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Abstract

The constraints imposed by maximal supersymmetry on multi-loop contributions to
the scattering of four open superstrings in the U(NN) theory are examined by use of the
pure spinor formalism. The double-trace term k? tg(trF'?)? (where k represents an external
momentum and F' the Yang—Mills field strength) only receives contributions from L < 2
(where L is the loop number) while the single-trace term k2 tg(trF'*) receives contributions
from all L. These statements are verified up to L = 5, but arguments based on super-
symmetry suggest they extend to all L. This explains why the single-trace contributions
to low energy maximally supersymmetric Yang—Mills field theory are more divergent in
the ultraviolet than the double-trace contributions. We also comment further on the con-
straints on closed-string amplitudes that suggest that supersymmetry forbids ultraviolet

divergences in N = 8 supergravity up to at least eight loops.
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1. Introduction

Supersymmetry imposes crucial constraints on the structure of scattering amplitudes
in supersymmetric gauge and gravitational theories, which generally leads to a moderation
of ultraviolet divergences. These constraints are particularly strong for maximally super-
symmetric theories, which are difficult to analyse using conventional superspace techniques
due to the absence of an off-shell superspace formalism. However, it is possible to analyse
such field theory supersymmetry constraints by considering the low energy limit of the
corresponding open or closed superstring theories. In particular, the pure spinor formal-
ism [1,2] is a framework for constructing multi-loop string theory amplitudes in a manner
that preserves all the space-time supersymmetries. An example of constraints obtained
in this manner comes from the analysis of multi-loop contributions to the four-graviton
amplitude in type II superstring theory [3]. These constraints imply that interactions of
the form 92* R* (where R* denotes a particular contraction of four Riemann curvatures)
do not get any perturbative contributions beyond k loops in the ten-dimensional theory,
at least for £ < 6. These conditions follow from the fact that interactions with £ < 6 are
F-terms that are given by integrals over a fraction of the full 32-component superspace.
A striking consequence of this that follows on purely dimensional grounds is that ultravi-
olet divergences should be absent up to at least nine loops in four-dimensional (D = 4)
N = 8 supergravity [4]. By contrast, analyses of counterterms that exploit less than the
full N' = 8 supersymmetry give weaker conditions [5,6].

The main purpose of this paper is to extend these considerations to open string theory

and, hence, to its low energy limit — maximally supersymmetric Yang-Mills (SYM) theory.

1.1. General properties of the four-gluon amplitude

For simplicity we will consider the case of open strings scattering on N coincident Dp-
branes, for which the world-sheet is orientable and which corresponds to a U(N) gauge
theory in the low energy field theory limit. It has long been known that ultraviolet di-
vergences are absent in maximally supersymmetric Yang—Mills field theory in dimensions
D < 4 to all orders in perturbation theory — one does not even need to exploit the full
power of maximal supersymmetry to argue that the theory is UV finite [7,8,9]. Indeed,
there are finite NV = 2 and N' = 1 super Yang—Mills theories. It is sufficient to know
that the dimension four operator tgF* factors out in the sum of Feynman diagrams at

every order in perturbation theory (where tg is a standard eight-index tensor reviewed in
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appendix 9.A. of [10] that contracts the space-time indices in F'* while the contraction of
the gauge indices will be discussed later). It follows by simple dimensional analysis that
the perturbative contributions are ultraviolet finite at each order (all L) in dimensions
D < 4. However, the situation is better than that because the CP-even tgF'* is related by
supersymmetry to the CP-odd anomaly cancelling term B A F* in ten dimensions, which
is expected to be one-loop exact [11,12,13,14,15]. This means that the L > 1 contributions
to the string scattering amplitude must have a low energy limit that behaves as s~ tg F'4
with 77, > 1, so that the prefactor contains at least two extra powers of momentum!. We
may interpret this contribution as a term of the form 0?7 tg F* in the effective action
and in the following we will often pass between the amplitude and the effective action
without comment. In fact, there are indications that v = 1 for L > 1 from direct pertur-
bative evaluations of the four gluon amplitude in maximally supersymmetric Yang—Mills
theory [16,17,18] or by N' = 3 superspace arguments in four dimensions [5]. Assuming
v = 1, it is easy to see using dimensional analysis that an L-loop amplitude with a
prefactor of stgF* is ultra-violet finite in dimensions D < 4 + 6/L.

