
Zy-grading we then write || = p if € G).

We write the supercommutator of any two elements x and y as [x,y]. If z and y
are homogeneous elements we may replace the supercommutator by the commutator
[, y] or the anticommutator {z,y}. It then satisfies the (anti)symmetry

[[ZE,y]] = _(_1)|$Hy|[[y7x]] (32)

and the Jacobi identity

[[l‘, [[yv Z]”] = M[L’, y]]? Z]] + (_1)‘$Hy|[[y’ [[J}, Z]”] (33)

In a graded Lie superalgebra the supercommutator respects not only the Zs-grading,
[G): G@)] = Gp+q) (mod 2), but also the Z-grading, [Gy, G;] = Gp+q. In particular the
adjoint action induces a representation of the subalgebra Gy (which is an ordinary Lie
algebra) on each subspace G,,.

We will let G+ denote the direct sum of all subspaces G4, with & > 0. Furthermore,
it will be convenient to denote by Gy4 the direct sum of all subspaces G1; with & > 0,
and to let Go, denote the direct sum of all subspaces Gy with k£ > 2.

3.1 The universal graded Lie superalgebra

For any vector space Uy, there is an associated graded Lie superalgebra U (U; ), analo-
gous to the universal graded Lie algebra introduced by Kantor [41], and thus we may
call U(U;) the universal graded Lie superalgebra of U;. Except for a slight change



in the definition of the supercommutator, and a sign change in the Z-grading, the
construction below was given in [42] (in the context of three-algebras).

The subspaces U (U )y for k < 1 are defined recursively, starting with U (U;); = Uy,
which enables us to write U(U;) = U. For each k > 0, the subspace U_j is then
defined as the vector space of all linear maps U; — U_;,1. Thus Uy = End Uy, and
U_; consists of linear maps U; — End U;. The supercommutator on the subalgebra
Uy— is defined recursively by

[z,y] = (ad* y) oz — (—=1)W¥(ad* ) o 9, (3.4)

where ad” denotes adjoint action from the right, (ad* z)(y) = [y,z]. (It may seem
more natural to employ the usual adjoint action from the left, and this is how the
associated graded Lie superalgebra was defined in [42], but the above choice will turn
out to be more convenient for our purposes here.) The Jacobi identity on Uy_ can then
be shown to hold by induction. The subspaces Uy for k > 2 and the supercommutator
on the subalgebra U, are defined such that U, is the free Lie superalgebra generated
by U;. The supercommutator [z, y] for x € Uy and y € Uy_ is defined as y(z) if
x € U;. It can then be extended to any x € U, by the Jacobi identity.

Now let V_; be a subspace of U_y, and let V(U;,V_1) be the subalgebra of U
generated by U; and V_;. We write V(Uy,V_1) = V and thus U; = V5. An ideal H of
G is graded if it is the direct sum of all subspaces H, = H N G,. Let D, be the direct
sum of all graded ideals of V' and set

V'(Uy, V1) = V/D,. (3.5)

The plus sign indicates that D, is automatically contained in V.

The BKM superalgebra B and the tensor hierarchy algebra 7 that we will consider
next are both special cases of V'(U;,V_1) with the same vector space Uy, but with
different subspaces V_; C U_;.

4 The Borcherds-Kac-Moody superalgebra

4.1 Chevalley-Serre construction

The BKM superalgebra B is an infinite-dimensional extension of a simple finite-
dimensional Lie algebra g, with rank r and Cartan matrix A;;, where 7,5 =1,2,...,7.
We then extend A;; by an extra row and column to a matrix A;;, which will be the
Cartan matrix of B, where I,J =0,1,...,r.

We require that the diagonal entry Ag is equal to zero and that the off-diagonal
entries are non-positive integers with Ag; = A;g such that the determinant is given by

D -1

detAU:—D 9




for some integer D > 3 (the reason for this is given by Theorem below).

Given its Cartan matrix A;;, the BKM superalgebra B is the Lie superalgebra
generated by 2(r + 1) elements e;, f; € By and eg, fo € By modulo the Chevalley
relations

(hr,e5] = Apsey, [he, fil = —Arsfr, ler, fi] = 0rhy, (4.2)
and the Serre relations
{eo, 0} = {fo, fo} = (ad €)' 7 (e;) = (ad fi)' "™ (f;) = 0. (4.3)

where h; = [er, fi] € B). It follows from the Chevalley relations that the
Cartan subalgebra, spanned by the hy, is abelian, [h;, hy] = 0.

We stress that B is only a very special case of a BKM superalgebra, which in general
can have more than one odd simple root (corresponding to eg and fy here), and other
possible values of the entries in the Cartan matrix. Accordingly, the Chevalley-Serre
relations of a general BKM superalgebra are more involved than —. We also
mention that general BKM superalgebras (of finite rank) in turn are special cases
of the contragredient Lie superalgebras introduced in [43,44]. For more information
about BKM superalgebras, see [45].

The Dynkin diagram of g can be extended to a Dynkin diagram of B by adding
an extra node, corresponding to the row and column that we add to A;;. We paint
it black in order to distinguish it from the other nodes, which we let be white. (This
‘painting’ of nodes follows [23]. Considering B as a contragredient Lie superalgebra,
with the conventions of [43,44], the black node would instead be drawn ®, and called
‘gray’. See also [46].) The off-diagonal entries Ay; = A;p of the Cartan matrix can be
encoded in the Dynkin diagram by letting |A;o| be the number of lines between node 4
and node 0 (the black one). This way of extending the Dynkin diagram is illustrated
for g = e11_p below.

