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ABSTRACT: We investigate generic properties of one-loop amplitudes in unordered gauge
theories in four dimensions. For such theories the organisation of amplitudes in mani-
festly crossing symmetric expressions poses restrictions on their structure and results in
remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with
at least eight external photons are given only by scalar box integral functions. This QED
‘no-triangle’ property is true for all helicity configurations and has similarities to the ‘no-
triangle’ property found in the case of maximal A/ = 8 supergravity. Results are derived
both via a world-line formalism as well as using on-shell unitarity methods. We show
that the simple structure of the loop amplitude originates from the extremely good BCFW
scaling behaviour of the QED tree-amplitude.
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1. Introduction

Powerful methods based on on-shell unitarity have led to the discovery of remarkable
simplifications in analytic expressions of perturbative amplitudes in gauge theory [1] and
gravity [2-7]. At one-loop order in four dimensions all n-point amplitudes can be expanded
in a set of basis functions consisting of scalar box, triangle, and bubble integrals and possi-
bly rational polynomial functions [8,9]. This is a consequence of the kinematic restrictions
induced by working with four-dimensional momenta and the observation that amplitude ex-
pressions containing tensor integrals can be reduced to scalar integrals, although through
extensive and cumbersome algebraic manipulations [8,10-12]. Generalisations to higher
loop amplitudes are more complicated since a generic basis of integral functions is not
known for an arbitrary number of legs. This persists even in relatively simple examples,
such as in the planar limit of N' = 4 super Yang-Mills where dual conformal symmetry re-
stricts the form of amplitudes. Crossing symmetry in colourless theories require that both
planar and non-planar integrals are present in the amplitude. This makes the construc-
tion of a basis of integral functions that captures the ultra-violet and infra-red behaviour
of higher loop amplitudes more elusive [13—16]. Nevertheless, constraints from supersym-
metry [17], string theory duality arguments [18,19] and the field theory computations
of [20-22] have explicitly shown that multi-loop amplitudes in N/ = 8 supergravity have
much simpler forms than one would expect from a Lagrangian perspective.

In the case of colourless gauge theories the summation over all orderings of external
legs (this includes both planar and non-planar contributions) leads to extra important
cancellations in the amplitude. At one-loop order such cancellations lead to the ‘no-triangle’
property [4,6,23-25] of N' = 8 supergravity. We will show in this paper that for one-loop
multi-photon amplitudes with n > 8 legs we have a similar ‘no-triangle’ property.

Recently, it has been shown in [23] that the world-line formalism (a.k.a. the ‘string
based method’ for field theory amplitude computations [26-30]) is particularly well suited
for exhibiting the cancellations coming from the summation over the various orderings
of colourless gauge theories at one-loop order. The higher-loop extension of this formal-
ism [30-33] presents a possible dimension independent framework for investigations of the
improved ultra-violet behaviour of maximal N' = 8 supergravity [6,7,17-21,34]. The power
of the world-line formalism has been demonstrated in the recent study [34] of the two-loop
supergravity four-graviton A/ = 8 amplitude given in ref. [35].

The unordered cancellations featured in gravity theories are also present in one-loop
multi-photon amplitudes in QED and Super-QED but in a simpler framework. One-loop
multi-photon amplitudes with n external legs have naively n powers of loop momenta.
This indicates that under n steps of Passarino-Veltman reductions [8,10-12] the amplitude
would, a priori, contain scalar box, triangle and bubble integrals and may also contain
rational polynomial (non-logarithmic) contributions. However, explicit computations show
that the true structure is somewhat simpler.

For the case of multi-photon massless QED amplitudes we can explain the discrep-
ancy between the naive power counting and explicit results using reduction formulse for
unordered amplitudes [23], that were derived using the world-line formalism. We will di-



rectly show that these reduction formulee imply that the four-photon one-loop amplitude
reduces down to scalar box triangle and bubble integral functions together with rational
terms. For the six-photon amplitude that it reduces to box and three-mass scalar trian-
gle integral functions. For multi-photon amplitudes beyond six-point we have a reduction
down to scalar box integral functions only. This box structure only of the amplitude for
n > 8 external photons is true for all helicity configurations but the precise expansion of
the amplitude in terms of scalar box integral functions depends on the choice of helicity
for the external states. Our observations are in complete correspondence with the recent
direct evaluation of the one-loop six-photon amplitude in [36,37]. An earlier evaluation of
the multi-photon MHV amplitude by Mahlon [38] showed that in this case the amplitude
contains only massive box integral contributions. This sheds further light on how consider-
ing expressions for unordered amplitudes with full crossing symmetry leads to a surprising
simplicity for amplitudes.

The structure of the paper is as follows. In section 2 we review in details the recent
results for the reductions of unordered integral functions at one-loop. On general grounds
we will then investigate via a string-based formalism how reduction formulse can be induced
by invariance of amplitudes under gauge transformations [23,24,39]. In section 2.2 we will
re-derive the reduction formulee in ref. [23] and discuss their consequences for unordered
amplitudes. In section 3 we confirm the results obtained using the world-line method
with on-shell unitarity methods. Many advances in generalised unitarity techniques have
been made recently both in the context of analytic computations [40-43] and for numer-
ical evaluations [44-46]. Using such analytic methods that exploit complex analysis and
factorisation properties [43,47] we show that the ‘no triangle’ property for multi-photon
amplitudes follows from the behaviour of the tree amplitudes as the momentum flowing in
the cut becomes large. The appendices contains the technical details on the evaluation of
the cut amplitudes.

2. One-loop amplitudes in the world-line approach

In this section we will describe the world-line approach of ref. [23] for analysing the structure
of multi-leg one-loop amplitudes for colourless gauge theories. One important property
of colourless gauge theories is that the tensorial structure associated with each different
ordering of the external legs is the same. This leads to cancellations that are not manifestly
featured in the ordered amplitudes. Within the traditional Feynman graph approach this
fact is difficult to implement but in the world-line approach it is particularly transparent
and leads to the specific set of reduction formulae derived in ref. [23].

2.1 One-loop amplitudes in colourless gauge theories

The generic structure of colourless gauge theory amplitudes at one-loop, e.g., in QED
or gravity can be given by the following expression based on a Schwinger proper-time
representation of the one-loop amplitude [26-30]

) T 1
Apne-loop — / %T‘D/“” / d" Y P(hi, ki vi) exp(=T Q) . (2.1)
0 0



In this equation T is the one-loop proper-time and v; are Feynman parameters associated
with the external states of the amplitude. These are integrated over the range [0, 1] with
the following measure of integration

1 n 1 n
/ = H/ dz/il D 6y =1). (2.2)
0 i=1"0 "3

We will use a symmetrised delta-function to fix the translational invariance in the loop
amplitude. The quantity @, is defined by
Qn= > (ki-k)Gplvi—v)). (2.3)
1<i<j<n
The one-loop scalar world-line Green function Gg(x) is defined by
Gp(a) = — |a], (2.4)
and is the solution to the one-dimensional Poisson equation
02Gp(z) = 6(x). (2.5)

Gp(z) is the infinite tension, o/ — 0, limit of the corresponding bosonic string correlator
(see [27-30] for a justification of these rules)

Gov) = -2 4 L tn g (" ()" (0)) = Y L ey _ é . (2.6)

6 Do neZ\{0}

The constant 1/6 in the above equation does not contribute to the on-shell amplitudes
because of momentum conservation. See refs. [30-33] for a generalisation of the world-line
formalism to higher-loop amplitudes.

We will also introduce the fermionic Green function

Gr(x) = sign(z). (2.7)
Gp(z) is defined as the infinite tension, o/ — 0, limit of the world-line correlator for
fermions ¢™(v) with the anti-periodic boundary conditions ™ (v 4+ 1) = —¢™(v). The
correlator Gp(x) can be expressed as (see [27,28,30] for a justification of these rules)
1 217rnl/

GF(V) = 5 O}}Elonmn<1/}m( ) =2 Z

(2.8)
The representation (2.1) of the one-loop amplitude can be obtained by considering

a Schwinger representation of the corresponding Feynman integrals. For instance by an
exponentiation of the propagators of the loop amplitude with the external states arranged

in the order {1,2,...,n} along the loop one can write
Zl_Il 7 kl 3 / Hdaz exp( Zal —ky..4) ) (2.9)

1n1

:/O dTTl‘”/0 i];[ldaiexp< T (6 — Kpy)? TQn)7



where kj...; = k1 +ko+- - -+ k; and the rescaled Schwinger parameters a; = «; /T are related
to the v; in eq. (2.1) by

i
vi=» aj. (2.10)
j=1

As in [23] we use o to denote a given ordering. (o is defined as a given permutation of
the n external legs {kq(1),---,Ks(n)})- In this notation the mapping between the v; and a;
variables is given by

Vi= Y Ga(j) - (2.11)
j=1

In the above representation one sees that the loop momentum is given by the total inflow
of external momenta

K= kjv;. (2.12)
j=1

In this representation a power of loop momentum £ - k; appearing in the numerator of the
Feynman integral has the following representation

2]/% . K[n} =2 Z(kZ . k‘]) l/j == —81/1-Qn + 2 Z(k‘z . k’J) GF(Z/Z‘ - Vj) . (213)
j=1 j=1

This shows that in the world-line representation the powers of loop momenta in the ampli-
tude are counted by the first derivative 9,,Q,. Following the strategy defined in eq. [23,24]
we expand the polarisations of the external states in a basis of independent momenta

n—1
hi = Z Cij k‘j + qL . (214)
j=1

Here ¢ is a vector orthogonal to the (n—1) linearly independent external momenta. For an
amplitude with n > 4 external legs the momentum ¢ is only needed in dimensions D > 4.
One employs an identical definition for the h; polarisations. Using the relation (2.3) one
easily derives that

n—1 n—1 n
2hi Kpy =23 ke Ky =Y " [ — 00, Qu + Y (ky - k;) Gp(vy — uj)] . (2.15)
r=1 r=1 j=1

It should be noticed as well that the second derivative on @), is given by

0y, 00,Qn = (ki - kj) 0,,0,Gp(vi — vj) no sum over i, j
=2(k;i - kj) (0(v; —vj) — 1) no sum over i, j , (2.16)

and does not contain any powers of loop momenta. The delta-function §(v; — v;) in the
above expression pinches two of the external legs. The constant arises from the zero-mode
contribution to the world-line Green function.



