NONCOMMUTATIVE CATALAN NUMBERS

ARKADY BERENSTEIN AND VLADIMIR RETAKH

ABSTRACT. The goal of this paper is to introduce and study noncommutative Catalan numbers Cy, which
belong to the free Laurent polynomial algebra L, in n generators. Our noncommutative numbers admit
interesting (commutative and noncommutative) specializations, one of them related to Garsia-Haiman (g, t)-
versions, another — to solving noncommutative quadratic equations. We also establish total positivity of the
corresponding (noncommutative) Hankel matrices Hy, and introduce accompanying noncommautative binomial

!
coefficients (]ZI) € Lytk—1, QZD € Ly.
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1. INTRODUCTION
Catalan numbers ¢, = %H(i?), n > 0 are important combinatorial objects which satisfy a number of

remarkable properties such as:
n

e The recursion ¢, 1 = Y, cxn—j for all n > 0 (with ¢g = ¢; = 1).

k=0
Cm Cm+1 cee Cm+n
: e c c ...c
e the determinantal identities det | ~"** mt2 mEntl L — 1 for n >0, m € {0,1}.
Cm+n  Cm4nt+l - Cm+2n

In this paper we introduce and study noncommutative Catalan numbers C,, n > 1 which are totally non-
commutative Laurent polynomials in n variables and satisfy analogues of the recursion and the determinantal
identities (Proposition 2.3 and equation (2.7)). It turns out that specializing these variables to appropriate

powers of ¢, we recover Garsia-Haiman ¢-Catalan numbers ([5]).

It is “less well-known” that Catalan numbers satisfy a combinatorial identity involving their truncated

counterparts ¥ = (nzk) - (Zt,f) (so that ¢, = ¢ = P~ 1):

(1.1) = Y.y,

a,b€Z>q:
a+b<n,a—b=d

for each n € Z>( and each d € Z with |d| < n (e.g., the right hand side does not depend on d).

This work was partially supported by the NSF grant DMS-1403527 (A. B.).
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We introduce noncommutative analogues of all truncated Catalan numbers and establish a noncommutative
version of (1.1) (Theorem 2.22). It is curios that the c* satisfy thee more combinatorial two of which identities
involving binomial coefficients:

k
= et Sy (17]) =0 =St ().
7=0

where 0 < k < n in the ﬁrst two identities and 0 < k < m + n in the third one.

We establish a noncommutative generalization of the first identity (Proposition 2.20(c)), define appropri-
3 of binomial coefficients and establish analogues of the remaining two
identities with our noncommutative binomial coefficients (Corollary 2.33 and Theorem 2.34) as well as the
analogue of multiplication law for both kinds of noncommutative binomial coefficients (Theorem 2.32).

In fact, these constructions and results extend our previous work on Noncommutative Laurent Phenomenon
([1, 2]) and we expect more such Phenomena to emerge in Combinatorics, Representation Theory, Topology
and related fields.

/
. . n\| (n
ate noncommutative versions ke

1.1. Acknowledgments. This work was partly done during our visits to Max-Planck-Institut fiir Mathe-
matik and Institut des Hautes Etudes Scientifiques. We gratefully acknowledge the support of these insti-
tutions. We thank Philippe Di Francesco and Rinat Kedem for their comments on the first version of the
paper, particularly for explaining to us a relationship between noncommutative Stieltjes continued fractions
and our noncommutative Catalan series (see Remark 2.6).

2. NOTATION AND MAIN RESULTS

Let F be the free group generated by zj, k € Z>o and F,, be the (free) subgroup of F generated by
LOye-esLym-

Denote by P, the of monotonic lattice paths in [0,7] x [0,n] from (0,0) to (n,n). Clearly, |P,| = (2:) We
say that P € P, is Catalan if for each point p = (p1,p2) € P one has ¢(p) > 0, where c(p1,p2) := p1 P2 is
the content of p. Denote by P, C P, the set of all Catalan paths in [0,7] x [0,n]. Clearly, |P,| = Tﬂ (") is
the n-th Catalan number, which justifies the terminology.

We say that a point p = (p1,p2) of P € P, is a southeast (resp. northwest) corner of P if (p1 —1,p2) € P
and (p1,p2 +1) € P (resp. (p1,p2 —1) € P and (p1 + 1,p2) € P).