O ---0—0—0—=0

0 1 7—D 8—D 9-D 10—-D

If we replace the black node with a white one, and consider it as the first one in
a sequence of (D — 2) nodes that we add to the Dynkin diagram of g, each of them
connected to the next by a single line, then we obtain the Dynkin diagram of a Kac-
Moody algebra ggkyr. The following proposition about ggy is the reason for requiring

(4.1) above.

Theorem 4.1. For any integer D > 3, the Kac-Moody algebra gk is affine if and
only if (4.1)) holds.



Proof. Let di (kK > 0) be the determinant of the Cartan matrix obtained by adding
k nodes to the Dynkin diagram of g. It is easy to verify the recursion formula

dk+2 - 2dk+1 - dk (44)
and show that dp_o = 0 if and only if (4.1]) is satisfied. The condition that the de-

terminant of a Cartan matrix be zero is necessary for it to be affine, but in general
not sufficient. To show that it is actually sufficient in this case, we use the fact that
a symmetrizable Cartan matrix A, obtained by adding a node to a Dynkin diagram
of a finite Kac-Moody algebra, is either finite (if det A > 0), affine (if det A = 0) or
Lorentzian (if det A < 0) [47] (see also [48]). The Cartan matrices that we consider
are symmetrizable since we start with a Cartan matrix which is finite (and thus au-
tomatically symmetrizable [49]) and then extend it symmetrically. If we now assume
that dp_o = 0, then it follows from that d, > 0 for 0 < k < D — 3, since we know
that dy > 0. One can then show by induction that the Kac-Moody algebra obtained
by deleting the last node from the Dynkin diagram of gy is finite, and it follows that
gk is affine. O

There is always at least one possibility of adding a black node to the Dynkin diagram
of g such that holds, giving as gxu the affine extension of g, with D = 3. But
for example if g = e¢g or g = ¢; we can also let gy be eg, the affine extension of eg
(with D =4 and D = 5, respectively) instead of the affine extension of g itself.

We consider B as a graded Lie superalgebra with the Z-grading such that ey € B;
and fy € B_1, whereas e;, f; € By (and thus h; € By). We let s, be the representation
of g on B, given by the adjoint action,

pi 8= End By, s,(2)(y) = [z, 4] (4.5)

It follows from the Chevalley relations that s, and s_, are conjugate to each
other, s_, =5,. When g is the global symmetry algebra of maximal supergravity in
D dimensions, s; is the representation in which the vector field transforms, that is, ry
in the tensor hierarchy. Thus we can use the r; indices introduced in section [2, and
let By and FM be bases of B; and B_1, respectively, where M = 1,2, ..., dimr;.

As shown in [52], the subalgebra By is the direct sum of g and a one-dimensional
Lie algebra spanned by an element h in the Cartan subalgebra. Furthermore, the
commutation relations of the basis elements Eyy and F* (normalized appropriately)
with each other and with ¢* and h are

1

S

{Esm, PN} = (ta)adV 1 + mCSMNh, 1%, 7] = P, [t h] =0,
[, Ex] = ()™ E, [h, Em] = =(D — 1) Ewm,
[t FN] = —(t*) N FM, [h, FN] = (D — 1)FV. (4.6)
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4.2 Construction from the universal graded Lie superalgebra

As an intermediate step in the construction of B we can first construct a graded Lie
superalgebra A with the same generators, grading and Chevalley relations as B, but
with the Serre relations restricted to

(ad €)' ™" (es) = (ad fi)' =" (fs) = 0. (4.7)

For J = j = 1,2,...,r these relations are the Serre relations for the g subalgebra,
while for J = 0 they fix the subspaces AL;.

Let C; and C_ be the ideals of A generated by {eq,eq} and {fo, fo}, respectively,
the elements which are set to zero in the remaining Serre relations for B , so that
B=A/(C,®C_). It follows from the relations

[fh {607 60}] = [61’ {f0> fO}] =0 (48)

in A that C+ C A., and thus Ay = By, It is easy to see that {A;, A1} = Ay, so
A is generated by A4, and one can furthermore show that the subalgebras A, are
freely generated by A4;.

For a Kac-Moody algebra, the Gabber-Kac theorem [49,/50] states that the Serre
relations generate the maximal ideal of the ‘auxiliary algebra’, generated by e; and f;
modulo only the Chevalley relations, that intersects the Cartan subalgebra trivially.
This is true also for a Borcherds superalgebra [45/51], and implies in particular that
C, is the maximal graded ideal of A contained in Ay, and that C_ is the maximal
ideal of A contained in Ay_. We are now ready to prove the following theorem.

Theorem 4.2. Let ¢ be the injectiv linear map from B_y to U(By)_1 given by
o(FN) : By ad” {En, FV}. (4.9)
Then B is isomorphic to the subalgebra V'(By, p(B-1)) of U(By).

Proof. We can extend ¢ to a homomorphism A_ — V_, where V' = V(By, ¢(B_1)).
Then it can be shown, in the same way as in [41] (Lemma 5) that ker ¢ is the maximal
ideal of A contained in Ag_, and thus ker ¢ = C_. It follows that Ay_/C_ is isomor-
phic to V_. Furthermore, A, = V., since both are generated freely by A; = By, so
A/C_ is isomorphic to V. It is clear that any graded ideal of A contained in Ay, is
also an ideal of A/C_ (via the natural embedding of A/C_ into A), and also the other
way around. By the definition of V' = V'(By, ¢(B_1)), it follows that V"’ is isomorphic
to (A/C_)/C,, which in turn is isomorphic to A/(C_ & Cy) = B. O
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5 The tensor hierarchy algebra

In the preceding subsection we considered V'(B1,V_1) in the case where V_; is a
subspace of U(By)_1 isomorphic to B_;, with ¢ as the vector space isomorphism (and
in fact also isomorphic to Bj, since there is an isomorphism between B_; and B5;).
In that case the Lie algebra {V_y,B,} is isomorphic to a direct sum of g and a one-
dimensional Lie algebra (corresponding to the element h). Now instead let V_; be a
subspace of U(B1)_; such that

(i) the Lie algebra {V_q,B;} is isomorphic to g,
(ii) it satisfies the condition V'(By,V_1)s C By, and

(iii) it contains at least one element © such that {©,©} = 0 and the subspace {©, B, }
is a non-abelian subalgebra of g.