Although extended supersymmetry determines the dynamical prefactor to be of the
form s tgF'* [19], there is also a dependence on the gauge group and on the string
coupling constant g, which is related to the Yang-Mills coupling gym by gs = g%y /4.
For example, for the gauge group U(N) (which is the simplest example) there are two
independent group theory structures in the field theory four-gluon amplitude — a single
trace term tgtr(F'*) and a double-trace tg(trF?)? term, where we are now taking F' to be
an N x N matrix in the defining representation of U(N) and tr denotes a trace on these
indices. Contributions to the amplitude of the general form s7% tgtr(F*) and sP tg(trF?)?2
will be constrained by supersymmetry in different manners at a given order in perturbation
theory (i.e., for a given power of gs). Our aim is to determine the values of v and 3 by
considering the low energy limit of the four-gluon amplitude in open superstring theory.

Certain properties of the open superstring four-gluon amplitude are well known. For
example, at tree-level (L = 0) the world-sheet is a disk with all vertex operators describing
the external states coupled to the boundary. In this case, in the low energy limit only

a single-trace g;!tgtr(F*) term contributes. For L = 1 the world-sheet is an annulus,

L The factor of s?* in this expression, and all those that follow, is intended to indicate the
power of Mandelstam invariants — the precise expression involves a function of s, t, u with a detailed

structure that will not concern us here.



which has two boundaries. When all vertex operators are attached to a single boundary
there is a low energy contribution that behaves as N tg tr(F4) (where the factor of N arises
from a trace over the free boundary). There is also an L = 1 contribution when there is a
pair of vertex operators attached to each boundary, which reduces in the low energy limit
to terms of the form tg(trF?)2. These are F-terms that are protected from higher-loop
(L > 1) quantum corrections. By an F-term, we mean a term which cannot be expressed
as an integral over 16 #’s of a gauge-invariant integrand. On the other hand, a D term is
a term which can be expressed as an integral over 16 8’s of a gauge-invariant integrand.
We will confirm, using string loop calculations, that tgtr(F*) and tg(trF?)? are F-terms
that satisfy the expected L > 1 non-renormalization properties, at least up to L = 5.

The next term that arises in the low energy expansion is the dimension ten operator
stgtr(F*), which can be expressed as a term in the effective action given by a superspace
integral, of the form I;,4 = [d"%x [d'®0 6% tr(W*), where W, is the gaugino superfield
(cv is a space-time spinor index). This expression is schematic since we have not specified
how to factor out the eight powers of 6 in a covariant manner. However, this term is a
“fake” F-term because it can be rewritten as a D-term, at least after compactification to
dimension D < 10. For example, in four dimensions it has the form I; 4 = [ d*z [d'90 K,
where K = tr(¢%p;) is the Konishi operator and ¢; is the scalar superfield in the 6 of the
R-symmetry group SO(6) ~ SU(4) [20,6]. The fact that this integral contains 9 tgtr(F'*)
follows from the nonlinear completion of the linearised N' = 4 superfield. Our string
calculations will confirm that 8% tgtr(F?) is not protected against quantum corrections
and receives contributions for all L > 1, as expected for D-terms. We will also show from
string theory that the corresponding double-trace contribution stg(trF?)? ~ 9% tg(trF?)?
only receives perturbative corrections up to two loops (L < 2), as expected for a protected
F-term that cannot be written as a D-term.

Furthermore, the dimension-twelve double-trace operator s?tg(trF2)? can be ex-
pressed as a term in the effective action, I; 5 = [ d*xz [ d'90 6* (trW?)?, which can also be
rewritten as a D-term using [ d*z [d'0K? and [ d*z [d'®0T? where Tap is the sym-
metric traceless supercurrent [20]. An analogous description of this D-term in terms of
a scalar superfield should exist in all dimensions with D < 10. We will again use the
string theory multi-loop amplitude prescription to argue that this double-trace contribu-
tion s2tg(trF?)? ~ 9%tg(trF?)? receives perturbative corrections at all loop orders, as

expected for a D-term.