To each P € P,, we assign an element Mp € F, by

sgn
(2.1) Ha:c(p) ,

1 if p is southeast
where the product is over all corners p € P (taken in the natural order) and sgn(p) = { P

—1 if p is northwest
We define the noncommutative Catalan number C,, € ZF,, by

(2.2) Co= Y Mp.
PcP,

Clearly, under the counit homomorphism ¢ : ZF — Z (xj — 1) the image £(C,,) is |P,|, the ordinary
Catalan number.
Noncommutative Catalan numbers exhibit some symmetries.

Proposition 2.1. C,, = C,,, where ~ denotes the anti-automorphism of ZF such that T, = x), for k € Z>y.
Example 2.2. Cy =zg, C; = x1, Co = 22 + mlxalxl,
-1 -1 -1 -1 -1
Cs=x3+ Tokq T2+ X2y X1+ T1Xy T2+ T1Xy T1Xy T,
O, — -1 -1 -1 -1 -1 -1 -1 -1
4= T4+ 23Ty T3+ 2Ty T2+ T3Xy T2+ T2Ty T3+ T3Xy T1+ T1Ty T3+ ToTy T2Ty T2
-1 -1 -1 -1 -1 -1 -1 -1 —1 -1 -1 -1 -1

FX1Ty X2y T1+ T2l X2Ty T1+T1XH T2y T2+ TaXy T1Ty T1+T1Xy T1Xy T2+ T1Xy T1Xy T1Xy T -

It turns out that our noncommutative Catalan numbers satisfy the following generalization of the well-
known classical recursion.
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Proposition 2.3. Forn > 0 one has
(2.3) Cop1 =Y Crag ' T(Cri), Cogr =Y T(Ci)ag ' Croy
k=0 k=0

for alln € Z>q, where T : ZF — ZF an endomorphism of ZF given by T(xy) = xp41 for all k € Z>o.

For example, Cy = T(Cy) + Cyx5 ' T(Cy) and C3 = T(Cs) + Cray *T(Cy) + Coxg ' T(Co).
The following is immediate.

Corollary 2.4. The formal power series C(t) = Y, Cpt™ € (ZF)[[t]] satisfies:
n=0

(2.4) C(t) = 2o + tC(t)zg ' T(C(1)), T(C(t))ay ' C(t) = C(t)ag ' T(C(t))
Remark 2.5. Applying € to (2.4), we obtain the well-known functional equation c(t) = 1 + tc(t)? for the
o0

classical generating function ¢(t) = > €(C,)t" of Catalan numbers.
n=0

Remark 2.6. After the first version of this paper became available, Philippe Di Francesco and Rinat Kedem
pointed to us that C(t)z, Uis a noncommutative Stieltjes continued fraction which can be computed by
combining methods of [4, Section 3.3.1] and [7, Section 8] as follows.

C(t)zg' = lim S(zyzy’,...,zprpty,t)
k—o0
where S(21,t) = (1 — 21t) 7Y, S(21, ..., 2z, t) = S(21, - -+, 2k—2, S(2k, t) 21, 1) for k > 2.

Remark 2.7. In fact there is another recursion

n n—1
Crp1 = Coag'wr + Y Cray T2 (Coi) = 125 ' Co + Y T (Cr)wy Cruie -
k=1 k=0

for n > 1 and a functional equation C(t) = x + t(C(t)xg ‘a1 — zoxy 'T?*(C(t)) + C(t)x7 'T?(C(t))), which
we leave as an exercise to the reader.

Remark 2.8. Specializing ¢ to the lower triangular Z>q x Z>( Jacobi matrix with entries f;; = d; j—1, we
see that the functional equation (2.4) can be rewritten in a matrix format: Hay'T(H) = T(H)zy'H = H’,
where H (resp. H') is the lower triangular Z>q x Z>o Toeplitz matrix whose (4, j)-th entry is C;_; (resp.
Ci—j41) if i > j. In particular, H~' a lower triangular Z>o x Z>( Toeplitz matrix whose (i, j)-th entry is
—xg ' T(Cij_1)xy* for i > j.

It turns out that there is a remarkable specialization C,, € ZF, of C,,. Indeed, let o : ZF — ZF5 be a ring
homomorphism given by o(x1) = 2§x%, k € Z>o. Abbreviate C,, := o(C,,) for n > 0.

The following result asserts, in particular, that C,, are noncommutative polynomials (rather than Laurent
polynomials) and they satisfy yet another noncommutative generalization of the well-known classical recursion
for Catalan numbers.

Proposition 2.9. The elements C,, € Z{xo,x1) are determined by the following recursion: Cy =1 and

(25) Qn—H = ZQk‘TOQn—kzl = ZIOQkxlgn—k )

k=0 k=0

for n > 0. In particular, all C,, belong to the free semi-ring Z>o(xo,x1) C Z>oFs.