The dependence on the external polarisations h; and momenta k; with 1 < i < n is
given by the function P(h;, k;; ;) which for the massless QED amplitude takes the form

P(hi ki vg) = ﬁ/dHi exp(F) (2.17)
=1

linear in h;

Here 65 are n Grassmann variables that we discuss below, and one has to keep only the
terms linear in each of the polarisations h; of the external states (with 1 < i < n). The
factor F is defined by

1 i
7 i
1 i
+ 5 Z(hz . h]) GF(VZ - Vj) - 5 Z (kz . hj 9]' — ]{:j - h; 91) GF(Vi — Vj)
i i#j
1
+ 3 2#: 0,0, (ki - kj) Gr(vi —v;) . (218)
i#]

This factor is derived by considering the correlation function of n vertex operators for a
U(1) gauge boson
Vi = (hi - 0x + ik; - b hy - ) €Ki (2.19)

(Vi Vi) = exp(F) exp(=T Q) . (2.20)

The expression (2.18) has been written introducing the fermionic variable 6;

V; = /d@i hi - DX ek X = /d&i exp (hi - DX + ik; - x) (2.21)

linear in h;

. . Y
linear in h;

where 6 is a fermionic variable in the N = 1 world-line formalism and X is a superfield
X™ = 2™+ 0y™ with the fermionic derivative D = 0y — 00, (see ref. [30,33,48] for further
details). The contractions between the world-line fields are done using the correlators in
egs. (2.6) and (2.8).

Using the relations in egs. (2.13), (2.14) and (2.15) one can show [23] that the generic
form of a QED amplitude is given by the sum of unordered n-point integrals Z,[I,, J]
evaluated in D dimensions where the positions of the external states are freely integrated
over the loop

1
Ty[Ly, Js] = / PP Tl 0i@n ] Gr(x), (2.22)
0 i€l z€Js
with gauge invariant tensorial coefficients t?s built from the external momenta and polar-

isations
n/2 g

Azne-loop _ Z Z Z tfn,s 1-7[113-11—2(11‘—1)} [Ir’ Js] . (223)

u=0 [=0 r+s+2l=n



Here I = {i1,...,4,} is a set of r indices of the external states, and J, = {v;, —v;,,..., v, —
vy, } is a set of s differences of the positions of the external states. Because of the zero-mode
contributions to the propagator Gp(x) (see eq. (2.16)) the expression involves integrals that
are evaluated in a dimension different from D that we denote by introducing a superscript
indicating the dimension where the integral are evaluated, e.g., I,[ALDHM (L, Js].

Using the relation in eq. (2.13) one can deduce that the number of loop momenta in a

one-loop n-photon amplitude in QED (given by eq. (2.23)) satisfies the constraint
r+s<n. (2.24)

We will also quickly review the result for the graviton amplitude as given in [23]. The
generic form of an n-graviton amplitude in N' = 8 supergravity is given by

n/2 u
Mpeltw =373 3w L2 (2.25)
u=0 =0 r+s+2[=2n—8
This expression displays that the n-graviton one-loop amplitude has at most 2n — 8 powers
of the loop momentum and satisfies,

r+s<2n-8§. (2.26)

The upper bound arises because the two-derivative nature of the gravitational vertex imply
that the amplitude has at most 2n powers of loop momentum and eight powers of the loop
momentum are cancelled by the integration over the sixteen fermionic zero modes.

Before we close this section we would like to make a few remarks:

e In computations of colourless one-loop amplitudes for gauge theories in the world-line
approach all different orderings of legs in eq. (2.1) have the same tensorial struc-
ture. This particular point makes colourless gauge theory amplitudes special and
makes it possible [23,24] to reduce the amplitudes to a form consisting of a sum of
TP, 3] integrals as given in eqs. (2.23) and (2.25).

e Expressions for QED and supergravity amplitudes in eqs. (2.23) and (2.25) contain
non-analytic functions featuring absolute numerical values of differences between the
v variables as well as sign functions in the definition of Gp(z) in eq. (2.7). These
non-analytic functions are lifted when the loop integral is formally evaluated and that
splits the integrals up into sums of different regions of analyticity of the amplitude.
The sum over these different regions of analyticity is in direct correspondence with
the sum over different physical orderings of the amplitude.

e The representation of the one-loop amplitude in massless QED and supergravity
given in (2.1) is readily obtained by considering the infinite tension limit o/ — 0 of
the corresponding closed one-loop amplitude. No massive string modes play a role in
these computations [27-30]. An extension of this world-line construction to higher-
loop amplitudes in N = 8 supergravity would give a field theoretic justification of the
behaviour of the multi-loop four-graviton amplitude derived using string theory [17]
and dualities in [18,19,34].



2.2 The reduction formulae

The integrals forming the building blocks of the QED amplitude in eq. (2.23) and the
supergravity amplitudes in eq. (2.25) satisfy new types of reduction formulse that were
derived in [23]. We will review these in this section.

The basic building block of colourless gauge theories are the unordered scalar n-point

integrals
1
Tolly1] = / "R I 0iQn - (2.27)
0 .
ZGIT+1
Here I, 41 = {i1,...,9y41} is a set of r+1 distinct indices taking values in {1,...,n}. It was

shown in [23] that, by integration by parts, these integrals satisfy the reduction formulae

In[lysa] =
2

o nri| 2 (Kinh) (~zE @+ PR ) 20s)

jEIr—m+1

n

m = 1) (ki - k) T )

s=1

We see that Z,,[I,41] can be expressed as a sum of the dimension shifted integrals I,LLD+2] [L—1]
and the one-mass (n — 1)-point integrals

g . 1
79 ) = /0 A" QY 5w —vy) [ 0Qu- (2.29)

8615]21

Integrals with more than one mass are defined in the same way with several delta function
insertions. The boundary term is vanishing because of the 1-periodicity of @),, in each of
the v; variables, Q,(v1,...,v; +1,...) = Qun(v1,...,Vi,...) since Gp(l —x) = Gp(z) for
0 <z < 1 and GB(O) = GB(l) = 0.

As in [23] the rule eq. (2.28) can be summarised as

Za[(0Qn)] ~ Ty210Qn) 2] + T, A[(0Qn) ], (2.30)

where Z**%% denotes a massive n-point integral. Using the relations (2.13) and (2.15)
between the loop momenta and the derivative of @, £ ~ 3,Q),, this relation implies that
two powers of loop momenta £ are cancelled at each step

To[07] ~» TRSS[=2) 4 TP+ 2] (2.31)

n—1

When some factors of Gp(z) are present in the integrand we have to distinguish be-
tween the following cases

> If all the ¢ € I, are such that v; is not an argument of G (z) for any = € Jg, then the
same manipulations leading to eq. (2.28) apply with no changes.

> If 4,1 has multiplicity one in I, 41 = I, U {i;11} with 4,41 € I, and J; = {v;,, —v;}
then



1 o “n
In[ITH’Jl]:i/O d" 11/8%+1 D=t Gp(y,,, —v H@Qn

D/2—-n+1 o
(2.32)
This leads, after integration by parts, to
2
Il Ji]l=—— 2.33
nllr41, J1] D/2_7%+1X (2.33)

S (ki - k) (T IID L 30 + P 0]
j€el,

+((n—1 Zr+1] ZI(%HZ 1(r+1) )]

This expression is easily generalised to other cases, with higher multiplicity of ix41 and

with additional G contributions.
As in [23] this rule can be summarised by

Za[(0Qn)", GF] ~ TP(0Qn) ™ IHI35[(0Qn) %, GrI+ L7 ((0Qn) 2, GF]. (2.34)

Using the relations (2.13) and (2.15) between the loop momentum ¢ and the first derivative
of Qn, £ ~ 3,Q, this relation can be rewritten as

In[gTyGF] ~ masswr 1]+ masswr 2 .G ]+I7[ZD+2}[£T—27GF]' (235)

2.3 Reduction of unordered one-loop amplitudes

As was explained in ref. [23] because one-loop amplitudes of N' = 8 supergravity takes the
symbolic form

M= Y S d glPreiin gy, (2.36)
r+s(—)‘—<u=<2n—./\/’ =0

and due to the the constraint r + s < 2n — 8, all amplitudes can eventually be reduced to
scalar box integral functions. In this section we apply the reduction formulee of egs. (2.30)
and (2.34) to the QED amplitude (2.23) and repeat our analysis in ref. [23] for the QED
case.

The structure of the derivative structure of the cubic ggvy vertex implies that an n-
photon one-loop amplitude has at most n powers of loop momenta. The generic form of
the QED amplitude is given by

n/2 y

Azne-loop _ Z Z Z tfn . ILD—ZI—Q(U‘—Z)} [Ir’ Js] . (237)

u=0 [=0 r+s+2l=n

In QED we have the constraint
r+s<n, (2.38)

in the decomposition of the amplitude. In fact because of Furry’s theorem stated in eq. (3.5)
the non-vanishing amplitudes will have an even number of external photon states n = 2m.



We will comment more on this in section 3.1. Applying the reduction formulae of the
previous section to the contribution with the highest power of loop momenta Z,[I,,] will
reduce it to Z,,[0] after n/2 = m steps of reductions plus a contribution from dimension
shifted integrals. All other contributions with less powers of loop momenta, i.e., r+s < n
with s # 0, will reduce as well to Z,,[0)] plus the contribution from dimension shifted
integrals. The dimension shifted integrals are of the type

gy, T 1
_’Z[4+2p} :/ 1 2.39
n+p [(b] 0 (27r)4+2p E (E _ kl . — kz)Q + Eﬁ_ ) ( )

with D = 4 and 1 < p < n. These integrals do not carry any ultra-violet nor infra-red
divergences and have the special structure of the loop momentum being integrated in 44 2p
dimensions with p > 1 but with only four dimensional external momenta. The dimension
shifted contributions are an artifact of the reduction formulae and they do mot contribute
to the the total physical amplitudes as shown in [23].

From this analysis we can conclude that one-loop amplitudes with n > 4 external
photons do not contains any scalar bubble integrals. Amplitudes with n > 6 external
photons do not contain any scalar triangle integrals and will be completely specified by
scalar box integrals. We will confirm these results directly via on-shell unitarity methods
in the following sections.