1.2.  Organization of the paper

In section 2 we will review the construction of scattering amplitudes on orientable
planar world-sheets with L open-string loops, in the non-minimal version of the pure
spinor formalism. This describes open strings moving in D dimensions and scattering
on N coincident Dp-branes (where D = p + 1). The amplitude for the scattering of
four gluons will be considered in section 3, where we will highlight the distinction be-
tween contributions from single trace and double trace terms. We will also make a
short comment that completes the arguments concerning F-terms in graviton scatter-
ing in type II closed string theories in [3]. In section 4 we will discuss the contributions
of world-sheet handles, which are associated with the coupling of the closed-string (i.e.,
gravitational) sector and generate contributions suppressed by O(1/N?) relative to the
zero-handle terms. In section 5 we will show how the structure of these string theory
expressions explains the pattern of ultraviolet divergences in maximally supersymmetric
U(N) Yang-Mills theory at L loops in D dimensions. Whereas the onset of ultraviolet
divergences of the single-trace term stgtr(F*) to the L-loop amplitude occurs in dimen-
sions D = 4+ 6/L, our results imply that the dimensional dependence of the double-trace
terms is different. Given the overall prefactors described above, together with dimensional
analysis we will see that ultraviolet divergences for the double-trace terms arise when:
e D =8 for the L = 1 term tg(trF?)?;

e D =7 for the L = 2 term stg(trF?)?;

e D =4+ 8/L for the term s?tg(trF?)? at L > 3.

This explains the apparent puzzles that have arisen in the explicit multi-loop calcula-
tions, where the double trace tg (trF2)? contribution to the L-loop counter-term is absent
in dimensions D = 4 + 6/L for L = 3 and L = 4 (as reviewed in [18]). Finally, we
will summarize our results in section 6 and make some preliminary comments concerning

higher-point gluon amplitudes.

2. Open-string scattering amplitudes in the pure spinor formalism

The functional integral that defines the scattering amplitude with M external mass-
less ground states (“gluons”) includes a sum over boundaries, handles and cross-caps (for
theories with non-orientable world-sheets). Recall that a world-sheet with M open-string
vertices and with B boundaries, H handles and C cross-caps is weighted with a factor g X,

where , the Euler number, is given by x = 2 — 2H — B — C' and where g, is the string
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coupling. When describing the scattering of open strings on a collection of Dp-branes we
need to consider orientable world-sheets, so that C' = 0. In addition we will initially neglect
the contributions of world-sheets with handles so we will set H = 0. We are interested
in taking the limit in which gravity decouples from Yang—Mills and handles describe the
gravitational contributions. However, handles also contribute finite residual pieces to pure
super-Yang-Mills amplitudes. These contributions are suppressed by at least two powers
of N in the large N limit (since one handle takes the place of two free boundaries). So
we will be interested initially in the L = B — 1 - loop oriented open string corrections
with x = 1— L. In the low-energy limit, these open superstring amplitudes describe U(N)
super-Yang-Mills amplitudes to leading order in 1/N?2.

A general property of these open-string amplitudes is the possibility of divergences
associated with closed strings coupling to the Dp-brane via the world-sheet boundaries.
The simplest example is the single-trace contribution at one loop, L = 1 (B = 2), which
may be viewed as a cylinder carrying zero (p+ 1)-dimensional longitudinal momentum and
with both boundaries fixed at the same transverse point. The potential divergence arises
from the massless state propagating in the cylinder, which gives a contribution proportional

to
ZE_l

lim gt (gh) 72, (2.1)

z—0
where ¢+ is the transverse momentum in the cylinder, which is integrated in order to
fix the boundaries at the same transverse positions. This expression diverges for p > 7,
which indicates that the gravitational back reactions of Dp-branes with p > 7 cannot be
neglected. In the following, we will restrict our considerations to the situation in which
these gravitational effects can be ignored, so we will be considering Yang—Mills in D < 8

dimensions.

2.1. The multi-loop functional integral for world sheets with B boundaries

The M-gluon amplitude is expressed as a sum of terms in which the M vertex operators
are partitioned among the B boundaries in all possible ways and there is a sum over the

order of the operators attached to each boundary. This gives

(1) 1 (B) B
(a) ...agll))...(al ...ang))

Ap = Z 933_2 tr(Tagm . 'Taglll)) . -tr(Ta§B> s Tagfg)) AL (2.2)

orderings
where {n,} is the number of vertex operators attached to each boundary labelled r =

1) (B) B
(af ‘“‘15111))“‘(‘11 ...a;;) .