Let T_1 be the direct sum of all such V1 CU(By)_1, and set V'(By,7_1) = T. Then
we call T a tensor hierarchy algebra.

We will show that when g = ¢;;_p the representations t, of g on 7, given by the
adjoint action,

60 0= End T, t,(x)() = [r.9] (5.1)

for all p > 1, are precisely the representations r, that arise in the tensor hierarchy of
gauged maximal supergravity in D dimensions. We recall that these representations
are given for p > 2 by the lower indices of the intertwiners YMi~Mv . N,11, Which
in turn are defined by the recursion formula and the initial condition ,
taking into account the supersymmetry constraint on the embedding tensor. The
representation that we start with, for p = 1, is always the same for the tensor hierarchy;,
the BKM superalgebra B, and the tensor hierarchy algebra 7, that is r; = s; = t;.
What we will show is that 7 gives exactly the tensor hierarchy representations, and
that these are contained in the representations coming from B, that isr, =t, C s,
for all p > 1. (The use of the notation r,, s,, t, here should note be confused with
those in [31,52].)

As the reader might have guessed, for g = ¢;;_p the element © above corresponds
to the embedding tensor, and the subalgebra {©, B;} of g is the Lie algebra of the
gauge group Go C G. Furthermore, we will see that the conditions 75 C B and
{©,0} = 0 precisely encode the supersymmetry constraint and the closure constraint,
respectively. Thus the condition {©,0} = 0 in the third assumption above already
implies that {©, B;} is a subalgebra of g, so we only add the condition that it be non-
abelian. The condition 73 C B, will be referred to as the supersymmetry constraint
also in the general case, although the connection to supersymmetry is so far established
only for g = e;;_p. We will have a closer look at it in the next subsection.
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5.1 The supersymmetry constraint

First, let V_; be a subspace of U(B;)_; that is only required to satisfy the first con-
dition the preceding subsection, that the Lie algebra {V_y,B;} be isomorphic to g,
without containing a one-dimensional subalgebra commuting with g. As before, set
V = V(By,V_1). We can introduce a basis of V_;, where the basis elements ®M,, are
defined by

(I)MOC(EN) = {ENa (I)Moz} = 5NMtoc- (52)

As the index structure indicates, and as can be checked by computing [t*, &M 5] in V/,
the representation of g on V_; is r; x adj. Without computing this tensor product
explicitly we can distinguish two irreducible representations that it always contains.
First, T, itself, with the interwiner (%), and second, the irreducible representation
whose highest weight is the sum of the highest weights of r; and adj. We will denote
them by rg and rp,, respectively, and the orthogonal complement to rg+rp, in 7 X adj
(which need not be irreducible) by ry. For g = ¢;_p, the representations rg, ryp, rp,
are given by the table below.

D g ry adj Ty =rg Iy Iy,

7 ay 10 24 10 15+ 40 175
6 5 16, 45 16, 144, 560,
5 ¢ 27 78 27 351 1728
4 ¢r 56 133 56 912 6480
3 e 248 248 248 1+ 3875 4 30380 27000

For g =¢;;_p and D = 3,4, 5, the highest weight of ry; is the highest weight of T,
plus the highest root of the g = ¢19_p subalgebra obtained by removing the node in
the Dynkin diagram of g to which the black one is attached in the Dynkin diagram of
B. When D = 7 this leads to a nonsimple Lie algebra es = a; @ as, and ry; is the direct
sum of two irreducible representations, corresponding to the two simple subalgebras
a; and a;. When D = 3 we get 3875 from the ¢; subalgebra of ¢g, but as can be seen
in the table there are two additional irreducible representations in ry;. Since in fact
one of them is smaller than rg and the other is larger than rp, the notation rg, ry,
ry, is not really appropriate in this case. Alternatively, one can decompose the tensor
product 248 x 248 into its symmetric and antisymmetric parts,

(248 x 248), = 1 + 3875 + 27000,
(248 x 248)_ = 248 + 30380. (5.3)
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We go back to the general case, and the direct sum r; X adj = rg + ry + rp.
The question is how much of this reducible representation is included in t_;, or in
other words, how much of V_; we can include in 7_; without violating the condition
To C By. Werecall that V! = V/(B;, V_;) is obtained from V' = V(B;, V_;) by factoring
out the maximal graded ideal contained in V5. In view of Theorem [4.2] the condition
T2 C By can be put differently: the part of V5 that commutes with 7_; must contain
the part of V5 that commutes with ¢(FM) for all FM. Thus we need to study also the
representation of Vo = g on V5 given by the adjoint action, and the irreducible parts
that it decomposes into. Since V, is freely generated by Vi = By, this is the symmetric
tensor product of two r; = s; representations. It decomposes into a direct sum of s,
(corresponding to the part By C V5), and its orthogonal complement, which we denote
by s;. Thus

(I'1 X I'1)+ =89+8S]. (54)
Since [@M,,, {Ex, Ep}] = 20(v™(ta)p)©Eo, we need to study the expression
PMor” (PLnpT 0s%(ts) 79, (5.5)

where P is the projector corresponding to an irreducible representation r contained in
the tensor product r; x adj, and P, is the projector corresponding to s .

In appendix [A] we show that rg and ry, cannot be contained in t_;, and if D = 3
(so that r; = r; = adj), we show that t_; must be contained in the symmetric part
of the tensor product r; X adj = r; x r;. For g = ¢;;_p, these two conditions turn
out to be equivalent to 75 C By and thus determine t_; completely. It remains to see
whether this equivalence holds also in the general case.

