THÉORÈME DE NOETHER STOCHASTIQUE

par

Jacky CRESSON & Sébastien DARSES

Résumé. — Dans le cadre du plongement stochastique des systèmes lagrangiens [3], on définit un calcul des variations sur les processus. On démontre un théorème de Noether basé sur la notion de suspension stochastique d'un groupe à un paramètre de difféomorphismes.

Abstract (The stochastic Noether theorem). — In the framework of the stochastic embedding of lagrangian systems [3], we define a calculus of variations on stochastic processes. We prove a Noether theorem based on stochastic suspensions of one-parameter groups of diffeomorphisms.

1. Introduction

La procédure de plongement stochastique, définie dans [3], permet d'associer à des fonctionnelles et des équations différentielles ordinaires leurs analogues stochastiques. Pour les systèmes lagrangiens, on obtient une dynamique contrôlée par une équation d'Euler-Lagrange stochastique [3]. Que reste-t-il des propriétés de la dynamique initiale? Par exemple, dans le cas déterministe, l'invariance d'un lagrangien par un groupe de symétries induit l'existence d'une intégrale première du mouvement (cf [1] p.88) : c'est le contenu du théorème de Noether.

Dans cette note, on démontre un analogue stochastique du théorème de Noether. La démonstration repose sur la définition des suspensions stochastiques des groupes à un paramètre de difféomorphismes et d'un calcul des variations sur les processus stochastiques. On définit à cette occasion une notion originale d'intégrale première stochastique.

2. Rappels et notations

On note I :=]a, b[où a < b et J := [a, b] l'adhérence de I dans \mathbb{R} . Soit \mathbb{K} un corps et $d \in \mathbb{N}^*$. On se donne un espace probabilisé (Ω, \mathcal{A}, P) sur lequel existent une famille croissante de tribus $\mathcal{P} := (\mathcal{P}_t)_{t \in J}$ et une famille décroissante de tribus $\mathcal{F} := (\mathcal{F}_t)_{t \in J}$.

Définition 2.1. — On note $\mathcal{C}^1_{\mathbb{K}}(J)$ l'ensemble des processus X définis sur $J \times \Omega$, à valeurs dans \mathbb{K}^d et tels que : X soit \mathcal{P} et \mathcal{F} adapté, pour tout $t \in J$ $X_t \in L^2(\Omega)$, l'application $t \to X_t$ de J dans $L^2(\Omega)$ est continue, pour tout $t \in I$ les quantités

(1)
$$DX_{t} = \lim_{h \to 0^{+}} h^{-1} E[X_{t+h} - X_{t} \mid \mathcal{P}_{t}],$$

et

(2)
$$D_* X_t = \lim_{h \to 0^+} h^{-1} E[X_t - X_{t-h} \mid \mathcal{F}_t],$$

existent dans $L^2(\Omega)$, et enfin les applications $t \to DX_t$ et $t \to D_*X_t$ sont continues de I dans $L^2(\Omega)$.

Le complété de $\mathcal{C}^1_{\mathbb{K}}(J)$ pour la norme

(3)
$$||X|| = \sup_{t \in I} (||X_t||_{L^2(\Omega)} + ||DX_t||_{L^2(\Omega)} + ||D_*X(t)||_{L^2(\Omega)}),$$

 $est \; encore \; not\'e \; \mathfrak{C}^1_{\mathbb{K}}(J), \; et \; simplement \; \mathfrak{C}^1(J) \; \; quand \; \mathbb{K} = \mathbb{R}.$

On note \mathcal{D} la dérivée stochastique introduite dans ([3] Lemme 1.2) et définie par

(4)
$$\mathcal{D} = \frac{D + D_*}{2} + i \frac{D - D_*}{2}.$$

On rapelle que $\mathcal D$ est étendu par $\mathbb C$ -linéarité aux processus complexes et on note

$$\overline{\mathcal{D}} = \frac{D + D_*}{2} - i \frac{D - D_*}{2}.$$

On note Λ l'espace des diffusions défini dans ([3] Définition 3.1) et $\Lambda_{\mathbb{C}}$ les processus à valeurs complexes de partie réelle et imaginaire dans Λ . On montre que l'on peut calculer les dérivées \mathcal{D} et \mathcal{D}^2 sur des éléments de Λ ([2] p.26).