Remark 2.10. Applying o to the recursions from Remark 2.7 and using an argument from the proof of
Proposition 2.9, we obtain another recursion for C,,:

n n—1
—1 2 2 —1
Qn+1 = anozl + § Qkxl ‘TOQn—kxl =wz921Cn + § ‘TOQkxle Qn—k .
k=1 k=0

Remark 2.11. One can show that the “two-variable’noncommutative Catalan numbers are invariant under
the anti-involution of ZF» interchanging x and .
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In fact, we can explicitly compute each C,,. Indeed, assign a monomial M p € F; to each P € P,, by:
MP _ x%ol,jl'lxéz . le'zk ,
where (jo,j1,.-.,J2k) € Zikoﬂ is the sequence of jumps of the path P, i.e., the r-th northwest corner is
(Jo+ij2+- - +jor, j1+Js+- -+ jort1) and r-th southeast corner of P is (jo+jo+- - +Jjor, j1+is+- -+ j2r—1)
One can easily see that o(Mp) = M p, so we obtain the following immediate corollary.
Corollary 2.12. C, = > Mp foralln > 1.
PEP,
Example 2.13. C, = x%x% + xox1T0%1, Cg = J:gx‘;’ + m%xlxox% + x%x%xoxl + xoxlm%x% + xor1T0T1TOLT,
c,= xéx‘f + x%xlxomi’ + m%x%:ﬂ%x? + x%x%xox% + x%xlm%x? + x%:ﬂ?xoxl + xoxlxgxi’ + x%mlxoxlmox%
+x0m1x8x%mox1 + x%xlxox%xoxl + xoxlmgxlxom? + w%x%xoxlxoxl + xoxlxomlxgx% + ToT1ToT1T0T1T0LT -

The following immediate result is a “two-variable” version of Corollary 2.4.

Corollary 2.14. The formal power series C(t) = > Ct" € Z{xo,x1)[[t] satisfies:

n=0
(2.6) C(t) = 1+ 1C(t)eoClt)a1 -
Remark 2.15. For ¢t = 1, the equation (2.6) coincides with the quadratic equation on formal series K (zo, 1)

studied in [13] where a solution of this equation was presented as a “noncommutative Rogers-Ramanujan
continued fraction”.

Remark 2.16. In our previous work [3] on the inversion of Y z{z} in the ring of formal series Z((x¢, z1))
n>0

in noncommutative variables xg, x1 we encountered a quadratic equation D = 1 — Dxzgxy + DxgDx for some

D € Z{{xo, 1)) and noticed that it is very similar to (2.6). This was the starting point of the project.

Remark 2.17. In fact, there is another group homomorphism 7 : F' — Fy given by 7(zy) = zg - (xalxl)k,
k € Z>o, which results in an “almost commutative” specialization of noncommutative Catalan numbers:

T(Cp) = () - 7 (27).

For each 0 < k < n denote by P¥, the set of all P € P,, such that the rightmost southeast corner p of
P satisfies p = (n,y), where y < k. In particular, P?~! = P = P,. For each 0 < k < n define truncated
noncommutative Catalan number C¥ € ZF,, by

k
Cn = Z Mp .
PePk
The following recursion on CF is immediate.

Lemma 2.18. Ck = CF-1 4 Ck_ a1, 2,y for all 1 <k < n (with the convention C =0 if £ >n).

n—1
Example 2.19. C° =z, C?~! = C? = C, for all n > 1. Also, C} =z, + 3 2, Ywn_1,
=1

(2

Cfl = Z xixi__llxj_lx;_len_Q .
1<i<j<n,j>1
Sometimes it is convenient to express C* via y; = xixi__ll, i € Z>o. Indeed, denote C*’; = C,’fx;ik for
k,n € Zso, k< n.
The following result generalizes a number of basic properties of truncated Catalan numbers.
Proposition 2.20. For all 0 < k < n one has:

ko
(a) Cy = > Yjr Yjo—1 - Yju—k+1-
1< G >, >k

(b) Ck = Ck | + Ck "y, 1y (with the convention CY =0 if £ > n).

. koo
(¢) Chya = ;)CZT(C’JZ)-
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Example 2.21. C9=1,CL =y + - +y,, and C" = C~ 'y, for all n > 1.

OZ = Z YilYj—1, C‘S = Z YiYj—1Yk—2 -

1<i<j<n,j>1 1<i<j<k<n, j>1, k>2

However, the following recursion is rather non-trivial (and we could not find its classical analogue in the
literature).