3. Multi-photon amplitudes in QED with the unitarity method

In the previous section we analysed the structure of the n-photon one-loop amplitude in
massless QED from a string based world line formalism. We showed that the amplitudes
with n > 4 external photons do not contains any scalar bubble integrals and that amplitudes
with n > 6 external photons do not contain any scalar triangle integrals and hence are
completely specified by scalar box integrals.

These results are in agreement with the explicit evaluation of the one-loop four-photon
amplitude in [38] and the six-photon amplitude computation in [36, 37].

In this section we will consider multi-photon one-loop amplitudes in QED at the field
theory level. The aim is to verify the above string-based arguments for the structure of
the loop amplitude in QED. Looking at a simpler theory than gravity, QED, we hope to
shed light on how cancellations between various orderings in unordered field theories can
take place.

3.1 The one-loop multi-photon amplitude

In this section we turn to the analysis of the photon scattering at one-loop in massless
QED
v(k1) 4+ +y(kn) — 0. (3.1)

All photon lines are attached to the massless fermion loop. As for the case of the tree-level
amplitude the one-loop amplitude can be written as a sum over all the orderings of the

~10 -



Vo (3)

g Yo (n)

Yo(1)

Figure 1: The one-loop n-photon amplitude in QED is the sum over all permutations of ordered
photon lines attached to a fermion loop.

external photon lines

AP (oK) = AN (g1, k) - (3.2)
O’GGn
Here Afl?glo‘)p(ka(l), -+« kg(ny) is the ordered one-loop amplitude with n-photon lines at-

tached to a fermion loop for ® = ¢ or a complex scalar for & = .

We will split the cut analysis of the photon amplitude into two parts, one that can
be determined from standard four-dimensional cuts and one involving a D-dimensional
component that can be determined via massive cuts. We will write the full amplitude as:

AQAOOD (foy ) = AQROPCC |y k) + Ry (ks ) - (3.3)

Here the term AJ"'°°PCC contains all divergences and logarithmic terms and the term
R,, contains all remaining rational functions. The cut-constructible piece can be deter-
mined from cuts of photon amplitudes with a massless internal fermion line. By using the
supersymmetric decomposition in terms of an A/ = 1 chiral multiplet and a scalar loop
contribution,

AP (g k) = Ag?;ljfp(kl, k) = AQSIOP (B k) (3.4)

it is clear that the rational terms originate from the scalar loop A%?S'IOOP(k:l,.

., k) since
the A/ = 1 amplitude is cut-constructible in four dimensions [49]. We can therefore proceed
to calculate these terms by computing cuts of the photon amplitude with a massive scalar
loop.!

Before embarking on a detailed analysis of the structure of the multi-photon one-loop
amplitudes in QED, we remark that because the coupling of a photon to a pair of fermions

'We note that it would also be possible to treat these contributions directly by using a massive internal
fermion loop within the D-dimensional cutting method as demonstrated in reference [50]. However, we
choose to compute the rational terms from the massive scalar loop since the cancellations from the orderings
of the external legs in the tree-level amplitudes can be made more explicit.

~11 -



or complex scalar is odd under charge conjugation, the ordered amplitudes satisfy the
following relation

Aone loop( 17---7k3n) ( ) Aone loop( n,~~;k1)~ (35)

The total amplitude summed over all orderings of the external photon lines will therefore
vanish for an odd number of external states. This is the so-called Furry’s theorem. It is
valid for fermionic and scalar loop and for A/ = 1 super-QED amplitudes.

3.2 The tree-level amplitudes

Since the unitarity method constructs loop amplitudes from products of on-shell tree-level
amplitudes, we will in this section first review the tree-level amplitudes needed to derive
the one-loop photon amplitude.

3.2.1 The fermionic tree-level amplitudes

ho(1) 1ho(2) cer o glem
ko) Fo) ko (n)
ph Py .~

Figure 2: Tree-level eTe™ + n(y) — 0 Feynman diagram for the ordering ¢ € &,,. All the
momenta are assumed to be incoming. The helicity of the fermions is given by h = :I:%.

-1 . .
Anlg 0op,0C coming from an internal

The relevant tree amplitudes to the contribution of
massless fermion are those with photons coupling to a pair of massless fermions. Since this
is an extremely simple process it is sufficient to use Feynman rules to write down the

amplitude as a sum over n factorial permutations,

Alree(ph py sk e Y Al 0y s ko) Ron)) - (3.6)
O’GGn

We refer to [51] for the QED Feynman rules. All particles are considered to be incoming
with momentum conservation defined by p, + pp + > ;1 ki = 0. We denote by the symbol
&, the set of permutations of the n objects and we denote a specific permutation by
o € G,,. In the above we have represented the momenta of the fermion and anti-fermion
by p, and py respectively while the n photons have been assigned momenta k; and helicities
hi. The ordered tree contribution, A%, from an individual Feynman diagram can in all
generality be written as

qu g’ Zg/nl

n 1

Atree (pa7pb ka(l) . ka(n)) = ﬂh(pa) %0’( ¢0(2 ?f/a(n 1) %0’ (n) ( )

Here ¥ = y"v, and ugy(p) is the polarisation of the fermion with helicity h = +1.
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The polarisation of the i*" photon is denoted by ¢;, and ¢; is the momentum flowing
between leg i and 7 + 1

¢ = Ky (i) + Das where Koy =D k() - (3.8)

Using the conventions and notation introduced in appendix A one arrives at the following
Feynman representation of the tree-level amplitude (3.6) given in [52]

n—l
T QAo (4 q; bcrz
At ee(pa’prﬁ’ --akn) _ ( 6/\/_ Z < 1)pa pbb H (-I-l)‘ ‘ (2) ] )

hay
H? 1< ref ‘k ceS, i=1
(3.9)
Here (p~|q") = (pq) and (p™|¢~) = [pq]. In the above expression we have made the helicity
choice h = l The other amphtude w1th h = —5 can be obtained by charge conjugation.

The reference momentum pref of the " photon is an arbitrary light-like momentum. It
cancels in the physical amplitude. We have employed the same notation as introduced
in [52]

1+h; 1—hy 1+ h; 1—hy

5 —_— ki, bl 2 k + — 9 pref (310)

For a generic photon helicity configuration this sum would contain n factorial terms. Choos-

a; =

ing the reference momentum of the h = +1 helicity photons to be p, and the reference
momentum of the h = —1 helicity photons to be py so that

i 1+ hy 1—h;
pref:Tpa+ 5

Db (3.11)

one sees that the amplitude with n photons of helicity hy = +1 and n_ photons of helicity
h_ = —1 has only n4 xn_ X (ny +n_ —2)! non-zero contributions in the sum (3.6) or (3.9).

With the choice of reference momentum eq. (3.11) one sees that, if all the helicities of
the photons are h = +1 or all are of helicity h = —1 each term in the sum (3.6) vanish.
This is in agreement with the supersymmetric Ward identities [53-56] for supersymmetric
QED.

Choosing the specific MHV helicity configuration (with one negative helicity photon
in the 15 position and all the rest positive), the amplitude takes the form of the sum of
permutations of ordered MHV Parke-Taylor [54] amplitudes

3

ki) (po ki) 1
A (5 sk ) = S L Pk .
CTRLTITIT T 0E (papy)? Uez(;n (Pakio1)) (ko) ko)) -+ (Ko Pb)
(3.12)

By making use of the eikonal identity given in [55]

(ko kp) (kg kp)

= _Malb) (3.13)
Ueze: (ka ko)) (Ko@) ko)) -« (Ko ko) 1<11n (ki kr) (K k)
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(Papb)" "% (Da ki)® (py ki)
H?=1 (pa k) (po k) . (3.14)

N o
w3 3

one obtains the compact form
+ + +
7kz 17kz 7k;z+1" ?kn)

Atree(pa Dy ,k
It was shown in ref. [57] that the N*MHYV amplitude can be constructed using a CSW

construction [58] or via BCFW [59] recursion relations

3.2.2 Massive scalar tree amplitudes
hoy L ho@) 1 hoe) hoty phoGivny o(n)
ka(l) ka(2) k%) ka(i%gT(iJrl) é %g é é
ph " "
Figure 3: Tree-level scalar Feynman diagram
In this section we examine the massive scalar amplitudes
¢(pa) + ¢ (po) + (k1) + - +v(kn) — 0. (3.15)
The tree-level amplitude with n external photons attached to a scalar line is built from
cubic and quartic vertices of the QED Lagrangian (again we will refer to ref. [51] for details
on the Feynman rules). The amplitude is the sum over the permutations
s Z Atrfpe paapba o(1l)r- > ka(n)) ) (316)
UQEGBn

Atree (pa7pba klu
of an amplitude defined from the partition of the n ordered external legs partitioned in
(3.17)

€o(a+-+as—1+1) H(as)

F S o)

-y II:
ayt-Far=n g=1 Fa Jj=
(3.18)

group of at most length two
ap€{1,2}

Atree (paa Py ka(l) ) ka(n))
with
+ al+ +aslk, 1fa—1
H(a.) - { oo ke Ha
U(a1+---+as) if g — 2.
Because of the cubic and quartic vertices, this amplitude is a much larger sum of terms
than the fermionic case, since the scalar n-photon tree-amplitude is a sum over n! x Fj,4;

tree

Y
where F, is the Fibonacci number of order r (such that Fy = F1 =1 and F» = 2)
no1;e Or by adding two photon lines connected by the quartic

2The tree-level Atree photon scalar amplitude is constructed by adding one external photon line connected
Therefore the number of ordered amplitudes F;, satisfies the Fibonacci

with a cubic vertex to the n — 1 amplitude A
vertex to the n—2 amplitude A5, .
recursion relation F,, = F,_1 4+ Fj,_2.
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3.3 BCFW shifts and large momentum scaling at tree-level

In this section we will analyse the large z scaling behaviour of photon tree-amplitudes under
the BCFW shift [59]. This is done for cases of photons coupled to a massless fermion pair
and a massive scalar pair which is useful for our investigation of which scalar integrals
appear in the n-photon one-loop amplitude as described earlier in this section.

Cancellations in one-loop graviton scattering has already been studied through relating
the coefficients of a scalar integral basis of the one-loop amplitude and the scaling behaviour
of their corresponding unitarity cuts, i.e., products of on-shell tree amplitudes, under
BCFW shifts [6,7,25].