Théorème 2.2. — Soit $X \in \Lambda$ solution d'une EDS

(6)
$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t,$$

et $f \in C^{1,2}(I \times \mathbb{R}^d)$ telle que $\partial_t f$, ∇f and $\partial_{ij} f$ sont bornées. En posant $a^{ij} = (\sigma \sigma^*)^{ij}$, on obtient

(7)
$$\mathcal{D}f(t,X_t) = \left(\partial_t f + \mathcal{D}X_t \cdot \nabla f + \frac{i}{2} \sum_{k,j} a^{kj} \partial_{kj} f\right) (t,X_t).$$

D'autre part, on généralise avec l'opérateur \mathcal{D} , la "loi produit" donnée par Nelson dans [4] p.80 :

Lemme 2.3. — Soit
$$X, Y \in \Lambda_{\mathbb{C}}$$
. Alors $E[\mathcal{D}X_t \cdot Y_t + X_t \cdot \overline{\mathcal{D}}Y_t] = \frac{d}{dt}E[X_t \cdot Y_t]$.

La démonstration est une conséquence immédiate de la forme de l'opérateur \mathcal{D} et du fait que Λ est un sous-espace de la classe $S(\mathcal{F},\mathcal{G})$ ([8] p.226) pour laquelle W. Zheng et P-A. Meyer démontrent la loi produit de Nelson (cf [8] Théorème I.2 p.227).

3. Calcul des variations stochastique dynamique

On définit un calcul des variations à partir de fonctionnelles lagrangiennes définies sur $\mathcal{C}^1(J)$. Il repose sur la dérivée stochastique dynamique \mathcal{D} . Le calcul des variations stochastiques de Malliavin quant à lui repose sur une notion de différentiation suivant le paramètre aléatoire $\omega \in \Omega$ (voir [5] p.24).

On dit qu'un lagrangien L est admissible si la fonction L(x, v) est définie sur $\mathbb{R}^d \times \mathbb{C}^d$, C^1 en x et holomorphe en v, et est réelle quand v est réel.

Le lagrangian L est dit naturel s'il s'écrit

(8)
$$L(x,v) = q(v) - U(x)$$

où q est une forme quadratique sur \mathbb{C}^d et U un potentiel de classe \mathcal{C}^1 sur \mathbb{R}^d .

La fonctionnelle F_J associée à L est définie à partir du plongement de la fonction lagrangienne L(x(t), x'(t)):

(9)
$$F_{J}: \left\{ \begin{array}{ccc} \Xi \subset \mathcal{C}^{1}(J) & \to & \mathbb{C} \\ X & \mapsto & E\left[\int_{J} L(X_{t}, \mathcal{D}X_{t}) dt\right] \end{array} \right.$$

avec

(10)
$$\Xi = \left\{ X \in \mathcal{C}^1(J), E\left[\int_I |L(X_t, \mathcal{D}X_t)| dt \right] < \infty \right\}.$$

On en déduit une notion de différentiabilité liée à F_J . On appelle Γ -variation de $X \in \mathcal{C}^1(J)$, un processus de la forme X + Z où $Z \in \Gamma$ et on pose

(11)
$$\Gamma_{\Xi} = \{ Z \in \Gamma, \forall X \in \Xi, Z + X \in \Xi \}.$$

Définition 3.1. — Si L est un lagrangien admissible et F_J la fonctionnelle associée, F_J est dite Γ -différentiable en un processus $X \in \Xi$ si pour tout $Z \in \Gamma_\Xi$,

(12)
$$F_J(X+Z) - F_J(X) = dF_J(X,Z) + R_X(Z),$$

où $dF_J(X,Z)$ est une fonctionnelle linéaire en Z et $R_X(Z) = o(||Z||)$. De plus, X est dit Γ -stationnaire si pour tout $Z \in \Gamma_\Xi$, $dF_J(X,Z) = 0$.