Thus for g = ¢;3.p and 4 < D < 7 we have t_; = r\, whereas for g = ¢g
the second condition removes the 30380 in ry; and leaves us with t_; = 1 + 3875.
This result can be verified explicitly by inserting the expressions in appendix [B| into
above. Remarkably, it agrees with the constraint that supersymmetry puts on
the embedding tensor in maximal gauged supergravity, so that the embedding tensor
always transforms in the representation t_; for g = ¢y;_p.

5.2 The tensor hierarchy again

Knowing t_; we can compute the representations t, for any p > 2. The subspace 7,
is spanned by elements

Eptrent, = [Ent: [Brtos - [Enay s Eng ] 1. (5.6)

To see which subrepresentations are present in t, C (r;)?, we write

[[q)[Majv ENl---Np]] = TMa./\/’y--./\/'plepp_lEP1---'Pp717 (57)
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where ®*,| denotes ®M, projected on t_;. The lower indices N, Na, ..., N, of
the structure constants on the right hand side of determine the representation
t, in the following sense. If (and only if) the expression is zero when the indices
are projected on some subrepresentation of (r;)?, then it is not present in t,, since
otherwise Fjy,..pm, projected on this representation would generate a non-zero ideal
of T contained in T .

Elaborating the left hand side of , we get, using the Jacobi identity,

[2Ma), Exiony] = HO™a)s Eni}s Bnaeny] = [Bans [0, Exgony ]
s Mt D, By
— TMQN2...NPP2'"PP’1ENlpT..ppil
= (a3 M (Fa) g, T P
PrpM PQ"'PP71>EP1P2~~PP,1- (5.8)

— On, ANz N,

For the structure constants that determine the representations t, we thus end up with
the recursion formula

TMOC/\/1.‘./\/;,731"'7%‘1 = O, M (ta) )Nz, PrPo-1) _ 5 <P1|TMQN2...NP|P2"'PP‘1> (5.9)
(where the angle brackets denote projection on t,_), and since
(@0, {Ew, Ep}] = 26,™ (ta)p) B (5.10)
we have the initial condition

TMoapC =250 M (ta))p) <. (5.11)
For g = ¢;;_p we can contract TMM\/I.../\/fl'“PP*1 with the embedding tensor © \(* in
the first two indices. Since the embedding tensor transforms in t_; we do not loose
any representation by this contraction. If we now set

Yy PMye My = OMT MMy 1t (512)

we obtain exactly (2.4) and (2.5)) from (5.9) and (5.11)), proving that t, = r, for all

p > 1. We will henceforth only use the notation r, for these representations, and
extend it by setting r, = t, also for p <0.

Thus the embedding tensor can be considered as an element © = 0 ,,*®M_, € T_4,
and the intertwiners YA Ne M,.. can be considered as the components of the odd
superderivation (ad ©), which acts as

[0, Eatyonyen] = YN ity B, - (5.13)
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In section we will see that the closure constraint forces this element to square to
zero, {©,0} = 0.

We end this subsection by showing that r, C s, for all p > 1. Both B, and 7 are
subalgebras of V (the free Lie superalgebra generated by Bj) obtained by factoring
out ideals,

B, =V./C,, T =Vy /Dy, (5.14)

where C, is generated by {eg, e} (see section [4.2)), and Dy is the maximal graded ideal
of V.= V(B,V_;) contained in Va;. The condition 75 C By means (C; )z C (D4 )o.
Since C. is generated by (C )2, we have (C4+), C (D4), and thus r, C s, for all p > 2.

As long as s, is irreducible, we have r, = s,, but otherwise we may have r, # s,. In
the case of maximal supergravity in D = 3 dimensions (g = eg) this happens already
for p = 2, with ro = 3875 and s, = 3875 + 1. This in turns leads to a 248 in sg
which is missing in r3. But this is nothing special for D = 3, also for D =5 and p =6
the tensor hierarchy misses a singlet, and we suspect that there are more examples for
other D and sufficiently large p.

5.3 The end of the hierarchy

We will now see what happens when we approach, and exceed, the spacetime limit
p = D, which is the end of the tensor hierarchy in the sense that p-form fields with
p > D are zero. (The title of this subsection is inspired by [39].)

Because of the connection between B and the affine Kac-Moody algebra giy de-
scribed in the section [4.1] there is an ‘affine structure’ also in B in the sense that
sp—2 = adj, and sp_o_, is conjugate to s, for 1 < p < D — 3. This was explained
in more detail in |46] (explicitly for g = e;1_p) using the results of [52]. In partic-
ular, sp_3 = 5, and there is a basis EM of Bp_s with a normalization such that
[En, EN] = (ta)amV E®, where E® is a basis of Bp_y (and the same holds in 7). Now
we have

{Ex. Ep}, E9] = 2(t5) [ Eny, E°]. (5.15)

As in section [5.1], let r be an irreducible representation contained in the tensor product
T; x adj, with a corresponding projector P (acting from the left). Then the conjugate
T is contained in r; x adj, and P acting from the right corresponds to r. In order to
see whether T is allowed in tp_; or not, we thus need to study the expression

(PP (t5)7%0s" P or” (5.16)

If this is not zero, then the part of [En, E*] corresponding to T must be zero, since
(P )ap°T{Es, BEr} = 0. As we saw in section the representations r for which
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is zero are (by definition) exactly the irreducible representations that are in-
cluded in r_; = t_q, so we have sp 1 C T_y. (In fact sp_y =T_; for g = ey;_p, and
probably also in the general case.) Since in turn rp_; C sp_; we conclude that rp_,
the representation in which the (D — 1)-form field transforms, is contained in T_;, the
conjugate of the representation in which the embedding tensor transforms.