Theorem 2.22. C,, = > Co_at ,Cb_ . for eachn € Zso and each d € Z with |d| < n (e.g.,
a,bEZ>¢:
a+b§n,a2fb:d
the right hand side does not depend on d).

Remark 2.23. In particular, Theorem 2.22 provides another confirmation --invariance of noncommutative
Catalan numbers (established in Proposition 2.1).

It turns out that the above “two-variable specialization” o is also of interest for truncated noncommutative
Catalan numbers. Indeed, in the notation as above, denote C* := ¢(C¥) and Qi = Ckghn,
The following is immediate.

Corollary 2.24. In the notation of Proposition 2.9, one has
(a) Ck = S Mp for all k,n € Zso, k < n.
PePk
(b) QZ = g:_lxl +gﬁ_1xo for all 1 < k <n (with the convention gi =0 if £ > n). In particular, each
gi is a noncommutative polynomial in xg, 1 of degree n + k.

n—i
0 _.m ~1 _ .n i n—1 ~2 _ ~1 i j—i . m—j
Example 2.25. gn =xy, gn =gz + Y, xhrixg o, gn = gnl‘l + > THT1TY T1xy -
i=1 1<i<j<n—1,j>1

It turns out that our (truncated) noncommutative Catalan numbers C',’i admit another specialization into
certain polynomials in Z>¢[g] defined by Garsia and Haiman in [5]. Namely, let x, : ZF — Z[g] be a ring

k(k—1)

homomorphism defined by x,(7x) = ¢~ 7 for k >0, i.e., x4(yx) = ¢*~* for k € Z>;.
Define polynomials c%(g,t) € Z>o[g,t], 0 < k < n recursively by %(q,t) = 1 and

k

r+n—k B Y

cﬁ@vt)Z[ ; } T (0,
q

r=1

1—q"

g :1+q+qk71

where [Z} denotes the g-binomial coefficient %, [n]y! = [ [0l kg =
q
These polynomials are closely related to polynomials H,, (g, t) introduced by Garsia and Haglund ([6,

(n+1—k)(n—k)
2

Equation 1.24]), namely, c(q,t) = t~%¢~
celebrated (g,t)-Catalan number introduced in [5].

The following result shows that our (truncated) noncommutative Catalan numbers are noncommutative
deformations of (g, 1)-Catalan numbers.

Hyt1nt1-k(g, t), in particular, ¢)(q,t) = c,(g,t) is the

Theorem 2.26. x,(C¥) = ck(q,1) for all k < n, in particular, x,(Cy) = cn(g,1) for n > 0.
Example 2.27. x,(Cl) = [n+ 1], and x,(C*) = x4(CE1)g"* + x,(CE_,) for 1 < k < n.

n(n—1)

Remark 2.28. It is curious that for another class of g-Catalan numbers, ¢~ 2 ¢, (q,¢™ %) L Fn} ,

= [n+1]4 n
there is no an analogue of Theorem 2.26. Also, it would be interesting to find an appropriate noncommutative
deformations of (g, t)-Catalan numbers.

The following is a generalization of the well-known property of Hankel determinants of g-Catalan numbers.

Theorem 2.29. For n > 1, m € {0,1} the determinant of the (n + 1) x (n + 1) matriz (¢i+;j+m(q,1)),
.. . n(n+1)(4dn—146m)
1,7=0,...,n,48¢q~ 6
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Define the noncommutative binomial coefficients (IZI) €ZF, k-1,

/
n\ ny /
(]kl) - Z?JJ, qkl) - ZyJ
where each summation is over all subsets J = {ji1 < jo < --- < jg} of [1,n] and we abbreviated y; =
Yinth—1"""Yja+1Yj1> Y1 = Yjr+h—1Yja+k—3 " Yju+1—k fOr j € Z>1.

Vi
n
kl) € ZF, by

. . . -  k(kt1)
Remark 2.30. The ¢-binomial coefficients can be expressed as [ﬂ =Ygt HEE , where the sum-

q
mation is over all subsets J = {j1 < ja < -+ < jg} of [1,n]. Therefore, under the above specialization

li
Xq : ZF — Z]q,q™ "] we have x, ((]Z ) = ¢F*k-1) [ﬂ . Xq ( ZI) > = q@ {Z] for all k,n € Z>o.
q q

g == - B :

n

/

n n
n_QD = 2. Ynah\figh (IQD = 2 Yitrlj-1, (]

1<i<j<n 1<i<j<n

Example 2.31. (ISD =

I) = Y2n—1"""Y3Y1 = Yi,n]»

= Z yj+lyi7(]

1<i<j<n

l
n

n = YnYn—-1"""Y1 = yfl,n]a

n n
(]n B 1D = Z; Y[L,n\{i}s

!/ !/
n _ , n - ’
(]n - 1[) = L Yangy (]n - gl) = X YianGa)

=1 1<i<j<n

Clearly, <(IZD) = <(IZD/> = (1) and (]ZD ") <ot ¢ [0,n).