La définition de la dérivée stochastique dynamique contraint l'espace des variations (i.e. $Z \in \Gamma_{\Xi}$). De la même manière, la définition de la dérivée de Malliavin détermine l'espace des variations de Cameron-Martin ([5] p.25).

Théorème 3.2. — Un processus X est $C^1(J)$ -stationnaire pour F_J si et seulement c'est une solution de l'équation

(13)
$$(\partial_x L - \overline{\mathcal{D}}\partial_v L)(X_u, \mathcal{D}X_u) = 0$$

 $sur\ I$.

On renvoie à ([2] Chapitre 7) pour la démonstration.

4. Théorème de Noether stochastique

Soit Π l'ensemble des processus définis sur $J \times \Omega$, et $C^k(J)$ l'ensemble des fonctions de classe C^k de J dans \mathbb{R}^d , $k \in \mathbb{N}$.

Définition 4.1. — Soit $\phi : \mathbb{R}^d \to \mathbb{R}^d$ un difféomorphisme. La suspension stochastique de ϕ est l'application $\Phi : \Pi \to \Pi$ définie par

(14)
$$\forall X \in \Pi, \ \Phi(X)_t(\omega) = \phi(X_t(\omega)).$$

Dans la suite on notera indifféremment le difféomorphisme et sa suspension.

De plus un groupe à un paramètre de transformations $\Phi_s: \Upsilon \to \Upsilon$, $s \in \mathbb{R}$, où $\Upsilon \subset \Pi$, est appelé un groupe ϕ -suspendu agissant sur Υ s'il existe un groupe à un paramètre de difféomorphisme $\phi_s: \mathbb{R}^d \to \mathbb{R}^d$, $s \in \mathbb{R}$, tel que pour tout $s \in \mathbb{R}$, Φ_s soit une suspension stochastique de ϕ_s , et pour tout $X \in \Upsilon$, $\Phi_s(X) \in \Upsilon$.

Définition 4.2. — Un groupe à un paramètre de difféomorphismes est dit admissible si $\Phi = \{\phi_s\}_{s \in \mathbb{R}}$ est un groupe à un paramètre de C^2 -diffeomorphismes sur \mathbb{R}^d tel que $(s,x) \mapsto \partial_x \phi_s(x)$ est de classe C^2 et tel que la formule (7) reste vrai pour toute fonction ϕ_s du groupe.

On étudie le comportement des suspensions par rapport à l'espace Λ . Grâce au lemme de Schwarz et au théorème 2.2, on montre :

Lemme 4.3. — Soit $\Phi = (\phi_s)_{s \in \mathbb{R}}$ une suspension stochastique d'un groupe admissible à un paramètre de difféomorphismes. Alors pour tout $X \in \Lambda$, et pour tout $(t,s) \in I \times \mathbb{R}$ l'application $s \mapsto \mathcal{D}(\Phi_s X)_t$ est de classe C^1 p.s. et

(15)
$$\partial_s[\mathcal{D}(\phi_s(X))] = \mathcal{D}[\partial_s\phi_s(X)] \quad \text{p.s.}.$$

La notion d'invariance par une suspension stochastique est :

Définition 4.4. — Soit $\Phi = (\phi_s)_{s \in \mathbb{R}}$ une suspension stochastique d'un groupe admissible à un paramètre de difféomorphismes et $L : \mathcal{C}^1(I) \to \mathcal{C}^1_{\mathbb{C}}(I)$. La fonctionnelle L est invariante sous Φ si pour tout $s \in \mathbb{R}$ et $X \in \mathcal{C}^1(J)$,

(16)
$$L(\phi_s X, \mathcal{D}(\phi_s(X))) = L(X, \mathcal{D}X).$$

La définition d'invariance utilisée par M. Thieullen et J-C. Zambrini ([6] p.313) peut se formuler à l'aide des suspensions stochastiques de groupes à un paramètre de difféomorphismes.