5.4 Beyond the end

For the subspaces Tp_24, with p > 1 we can introduce a basis

Eryont,” = By [Emos -5 [Emy_ys [Ea, EVD] - - 1] (5.17)
Just replacing the indices in section [5.2] we can then write
[, Epyop, ] = TM apyp, 715 Enyn, (5.18)

and elaborate on the left hand side,
[®™M,), Ep,..p, ] = (™), Ep.}, Epy.p,’]
o [[EP“ HCI)[MO‘J’ EP2-"7’p71’YM

= 5731 (M (taJ)PQWPP’YNlmNPAﬂ EN1~~~NP716
. 5P1N1TMapzmppyNgmNp,lB EN1N2-~~NP716a (5‘19)

so that we get the recursion formula
TMaP1'“73'p7N1mNp715 = 5731 M (tOzJ)P2~"73p’YN1MNP715
— 6p, MITM p, L p, TNt (5.20)

for p > 3, where the ‘diagonal’ brackets around the indices N1, N> ..., N,_1, 5 denote
projection on Tp_si(p,—1). For p =2 and p = 1 we similarly have

TMpo"N 5 = 6pM(ta) 0"V 5 — pMITM, 07 ),

TM o p 5 = 0p ™M fo 75 — TM N (ts) Y, (5.21)
where TMQQ”V gand T M By are defined by
[[(I)[Maj ’ EQW]] — TMaQW/BEﬁa H(I)(Moda EB]] — TMo/BNEN- (5‘22)

By induction it is clear that all the structure constants TM, u7,... Nppl“'PP* are invariant

tensors of g (also when we change basis of 7, for p > D — 3), and then T™,” y, must
be a linear combination of the projectors of the irreducible representations contained
in rp_;. In section [5.6| we will see that all the coefficients in this linear combina-
tion are in fact equal to one, TM 5y = oM, JB . With this equation as an initial
condition, the recursion formulas — determine all the structure constants
TMapl...pp'VN 1o Np—1 3, which in turn determine the representations r(p_g)4,, not only
for p = 1 and p = 2, but also for arbitrarily large p, beyond the end of the tensor
hierarchy.
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5.5 Beyond the beginning

Asin section we let V_; be a general subspace of U (;)_1 such that the Lie algebra
{V_1, B} is isomorphic to g. We can extend the basis ®M, of V_; to a basis of V_,
where ®M1-M»  is a basis of the subspace V_, for p > 1, defined recursively by

PMUMp (By) = S M @Mz Mp (5.23)

Let us furthermore denote projection of ®1Me_ on r_, by MMy |, so that this
is a basis of 7_, C V_,, and define the structure constants S™M M Ne-155  p 7 by

[@Mq), @M Nt g ] = MMMt TP (5.24)

Thus the structure of the contracted indices in this equation determines the repre-
sentation r_,. We can obtain a recursion formula for the structure constants by first
computing
[0, @] (Ep,) = [Ep,, [0, @140 4]]
_ [{EP1; CD[MaJ}a @Nl‘-'./\/pflﬁ:l
- [[q)[MaJa HEP17 (I)NlmNp_lﬁ]H]

= 5791 M [[tCMJ7 (I)NI..‘Np_lﬁ]]
M[@IM,), Voo ]
YN N

— bp,

(M(taj 157)2'”7317“/(1)732"-7’117

_ 57)1/\/1 SMQNQ---NP,16P2“.PPV q),qu.pry, (525)

= 5p,

for p > 3, which then gives

§M NN PieNoa

M
appy, ) = 0p M (g B8Py Py

— Op, (Nl\SMaWz'"Np ¥

1B Po Py
= - 6771 M (taJ )7)2“'7%7/\/1--~Np716

— 0p, ’—Nl‘SMQ|N2.”NP715JP2'”,P17’Y' (5.26)
For p = 2 we have

{@Mon (I)NB}(EP) = [Ep, {(I)Mow CDNB}]
= [{Ep, @M.}, 0V + [{Ep, @5}, &M,
= (= 0p™(ta) ™57 + 0p™ fup 00N
— 69" (tg) ™00 + 057 f5a700™) D2, (5.27)
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which gives

SM N epa™ = — pM(ta)) 0™ 57 + 6p M fuy 570"
— 5p™ (t5))0™MBa) + 0p™ f5)10700™M. (5.28)

We can extend the notation by introducing S™M, 5p” and S™, A" defined by

[0, 5] = SMapp @7, {0y, Ex} = =SManPts, (5.29)
where we know that SM \° = — (5NfM5aJﬁ and
SMapp? = (t5)p ™ 0a)” + 0p™M fays™. (5.30)
Then and can be written
SMN ppa” = = 0pM (ta)) 0™ s — 0pM15M g 507,
Mt = —6p M — M (), (5.31)

extending the recursion formula ([5.26)) for the structure constants SM NN 8PP,
to p =2 and p = 1, with the initial condition SM A" = —5/\/“\45045.

Comparing the results in this subsection with those in the preceding one, we find
that SM A? = —TM P, and that the structure constants SMaNl'"NP—lﬁpl...ppV satisfy
the same recursion formula as —TMapl...pp'YNl”'prlﬁ, for p > 1. Thus we have

M NiNp_ M NiNp—
SN 15731”.731)7:—T apl...ppv Lve 15 (532)

for all p > 1.