Similarly to the classical case, we have an analogue of the Pascal triangle and the multiplication law for
m+n n-+b
Theorem 2.32. = > T

noncommutative binomial coefficients.
A / i
m, m+n by [ M _ n
, = > T (] I) Tm— (] D form,n, k
k a,bGZzO: a D) (l k [) a,bGZzoz a b

a+b=k +b=k

/ / /
OSSN ) oo

Actually, Theorem 2.32 together with the recursion from Proposition 2.20(b) imply the following analogue
of the multiplication law for the truncated noncommutative Catalan numbers, which justified the introduction
of noncommutative binomial coefficients of the “second kind.”

Okt . pm—k+t (

> 3

> 3

n+1
k

€ Z>o. In particular, q

Corollary 2.33. Ck_ =2

n
m--£
£=0

/
?D ) for allm,n, k € Z>y.

The following relation between truncated noncommutative Catalan numbers and the binomial coefficients
of the “first kind” is rather surprising.

n —

k iy ;
Theorem 2.34. Y (-1)/C) ., .- (Ik :;I) =0 for any 0 < k < n.
i=0 -
: & n+k—j
Remark 2.35. In fact, there is an accompanying identity > (—1)7 j
j=0

which follows from Theorem 2.43 below. We leave this as an exercise to the readers.

I)-C’S_g—()forany0<k§n,

This turns out to be equivalent to the following “determinantal” identities between noncommutative trun-
cated Catalan numbers and binomial coefficients (whose classical analogues also seem to be new).

n
k
where each summation is over all subsets J ={0=jo < --- < jo =k} of [0,k] and

M, ;= n+je—1+je— k) [n+ji+iz—k\n+jo+i—k
" Je— Je—1 J2—n J1—Jo ’

Theorem 2.36. For all k,n € Z>o, k <n one has C¥ = 3" ,(~=1)*1=IA, 5, (] D =3, (= 1)F=ING, 5,



NONCOMMUTATIVE CATALAN NUMBERS 7

M,y = Gk Ol it r Ol e
Actually, Theorems 2.26, 2.34, and 2.36 hint to some remarkable properties of Hankel matrices with
noncommutative Catalan numbers as entries.
For m,n € Z>q, n > 0 define the (n+ 1) x (n + 1) matrix H}, = over ZF whose (i, j)-th entry is Cp,44+;,

i,7 =0,...,n (with the convention Cy = 0 whenever k < 0).

o C o C Co C1 (o Ci Cy Cs
Example 2.37. H& = (C(; C;) 5 Hll = (C; Cz), Hg == 01 02 Cg 5 H12 = CQ Cg 04
CQ C3 C4 Cg C4 C5

We refer to H), as noncommutative Hankel-Catalan matriz by analogy with its classical counterpart
g(Hm,n) € Matn_H,n_,_l(Z).

We will finish the section by showing that each H?, m € {0,1}, n > 0 admits a Gauss factorization over
ZF involving truncated noncommutative Catalan numbers and it inverse (which is also a matrix over ZF) is
given by an interesting combinatorial formula involving our noncommutative binomial coefficients.

For m € {0,1} let L,, be the lower unitriangular Z>( x Z>o matrix whose (j,7)-th entry, 0 < i < j, is
C’Z;]]er and let U, be the upper triangular Z>o X Z>o matrix whose (4, j)-th entry, 0 <14 < j, Cf;ﬁm).
Theorem 2.38. H,, = L, - Uy, for each m € {0,1}.

Remark 2.39. Most apparently, the classical version of this result, e(H,,) = e(Ly,) - €(Uy,), is new.

Theorem 2.39 and [8, Theorem 4.9.7] imply the following immediate corollary.

Cm Cerl “ee CmJ,»z
o Crmt1 Cmt+2 . Chgit
Corollary 2.40. Cfn__ﬁi_i_j equals the quasidetermiant for 0 <i < g,
Cm+i—1 Cm—i—i cee Cm+2i—1
Cerj CerjJrl ce e Cm+i+j
m € {0,1} (see [9, 10] for notation). In particular,
Cm Cerl PR Cern
Cni1  Cmys ... C 1
(2.7) " " ... T = Tm+2n

Cm+n Cm+n+1 e
for alln € Z>o, m € {0,1}.