1,...,B and Zle n, = M. The quantity A; is the colour-ordered
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partial amplitude. The sum is over all partitions of the M vertex operators on the B
boundaries, including all possible orderings of the operators on each boundary. The gauge
group generators, Ty, are N X N matrices with indices in the defining representation
of the gauge group, U(N) (which is the Chan—Paton prescription). Such a surface has
3B = 3L + 3 real moduli for L > 1 (and one modulus for L = 1). Note that there is a
factor of tr(1) = N for each boundary that has no vertex operators attached, leading to
an overall factor of NP7 (where By is the number of free boundaries in a given term in
the sum).

In the non minimal pure spinor formalism the prescription for each colour-ordered

open-string amplitude is given (for B =L+ 1 > 2) by

(@M a®)(alB) . .alB)y 3B—6 M y
Agtomm =/d3367< 11 (,Ui‘b)NH/dti Ve ) (23)
=1 i=1

where (u|b) := [d?yuz*b,, (and pz*(74) = g.:097% /07, is the Beltrami differential) and
T, are the Teichmiiller parameters of the bordered Riemann surface. For a given colour
factor the positions of the vertex operators Vi are integrated in a given order along the
boundary.

The angular bracket (---) represents the path integral over the matter fields
[z, 0%, ps] and the pure spinor ghosts which consist of left-movers, [A%, wq, Ao, W%, 7o, 5],
and right-movers, [5\0‘, Wey, ia, w", 7o, 5], weighted by the pure spinor action

L
(o) = / D016y / DADN D ] / D |[DEDs] - e~ (2.4)
I=1
where the action is (setting 27wa’ = 1)
Sps = /dQZ (%&Um&vm + P00 + WaONY + W Ny + 8014
) (2.5)
RN U ) Wt a) |

This integral generically needs to be regularised by introducing the quantity A that will
be reviewed below.

The pure spinor ghosts A%, A\, and 7, satisfy the constraints

M"A=0, MA =0, M =0, (2.6)
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which implies that they each have eleven independent components. A conformal weight
zero field has a single zero mode so % has 16 fermionic zero modes and 7, has 11 fermionic
zero modes, which all have to be saturated in the functional integral. Likewise, each
conformal weight one field has L real zero modes. This means that p, has 16L real
zero modes while s* has 11L, which also need to be saturated. The bosonic pure spinor
ghosts A* and A, each have 11 independent components which need to be integrated.
Singularities in these integrals need to be regulated [1,2,21,22]. Similarly, the conjugate
bosonic variables, w, and w®, each have 11L components.

The integration measures are given by
AN\ \Y D] = (ET—l)ZlﬁijD)\kl .. D)
[DA|[Dr] = DAay A+ ADXay, X Oy Av+-AD

To‘ll Y

(2.7)

where the tensor 7, which is totally antisymmetric on the k; indices and fully symmetric

and 7-traceless on the a3y indices, has the form [1]

(€T)Eok = ey i ms (™) it (Y 1ral (FP))yre (V) rars - (2.8)

The integration measure of the conjugate ghosts is given by

XA [Dul) = M, i, DN L DN D !
AU IR (2.9)
[Dw'][Ds"] = [ DN} ADT A ][ 0s1 . A Oss
1=1 =1
where
Mglll.nlof?'mlonlo :(7m1n1m2m3m4)((a1a2 (7m5n5n2m6m7>a3a4 (210)

O£5046( 017048))

(Vmsnsnsnemg) leonlonwmg)

and ((---)) means that one considers the symmetrised ~y-traceless part. The quantities
N™" = My™"w, J = Nwq
N™™ =\ — py™ s J=A-w—r-s (2.11)
S = My S=A-s,

are conserved world-sheet currents.