Since the indices Py, ..., P,,y of the structure constants JM N ~1gp,..p,” and
TMapl...pp'VNl"’prlg for p > 2 determine the representations T_, and r(p_s,, re-
spectively, we conclude that r_, is the conjugate of r(p_g)4, for all p > 2. Combined
with the ‘affine structure’ inherited from the BKM superalgebra B, we thus have
T, = r(p_a)—p for all p in the tensor hierarchy algebra T, exzcept for p = —1. In that
case we only have r_; C rp_q, and if r_; is reducible it may happen that the equality
does not hold. The reason is that rp_; is determined by TMap75, whereas r_; is not
determined by S™,, 357, but given by the supersymmetry constraint in the definition
of the tensor hierarchy algebra 7. However, one can easily see that the only possible
part of r_; that will not show up in SM,3p7 is a singlet. This is precisely what
happens for D = 3, g = ¢g, where r_; = 3875 and ro = 3875 + 1. Except for this
possible singlet, we always have T_, = r(p_s)_, for all p.

Np

5.6 The closure constraint

In the definition of the tensor hierarchy algebra 7 we assumed that there is at least
one element © in 7_; such that {©,0} = 0, and {©, B;} is a non-abelian subalgebra
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of g. Later we saw that we could indeed identify the components of a general such
element © with the embedding tensor for g = ¢;1_p. We will now show that these
assumptions imply that T™M 5\ = 55 M6, Jﬁ , as we claimed in section . It suffices
to show this in the case when r_; is irreducible, and then apply the result to each
irreducible part of a general r_; separately. Thus, assume T™, %y = xIn M6, Jﬁ for
some nonzero constant y. Now we have on the one hand side

[0, [®Y 5, Ep"]] = TV 5975 (@M 0 Bl = T 55T B
= 5N 1 TM GBS — TN 3 (1) RTM 0 o B
= X(SPNJCBW&EM - Xz(ta>PN56WEM= (5.33)
which gives
0=[{0,06}, E»"] =2[6,[6, Ep"]]
=20,"On" (x 6™ f57 0 — X*(ta)p™ 057) EM

=2(xOMm*Op” f570 — X O M ON (ta)p™ ) EM. (5.34)
On the other hand, contracting with ©,*O"” we obtain
0=[{©,0}, Ep]
= oM ON[{OM,, V), Ep]
= O ON" M N 5pg 702,
= 20,00 (60N f57a — (ta)p™ 657) D2,
= 2(0m 07" f57a — OMON (ta)p) D2, (5.35)
Since we assume {O, 71} to be a non-abelian subalgebra of g, we get
OM*ON fup ™ty = [ X, Xn] # 0, (5.36)

and thus both of the two terms in or must be nonzero. It follows that we
must have y = 1, which was to be proven.

In fact, this is the only time we use the assumption that {©,7;} is a non-abelian
subalgebra of g. Otherwise it is not needed, but of course, it is physically motivated.
From a mathematical point of view, it would be desirable with a more general proof
that x = 1 (if it really is true in the general case). In many cases, one can conclude
that x = 1 just from a comparison between and , and a study of the
possible invariant tensors.

We recognize the expression within the parentheses in the last line of from
(2.1)) as op/(©g7), the variation of the embedding tensor with respect to Xp, which is
set to zero by the closure constraint. This is in accordance with

{6,0}(Ep) = [Ep,{O,0}] = 2[{Ep,0},0] = 2[Xp, O]. (5.37)
This expression transforms in the representation r_s, which, according to the results

in the last subsection, is the conjugate of rp.
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6 Conclusion

In this paper we have investigated two different ways of extending an arbitrary simple
finite-dimensional Lie algebra g (given a certain extension of g to an affine Kac-Moody
algebra gk ) to a Lie superalgebra with a Z-grading and a corresponding level decom-
position. One way leads to the BKM algebra B, the other to the tensor hierarchy
algebra T .

We have shown that B can be constructed in two ways: as the Lie superalgebra
generated by the elements e; and f; modulo the Chevalley-Serre relations, and as the
subalgebra V'(B;, V_1) of the universal graded Lie superalgebra U (B;), in the special
case when V_; = ¢(B_1). By changing V_; appropriately in the second construction,
we instead obtained the tensor hierarchy algebra 7. A natural question is whether also
the Chevalley-Serre construction can be modified in order to give the tensor hierarchy
algebra 7 instead of the BKM algebra B. As a first step towards such a construction
of T we can associate a generator ¢; to each node in the Dynkin diagram, in addition
to the generators e; and f; of B, so that T is instead generated by e; and ¢;. The
relations that one would have to impose on these generators should then differ from
the Chevalley relations in that [er, ¢s] could be non-zero even if I # J. A study
of the commutation relations in B among ey, f; and the images of e;, f; € g = Ty under
an appropriate vector space isomorphism

T1DTo®Ti = B_ps1 ©B_pia® B_py3 (6.1)

leads to the relations [¢g,e;] = 0 if and only if Ay # 0, whereas [eg, ¢;] = 0 for all
i, and of course, for the g subalgebra, [e;,¢;] = d;;h;. Since there is no singlet in
ro = adj (unlike sy = adj + 1), there cannot be an element hq in 7, so we must have
{eo, o} € g. We will not further develop the idea of a possible Chevalley-Serre-like
construction of 7 here, but leave to future research to work out exactly the relations
that e; and ¢; have to satisfy (see also appendix |Al).

We have shown that, in contrast to the relation s, = s_, for B, the representations
r, in the level decomposition of 7T satisfy T, = r(p_2)_p, up to a possible additional
singlet in r_y. Thus, on the subspace of 7 obtained by removing this singlet (if
present), it must be possible to introduce a (super)involution 7 and a non-degenerate
bilinear form  such that 7(7,) = T(p—2—p and (7, T;) = 0if p+q # D — 2.
Hopefully, this can be done in a canonical way, giving properties of 7 and x similar
to those of the Chevalley involution and the invariant bilinear form in a Kac-Moody
algebra (or of their counterparts in the BKM superalgebra B). Such 7 and x would
probably be useful tools in order to investigate whether 7 is really a symmetry of the
corresponding gauged supergravity theory, or just a device for keeping track of the
representations that appear. A related question is whether it is possible, for each g, to
unify the different tensor hierarchy algebras 7T, corresponding to different D, into one
‘universal’ tensor hierarchy algebra. As shown in [46], this is possible for the BKM
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superalgebras B, where ‘oxidation’ from D to D + 1 corresponds to removing a node
in an appropriate (non-distinguished) Dynkin diagram of B.