For example the large z limit of the BCFW shift of the cut propagator momenta is
related [7] to the large ¢ limit in the triple cut for triangles (see section C.1) using Forde’s
parametrisation of the cut loop momentum [43]. Similarly (see section C.2) the large z
scaling is related [7] to the large y?/t scaling in the double cut in Forde’s parametrisation
of the cut loop momentum. The large z limit of the BCFW scaling behaviour for the cut
tree amplitude can be used directly to test if the one-loop amplitude has any scalar triangle
and bubble integrals.

Rational pieces in the amplitude can be probed for in a similar way using D-dimensional
unitarity techniques [41,42,45,60,61]. One can then relate the large z limit of the BCFW
shift to the large momentum limit of a massive cut loop momentum following the methods
of [43,47].

3.3.1 Large-z scaling for the massless tree amplitudes

Since the fermion line carries the loop momentum in the n-photon amplitude the relevant
BCFW shift for the fermion tree amplitudes is that of shifting the quark, p,, and anti-quark,

Db
type s = +1, Do) = |Pa) + 2|Pb), |Db) = |pv] — 2|Pal » (3.19)
type s = —1, D) = |pb) + 2|Pa), D) = |pa) — 2|p0) - (3.20)

Under these shifts the polarisation of the external fermions behave as

s+1 . sF1
ut(pp), ut(Pp) = u+(pp) + 2

ui(ﬁa) = ui(pa) +z Ui(Pa) >

while the propagator factors ¢; = Ky (;)+ #a shift according to

di =i+ 2 1t (3.21)
where 7 is a light-like vector defined by
l1+s s—1
== (Ipb>[pa| + [Pa] (pb\) +—— (|pa>[pb| + |ps) <pa‘) , (3.22)

The fermion tree amplitudes in eq. (3.9) and the scalar tree amplitude of eq. (3.17)
have the following behaviour in the large z limit

Hm AT (ph py "k, k) ~ O (pl ooy ik, oK) X

Z2—00 4

(3.23)
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where s = +1 for the shift (3.19) and s = —1 for the shift (3.20) and h = £3 for a fermion
and h = 0 for a scalar.

We have checked this behaviour numerically for all helicity configurations up to n = 10
photon lines. For the case of the fermionic tree amplitude a formal proof of this behaviour
is given in the appendix B. The case for the massless scalar amplitude follows directly from
the fermionic case by using the N' = 1 super-QED Ward identities.

3.3.2 Large-z scaling of the massive scalar tree amplitudes

To analyse the rational contributions to the one-loop photon amplitudes we must consider
a BCFW shift of the two massive scalar particles in the tree amplitude given by eq. (3.17).

In order to solve the on-shell conditions for a recursive construction of an amplitude
while shifting two massive particles it is necessary to define two additional massless vectors
[62]. We therefore define a pair of “flattened” vectors from a pair a massive vectors pg, pp
each with mass u:

b s b b s b
Pa = Pq + pra Py = Py + 7pa ’ (324)

where (p,)? = 0 and (p})? = 0 and

v =2(p} ) = (Pa - b) (1 +4/1— ﬁ) , (3.25)

so that p'fl — pg and pz — py for p? — 0. For fixed p? we define the shift as

Po) = ) + 2 |p}); B3] = Py — = [P, (3.26)

implying that the original momenta are shifted according to

—~ 2 N 2
m=m+z<—%)u%%h mzm—z<—%)m9%« (3.27)

In this case the large z limit of the shifted propagators in (3.17) become

1 1 1
i ~ 2
G B2 S K I= @2 (3.28)

where 7 is defined as in eq. (3.22) with p, and p; replaced by p'fl and p'l’) respectively. We
have in this argument used that 7 -p, = 0. At the leading order in x? the asymptotic value
of the propagators take a similar form to the one appearing in the massless case. This
indicates that the leading large z behaviour of the massive scalar tree amplitudes is the
same as in the massless case

. r . 1 _
lim A‘;L,ee(pg,pb hok, .. .,k;n) = —C;o(pg,pb Mok, . .,kn\,uQ) . (3.29)

2—00 3P ZTL—Q

We have checked this behaviour numerically up to n = 8 external photons and for all
helicity configurations.
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The coefficient of CZ° depends on the mass 12, and in the massless limit u? — 0 the
behaviour of a massless scalar tree amplitude is recovered. In the particular cases of the
all-plus or all-minus photon helicity configuration, which vanish in the massless limit, the
contribution Cg° (pZ,pb_h sk, kf|p?) = O(k?). Tt can be seen that these sub-leading
contributions play an important role in the analysis of the potential rational pieces in
appendix C.3.

For large p we express the massive momenta in terms of massless momenta using

3
pa=nph+ 20l m=ph+ g, (3.30)
Y H v
with the same definition for v. To write this solution we used the freedom to rescale the
massless momenta (p’,, p;) — (Apl, A" p}). We have chosen a linear scaling in y since this
is what will be needed in the appendix C.3 for analysing the eventual rational pieces from
boxes.
For large p we have that

i B
1m -
p—0o0 [

= isign(pq - pp) (3.31)

and in this limit

b . Da
Pa ~ K Pg; Dy~ =l —————— . 3.32
‘ ¢ sign(pa - pp) (332
In this case the asymptotic form of the propagators is given by
1 1
lim (3.33)

w—oo (o + K)2—p?  2p(ph - K)’

which is of the same form as for the BCFW shift of the massless amplitude with z ~ p. In
this case the tree amplitudes have the asymptotic behaviour given in eq. (3.29) with z = pu.

These results are used in the appendix C.3 where the rational piece contributions to
the one-loop amplitude are analysed.

3.3.3 Origin of the improved BCFW scaling behaviour

In this section we examine the analytic structure of the cancellations that give rise to the
improved BCFW scaling behaviour observed in the preceding sections. We make use of a
specific gauge choice which makes the cancellations manifest in each of the contributing
diagrams. However, we will see that this is not sufficient in order to remove the role of the
summation of external orderings for anything but the simplest Abelian amplitudes.

The analysis in the previous sections (and the appendix B) showed that the tree-
amplitudes in QED are extremely well behaved in the large z limit of the BCFW shifts

) Z2hs
Jim. D> An(z) ~ - (3.34)

0’6677.

For the case of the massless fermion tree-amplitudes this property can be proven diagram
by diagram by using a special gauge choice. However this technique is not sufficient to
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find the observed scaling property in more complicated amplitudes containing higher point
interactions such as the massive scalar tree amplitude and those in gravity. In the discussion
below we give explicit examples of how the sum over external orderings is responsible for

the remaining cancellations.

In a Feynman graph based analysis of the scalar tree-amplitudes one can observe that
the cubic vertex at worst scales like O(z), the quartic vertex like O(1) and that the ordered
amplitudes in eq. (3.17) scale at worst like

lim AJ(2) ~ 2. (3.35)

Z—00

By taking the transverse gauge 7 - € = 0 for all the photons by setting the reference
momenta to be prs = ™ where 7 is the light-like momentum defined in eq. (3.22), then all
cubic vertices are independent of z and scale as O(1). In this gauge the ordered amplitudes
have the large z scaling A, (z) ~ 1/2"?~1 dominated by graphs with the maximum number
of quartic vertices. The sum over the orderings of external legs improves this behaviour
to the optimal one (3.34) as can be seen from the following four-photon and five-photon
examples. With the choice of gauge p,t = 7 only the contractions between polarisations
of opposite helicities are non-vanishing

Ezz't(ﬂ? ki) - 6;!:(7“ k]) = 0; Ez:'t(ﬂ? ki) - 6;":(”7 k]) #0. (3.36)

R IISL IR

(i) (i) (i) )

(i

Figure 4: The e“et — 4+ tree-amplitude is composed by the Feynman diagrams built from
(i) four three-point vertices, (ii) two three-point vertices and one four-point vertex, and (iii) two
four-point vertices. The label of the external photon have to be symmetrically distributed over the
photon lines.

We will be considering as a first example the four-photon amplitude with the helicity
configuration (— — ++). For a colourless theory the orderings of the external legs does
not matter. The tree-amplitude is built from permutations of the four topologies shown
in figure 4: (i) four three-point vertices, which have the large z scaling O(1/23%), (ii) two
three-point vertices and one four-point vertex, which scales as O(1/2?), (iii) two four-point
vertices, which has the scaling O(1/z).

Each ordered contribution with two four-point vertices has a large z behaviour that is
worse than the observed behaviour for the total amplitude. We show that this bad scaling
is cancelled in the sum over orderings of external legs.

The contribution from all the four-point vertices to the four-photon amplitude is given
by

~ 18 —



ho(y o) _ho@)  _ho
3 o) "%0(2) So3) " Co(a)
(Pa + Ko(1)o(2))?* — 12

09 X092

— -t — -t — et — 4=t

_F1°%3% "f4 | %2 7%4°1 "% | C1 "C4C%p "83 | S "E361 & +O(z72)
ZOMT-K13 ZOMT-K24 ZOMT'KM ZOMT'K23

- ¥ 7 K34 R - Koz 2

=¢€] € +e] -€ + O(z
L™ 22020 Kygm - Koy Lo 2020 Ky - Ko (=)

=0(z7?), (3.37)

where 0y X 09 means that one has to sum over the 2-cycle decompositions of the permuta-
tions. The cancellation arises because of momentum conservation ki + -+ ks = —pg — P
and via 7 -p, =0 and 7 - p, = 0.
Using a more compact notation we have showed that
(17,3%) - (27, 4N + (27,40 - (17,3") — 0@:7?). (3.38)
Z— 00
In the case of the five-photon amplitude with the helicity configuration (— — + + +), we
find that the cancellations now involves all twelve different orderings:
(8%)- (17,47) - (27,5%) + (37) - (27,5%) - (17, 4%)
+(1_74+) : (3+) : (2_7 5+) + (2_7 5+) : (3+) : (1_74+)

+(17,4%)-(27,57) - (37) +(27,57) - (17,47) - (3") + (4 = 5)

T2 K 1 1 1
x 53 (p“;r 1245) + + + (4 5)

Z2—00 z 7T'K147T-K25 7T-K37T'K14 7T'K37T'K25

+. .

_ €3 (2pa + Ki245) - K19345 +(dos)
2’2 7T'K147T'K37T-K25
= 0(z73). (3.39)
We have used momentum conservation ki + - -- + ks = —p, — pp and that 7 - p, = 0 and

7w pp = 0. The first step requires that the terms from the (4 < 5) exchange but the
relation is independent of the momentum appearing in the single three-point interaction.
It is therefore sufficient to show that the five-photon amplitudes scale as 1/z3 as required.