The b-ghost is a composite quantity, which is defined to satisfy the BRST condition
(@, b] =T, where @ is the BRST charge and T is the energy-momentum tensor. This takes
the form [1,2], B
Aa b®

b— s+ 2aBl
SOAT TS

(2.12)



and
r

b = G + B_pes "By geaBy o TBTYTS fapys : 213
YT oot T oo (2.13)
where
G = L () — LN (yma0) — Lo — Lo2ee
—g m g 1 1
aff — 1 mnp\afS
H™ = 1—92(7 )7 ((dVmnpd) + 4Ny 11,)
1 (2.14)
K57 = = () 2 ()N
1
afyd [aB (~pary\YS] prnm
L 128 (’anp) (,y ) N qu :
The pieces of the b-ghost satisfy the relations
Q.G =xT, {QHY}=x¢", (2.15)
2.15
{Q,Kaﬁ“y} — )¢ HB’Y, {Q, LQBWS} — \¥ gBS
The regulator A in (2.3) given by
N =exp[Q, Y]
= exp [—)\')\—T’ 9]
Lo
. S arl arImn 71 2.16
Xexp[ Z(sznN +JrJ )} (2.16)
I=1
|
X exp [ =D i Shald ) + Sf(Adf)} ,

In this expression we have defined the I'th zero mode of any current in (2.11), Of, as
the integral of © around the I’th a-cycle of the doubled open-string world-sheet, O =
fﬁal dzO.

2.2. The open-string vertex operator

An open string vertex operator in (2.3) attached to a point ¢ on a boundary, V4 (t) e*®,

is the k’th Fourier mode of the position-space superfield given by
1
V¥ (x,0) = Al (x,0)00% + A% (2, 0) I + W (x,0) dy + iNm"f%n(a:, 0), (2.17)

where I1" = 0x™ +i/2(07™00) , do = pa — /2 (0Ym)a (0™ + (074™00)/4), and AL, A2
Waee and F2. are the N'=1 D = 10 super-Yang-Mills superfields,

Ag(z,0) = % (Y"0) o agy, () — %(X“(w) Ym8) (V"0 — L o () (7p0)a(0y™"P0) 4 - -,
(2.18)



a

Ay,

(z) and x**(x) are the gluon and gluino fields and Fy,, = 9,ay,, and

(’}/m)aﬁAm = DaAﬁ + DﬁAa

(’Vm)ozﬁWﬁ = Do Ay — O A (2.19)
1
DaWﬁ == Z(’Ymn)aﬁfmny

where D, = 9/00, + 1/2(07™)4Op, is the supersymmetric derivative. The superfield
We(z,0) takes the form

1 1 1
WO =y () Fint (7 0) O x 05 (1710)* (097 ™"0)0, Fi, +0(0")
(2.20)
The first two terms in (2.17) can be expressed by means of a normal coordinate expansion

around Zy = (x", 6§), giving
dZM Ay = Apn(Z0)dZM + Fyn(Z — Zg)MazN + - (2.21)

The first term in this expression can be ignored since it can be written as the surface term
d(Anr(Zo)ZM) which decouples using the standard canceled propagator argument. And
because Z — Zy does not contain @ zero modes, Farn(Z — Zo)MdZN + - - - only contributes
to terms in the effective action which are higher order in derivatives than the terms coming
from d,W*<. This is easy to see since d,W can contribute a d, zero mode whereas the
term We[(0 —00)dX — (X — X0)d0] in Farn(Z —Zo)MdZN cannot contribute either d,, or
0% zero modes. Furthermore, the term N™"F,,, in (2.17) does not contain d, zero modes
so it also only affects terms which are higher order in derivatives than terms coming from
W<d,,. Therefore, when analyzing the terms in the effective action of lowest dimension at

a given genus, one only needs to consider the contribution from W%d,, in (2.17).

3. The scattering of four open strings

We will now specialise to the scattering of four massless open-string ground state
gluons with momenta k, (r = 1,2,3,4) satisfying k2 = 0. In this case there are two
distinct contributions at each order in perturbation theory, which differ in the way their
gauge indices are contracted. One of these is the single trace term in which all vertex
operators are attached to one boundary, resulting in an overall factor of N% sVt tgtr(F*4)

in the low energy limit of the amplitude without handles H = 0. For L = 1 we know
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v = v1 = 0 and we will argue shortly that v, = 1 for L > 1. As we will see later
in this section, stgtr(F*) gets contributions from all values of L > 1, as expected for a
D-term. The second kind of contribution is the double trace term, arising when the four
vertex operators are partitioned in pairs between two boundaries, resulting in a factor
NL=1 g5 tg(trF?)2. There is no such contribution at tree level (L = 0) and we know that
B1 = 0. We will see shortly that 8, = [L/2] for 1 < L < 4 (recalling that [z] denotes the
smallest integer greater or equal than x) again up to at least L = 4. Terms of this form
will turn out to be “F-terms” when L < 2.