Finally, we mention that not only gauged supergravity theories, but also D = 3
superconformal theories with A" = 6 or N' = 5 supersymmetry can be characterized
by graded Lie superalgebras G of the form V'(U;,V_1). The vector spaces Uy, V_4
are then given by a three-algebra [42,53-61] rather than by an embedding tensor, but
the construction of the graded Lie superalgebra from the vector spaces is the same.
An important difference is that G unlike 7 is finite-dimensional, but there is also a
similarity in that supersymmetry restricts the size of the subspaces on the positive
side of the grading. For the D = 3 superconformal theories the constraints of NV = 6
or N = 5 supersymmetry are Go = 0 and G3 = 0, respectively, corresponding to the
supersymmetry constraint 7o C By in gauged supergravity [4260,61]. Following [62] it
was shown in [63] that three-dimensional superconformal theories with supersymmetry
N = 8 or less can be obtained from the corresponding D = 3 gauged supergravity
theory by taking a flat space limit. Within the framework of the present paper, it
would be interesting to study this connection further.
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A More on the supersymmetry constraint

As promised in section we will in this appendix show that r_; C ry, and, if D = 3,
that r_1 C (r; X ry),.

Let b* be the root space of g, and let A be the map from V' to h* mapping a weight
vector in any subspace 7, C T (considered as a g-module) on the corresponding
weight. Then A(eg) is the lowest weight of ry, and —A(ep) is the highest weight of r;.
Furthermore, if ey is a highest root vector of g, then —A(eg) + A(ep) is the highest
weight of ri, C 1 x adj (and also the highest weight of r1 x adj), which has multiplicity
one. Let ¢ be the map

O:Byxg=Ta, Py 2)(x) = {r, By, 2)} = (xly)z, (A1)

where z € By = Ty, and (z|y) is the supersymmetric invariant bilinear form in B, for
which we have (EnFVN) = 60 [45,52], which means that ®(FM ¢,) = ®M,. One
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can easily show that A(®(y,z)) = A(y) + A(z). Then
A(®(fo,e0)) = A(fo) + Aleg) = —Alen) + Ales), (A.2)
and it follows that ®(fy, eq) is a highest weight vector of ri,. Now we have

[q)(f(h 69)7 {607 60}] - 2[{q)(f07 69)7 60}7 60] = 2[697 60]7 (AS)

which is nonzero since

{leo, eol, fo} = [eq, {eo, fo}] = —[ho, eq] # 0. (A4)

Thus r;, cannot be contained in r_;.
Considering rg, set ®V = (t@) N ®M,. The commutator with {Fp, Fg} is

[(I)Nv {Ep, EQ}] = 2(ta)(PN(ta>Q)RER (A5)

so the question is whether the expression (t%)p" (ta)o)® contains s; in the lower
indices or not. To answer this question, we compare ® in 7_; with FV in B, for
which we have

P, (B Bl = 2( () (o + 550000 ) Er. (A0

and we know that the expression within the parentheses contain only s, in the lower

indices. Since d;p™5g)® contains both s, and s, we conclude that (t)»" (ta)g)*
must contain s; as well, and thus rg cannot be contained in r_;.
For D = 3 we write { Ep, @V} = 6,MtN and [tV Eg] = fVoREr, so we get
(@M {Ep, Eg}] = 5™ M o) R Er. (A.7)
Contracting with fS v\ gives
o aan (@Y {Ep, Bo}] = £ ande™ ¥ o) Er
= /xR Er. (A8)

According to what we have just shown for a general D, the expression f¢ N(P = Q)R
contains s, in the symmetric indices, and then this must hold for the uncontracted
expression (5(7>[M N Q)R as well. Thus r_; cannot have any overlap with (adj x adj)_,
the antisymmetric part of the tensor product adjxadj, and we conclude the embedding
tensor must transform in the symmetric part, r_; C (adj x adj),.
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B Explicit results for g =¢1_p

B.1 Some useful numbers

For each Lie algebra g = ¢;;_p we here give the Coxeter number (which is actually
C'/2, with C' given below), and two other related constants that depend on both g and
the representation r; = s; = t;. We have

(ta)a (WM = 48,7, (ta) " ()Y = Bou™,  fap /P == C6°,  (B.1)

where the constants A, B and C are given by

dimry 61 — (D —2)? dimg
= B B=———W *~ =2 -1 B.2
dimg D—2 ¢ n—-n ) (B:2)

or alternatively, D # 3, by

(D -1)dimr _ (D—-1)dimg . (D-2
A=mom-py P m-ym-by C_2<ﬁ3_1)' (B:3)

Explicitly the values of A, B and C' are given below, together with the values of another
constant K, which will prove useful in the next subsection (at least for D = 4,5,6).