Exemple. On considère le lagrangien étendu du problème des deux corps dans \mathbb{R}^3 , i.e. $\mathcal{L}(x,z)=q(z)-\frac{1}{|x|}$ où pour tout $x\in\mathbb{R}^3$, $|x|^2=x_1^2+x_2^2+x_3^2$ et tout $z\in\mathbb{C}^3$, $q(z)=z_1^2+z_2^2+z_3^2$.

Lemme 4.5. — Le lagrangien \mathcal{L} défini sur $\mathbb{R}^3 \setminus \{0\} \times \mathbb{C}^3$ est invariant par la suspension stochastique des rotations $\phi_{\theta,k}$ d'axes e_k (base canonique) et d'angle $\theta, k = 1, 2, 3$.

 $D\acute{e}monstration$. — Comme $\phi_{\theta,k}$ est une matrice dont les coefficients ne dépendent pas de t, on a $\mathcal{D}_{\mu}\left[\phi_{\theta,k}(X)\right] = \phi_{\theta,k}\left[\mathcal{D}_{\mu}X\right]$ où $\phi_{\theta,k}$ est trivialement étendu à \mathbb{C}^3 . Un calcul simple donne pour tout $z \in \mathbb{C}^3$, $q(\phi_{\theta,k}(z)) = q(z)$. On déduit alors que $\mathcal{L}(\phi_{\theta,k}X,\mathcal{D}(\phi_{\theta,k}X)) = \mathcal{L}(X,\mathcal{D}X)$.

Théorème 4.6 (Noether stochastique). — Soit F_J la fonctionnelle définie sur $\Xi \cap \Lambda$ par (9), où L est un lagrangien admissible invariant sous le groupe admissible à un paramètre de difféomorphisme $\Phi = (\phi_s)_{s \in \mathbb{R}}$. Soit $X^0 \in \Xi \cap \Lambda$ un point $\mathfrak{C}^1(J)$ -stationnaire de F_J . On pose $Y_t(s) = (\Phi_s X^0)_t$. Alors

(17)
$$\frac{d}{dt}E\left[\partial_v L(X^0, \mathcal{D}X_t^0) \cdot \frac{\partial Y_t}{\partial s}(0)\right] = 0.$$

Démonstration. — On pose $V_t(s) = (Y_t(s), \mathcal{D}Y_t(s))$. Comme L est invariant sous $\Phi = \{\phi_s\}_{s \in \mathbb{R}}$, on a $\frac{\partial}{\partial s}L(V_t(s)) = 0$ (p.s.). Comme pour tout $t \in J$ et tout $\omega \in \Omega$, $Y_t(\cdot)(\omega) \in C^1(\mathbb{R})$ et $\mathcal{D}Y_t(\cdot)(\omega) \in C^1(\mathbb{R})$, on obtient

(18)
$$\partial_x L(V_t(s)) \cdot \frac{\partial Y_t}{\partial s} + \partial_v L(V_t(s)) \cdot \frac{\partial \mathcal{D}Y_t}{\partial s} = 0 \quad (p.s.).$$

En utilisant le Lemme 4.3, cette équation est équivalente à

(19)
$$\partial_x L(V_t(s)) \cdot \frac{\partial Y_t}{\partial s} + \partial_v L(V_t(s)) \cdot \mathcal{D}\left(\frac{\partial Y_t}{\partial s}\right) = 0 \quad (p.s.).$$

Comme $X^0 = Y(0)$ est un point $\mathfrak{C}^1(J)$ -stationaire de F_J , on a

(20)
$$\partial_x L(V_t(0)) = \overline{\mathcal{D}} \left[\partial_v L(V_t(0)) \right].$$