Remark 2.41. In fact, (2.7) is noncommutative generalization of the well-known fact that det(e(H{)) =
det(e(H7)) = 1 for n > 0. Moreover similarly to the classical case, noncommutative Catalan numbers are
uniquely determined by equations (2.7) for n € Z>q, m € {0, 1}.

Remark 2.42. Noncommutative Hankel quasideterminants were introduced in [7] in the context of inversion
of noncommutative power series. In fact, [7, Corollary 8.3] asserts that such an inverse can be expressed
via continued fractions involving such quasideterminants of the coefficients of the series in question. This
correlates with Remark 2.6 above.

For m € {0,1} let L;, be the lower unitriangular Z>o x Z>o matrix whose (j,7)-th entry, 0 < i < j, is

(—1)t+ v +j]—+i ml) and let U,,, be the upper triangular Z>q X Z>o matrix whose (¢, j)-th entry, 0 < ¢ < j, is
i gt m)
(71)Z+j ] —3 2j+m-”

For any Z>o X Z>o matrix M denote by M|, the principal (n + 1) x (n + 1)-submatrix of M (e.g.,

H» = Hp|n).
Theorem 2.43. (U,,)" ' =U,, and (L,,)"' = L, hence (H2)"1 = U, |, L;,|n for m € {0,1}, n > 1.

Remark 2.44. Similarly to Remark 2.39 the classical version of this result, e(H?)™! = e(L,|») - €(U;,)|n,
seems to be new.

Computation of H,,! for m > 2 is more challenging task, which we will perform elsewhere.
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3. PROOFS OF MAIN RESULTS

3.1. Proof of Propositions 2.1, 2.3, 2.9, 2.20 and Theorems 2.22, 2.26. Prove Proposition 2.1 first.
Define an involution s,, : Z? — Z? by s, (z,y) = (n —y,n — x). Clearly, s,,(P,) = P,. It is easy to see that

(3.1) Mp = M,, (p)
for all P € P,,. Therefore, C, = Y. Mp= Y. M, py= >, Mp=C, foralln>0.
PeP, PEP, PeP,
The proposition is proved. O

Prove Proposition 2.20 now. Prove (a) first. Denote by J% the set of all sequences j = (ji,...,Jjx) € Z*
such that j; < ... <jpr <nand j; >1,...,jk > k.

For each P € P and s € [1, k] denote by js(P) the minimum of z-coordinates of all points in P whose
y-coordinate is s. For each j = (j1,...,jk) € Z* with js > s, s € [1, k] we abbreviate y; = Y;, Yjo—1 - - - Yjx—k+1-

The following is immediate.
Lemma 3.1. For all k,n € Z>o, k < n one has:

(a) The assignments P+ j(P) := (j1(P),...,jx(P)) defines a bijection P*=Jk.

(b) For each P € P¥ we have Mpx, ', = yjp).-

Using Lemma 3.1(b), we obtain C¥ = 3 y; and thus finish the proof of (a).

jeJk
Prove (b). It is easy to see that J¥ = J* | 11 (J¥=1 n). Therefore,

Z Yy = Z Yj + Z Y = 67’371 + és_lynJrlfk .
jedJk jedJk JE@Et n)

This proves (b).
Prove (c) now. We need the following result.

Lemma 3.2. J¥ = || Ji x T (I52Y) for all kyn € Zso, 0 <k <n, where T =T, : Z" — Z", r > 1 is
i=0

the translation given by x — x + (1,...,1).
———

Proof. For each j = (ji,...,jx) € J%,, denote by i; the largest i € [1, k] such that j; = i and set i(j) := 0
if such an i does not exist. This implies that, {j € J :i; = i} = J? x TH(I*Z1_ ) for all i € [0, k] (the first
factor is empty for ¢ = 0).

The lemma is proved. O

Taking into account that for j = (', T"T1(j")) € I x T (IJ*~%), we have y; = y; T(y;), we obtain:

k
n+1 Z Y = Z yir T (ys) Z Ck l

FIS L i€[0,k].j €It jr eIkt =

This proves (c).
Proposition 2.20 is proved. d

Prove Theorem 2.26 now. Applying x, to C¥ 41 given by Proposition 2.20(c) and using the fact that
Xq(T(y)) = q%x4(y) for any homogeneous noncommutative polynomial of degree d in y1,ys, ..., we obtain:

qu Ck ’L)

forall 0 <k <n.