The powers of momenta, 2v;, and 237, in the low energy amplitude depend crucially

on the analysis of the integrations over fermionic zero modes.

3.1. Zero-mode integrals and momentum prefactors

We will now discuss the integration over the fermionic zero modes that need to be
saturated in order to obtain a non-zero contribution to the amplitude. As explained in [2,3],
the regulator of (2.16) regularizes divergences in the pure spinor functional integral coming
from A, A — oo and in the process provides essential fermionic zero modes. However, to
regularise potential divergences from the A, A — 0 endpoint, one needs to introduce a more
complicated regulator involving non-zero modes of the world-sheet fields. Fortunately, it
was shown in [2,3] that this more complicated regulator is unnecessary for evaluating
contributions to “F-terms” in the effective action. Here, we are defining “F-terms” as
any term in the effective action where the external vertex operators contribute fewer than
sixteen 6 zero modes. In other words, at least one 6 zero mode must come from the
regulator of (2.16) when evaluating an “F-term”.

To absorb the 16L zero modes of d in the most efficient manner in an L-loop ampli-
tude, the (3L — 3) b-ghosts should contribute the terms (A[Id)%~2(Ard?)2:~1. Note that
increasing the relative number of (Ard?) terms will allow some d’s to contribute nonzero
modes. But since each such term includes an extra r, it will increase the number of 6 zero
modes which come from the external vertex operators. So changing a d, and 6° zero mode
to a d, and 6” nonzero mode forces the external vertex operators to contribute two extra
0 zero modes, which is equivalent to adding a factor of momentum. So each contraction
of d,, with 0% in the computation adds a factor of momentum to the term in the effective
action.

We now wish to isolate the terms of lowest dimension — in other words, the terms with

the least number of 0’s taken out of the vertex operators. Using the normal coordinate
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expansion of (2.21) it is easy to see that the vertex operator of lowest dimension is the
superfield W*. Using the above contribution from the b-ghosts, the term with the lowest
power of momentum in the L-loop amplitude (for L > 1) is proportional to the correlation

function
/d3(L1)7-<(r 0)277H (o) ()T (Ar @) Q) TEH wa)t) . (3.)

In this expression the first two factors come from expanding the regulator N, the subse-
quent four factors come from the 3L — 3 powers of the b-ghost, and the last factor comes
from the vertex operators. We see that there are 12 — 2L powers of § and therefore the

term of lowest dimension at L loops is proportional to
/ d'%0 02 2L Wt ~ oLt P (3.2)

This expression is symbolic since we have not specified the way in which the gauge indices
are contracted or the details of how the derivatives act on the four fields, but these are
determined by the explicit calculations. Since only terms with an even number of momenta
can be non-vanishing, one finds that 9%tgF* is the term of lowest dimension at L = 2,
O*tgF* is the term of lowest dimension at L = 3 and L = 4, and 9%gF* is the term of
lowest dimension for L > 5.

This expression suggests that the D-term of lowest dimension is f AW ~ 9%F4,
However, this is too naive since it assumes that the remaining integrations over the non-
zero modes in (3.1) do not contribute inverse derivative factors such as (k, - ks)~!. Such
factors do arise and play an important role in determining which terms are genuine F-terms
and which are fake F-terms. The systematics of these inverse derivatives is the subject of
the next subsection.

We will also consider the extension of this argument to four-graviton amplitudes in
the type II closed string theory where it was argued in [3] that terms proportional to 9%* R*
with £ < 5 are F-terms that do not receive corrections beyond £ loops. This also assumed
the absence of inverse powers of momentum arising from non-zero modes, which we will

justify at the end of the next subsection.
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3.2. Inverse derivative factors

When computing a massless four-point L-loop amplitude, one expects to get inverse
derivative factors of (ky - ko) ! coming from massless poles when (k1 + k2)? = 2k - ko = 0.
But the on-shell massless three-point amplitude vanishes beyond tree level (i.e., for L > 1)
in superstring theory, so the massless four-point loop amplitude cannot have a physical pole
when k; - ko = 0. Nevertheless, there is the possibility that inverse factors of (ky - kg)™?
could cancel factors of (ky - ko) in the prefactor of the amplitude from the zero mode
saturation. As will now be discussed, these inverse factors can come from performing the
contractions over the non-zero modes of the world-sheet fields and integrating over the
moduli of the amplitude. This could in principle reduce the D-term of lowest dimension
from [d'®0 W* = 95F* to a term with fewer derivatives.

