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Abstract

The relationship between Jacobi’s last multiplier (JLM) and nonholonomic systems
endowed with the almost symplectic structure is elucidated in this paper. In particular,
we present an algorithmic way to describe how the two form and almost Poisson struc-
ture associated to nonholonomic system, studied by L. Bates and his coworkers, can
be mapped to symplectic form and canonical Poisson structure using JLM. We demon-
strate how JLM can be used to map an integrable nonholonomic system to a Liouville
integrable system. We map the toral fibration defined by the common level sets of the
integrals of a Liouville integrable Hamiltonian system with a toral fibration coming from
a completely integrable nonholonomic system.
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1 Introduction

The Jacobi last multiplier (JLM) is a useful tool for deriving an additional first integral for a
system of n first-order ODEs when n− 2 first integrals of the system are known. Besides, the
JLM allows us to determine the Lagrangian of a second-order ODE in many cases [13, 21, 25].
In his sixteenth lecture on dynamics Jacobi uses his method of the last multiplier [16, 17]
to derive the components of the LaplaceRungeLenz vector for the two-dimensional Kepler
problem. In recent years a number of articles have dealt with this particular aspect [21, 22, 10].
However, when a planar system of ODEs cannot be reduced to a second-order differential
equation the question of interest arises whether the JLM can provide a mechanism for finding
the Lagrangian of the system.

Let M be an even dimensional differentiable manifold endowed with a non-degenerate
2-form Ω, (M,Ω) is an almost symplectic manifold. An almost symplectic manifold (M,Ω)
is called locally conformal symplectic manifold by Vaisman [24] if there is a global 1-form η,
called the Lee form on M such that

dΩ = η ∧ Ω,

where dη = 0. (M,ω) is globally conformally symplectic if the Lee form η is exact and when
η = 0, then (M,Ω) is a symplectic manifold. The notion of locally conformally symplectic
forms is due to Lee and, in more modern form, to Vaisman. Chinea [8, 9] et al showed an ex-
tension of an observation made by I. Vaisman that locally conformal symplectic manifolds can
be seen as a natural geometrical setting for the description of time-independent Hamiltonian
systems. In a seminal paper Wojkowski and Liverani [26] studied the Lyapunov spectrum
in locally conformal Hamiltonian systems. It was demonstrated that Gaussian isokinetic dy-
namics, Nośe-Hoovers dynamics and other systems can be studied through locally conformal
Hamiltonian systems. It must be noted that the conformal Hamiltonian structure appears in
various dissipative dynamics as well as in the activator-inhibitor model connected to Turing
pattern formation. It has been shown by Haller and Rybicki [15] that the Poisson algebra
of a locally conformally symplectic manifold is integrable by making use of a convenient set-
ting in global analysis. In this paper we explore the role of the Jacobi last multiplier in
nonholonomic free particle motion and nonholonomic oscillator. These systems were studied
extensively studied by L. Bates and his coworkers [2, 3, 4, 5]. The two forms associated with
these nonholonomic systems are not closed, in fact they satisfy l.c.s. condition. We apply
JLM to such systems which guarantees that at least locally the symplectic form can be mul-
tiplied by a nonzero function to get a symplectic structure. In an interesting paper Bates and
Cushman [4] compared the geometry of a toral fibration defined by the common level sets of
the integrals of a Liouville integrable Hamiltonian system with a toral fibration coming from
a completely integrable nonholonomic system. We apply JLM to study and compare these
two toral fibrations. All the examples considered in this paper are taken from Bates et al.
papers. Relatively very little has been done when the flow is not complete. A quarter of a
century ago, Flaschka [12] raised a number of questions concerning a simple class of integrable
Hamiltonian systems in R4 for which the orbits lie on surfaces.
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This paper is organized as follows. The first section recalls the definitions of the locally
conformal symplectic structure and the Jacobi last multiplier. We show the application of
JLM in nonholonomic system in Section 3, a notion which, to our knowledge, does not appear
explicitly in the literature. The paper ends with a list of remarks regarding the further
applications of JLM in nonholonomic systems.