On en déduit alors

(21)
$$\overline{\mathcal{D}}\left[\partial_v L(V_t(0))\right] \cdot \frac{\partial Y_t}{\partial s}(0) + \partial_v L(V_t(0)) \cdot \mathcal{D}\left(\frac{\partial Y_t}{\partial s}(0)\right) = 0 \quad (p.s.).$$

D'où

(22)
$$E\left[\overline{\mathcal{D}}\left[\partial_v L(V_t(0))\right] \cdot \frac{\partial Y}{\partial s}(0) + \partial_v L(V_t(0)) \cdot \mathcal{D}\left(\frac{\partial Y_t}{\partial s}(0)\right)\right] = 0.$$

Avec le Lemme 2.3, il vient

(23)
$$\frac{d}{dt}E\left[\partial_v L(V_t(0)) \cdot \frac{\partial Y_t}{\partial s}(0)\right] = 0.$$

Ce résultat contient le théorème de Noether classique via l'injection $\iota: C^1(J) \to \Lambda$ définie par $(\iota x)_t(\omega) := x(t)$ pour tous $x \in C^1(J)$, $t \in \mathbb{R}$, $\omega \in \Omega$.

La notion d'intégrale première qui découle de ce théorème est :

Définition 4.7. — Soit L un lagrangien admissible. Une fonctionnelle \mathcal{I} : $L^2(\Omega) \to \mathbb{C}$ est une intégrale première d'un processus Γ -stationnaire de la fonctionnelle F_J si $\frac{d}{dt}[\mathcal{I}(X_t)] = 0$.

Cette définition est naturelle en ce sens que l'analogue d'une courbe classique $J \to \mathbb{R}^d$ (une fonction) est ici une courbe $J \to L^2(\Omega)$ (un processus). Pour des courbes annulant la différentielle de la fonctionnelle F_J , on cherche les constantes de ce "mouvement dans $L^2(\Omega)$ ".

Une alternative à cette définition consiste, pour un processus stationnaire $(X_t)_{i\in J}$ donné, à définir une constante non sur l'objet processus $t\to X_t$, mais sur l'ensemble de ces trajectoires $t\mapsto X_t(\omega)$. L'intégrale première est alors vue comme un processus constant, dépendant du processus critique. Ce point de vue est développé par M. Thieullen et J-C. Zambrini dans [6]: les auteurs montrent qu'à partir d'un point critique pour leur fonctionnelle d'action on peut construire un processus conditionnellement constant, i.e une martingale.

Références

- [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, 2d edition, Springer, 1989.
- [2] J. Cresson, S. Darses, Stochastic embedding of dynamical systems, arXiv:math.PR/0509713, 2005, 112.p.
- [3] J. Cresson, S. Darses, Plongement stochastique des systèmes lagangiens, C.R. Acad. Sci. Paris, Ser. I 342, 333-336, (2006).
- [4] E. Nelson, *Dynamical theories of Brownian motion*, Second edition, Princeton University Press, 2001.
- [5] D. Nualart, The Malliavin Calculus and Related Topics, Springer Verlag (1996).
- [6] M. Thieullen, J.C. Zambrini, Probability and quantum symmetries I. The theorem of Noether in Schrödinger 's euclidean mechanics, Ann. Inst. Henri Poincaré, Physique théorique, Vol 67, n°3 p.297-338 (1997).
- [7] K. Yasue, Stochastic calculus of variations, Journal of functional Analysis 41, 327-340 (1981).
- [8] W.A. Zheng, P.A. Meyer, Quelques résultats de "mécanique stochastique", Séminaire de Probabilités XVIII, 223-244 (1982/83).

Jacky CRESSON • E-mail: jacky.cresson@univ-pau.fr et cresson@ihes.fr, Université de Pau et des Pays de l'Adour et Institut des Hautes Études Scientifiques

DARSES • E-mail : darses@math.univ-fcomte.fr, Laboratoire de Mathématiques de Besançon, CNRS UMR 6623, Université de Franche-Comté