In the gravity case we have a similar phenomenon. The multi-graviton vertices naively
scale as z? in the large z limit and the ordered Feynman graphs scale at worst like 2"~ x
2f(hh2.9) Here f(hy, hg,s) € [—4,4] is an integer valued function of the polarisations hy
of the shifted legs and the type of shift s = +1. By considering the transverse gauge

el (ki) = 0; el (m, ki) T =0, (3.40)

and by setting the reference momentum of the unshifted legs to be p.of = m, the multi-
graviton vertices that do not involve the two shifted legs scale at most as O(z) and the
worst scaling of the ordered Feynman graphs is thus given by the z dependence of the
polarisation of the shifted legs 22 z/("1:72:5) " The sum over the orderings of the external
legs improves the scaling behaviour of the total amplitude to either z=2 or 2% depending
on the polarisation of the shifted states [5,6,63,64].
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3.4 One-loop structure from large z momentum scaling

Figure 5: Representation of (a) the quadruple cut contributing to the coefficient ¢y, x| K5 K4
(b) the triple cut contributing to the coefficient ¢4k, |k, |k, and (c) the double cut contributing to
the coefficient ¢y, x|k, of the one-loop amplitude.

The generic decomposition of a n-photon one-loop amplitude in dimensional regulari-
sation with four-dimensional external momenta is given by

_ Kq1|Ko|K3|K. K| Ks|K:
Ao — N7 ep ool I 3 e e 5T (3.41)
{K:} {K:}
K| K
o5 enre B 4 Ry 000,
{K:}

Here IiKl‘K2|K3|K4), I§K1|K2|K3)’ 12(K1|K2)

and R,, are scalar box, triangle, bubble integrals
and rational terms respectively evaluated in D = 4 — 2¢ dimensions [8,65]. The coefficients
cfl; K| K| K| K cg.) K| K| K3 and cg; K|k A€ associated with the corresponding scalar integral
functions represented in fig. 5 where K; are the sum of the momenta at each vertex of the
scalar integral functions.

In this section we will outline the consequences of the large momentum scaling at tree-
level for the structure of the one-loop amplitude. The details of our analysis can be found

in appendix C.

3.4.1 Vanishing of triangle coefficients

Parametrising the unfixed integration of the triple cut by a complex parameter t leaves the
triangle coefficients completely determined [43]. In the appendix C.1 we relate the large
t-scaling of the tree amplitudes in the cut to the large z behaviour under the BCFW shift
(see as well ref. [7]). We show in the appendix that the large ¢ scaling is independent of the
helicity of the state running in the loop (h = £1/2 for the fermion or & = 0 for the scalar)

C2(Ky, Ks)

Atree
n t—00 tn—2

(3.42)
We will show in the appendix C.1 that the scaling behaviour of the tree amplitude in
the cut leads us directly to the result expected from the world-line analysis: namely that
all triangle coefficients vanish for one-loop n > 6 amplitudes. This property is unexpected
from naive power counting and from the conjecture for the NNMHV amplitudes of ref. [37].
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3.4.2 Vanishing of bubble coefficients

As described in appendix C.2 the above scaling behaviour gives sufficient information for
concluding: that all bubble coefficients vanish for n > 6. For the case of n = 5 the
coefficients vanish after the sum over the orderings of the external legs is performed. This
is in agreement with Furry’s theorem. The result that no scalar bubble integral functions
are present in multi-photon one-loop amplitude with n > 6 legs is in complete agreement
with the world-line formalism of section 2. Our results although unexpected from naive
power counting also fits the analysis of the MHV amplitude given in [66] and the result for
the six-point NMHV amplitudes computed in [36,37].

3.4.3 Vanishing of rational terms

In section C.3 we show that the n-photon amplitude with n» > 5 cannot have rational
polynomial contributions. The result of this analysis confirms the world-line string based
result that there are no rational contributions for photon amplitudes with n > 4. From
a field theory perspective, the rational polynomial contributions can be ruled out via an
analysis of the massive scalar tree amplitudes in the large mass limit as described in ref. [47].

This is in perfect agreement with the direct computation of Mahlon [38] of the finite
helicity configurations:

. k1 ko] [k k4]
AQOOR (ot g by = ot 112 :
. _ ki ko] [ko k3] (k3 k1)
AP (ot it it ) = ot LR ,
Agneloop (b kY =0  forn>5,
Agpeloop (b gt k) =0 forn>5. (3.43)

It is also in agreement with the n-point MHV computation of Bernicot et al. [37] and the
known six-point computations of refs. [36,37].

3.5 No-triangle property of one-loop photon amplitudes

The vanishing of the coefficients described above leads us to the expected result previously
obtained via the world-line analysis given by eq. (2.23). The multi-photon fermionic or
scalar one-loop amplitudes with n > 8 external photons satisfy a no triangle property, and
hence contain solely scalar box integral functions in D = 4 — 2¢ dimensions. The n point
amplitude can thus be written as

Az?gloop _ Z CZ Iil) ’ (344)

(2

where ® = ¢ for the fermionic loop or ® = ¢ for the complex scalar loop.

The above result is expressed in terms of scalar box integral functions evaluated in
D = 4 — 2¢ that carry e singularities. Because of manifest one-loop ultra-violet and infra-
red finiteness of the one-loop amplitude both the 1/€? and 1/¢ poles must cancel between the
various terms in the amplitude. Because the amplitude reduces to scalar box contributions
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it is immediate (but tedious) to evaluate the expression for the amplitude from its quadruple
cut. It would very be interesting to understand this generic structure valid for all helicity
configurations from a dual Wilson loop description as in [67,68]. This in turn implies
relations between the box coefficients which will be discussed in the subsequent section.

3.6 Universal ultra-violet and infra-red pole structure

The infra-red singularities in an ordered gauge theory one-loop amplitude is described
by [69]

(ki /{:Z ¢
~Azne-loop(k17”.7 n O(Z + +1) ) A;clree(k17.”7kn). (345)

Since the n-photon tree-level amplitude are vanishing in an Abelian theory like QED, there
is no infra-red singularities in the n-photon amplitudes at one-loop. As a result, previous
calculations [36-38, 66, 70, 71] were expressed in terms of the finite part Fy of the scalar
box integral function Iy. This is because the dimensionless one-mass and two-mass triangle
integral functions are given by (see the appendix D)

~ r 2¢
Iy(k ko, Ks) = (~K3) Ik, ko, K3) = "5 (~K3)" (3.46)

2e

T r —€ —€
Iy(ky, K, Ka) = (K3 — K3) Io(ku, Ko, Ky) = “h— ((=K3)™ = (—K3)™) ,

and we can define the finite parts Fy of the scalar box integral functions I by subtracting
dimensionless one-mass and two-mass divergent scalar triangle functions

f4 _ I4+Zt I(z )1— mass+zt2 ) 2—mass (3'47)

Here t} and t? are some coefficients depending on the kinematic invariants which are given in
the appendix D. Choosing this basis makes the amplitude explicitly free from divergences
but hides the no-triangle property given by equation (3.44). Because the dimensionless
one-mass triangle gives the multi-particle infra-red divergence (—K?)~¢/€2?, the absence of
triangles lead to a set of relations between the box coefficients appearing in the decomposi-
tion (3.44). In the next section we will give for the specific example of MHV multi-photon
amplitudes the relations between the box coefficients for the cancellation of the infra-red
divergences.

We would like to contrast this to the gravity case where the infra-red singularities are
given by [72]

MO (ko k)| o M (kK (3.48)

The leading 1/€? pole in the gravity amplitude cancels [73] because of the on-shell condition
S (ki + kit1)? = 0 but the amplitude has still a non-vanishing 1/e pole contribution in
D =4—2e.

- 22 —



By power counting, ultra-violet divergences can only occur in the three-photon and
four-photon one-loop amplitudes. The three-photon amplitude vanishes by Furry’s theo-
rem while the four-photon amplitudes are non-vanishing. The four-photon amplitude at
one-loop is dimensionless in four dimensions, and could have a logarithmic ultra-violet di-
vergence. However such an ultra-violet divergence has to be associated with a local gauge
invariant operator Tmml...,mmf%lﬂn1 --~F,§ll4n4, for which the four photons amplitude is
given by some combination of the four field-strengths F,,, = ek, — €,k of the external
photons. Because such an operator has mass dimension four, no ultra-violet divergences
can occur by dimensional analysis. Therefore all multi-photon one-loop amplitudes are
ultra-violet finite and all possible rational pieces contributions are of infra-red origin. The
presence of rational contributions will be analysed in section C.3 following the method
of [43,47].

3.6.1 The n-photon MHV Amplitude

In this section we re-evaluate the m-photon one-loop MHV amplitude A%?;’lool)(kl_ ks,
k::}f ,-.., k1) for n > 8. This amplitude was first computed by Mahlon in [66] and has been
recently re-analysed using double unitarity cuts [37]. We present it again here in order to
analyse the infra-red structure of the n > 8-photon MHV amplitudes which have only box
contributions.

Because of the restrictions on the cut momenta [40] these MHV amplitudes are only
given by the linear combination of the one-mass box I, im(k::r kg, k:;r, ky + K 1+ ) with the

massless legs given by the configurations (k;", k; k:;r) with 3 <i < j <mnanda,b=1,2,

i o a
and the massive leg Kfr = k3 +---+ kp, — k; — k;. The two-mass easy box Ifme(k;r, kf +
K, k;-r, k, + K3) with the opposite massless legs is given by the configuration (k;, k;r)
with 3 <4 < 7 < n and the two massive legs k, + K; and k, + K;’ with a,b = 1,2
and K2+ + K;’ = kg +---+ k, — ki — k;j. Because the cut amplitude only involves MHV
tree-amplitude factors we can make use of the compact formula of eq. (3.14) for the tree

amplitudes in the cut leading to

Casha ot K ey ot Koy = (ki T 1K) (e | KT o] X e ey s » (3.49)
with )
K
K=K ——1 L, 3.50
= R (350)
and
. 1 ((kiki)® (kikj)? (hoki)? (kok;)® (Kik;)
I ey = — 1 2 —_ 3.51
c4,kl‘k1|]€3‘k2 9 ( <I€ij>8 +( — ) 1<11n <I€Zkr><krk]> ( )
r#ij

Here K + K is a repartition of the positive helicity states on each of the opposite corners
of the box. The coefficient €y, |k, |k,|r, does not depend on the distribution of the positive
helicity states of the opposite massive legs and gives the same expression for the one-mass
box and the two-mass easy box. This is compatible with the soft limit relation between
the two-mass easy box and the one-mass box

I}imo I3 (K kg + K1, kg, ky + Ko) = ;™ (ki ko + K1, kj, k) - (3.52)
2*}
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Under the exchanges of the two positive helicity massless legs the two-mass-easy box coef-
ficient has the parity

Cateilr ks lhe = (1) Cate | s oo - (3.53)

This implies that the only amplitude with an even number of external photons lines is
non-vanishing. This is a particular example of the consequence of Furry’s theorem on the
coefficients of the scalar box integrals.