2 Preliminaries

We start with a brief review [19, 15, 24] of the locally conformal symplectic structure. A
differentiable manifold M of dimension 2n endowed with a non-degenerate 2-form ω and a
closed 1-form η is called a locally conformally symplectic (l.c.s.) manifold if

dω + ω ∧ η = 0. (2.1)

The 1-form η is called the Lee form of ω. This allows us to introduce the Lichnerowicz
deformed differential operators

dη : Ω∗(M) −→ Ω∗+1(M),

such that dηθ = dθ+η∧ θ. clearly d2
η = 0 and dηω = 0. It must be noted that l.c.s manifold is

locally conformally equivalent to a symplectic manifold provided η = df and ω = efω0, such
that dω0 = 0.

If (ω, η) is an l.c.s. structure on M and f ∈ C∞(M,R), then (efω, η − df) = (ω′, η′) is
again an l.c.s. structure on M then these two are conformally equivalent and two operators
and two Lee forms are cohomologous: η′ = η − df . Hence dη and dη′ are gauge equivalent

dη′(β) = (dη − df∧)β = ef d(e−fβ).

The r.h.s is connected to Witten’s differential. If f ∈ C∞(M) and t ≥ 0, Witten deformation
of the usual differential dtf : Ω∗(M) −→ Ω∗+1(M) is defined by dtf = etfde−tf , which means
dtfβ = dβ+ tβ∧df . Since dη and dη′ are gauge equivalent hence the Lichnerowicz cohomology
groups H∗(Ω∗(M), dη) and H∗(Ω∗(M), dη) are isomorphic and the isomorphism is given by
the conformal transformation [β] 7−→ [efβ].

It is clear from the definition that dη does not satisfy the Leibniz property:

dη(θ ∧ ψ) = (d+ η∧)(θ ∧ ψ) = dηθ ∧ ψ + (−1)deg θθ ∧ dψ

= dθ ∧ ψ + (−1)deg θθ ∧ dηψ.

For an l.c.s. manifold, we denote by

Diff ∞c (M,ω, η) := {f ∈ Diff∞c (M)|(f ∗ω, f ∗η) ' (ω, η)}

the group of compactly supported diffeomorphisms preserving the conformal equivalence class
of (ω, η). The corresponding Lie algebra of vector fields is

χc(M,ω, η) := {X ∈ χc(M) | ∃c ∈ R : LηXω = cω},
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where LηXβ = LXβ + η(X)β. The Cartan magic formula for LηX is given by

LηX = dη ◦ iX + iX ◦ dη.

Here we list some of the important properties of the Lie derivative.

1. LηXL
η
Y − L

η
XL

η
X = Lη[X,Y ].

2. LηXdη − dηL
η
X = 0

3. LηXiY − iYL
η
X = 0.

4. Let η1 and η2 are two Lee forms then Lη1+η2
X (θ ∧ ψ) = (Lη1X θ) ∧ ψ + θ ∧ (Lη2Xψ).

Let X and Y be the two conformal vector fields then [X, Y ] becomes the symplectic
vector field. The proof of this claim is very simple, can can easily show that Lη[X,Y ]ω = 0.

2.1 Inverse problem and the Jacobi last multiplier

We start with a brief introduction [10, 13, 21, 22, 25] of the Jacobi last multiplier and inverse
problem of calculus of variations [18]. Consider a system of second-order ordinary differential
equations

y′′i = fi(yj, y
′
j) for 1 ≤ i, j ≤ n.

Geometrically these are the analytical expression of a second-order equation field Γ living on
the first jet bundle J1π of a bundle π : E → R, so

Γ = y′i
∂

∂yi
+ fi(yj, y

′
j)
∂

∂y′i
.

The local formulation of the general inverse problem is the question for the existence of
a non-singular multiplier matrix gij(y, y

′), such that

gij(y
′′
j − Fj) ≡

d

dt

(∂L
∂yi

)
− ∂L

∂y′i
,

for some Lagrangian L.

Theorem 2.1 (Douglas[11]) There exists a Lagrangian L : TQ→ R such that the equations
are its Euler-Lagrange equations if and only if there exists a non-singular symmetric matrix
g with entries gij satisfying the following three Helmholtz conditions:

gij = gji, Γ(gij) = gikΓ
k
j + gjkΓ

k
i ,

gikΦ
k
j = gjkΦ

k
i ,

∂gij
∂y′k

=
∂gik
∂y′j

,

where

Γkj := −1

2

∂fi
∂y′j

.

4



When the system is one-dimensional we have i = j = k = 1 and then the three set of
conditions become trivial and the fourth one reduces to one single P.D.E.

Γ(g) + g
∂f

∂v
≡ v

∂g

∂x
+ f

∂g

∂v
+ g

∂f

∂v
= 0.