In view of [11, Equation (3.41)] and the fact that F), x(q,t) = Hpr(g,t) = t"‘qu(k = " ¥(q,t) for all
k

0 < k < n, we obtain same recursion cf_; = 3" ci(q,1)g** c"7(g,1) for all 0 < k < n. Using this and taking
i=0

into account that Xq(ég-s-l) = Xq(éﬁill), we conclude that x,(C¥) = ¢k (g, 1) for all 0 < k < n.
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The theorem is proved. O

Prove Proposition 2.3 now. Indeed, taking into account that C, = C',’f - Xy = C’:_lylxo for all r > 1, we
see that the first identity (2.3) is equivalent to C 1= D reo CFT(C™~F) which coincides with the assertion
of Proposition 2.20(c) with k = n.

The second identity (2.3) follows from the first one and Proposition 2.1 by applying the anti-involution -.

Proposition 2.3 is proved. g

1

Prove Proposition 2.9 now. We say that z € F' is alternating if it is of the form 331'133;1331'3 coomp o, for

some i1,...,%s € Z>o and denote by F the set of all alternating elements in F. We also denote by ZF®*
the Z-linear span of F'** in ZF. We need the following fact.
Lemma 3.3. o(T(x)) = oo (z)x1 for all For x € ZF*.

Proof. We first prove the assertion for all € F%t. Indeed]let x = xilx;xi3 x;ilxls for some
. . -1 —1
i1,42,...,1s > 0. We have o(T(x)) = i, 12, {1 Tig41 - Ty 141
a1l il io+1 dio+1\—1/,.i3+1 iz+1 Gs—1+t1 ds—1+1\—1/ ds+1 _is+1\ _
= (zo' 2 )@ 2P )T (@ T AP L (g Ly ) (g T =
_ i1 .11 ig i2\—1 i3 13 Gs—1 fs—1\—1 is s _
=z (zg'z1)(zg2?) " (zga?) ... (xg "2y )7 (w5 ay) - 21 = woo(z)21 -
By linearity of o we obtain the assertion for all 2 € ZF,
The lemma is proved. O

Since each Cj, belongs to ZF%* Lemma 3.3 implies that o(T(Cy)) = 20 (Cy)x1 = 20C 21 for all k > 0.
Using this and applying o to the first identity (2.3), we obtain (2.5).
Proposition 2.9 is proved. O

Prove Theorem 2.22 now. In the notation of the proof of Proposition 2.20, for all 0 < k& < n denote by
J.k the set of all j = (j1,...,7n) € I such that j; > n — k.

Lemma 3.4. 62 cxgt= Y yyforall0<k<n.
J€Jn K
Proof. Indeed, in view of (3.1), we obtain using Lemma 3.1(b):
Cheg' = > Mp-ay' = 3 Myoy-wg' = D Uisue) = 2 4
PecPk PePE PePk J€In ke

because J,, . = j(s,(PF)).

The lemma is proved. O

Furthermore, after multiplying by xq ! on the right, the assertion of Theorem 2.22 is equivalent to:
(3.2) Cr= Y G, (Ch,agh

a,b€Z>o:
a+b<n,a—b=d

for each n € Z>( and each d € Z with |d| < n.
Prove (3.2). Indeed, fix d € [1 — n,n — 1]. The following is immediate.

Lemma 3.5. For each j = (j1,...,Jn) € I there exists a unique a = a(j,d) € [max(0,d),n] such that
Joa <n+d—a<jap1 (with the convention jo =0, jpt1 = 00).

For a € [max(0,d),n] denote by J?(a,d) the set of all j € J? such that a(j,d) = a.

The following is immediate (in the notation of Lemma 3.2).
Lemma 3.6. J}(a,d) =3¢ ;  xT*(Jn_aa—da)-

Using these results and taking into account that for j = (j',7%(j")) € J¢, 4 o X T*(Ja—d,n—a), we have

Yy = Yy Yy, we obtain: ’:LLJrl = Z Y = E Y'Yy = Zae[max(o,d),n] Cg+d—a : (Cgigwal)
jeJn a€[max(0,d),n],
j,e‘]z,+d_avj,,€']n—a,a—d
This proves (3.2).
Theorem 2.22 is proved.
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3.2. Proof of Theorems 2.32 and 2.34. For any set X and k > 0 denote by )k;( the set of all subsets

J C X of cardinality |J| = k. Clearly, {[1,mk—|— n}} = | {[1,am]} xTm ({[1’6”]}) for all m,n, k € Z>o
a,bEZ>o:

a+b=k

[1,7]

in the notation of Lemma 3.2, where we view each J € { k } naturally as an element of Z°.