Using that

(ki K3 i) (o | K3 K] = (Ki + Ky + K1)? (kj + k1 + K1)® — (k1 + K1)? (k2 + K2)?,  (3.54)

one can express the one-loop amplitude in terms of the dimensionless boxes [ 2me(kl, Ko, ks,
Ky) = (s12803 — K3K3) I3 (k1, K2, k3, Ky)

Agzeqloop(kl—’k2—7k§"... 7k‘;n) - Z 4k|k1\k ko Z 14 k’z,k’l—l—K(”) kj,kQ‘i‘K(Z]))
3<i#j<2n 1
(3.55)
where we have made use of the notation K filmi’") defined to be the sum of external momenta
such that K]Eilmi’") + Kéilmir) =ks+---+kop —kiy —---—k;,.. Using the € expansion given
in the appendix D and the symmetry of the coefficient in the exchange between ¢ and j,
we can isolate the infra-red divergent part of this amplitude

one-loop /7. — 7.— 1.+ + QTF :u
A2nq (ky ko k3o kay) B Z Cashs k| j k2 ¥ (3.56)
3<i#j<2n
KY])

x (= + T+ K27 = (= + K(D)2)7)

The infra-red divergence associated with the multi-particle invariant (k1 + K fij ))2 is given
by

2n 2n 2n

Z b eyt ) |k oo S +22 Cohes |yt 90 |y et 9V +Z ity ot e gt ST 0, (3.57)
1,7=3

i#] l;tz 7 r7£l

which shows that the amplitude is free of infra-red divergences, as it should be, since all
the soft factors are vanishing for a multi-photon amplitude.

4. Conclusions

In this paper we have considered amplitudes in unordered field theories such as gravity and
QED. New integral reduction formulse derived using the world-line formalism have been
examined and we have seen how such formulse can have a wide range of applications in
four dimensional theories.

It was shown in [23,39] that, for maximal N' = 8 supergravity, the constraints from the
new integral reduction formula leads to the ‘no-triangle’ property for n-point supergravity
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amplitudes. In cases with less supersymmetry e.g. N = 4 supergravity it means that
the n-graviton amplitude contains only integral functions up to scalar bubble integrals
and that it is constructible from its cuts in D = 4 — 2¢ [7,23,39]. For pure gravity our
result yields an amplitude consisting of scalar box, triangle and bubble integrals as well
as rational polynomial terms. These results are completely surprising from naive power
counting arguments.

In this paper we have showed that one can apply the reduction formule eq. (2.30)
and eq. (2.34) to the one-loop multi-photon amplitudes in QED to obtain that the one-
loop multi-photon amplitudes with at least eight external photons are given by scalar box
integral functions only. Such amplitudes satisfy a no-triangle property from n > 8 and are
thus given solely by their quadruple cut. The amplitudes contain no rational polynomial
contributions. This ‘no triangle’ property of multi-photon QED amplitude with n > 8
photons is true for helicity configurations of the external photons generalising the pure
MHYV results of Mahlon [38]. This result is clearly unexpected from naive power counting
arguments. Of course the appearance of the various scalar box integral functions in the
expression for the amplitude depends on the helicity configuration of the external states.
It would be interesting to reproduce these results for generic helicity configurations using
a Wilson loop representation of the amplitude [67,68].

We have shown that the considered cancellations can be made manifest by a choice
of transverse gauge and the summation over the permutations of the unordered legs. We
expect that unexpected cancellations should also appear in amplitudes with mixed photon-
gluon external states. For such amplitudes one should expect a number of cancellations in
the summation over the unordered photon lines.

Investigations of higher loop multi-photon and multi-graviton amplitudes presents an-
other interesting direction for further investigation. Within the unitarity method formalism
the cancellations seen for one-loop unordered amplitudes pose various restrictions on the
type of integral functions appearing in the expansion of multi-loop amplitudes [20]. Fac-
torisation based on ‘no-triangle’ properties at one-loop definitely suggest that amplitudes
should have a simpler form (due to cancellations between orderings) than naive counting
proposes. For maximal N/ = 8 supergravity this gives a necessary (but not sufficient)
requirement for the absence of the three-loop divergence in four dimensions [21].

The results of this paper show that a world-line approach is a particularly good frame-
work for analysing the properties of loop amplitudes in unordered field theories. An ex-
tension of the world-line formalism to higher loops would be very helpful in this respect
and would be required for a better understanding of the perturbative structure of N' = 8
supergravity. This would help justifying and resolving the various constraints from su-
persymmetry [17] and dualities [18,19] in four dimensions and might lead to a conclusive
argument for or against perturbative finiteness of maximal N' = 8 supergravity in D = 4.
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A. Helicity formalism conventions

All conventions and the notation in the paper follows that of ref. [56] unless otherwise
stated.

We will here employ the mostly minus metric signature n*” = diag(+,—, —, —) and
use a representation of the Dirac matrices satisfying {v#,~"} = 2n", i.e.,

o = (_OU (’0’> S (; _01> . (A1)

Here (o) = (1,0%) and (") = (—1,5%) and o® are the standard Pauli matrices. We will
make use of the slashed notation v p, =p.

For any light-like momentum p the positive energy solution to the Dirac equation is
pur(p) = 0 both for positive and negative helicities, i.e., h = +1 and h = —1. This
solution satisfy the chirality condition (1 4+ v5)/2u+(p) =0 and (1 Fv5)/2us(p) = 0.

We will make use of the following conventions

k)
(K|

wrk); K] = (k) (A.2)
a (k) [k = ag (k). (A.3)

Spinor products will be defined according to

(pg) =u—(p)us(q); [pq] =uy(p)u—(q), (A4)

where (p +q)* =2p - q = (pq) [pql.
With these conventions the completeness relation gives that

> un(k)un(k) =k = [k)[k| + [K](K| . (A.5)

h=+1
The polarisation tensor for the photon of light-like momentum k can represented as

|pref> [k‘ .
\/§ <pref k> ’

B ‘pref]<k|

7t (K, Pref) = V2 [Pret k]’

ﬁ/_(k7pref) =

where pyef is an arbitrary light-like reference momentum.
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B. Proof of the improved large z behaviour of the ¢e" ¢t — n v tree-amplitude

In this section we will prove the large z behaviour of the eTe™ — n~y tree-level amplitude
under the BCFW shifts, see (3.19) and (3.20). The behaviour of the scalar amplitude can
be related to that of the fermion by supersymmetric Ward identities.

We will first write the amplitude with n external photons in the following way

N ot Ki
ATk k) =3 Y (i IS s ().
i=1 0€G,_1 Pb 7 Fi
(B.1)
Where ‘jtlr,?'imn is an off-shell current constructed from the remaining n — 1 photons after

the i*" photon is removed from the list. We have

o i ¢h i Q‘ 1 U div1 0 G
e =y il fiil—g e . (B2)
qi qz 1 451 4n—1

Here qj = py + k1 + - - - + k;j where, as before, we have not included the momentum of the
ith state. Using that g, ¢+ ¢ ¥ = 2pp - €; and Py u_p(py) = 0 we rewrite

Py fiu—n(py) = 2u_n(py) Py - € - (B.3)

Choosing the reference momentum of the photons to be p..s = pp so that €; - pp = 0

one can rewrite the tree-amplitude as

: =i € Tp (Pa) IS K diu_n(po
Ans (D py " Ky Z > £ (Pa)35 ) (g

)2
i=1 0c€G,_1 (pb—I—kZ)

With this choice of reference momentum we also have that

g u—(m) =0, ¢ us(m) =0, (B.5)

Only the non-zero contributions are such that the helicity of the i photon is the opposite
of the one of the positron. We remark as well that

Ki tun(m) _ Kiuon(p) _uon(k) (B.6)

(py + Ki)? V2(py + k)2 V2K ™)

Combining these properties we arrive at the following expression for the tree-level amplitude

a Jt%?.e... U_ h(k )
Atree(pa7p k1, n 15h +h_0) (p) 1--2--n
b Z Z \/_< ih|pb>

i=1 €61

(B.7)
This means that the multi-photon tree-level amplitude has been rewritten as a sum of
(n — 1)-photon off-shell currents, 3?,'?,‘;.%. All external photons in this expression have py
as their reference momentum. We can now study the large z behaviour of the tree-level
amplitude A}'° under the BCFW shifts (3.19) and (3.20).
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Because the reference momentum of the photons is p, we have that for each polarisation
choice, in the limit where z — oo, that the polarisation tensor behave as
o)kl _ s+ 1|pp)k[ | s —1][pa)[k|

ol ) =i D =S G T ek T2 e P

and

o o Pkl s+ 1 pa](k] | s — 1 |pp](Kl
foo(Pb, k) = Tim ¢~ (pp, k) = lim. Bk - 2 Dokl +— o (B.9)

which is independent of z.
We will now consider the behaviour of the product of a fermion propagator and a
polarisation
N i
T; :ﬁ/i(pbaki)/q\_;' (B.10)
i

Under the BCFW shift the momentum ¢; shift according eq. (3.21)

where 7 is defined in eq. (3.22)
_1+s s—1
# = —5= (Ipo)pal + Ipa)(ps]) + 25— (pa) o] + o] (pal ) (B.12)
Since
lim ¢ (py, ki) # =0, (B.13)
zZ—00
we conclude that
T (Do, ki) i = o (Do k1) o (B.14)

which is independent of z. Therefore the quantity 7; has the large z behaviour
1 ¢ (D, ki) di

lim T; ~ — B.15
zLHolo ! z 2(%‘ . 7T) ( )
We now consider the two ends of the amplitude A} written in the form of (B.7)
~ 7 (Db, kn)u—n (ki)
To = un(pa), Tho1= 7_ . (B.16)
’ ! (ki7" 1B}
Clearly T, has the large z behaviour given by
. o ka)un(k)  ps1ye (Kl'p, ") 1
Jim T, = lim (k=2 20 ~Z 7o (P, k’n)u—h(ki)m, h = +3-
(B.17)
For T, (by definition of the shift on the fermion polarisations) we have
1
lim T, ~ z"+1/2, p =42 (B.18)
zZ— 00 2
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Collecting all the terms we conclude that each term in the sum (B.7)

up(pa) It u—n(k;)

=T, Ty 1Tie1- Tor T B.19
(k0" Lo o
behaves as (pa)3tree (k)
. Up(Pa)IT s u—n (K ohs 1 _ .1
lim SIS~ o b= (20
(ki py")

This concludes the proof of the large z scaling property of the ete™ — n~ tree-level
amplitude under the BCFW shifts (3.19) and (3.20).