This is the equation defining the Jacobi multipliers, because divΓ = ∂f
∂v

. The main equation
can also be expressed as

dg

dt
+ g · div Γ = 0.

Then, the inverse problem reduces to find the function g ( often denoted by µ) which
is a Jacobi multiplier and L is obtained by integrating the function µ two times with respect
to velocities.

An autonomous second-order differential equation y′′ = F (y, y′) has associated a system
of first-order differential equations

y′ = v, v′ = F (y, v) (2.2)

whose solutions are the integral curves of the vector field in R2

Γ = v
∂

∂y
+ F (y, v)

∂

∂v
. (2.3)

A Jacobi multiplier µ for such a system must satisfy divergencefree condition

∂

∂y
(µv) +

∂

∂v
(µF ) = 0,

which implies µ must be such that

v
∂µ

∂y
+
∂µ

∂v
F + µ

∂F

∂v
= 0.

which taking into account dM
dx

= v ∂M
∂y

+ F ∂M
∂v

above equation can be written as

d log µ

dx
+
∂F

∂v
= 0. (2.4)

The normal form of the differential equation determining the solutions of the Euler-Lagrange
equation defined by the Lagrangian function L(y, v) admits as a Jacobi multiplier the function

µ =
∂2L

∂v2
. (2.5)

Conversely, if µ(y, v) is a last multiplier function for a second-order differential equation in
normal form, then there exists a Lagrangian L for the system related to µ by the above
equation.
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Let L be such that condition M = ∂2L
∂v2

be satisfied, then

∂L

∂v
=

∫ v

M(y, ζ)dζ + φ1(y)

which yields

L(y, v) =

∫ v

dv′
∫ v′

M(y, ζ)dζ + φ1(y)v + φ2(y).

Geometrical Interpretation of JLM Let M be a smooth, real, n-dimensional orientable
manifold with fixed volume form Ω. Let ẋi(t) = γi(x1(t), · · · , xn(t)), 1 ≤ i ≤ n generated by
the vector field Γ and we consider the (n − 1)-form Ωγ = iΓΩ. The function µ ∈ C∞(M) is
called a JLM of the ODE system generated by Γ, if µω is closed, i.e.,

d(µΩγ) = dµ ∧ Ωγ + µdΩγ.

This is equivalent to Γ(µ) + µ. div Γ = 0. Characterizations of the JLM can be obtained in
terms of the deformed Lichnerowicz operator dµ(θ) = dµ∧θ+dθ, where the Lee form in terms
of the last multiplier, i.e. η = dµ. Hence, µ is a multiplier if and only if [6]

d(µΩγ) ≡ dµΩγ + (m− 1)dΩγ = 0. (2.6)

3 Nonholonomic systems, locally conformal symplectic

structure and JLM

Let (x, y, z) be the configuration variables for the nonholonomic system. The results presented
in this paper are quite general but in order to perform explicit calculation we stick to the
example of the motion of a free particle with unit mass subjected to a constriant

ż = yẋ, (3.1)

and the Lagrangian is L = 1
2
(ẋ2 + ẏ2 + ż2). The equations of motion are

ẋ = px, ẏ = py, ż = pz, ṗx = −λy, ṗy = 0 ṗz = λ, (3.2)

where (px, py, pz) are the momentum variables.

Using the constraint equation we eliminate the multiplier to obtain

ẋ = px, ẏ = py, ṗx = −y pxpy
(1 + y2)

, ṗy = 0. (3.3)

The vector field corresponding to equation (3.3)

Γ = ẋ
∂

∂x
+ ẏ

∂

∂y
− ypxpy

(1 + y2)

∂

∂px
(3.4)
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satisfies

Γyω̃nh = −dH, where H =
1

2

(
(1 + y2)p2

x + p2
y

)
(3.5)

and the two form is given by

ω̃nh = dpx ∧ dx+ dpy ∧ dy −
pxy

(1 + y2)
dy ∧ dx. (3.6)

Here ω̃nh is the nondenerate two form on phase space P , however it is not closed, i.e.,

dω̃nh = ydx ∧ dpx ∧ dy.