D g dimr, dim g A B C K
7 ay 10 24 3 36/5 10 24
6 05 16 45 4 45/4 16 20
5 e6 27 78 6 52/3 24 20
4 er 56 133 12 57/2 36 21
3 es 248 248 60 60 60 112/5 =22.4

B.2 The s, representations and some projectors

For each representation s, there is an associated projector IP,. For D # 3 we have

1 D—1
P = 55 (g™~ (™)), (Ba)

and for D = 4,5,6 we have

(Pp-1) ™ = %((D — 15N 0% — (D = 2)(te) " (1) = f5, () AY), (B5)
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where the explicit value of the constant

2(11 — D)(10 — D)
8—D
was given in the table in the preceding subsection. For D = 7 the representation sp_;

is reducible, s = 40 + 15, and the right hand side of (B.5) decomposes into a linear
combination of the projectors of the irreducible subrepresentations,

3
B (Pao) ™ 5 + 2 (P1s) ™ 5. (B.7)

Also for D = 3 the representation sp_; is reducible, s, = 143875 (although r; is not,
r, = 3875). But in this case the right hand side of contains an extra term, in
addition to the projectors of 1 and 3875, that mixes the two types of indices, which
is possible only for D = 3. If we instead compare (Py) "< for D = 3 with the right
hand side of , we find that it is equal to

31

(P3875)M./\/'PQ + 7(P1)MNPQ, (B.8)

which is not the same as (Py) An7<, since the coefficients of the two terms are different.
Below we give explicitly the irreducible representations in the tensor product
r; X adj and their projectors. For D = 7 we split each r; index into an antisym-
metric pair of fundamental s[(5) indices. We also give explicitly the representation
so and its orthogonal complement s; in the symmetric tensor product (r; x ry), for
D = 4,5,6. For D = 3 we write the projectors of all the irreducible representations
that are contained in the tensor product 248 x 248, which were first given in [64].
Finally we write all the irreducible representations contained in s, for 3 < D < 7,
up to p = D + 1, and the Dynkin labels of minus their lowest weights (denoted by
A). They have been computed using the results in [52], and the computer program
SimpLie [26], except for the D = 3, p = 4 representations, which were given in [46).

K =

(B.6)

D=7:

(P10)ab |
(P1s)ap| e | 195 = 1(=6.96%6y 607! + 607" 001,)
(Pgg)ab )| 19y, = 2 (Babe 961" + 2 Bapen %)
(Przs)ap) e | 719, = 26,96, %00 — 26,20,96y°6.7")
+ (116901, %0y 0071 — 7 809002, ) (B.9)

The tilde in the projectors of 10 and 175 indicates that the trace has to be taken out.
For example,

(Pro)a i’ | 11 = (804" — £670.)(81"0g" — 36"35") (Pro)apc” | /1% (B.10)

Cd | ef|gh _ %<—5c95[ad5b][65hﬂ _ 5abgd50h€f)

4
175)a
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16, = rg (Ps)V sn® = £ (ta) " () p — £ 5, () ad",
144. =y (Pa)Y o™ = 200V 6%5 — L(tp)m” ()P — o5 %50 () ™,
560, = ry, PV pad® = 260N 0% + Lta) ™ ()P + 2 5 () 1™
10 = sy (Po)an™2 = 250”7002 — §(ta) ™ (1%)a0 2,
126, = s, (P an"2 = 20”602 + L(ta)m” (), (B.11)
D=5
27 = rg (P)V s = S(ta) ™ )™ = 26,
3B5l=r1y  (Pu)Vem® = 200N 6% — 2 ()" ()Y — S8, ()Y,
1728 =y, (PL)V o™ = 260N 0% + E(ta) ™ ()P + Z 5 () ™Y
27 = sy (Po) v = 26”00 % — E(ta) ™ (1),
351 =s, (POan"? = B + S (ta) i’ )2, (B.12)
D=4
56 = rg (PN s® = Z(ta) " () p™ — 25, ()",
912 = 1y (Py) p® = ;5MN50‘ — %(tﬁ)MP(tQ)pN — %f“m(ﬂ)MN,
6480 =1y, PV pa® = 260N 0% + S5 (ta) " ()P + 25 £, ()Y
133 = s, (P2)an™2 = 2607002 — & () ™ ("),
1463 = s, (POan”? = 200" 2 + Sta)m” (t*)a0°, (B.13)
D=3
(P an” = s=navn”,
(Paas) vn”2 = =g [Fan fr7,
(Pagrs) v 2 = 260”000 ¢ — 2”2 — LR frar?,
(Paro00)mn” 2 = £6m” 002 + s=maann”™ + SR frar?,
<P30380)MNPQ = 5[MP5MQ + %fRMNfRPQ (B.14)
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pl| 1|23 |45 6 7 8
s, 10| 5 | 5 |10|24 (15 40| 5 45 70| 5 45 70 105
0 0 1 0 1 2 0 |o 1 1 10 2 0
A | 100 | 001 | 000 | 010 | 001 | 000 011 | 001 010 002 | 000 101 001 012
D=6
p| 1 2 3 4 5 6 7
sp |16, | 10 | 16, | 45 |144,| 10 126, 320 | 16, 144. 560, 720,
0 0 1 0 1 0 2 0 1 0 1 1
A | 1000 | 0001 | 0000 | 0010 | 0001 | 0001 0000 0011 | 0000 1001 0010 0002
D=5
p| 1 2 3 4 5 6
s, | 27 27 78 | 351 | 27 1728| 1 78 650 2430 5824
0 0 1 0 0 1 0 1 0 2 0
A | 10000 | 00001 | 00000 | 00010 | 00001 00001 | 00000 00000 10001 00000 00011
D=4:
p | 1 2 3 4 5
Sp 56 133 912 133 8645 56 912 6480 86184
0 0 1 0 0 0 1 0 1
A | 100000 | 000001 | 000000 | 000001 000010 | 100000 000000 100001 000001
D=3
D 1 2 3 4
S, | 248 1 3875 248 3875 147250
see below
A | 1000000 | 0000000 0000001 | 1000000 0000001 0000000
D = 3 (continued) :
P 4
Sp | 2x248 3875 2x 30380 147250 779247 6696000
A 1000000 0000001 0100000 0000000 1000001 0000010
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