The analysis for the fermion case in QED is rather special because the fermions can
only be adjacent in the interactions that are involved. This is however not the case for
generic amplitudes for example in gravity. It should be noted that while the choice of
reference momentum p,. = pp was enough for obtaining the required scaling and that no
cancellations between terms of different orderings were necessary for the result it is easy
to verify that other choices of reference momentum would require cancellations between
terms of different orderings in order to arrive at the large z scaling result eq. (B.20).

Using supersymmetric Ward identities we can conclude that the massless scalar tree
amplitudes have the large z scaling given by

1
: tree
Jim Apo ~ n—2

(B.21)

In the scalar case as explained in section 3.3.3 a gauge choice is not enough for obtaining
this behaviour and extra cancellations has to arise in the sum over orderings.

C. Cut analysis of one-loop n-photon integral coefficients

In this appendix we will give further details regarding the tree-level z-scaling, eq. (3.23) of
the amplitude. The knowledge of the tree amplitudes BCFW z-scaling behaviour combined
with an analysis of unitarity cuts for example using a formalism such as Forde [43] have
been used successfully to show analogous simplifications in gravity theories see refs. [6,7].
For demonstrating the absence of scalar triangle and bubble integrals in the one-loop n-
photon amplitude for n > 6 this is a very powerful strategy. To examine the analytic
structure of the rational terms we use D-dimensional cutting techniques [41,42,45,60,61].
We will prove the vanishing of rational polynomial terms in the QED amplitudes using a
generalisation of Forde’s method for D-dimensional cuts, re-expressed in terms of massive
four-dimensional cuts [47].

C.1 Absence of triangles in amplitudes with n > 6

We will first analyse the presence of triangles in the m-photon one-loop amplitude, by
considering the triple cut represented in figure 5(b)

one-loop
fl”?Q

3
L. =) / dUTT o) Do AP (Bh, —62M) AR (6", — 05 Ao (63, — ")
i=1 h=+1

(C.1)
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K1

Figure 6: The triple-cut contribution the amplitude.

Here n1 + no + n3 = n. We have only indicated the momenta of the fermions, which are

given by the cut loop momenta. Following [43] we can parametrise the loop momenta ¢;

with ¢ = 1,2, 3 in the cut as

04102
t

where ¢ = /3. The shifted propagator factors behaves as

fi = t|I7)(K| + |KDKS| + an K3+ cin K7, (C.2)

lim f; ~ t|K3)(K3). (C.3)
t—o0
With this parametrisation of the loop momenta the polarisations of the fermions will be
given by
u_(t:;) = |6:] = t|K3] + | K] (C.4)
— Q2 7-b b
ui(6) = |t) = “2[13) +|K3),
which have the large ¢ behaviour
lim u (4) ~t]|K?3), lim u_ () ~ |K5]. (C.5)
t—00 t—00

The large ¢ scaling is equivalent to the BCFW shift scaling of type s = +1 in (3.19) (except
for the scaling of the u_(¢;) which scales like z in (3.21)). Because of this the amplitude
will have only less power of ¢ in the numerator for the external fermion line. Of course for
the scalar tree-level amplitude there is no t factor from the external scalar states.

Taking into account the scaling of the external states we can conclude (using the found
large z scaling of the tree amplitudes given in (3.23)) that the large ¢ behaviour is

lim Y (e e TN S RE S (C.6)

We remark that this behaviour is independent of the helicity h of the state running in the
loop. Therefore the large ¢ behaviour of the cut (C.1) is given by

Jim AR, =020 AT (R, — 0PN A (6, — ") ~ . (C.7)

We can thus conclude that the one-loop n > 6 photon amplitude with either a fermion or
a scalar running in the loop do not contain scalar triangle integrals with massive corners.
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Figure 7: The double-cut contribution to the amplitude is given by (a) the bubble cut and (b)
the triangle subtraction.

C.2 Absence of bubbles in amplitudes with n > 4

In this section we examine the two-line cut of the amplitude.
The cut amplitude can be computed as

Agrloor| = (2n)? / Ay 5(6)5(63) Y A3t~y Alee(3h —er?hy, (C8)
h=+1

with ny + ng = n. The cut loop momenta can be parametrised as follows [43]

2
=R+ (=) T ) = 21D + (©9)
and K2
) = K3 = 5 =H ) = (= D IKD) + ). (C.10)

For large ¢ with ¢ > y, the behaviour is like the one of the triangle cut analysed in the
previous section. The analysis in the previous section showed that no triangles are present
in amplitudes with n > 7 photons, so for these amplitudes the leading behaviour of the
amplitude for y > ¢t > 1 will be a test for possible bubble contributions. For n = 6 the
large t behaviour of the triple-cut amplitude is given by a constant. In that case as well
the leading behaviour of the amplitude for y > ¢ > 1 will be enough for analysing the
bubble contributions. For n < 5 one has to pay attention to the triangle subtractions [43]
represented in fig. 7 that can lead to a contribution in the regime where y ~ t. We will
discuss these contributions below.

For analysing the presence of scalar bubble integrals one needs to take the limits
y — 00, t — oo and y >t > 1. In this case the polarisation of the fermion shifts according
to

2
w(l) ~ =y B, w(l) ~ 1K), (C.11)
u(ty) ~ YT w(l) ~ylKD).

The polarisations of the scalar fields do not shift. The shifted propagator factors behaves
as 5 o
i 7o Y EL
tim gy~ =2 ST (. (C.12)
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From the analysis of the large z behaviour of the BCFW shift in section 3.3 we conclude
that the large y >t > 1 of the tree amplitudes behave as

2—n1

2
Az ey ~ (L) e (©13)

2—ng2

2
Az e ~ (B e,

for h = :l:% for the fermion loop and h = 0 for the scalar loop. And the integrand of the
cut amplitude in (C.8) behaves as
2\ 4—n
Az~ Az -6 ~ (5] (C.14)
The answer is independent of the helicity and of the nature of the particle (fermionic or
scalar) running in the loop.

From this scaling we can conclude that no bubbles appear in amplitudes with n > 6
photons. Furthermore the amplitude with four photons contains bubble contributions as
directly confirmed by the explicit evaluation of the amplitude [70,71].

For n = 5 photons the leading behaviour in (C.14) vanishes and no pure scalar bubble
contributions are found in the amplitude. In this case there are non-vanishing triangle
subtractions from the regime where y ~ t as represented in fig. 7. All amplitudes vanishes
via Furry’s theorems and the triangles contributions add up to zero via symmetry properties
of the amplitude (3.5) and after summing over the orderings of external legs.

C.3 Absence of rational terms

In this section we connect the large z behaviour (3.29) of the massive scalar tree-amplitude
to the large 2 limit of massive scalar loop amplitudes for testing for rational terms con-
tributions following the method used in [43,47]. In this section we will follow closely the
notations and conventions of ref. [47]. The analysis makes use of the D-dimensional in-
tegral basis recently used in numerical implementations of the D-dimensional unitarity
method [45].

To analyse the rational contributions to the n-photon loop amplitudes we need to
consider D-dimensional unitarity cuts. We can relate the D-dimensional loop momenta to

massive momentum using:
Uy =0+t oy, C=p2. (C.15)

Using a D-dimensional integral basis it is possible to write the rational contributions in a
basis of massive box, triangle and bubble functions by relating the D-dimensional integral
to integrals of the mass parameter, p. This results in [45]:

4
Ro= 3" Cige, Jurcali') + Y Osite, Ty 7] + 3 O, Ty 11 (C.16)
Ky K3 Ko

where K; with 1 < ¢ < 4 denote the set of momenta of the massive scalar box integral
functions.
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After performing the £ ~ p loop momentum integration and taking the e — 0 limit
this becomes [45]:

1 g 1 )
—_‘Z 4K4_§ZC:£;]K3_EZC£;}K2K22- (C.17)
KB K2

The coefficients C' Z[:;l]Kz;’ ng?]lfg and 02[?}1(2 can then be extracted from the analysis of the large
momentum scaling of the generalised cuts with four dimensional massive propagators.

For multi-photon loop amplitudes the rational terms can be extracted from tree ampli-
tudes with a massive fermion in the loop. The use of massive fermions is however delicate
to use in amplitudes evaluated in D = 4 —2¢. Therefore we will use the supersymmetric de-
composition to write, the QED amplitude as the one-loop amplitude for N' = 1 super-QED
minus the contributions of a scalar loop

one-loop __ 4one-loop one-loop
An;q =A nN=1 A"i‘ﬁ : (018)

Since any supersymmetric amplitudes are cut constructible in four dimensions, all the
rational pieces are arising from the scalar loop contribution. The rational part contribution
to a scalar amplitude can be extracted by introducing an effective mass ;2 for the scalar
and by evaluating the integral coefficient in four dimensions with the tree-level amplitudes
for massive scalars [74-76].