We now compute the JLM of these set of equations from

d

dt
log µ+

(
− yẏ

1 + y2

)
= 0,

thus we obtain
µ = (1 + y2)1/2. (3.7)

The Lagrangian of the reduced system is Lc = 1/2
(
(1 + y2)ẋ2 + ẏ2

)
. Let S be the

configuration space and Legc : TS → T ∗S be the Legendre transformation of the reduced
system. Then the momentum corresponding to the reduced equations are given by

mx =
∂L

∂ẋ
= (1 + y2)ẋ, my =

∂L

∂ẏ

and the corresponding Hamiltonian of the reduced system is given by

Hc =
1

2

( m2
x

1 + y2
+m2

y

)
. (3.8)

The new set of equations is given by

ẋ =
mx

1 + y2
, ẋ = my, ṁx =

ymxmy

1 + y2
, ṁy = 0. (3.9)

The vector field
Γh =

mx

1 + y2
∂x +my∂y +

ymxmy

1 + y2
∂mx (3.10)

satisfies Γhyωnh = −dHc, where

ωnh = dmx ∧ dx+ dmy ∧ dy −
mxy

1 + y2
dy ∧ dx. (3.11)

This says that that we can still do Hamiltonian dynamics as long as we are willing to give up
the existence of canonical coordinates and the Jacobi identies for the Poisson brackets. We
will subsequently see that the Jacobi last multiplier plays a crucial role to obtain the canonical
coordinates and Poisson structures.
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Proposition 3.1 The nonholonomic two form ωnh as well as ω̃nh satisfy locally conformal
symplectic structure and the Lee form is η = d

(
log(1 + y2))1/2

)
= d(log µ), where µ is the

Jacobi’s last multiplier.

Proof: It is straightforward to check

dωnh = −
( ydy

1 + y2

)
∧ dmx ∧ dx

= −d
(

log(1 + y2)
)
∧
(
dmx ∧ dx+ dmy ∧ dy −

mxy

1 + y2
dy ∧ dx

)
= −η ∧ ωnh

and similarly for the other case. 2

Corollary 3.1 The (almost) Poisson structure corresponding to the locally conformal sym-
plectic form ωnh is given by

{x,mx} = 1, {y,my} = 1, {mx,my} =
ymx

1 + y2
. (3.12)

The inverse multiplier play an important role for changing locally conformal symplectic
form ωnh to symplectic form. In this process we find new momemta which satisfy canonical
Poisson structure.

Proposition 3.2 Let µ−1 be the inverse multiplier, then ω = µ−1ωnh is a symplectic form,
given by

ω̃ = dm̃x ∧ dx+ dm̃y ∧ dy, (3.13)

where the new momenta are

m̃x = µ−1mx =
mx√
1 + y2

m̃y =
mx√
1 + y2

. (3.14)

Proof By direct computation one obtains

µ−1ωnh =
1√

1 + y2

(
dmx ∧ dx+ dmy ∧ dy −

mxy

1 + y2
dy ∧ dx

)
=

dmx√
1 + y2

∧ dx+
dmy√
1 + y2

∧ dy − mxy

(1 + y2)3/2
dy ∧ dx ≡ dm̃x ∧ dx+ dm̃y ∧ dy.

2

It is clear dω̃ = 0 and the new momenta satisfy the canonical Poisson structure

{x, m̃x} = 1, {y, m̃y} = 1. (3.15)
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3.1 Role of Jacobi’s multiplier and integrability of nonholonomic
dynamical systems

We now address the question of integrability of the nonholonomic systems as posed by Bates
and Cushman [4, 7]. In their papers, they explored to what extent nonholonomic systems
behave like a integrable systems. The fundamental Liouville theorem states that it suffices
to have n {f1 = H, f2, · · · , fn} independent Poisson commuting functions to explicitly (i.e.,
by quadratures) integrate the equations of motion for generic initial conditions. Let Mc =
{f1 = c1, · · · , fn = cn} be a common invarinat level set, which is regular (i.e., df1, · · · dfn are
independent), compact and connected, then it is diffeomorphic to n-dimensional tori Tn =
Rn/Λ, where Λ is a lattice in Rn. These tori are known as the Liouville tori [1, 7], In the
neighborhood of Mc there exist canonical variables I, φ mod 2π, called action-angle variables
which satisfy {φi, Ij} = δij, {φi, φj} = {Ii, Ij} = 0, i, j = 1, · · ·n, such that the level sets of
the actions I , · · · , In are invariant tori and H = H(I1, . . . , In).