1,n]

Taking into account that for J = (J',T™(J")) € {[1’am]} x T™ ({[ b

™% (y )y and vy = T°(y';,)T™*(y/;.), we obtain:

}), a+ b=k, we have y; =

m+n m—a m-+a n m
kol = D v = 2 ™=y )yr = > T (bD> (IGD
[1’ m+ n] a,b€EZ>o:a+b=k, a,b€EZ>q:
Je k Jle []‘7 m] J”E [1’ n] a+b:k
k ' k

qm; nD/: X = = T,y = Y T (qu> S (q

1,m—|—n a,b€Z>o:a+b=k, a,b€Z>q:
sef bt (T w+=k
for m,n, k € Z>y.

Theorem 2.32 is proved. O

Prove Theorem 2.34 now. For each 0 < j < k < n denote by I ., the set of all i = (i1,...,4) € Z’;l
such that i; < n+k+1—25, ij01 <n+k—1-24, iy <igyq +1forall s € [1,7], and ig > igq1 + 1
for all s € [j + 1,k]. (with the convention that if j € {0, k}, then meaningless inequalities are omitted and
Ifl,k;n = Ik+1,k;n = (Z))

The following is immediate.

Lemma 3.7. C’ZLHC# .

Z_zl) = > Y forall0<j <k, where we abbreviate Y; := y;, -+ i, -
- i€l kin

For j € [0,k + 1] denote I} =T 1 ki N L kin

By definition, Iy, =T, , = 0 and the following is immediate.
Lemma 3.8. I, is the set of alli = (i1,...,%m) € Lj g such that i; < ij41 + 1 for all j € [0,k]. In
particular, Ij g, =T UIT o for j € [0, K]

Using Lemmas 3.7 and 3.8, we obtain:

k )
REHICHIR i EED SEIC U T S P SIS L B
J=0 VSR IS PR FE[0,k] €T, FE0RLIET Ly 4
forall 0 < k£ <n.
Theorem 2.34 is proved. (]

3.3. Proof of Theorems 2.38 and 2.43. Prove Theorem 2.38 first. Indeed, the assertion is equivalent to
min(%,5) min(i,5) —_—
(Hm)ij = kz_:@ (Lm)ik(Um)kj7 Le., to Om-‘ri-‘rj = kz_:o Oz?j:l]:+m 'm2_k1+mclz+?+m foralli,j € ZZOv me {O, 1}'
This identity coincides with that from Theorem 2.22 taken withn =m+i+j,a=i—k, b=j—k, d=1— 7.
Theorem 2.38 is proved.

Prove Theorem 2.43 now. It suffices to do so only for L, (the argument for U, is identical). Indeed,
L . J _ . = —k' ik i+ E +m
the assertion is equivalent to > (Ly)jw (L )wir = dirjr, Le, to 30 C g - (—1) wo_ i || =0
k! =i’ k! =i/ -
for all 0 < ¢’ < j'. It is easy to show that this identity coincides with that from Theorem 2.34 taken with
n=i+j +m, =5 —k k=j —1.

’ v
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Theorem 2.43 is proved.
3.4. Proof of Theorems 2.29, 2.36. Prove Theorem 2.36. We need the following well-known fact.

Lemma 3.9. Any lower unitriangular Z>o X Z>o matric A = (a;j) over an associative unital ring A is
invertible and (A1), = Zj=11>12>~-~>z’k=i,k21(_1)1671“1'171'2 S @iy, foralll <@ <j<n.

Applying Lemma 3.9 with A = L, ie., a;; = Nf:]ﬁm and using Theorem 2.43 which asserts that
(A1) = (—1)" ! —i_]_j_t. mD, we obtain the first identity of the theorem. Swapping A and A~!, we obtain
the second one.

Theorem 2.36 is proved. ]

Prove Theorem 2.29 now. Recall from [9] that for any matrix over a commutative ring, its determinant
equals the product its of principal quasiminors. Let H}, = xq(H}) = (Citj+m(¢,1)), i,5 = 0,...,n, where
Xq : ZF — Z]q,q™ "] is the homomorphism defined in Section 2. Since all principal submatrices of H, are
ﬂfn, k=0,1,...,n, these and Corollary 2.40 guarantee that

n i w n(n+1)(4n—14+6m)
det(Hp,) = [T xa(wmrar) = ¢ —q z
k=0
Theorem 2.29 is proved. ]
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