12 Dependence Of The Box Coefficients

For the quadruple cut of the massive scalar loop multi-photon amplitude we choose the
following basis for the loop momentum (see section 4.1 of [47] for notation),

= Y14 ab
/) =a Kj+b K?+C\KZ>[K?I+7IK1>[K4\ (C.19)
where the on-shell constraints determine
i = K1 - Ky 4K - Ky - K3, (C.20)
_ K}(K} +714) . K3 (K} + 1)
=R CREKE T R, —KOKD (G2
Yig — B8y Yig — B8y

which do not depend on p, and two solutions for ¢ = ¢y that have the large p limit

(K| K| K
lim ¢y = == ‘b 2| K] : (C.22)
H2—00 ma (K3 K2l K7]
The box-type rational contribution is given by the large p behaviour of the quadruple
cut: .
4 1 . I I T ree (g
Cifl =3 3 AT ATE AT AT ()], (C23)
c=c*

with nq + ng + ng + ngy = n. For a function f(x) with at most a polynomial growth for
T — 00
lim f(z) =apz" + - +ap+O(1/x), (C.24)

r—00
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we define the "inf’ operation following [77]

inf f =apz" +---+ap. (C.25)

We will use as well the notation inf, f ‘ = ay, for the coefficient of x*
To see the cancellation of such terms in the photon amplitudes we use the scaling of a
generic tree amplitude in the regime of large p derived in section 3.2.2.
For large u, since ¢ ~ p the loop momenta in the cuts scale as
lim /i(c) ~px, (C.26)
p2—o0
where x is some non-vanishing vector, which is the behaviour of eq. (3.32), and the anal-

ysis of the end of section 3.2.2 gives that the massive scalar tree-level amplitude has the
behaviour

lim Alree —
1200 lun—Q

(C.27)

This implies that the product of the four tree-level factor in (C.23) has the large p behaviour

4
i ATRARATE AT () ~ (C-28)
implying that qu(kl, -++ ,ky4) does not vanish for the four-photon amplitudes which hence
will receive a contribution from rational pieces in agreement with the explicit computation
n [38,70,71]. For more than four photons the one-loop amplitude does not have any
rational term contribution

k... k) =0  forn>4. (C.29)

1?2 Dependence Of The Triangle Coefficients
For the triple cut of the massive scalar loop multi-photon amplitude we choose the following
basis for the loop momentum (see section 4.2 of [47])

. b
T = ak + DK + t| K [K?| + M

(KK, (C.30)
with the same expressions for 714 and a and b as in the previous section. In general there
will be two solutions to the on-shell constraints £ = 0 which we label /f. We have

1 —
= 2 3 inflinf[ Al Atz Alree (£1)) (C.31)

2 2 0 2
o=+ M M

with n1 + ny + ng = n. We must consider the product of three tree amplitudes in the
t > p — oo limit. In this limit the loop momenta takes the following asymptotic form

2

p2—o0t—00
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Following the analysis of the triangle cut in section C.1 we deduce that in this limit the
massive scalar tree amplitude scale like

. 1 2
tlirglo Af{f; = (Cﬁip + = 0C, + O(u4/t4)> . (C.33)
The sub-leading corrections in p? arises from the 2/t dependence in (C.32) and because 2
is dimensionful these corrections appear with a factor of order 1/£? so that the corrections
are of order O((u?/t) x 1/0?) ~ O(u?/t?) in the large ¢ limit where t > u?.

For n > 6 the product of the tree amplitude hence behave as O(1/t"~%) therefore

inf[AU= A AT (7)) =0, (C.34)

]

so we can conclude that C’:[f = 0 for the one-loop amplitude with n > 6 external photons.

For n = 6 we have for each triangle contribution

iItlf[CéVS_mass]

1 e’} [e%} e’} Via
+0 - 5 z;t C"USOCnQ;SDCnQ;SO(El); N3 = 1’273’ (035)

The leading ;? contribution does not depend on p? and there is no rational term contri-
bution from scalar triangle integrals for the n = 6 photon amplitude. The sub-leading
contributions to the tree-amplitude are of order O(u?/t"~1). This imply that the contri-
bution to the triple cut has the large ¢ expansion

2
et ~N3— e[
inf[C4° "] = int [t—250,2?;¢053;¢05§;¢] —0.  N3=1,23, (C.36)
and hence there is no rational term contribution from triangles for n = 6 photons.

Only the n = 4 photon amplitude can get a contribution from the one-mass triangle.
The product of the tree amplitudes leads to a p? contribution

3 2
s 2 0 1Y e’}
= inf [t ‘||1(Cni;¢ +5 5%;«»)] ‘t:o (C.37)
= p%(C%. C. 6C°.  + perm.(ny,ng,n3)).

nip —n2;p n3;p

iItlf[C;_mass]

$0

These coefficients can be given by the sum over the permutations of the corresponding
gluon amplitude evaluated in [42,47,60].
1?2 Dependence Of The Bubble Coefficients

For the double cut of the massive scalar loop multi-photon amplitude we choose the fol-
lowing basis for the loop momentum (see section 4.3 of [47])

(1-y)Kf —p?
2t (K1 - x)

Ki(1—y)
2(Ky - x)

i = yK; + X+ HED | + 2 O[] (C.38)
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with K7 = K; — x K7/(2(K; - x)). The bubble coefficient has two components, a pure
double cut term and a set of triangle subtraction terms:

CE} _ CQbub,p] n Z C;ri(Kg,)[?]‘ (C.39)
{K3}

These components are expressed in terms of the large momentum scaling as,

bub[2] .. cr oor tree gtree g 2
Gy = —iinflinf Ay A, (G, 80| L oy (C.40)
ri(K3)[2 1 . . T T T e
C; ( 3)[ } = —5 Z llIlle[Htlf[AzleeA:zgeeA:zgee(gl (yU'ut7:U’2)H “2 LT : (041)
o=% ’ ’

The non-vanishing integrals depend on p? and have the following large p? behaviour (see
section 4.3 of [47] for detailed expressions)

lim Yo = O(1), lim Y =0(1), lim Y, = 0%, (C.42)
MQ_’OO M2—>OO MQ_’OO

lim Ty = O(1), lim T, =0(1), lim T3 = O(u?). (C.43)
:U‘Q_’OO ;L2—>OO “2—>oo

With an analysis similar to the one performed in section C.2 we obtain that the product

of the tree amplitudes in (C.40) and (C.41) behaves as O((y?/t)*~") therefore for n > 4
external photons we have

irtlf[igf[AfffeAffe(El)]] =0. (C.44)

Hence there is no rational term contributions from the bubbles to the one-loop amplitude
with n > 4 external photons. For n = 5 there is a priori a non vanishing contribution from

the subtraction of triangles C;ri[K:ﬂ

but as before these contributions vanish in the sum
over all the orderings as required by Furry’s theorem.

Both C’]QO W) nd C’;ri(m)m for four external photons receive non-zero contributions
which can be obtained by summing over the ordering of the corresponding gluon amplitude
contributions which were evaluated in [42,47,60].

Therefore there is a rational term contribution to the four point amplitude in agreement

with the explicit computations performed in [38,70,71].

D. The scalar box integral functions

In this section we give a relation between the infra-red part of the massless scalar box
integral functions evaluated in D = 4 — 2¢ dimensions and triangle contributions. We will
follow the notation of the refs. [8,65].

We will use k; for massless legs k? = 0, and K; for massive legs K2 # 0. As well we
will use s;; for either —(k; + k)%, or —(k; + K;)?, or —(K; + K;)?.

The infra-red divergent part of the massless scalar box integral function is given by

#26 9
2

I4(k17k27k37k4) =Trr
IR 512893 €

((=s512) 7+ (=523)7°) . (D.1)
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The infra-red divergent part of the one-mass scalar box integral function is given by

2¢ 2 B _ e
I4(k1,kz,k3,K4)‘IR — 81’“;823 5 (1) (=s29) = (=KD ) . (D.2)

The infra-red divergent part of the two-mass easy scalar box integral function is given by

2e 2
I4(k17K27k37K4)‘ =Trr K )

= _ - (_ —e_(LR2V_(_K2)€)
IR s12823 — K3K7 €2 (( s12) "+ (—s23) (—K3) (—K3) )

(D.3)
The infra-red divergent part of the two-mass hard scalar box integral function is given by

2¢
L 2 ((msa2) ™+ (o) (KB = (<KD

p 1 (KK

I4(k17/€2,K37K4)‘ =1r
IR

+ rr

8128923 6_2 (—312)_e
#26 1 2 2
= — ((=812) " + 2(—823) " — (=K2)™¢ — (—K2)™) .
(i ((—s12) 7 + 2(—s23) (—K3) (—=K3)™)
(D.4)

The infra-red divergent part of the three-mass scalar box integral function is given by

:u26 9

Ii(k1, Ko, K3, K = _— — € — —¢
4(k1, Ko, K3, Ky) R TF812823_K22KZ 3 ((=512) 7 + (—523)7)

[a))

2e

H 2 2\—¢€ 2\—e€ 2\—¢€

e R K K
s w (D) (KT (D)
. > 1 ((—KQQ)G(—K??)6 N (—K32)6(—K42)6>
s12823 — K2K3 €2 (—s23)7¢ (—s12)7¢

MQG 1 2 2

= rp —————5—5 — ((—s12) 7 + (=s23) ™" — (=K3) ™ — (-K;)™°) ,

$128923 — K%KZ €
(D.5)

where rp = I'(1 4+ €)I'(1 — €)?/T(1 — 2¢).
The divergent dimensionless one-mass and two-mass scalar triangle functions are given

by

2e
I3(ky, ko, K3) = (—K3) I3(k1, ko, K3) = rr li_g (—K3)~, (D.6)
2€
I3(ky, Ky, K3) = (K3 — K2) I3(k1, ko, K3) = 1 “6—2 (-K3)“ = (-K3)™°) . (D.7)

These expressions imply that all the divergent parts of the dimensionless scalar box integral
functions can be expressed as linear combination of the infra-red parts of the dimensionless
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scalar triangle functions in the following way

Iy(ky, ko, ks, s o 2 (f3(/€37 ka, k1 + ko) + I3 (K1, ka, ko + kg)) ‘IR, (D.8)

Iy(k1, ko, k3, Ky) . (fg(kh ko, ks + Ky) + I3(ko, k3, k1 + Ky) (D.9)

+ I3(ks, ky + ko, Ky) + I3(ky, ko + k3, K4)) ‘IR,

Iy(k1, Ko, k3, Ky) o 2 <f3(k1,K2, ks + Kq) + Is(k1, ks + K2,K4)) ‘IR, (D.10)
I(ky, ko, K3, Ky) e (f:s(k?l, ko, K3 + Ky) + I3 (k1 k2 + K3, K4) (D.11)
+ I3(ko, K3, k1 + K4))‘ ;
IR
La(l, Ko, K, K0)| = (Talkn, Ko, Ky + K) + (ke Ko + Ko, Ko))| L (D.12)
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