The vector fields Xf1 , · · · , Xfn corresponding to the n integrals of motion f1, · · · fn are
independent (it follows from the independency of differentials ) and span the tangent spaces of
TqMc for all q ∈Mc, since Mc is compact hence Xfis are complete. The Poisson commutativity
implies the commutivity of vector fields. In other words, the so-called invariant manifolds,
which are the (generic) submanifolds traced out by the n commuting vector fields Xfi are
Liouville tori, the flow of each of the vector fields Xfi is linear, so that the solutions of
Hamilton’s equations are quasi-periodic. A proof in the case of a Liouville integrable system
on a symplectic manifold was given by Arnold [1].

We will soon figure out that the (reduced) nonholonomic problem which we are con-
sidered in this paper has two constants of motion H (Hamiltonian) and K, these are Poisson
commuting. However, because the nonholonomic system does not satisfy the Jacobi identity,
the associated vector fields XH and XK do not commute, i.e. [XH , XK ] 6= 0, on the torus.
So Bates and Cushman asked if such system is integrable in some sense or how can it be
converted to integrable systems.

3.1.1 JLM and commuting of vector fields

It has been observed the reduced Hamiltonian equation of motion lies on the invariant manifold
given by

K =
mx√
1 + y2

, (3.16)

where K satisfies dK
dt

= 0. The Hamiltonian vector field

XK =
1√

1 = y2
(3.17)

satisfies Xkyωnh = −dK.
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The Hamiltonian vector field XH satisfies

LXH
K = XH(K) = 0, (3.18)

which implies

ωnh(XH , XK) = XKyXHyωnh = XKy(
mx

1 + y2
dmx +mydmy −

mx2y

(1 + y2)2
dy
)

= 0.

Next observe that the Lie bracket between vector fields XH and XK

[XH , Xk] = − ymx

1 + y2
XK . (3.19)

This has been demonstrated by Bates and Cushman the vector fields XH and XK do not
commute on the torus, because the two form ωnh is not closed. They try to seek an integrating
factor g such that [gXK , XH ] = 0. Next propositon addresses the value of g.

Proposition 3.3 Let µ be the Jacobi last multiplier, then the modified vector field µ−1XK

commutes with the Hamiltonian vector field XH , i.e.,

[µ−1XK , Xh] = 0. (3.20)

Proof We know that the JLM µ =
√

1 + y2, so that µ−1XK = ∂x. Hence we obtain
[µ−1XK , Xh] = 0. 2

4 Final comments and outlook

Our formalism can be easily extended to nonholonomic oscillator. In this case, Lagrangian
is given by L = 1

2
(ẋ2 + ẏ2 + ż2) + 1

2
y2, subject to the nonholonomic constraint ż = yẋ. The

reduced system of equations are given by

ẋ = px, ẏ = py, ṗx = − y

1 + y2
pxpy, ṗy = −y.

One can easily check that the last multiplier is µ = (1 + y2)1/2. The two form associated to
the reduced nonholonomic oscillator equation

ωas = (1 + y2)dpx ∧ dx+ dpy ∧ dy + ypxdy ∧ dx

satisfies locally conformal symplectic structure, dωas + η ∧ ωas = 0, where the Lee form η =
d
(

log(1 + y2)1/2
)
. Hence the inverse Jacobi’s last multiplier transforms ωas into a symplectic

form
µ−1ωas ≡ ω̃ = dp̃x ∧ dx+ dp̃y ∧ dy,

where the modified momenta are given by p̃x =
√

1 + y2px and py = py√
1+y2

. Thus everything

can be repeated here.
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The application of the Jacobi Last Multiplier (JLM) for finding Lagrangians of any
second-order differential equation has been extensively studied. It is known that the ratio
of any two multipliers is a first integral of the system, in fact, it plays a role similar to
the integrating factor for system of first-order differential equations. But so far, it has not
been applied to nonholonomic systems. In this paper we have studied nonholonomic system
endowed with a two form, which is closely related to locally conformal symplectic structure.
We have applied JLM to map it to symplectic frame work. Also, we have shown how a toral
fibration defined by the common level sets of integrable nonholonomic system, studied by
Bates and Cushman, can be mapped to toral fibration defined of the integrals of a Liouville
integrable Hamiltonian system.

There are some open problems popped up from this article. Firstly, it would be nice
to study the time-dependent nonholonomic systems using JLM. Secondly, we have considered
examples from the integrable domain, hence it would be great to apply JLM in nonintegrable
domain.
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