In the superstring computation, these inverse derivative factors arise from the bound-
ary of moduli space where either two vertex operators collide or where the string world-
sheet splits into two world-sheets connected by a long open string strip (or closed
string tube). For example, a factor of (ki - k2)~! could arise from the region of the
integral [ dzoVa(22)Vi(21) when 2 approaches z;. This inverse derivative factor oc-
curs if Vo(22)Vi(21) has a term in its OPE which goes like (2o — 21) 1t*1%2 50 that
[dzoVo(22)Vi(z1) ~ [dz 271 TFk2 o (ky - ky)~!. Similarly, a factor of (kq - ko)~ could
arise from the limit in which the L-loop world-sheet degenerates into Li-loop and Ls-loop
world-sheets connected by a long open string strip (or closed string tube) where L = L1+ Lo
and kj + ko is the momentum going through the strip (or tube). Such an inverse derivative
factor could come from the y — 0 region of the integral [ dy y=1+k1*2 ~ (k- ko)~ where
—log(y) is the length of the open string strip, or from the y — 0 region of the integral
[ dPyly|=2TFk2 ~ (ky - k2) ™! where —log(y) is the complex modulus of the closed string
tube.

It will now be shown that when L < 5, the only possible source of inverse derivative
factors comes from the collision of vertex operators. Furthermore, these inverse derivative
factors only affect the low-energy dependence of the s7- tg tr(F4) term, and do not affect
the s tg(trF?)? term. For L > 5, one can also get inverse derivative factors from the
degeneration of the surface, and these inverse factors affect both the s7% tgtr(F?) and
sPL tg(trF?)? terms. It will also be shown that neither of these two sources of inverse
derivative factors affect the low-energy dependence of the s* R* terms in closed superstring

scattering (at least for k < 6).
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We shall first discuss possible inverse derivative factors coming from the collision of
vertex operators. As explained in subsection 3.1, the term of fewest derivatives in the
effective action comes if each of the four vertex operators contributes W%d, and these
four d,’s only contribute zero modes. When two such vertex operators collide, e.g. Vi(z1)
and V(z3), the resulting OPE is simply Wdo W4 dg(z2 — z1)*"*2. But to get an inverse
derivative factor of (k;-k2) ™!, the OPE must have a term proportional to (2o —z;) "1 Tk1-k2,
To get this additional factor of (z2 — 21) 7!, the d,, variable in one of the vertex operators
must contribute a nonzero mode which contracts with a 6% variable in the other vertex
operator.

Note that switching the order of the two vertex operators will reverse the sign from
(20 — 21) 7! to (21 — 22) 71, so the resulting OPE is antisymmetric under exchange of the
group theory factors T and T5. This immediately implies that this type of inverse deriva-
tive factor, which comes from colliding vertex operators, is not present for the tg(trF?)?
term. If V] and V5, are on the same boundary for the double-trace term, tr(T1T3) = tr(T>T})
implies that the antisymmetric part of the OPE does not contribute. This is related to the
fact that the gluon vertex operator coming from the pole in the OPE of the two external
vertex operators would be a U(1) gluon which decouples from non-abelian states.

For the tg tr(F*) term, these colliding vertex operators could potentially reduce the
number of derivatives. However, for this to happen, the missing d, zero mode from the
colliding vertex operator needs to be replaced by an extra d, zero mode coming from the
b ghosts. The lowest value of L for which this is possible is . = 3, as can be seen from
(3.1) — by changing the (MId) contribution to a (Ard?) contribution, one gets an extra
d. zero mode. However, because one also gets an extra r, zero mode and because one of
the 6 zero modes in the vertex operators was contracted with the d, nonzero mode, the
number of #’s at L = 3 coming from the vertex operators is increased from 10 to 12. After
including the inverse derivative factor of (ki - k2) !, this means that the term with fewest
derivatives at L = 3 is

(k1 - /@%%)HW‘1 ~ 0% tgtr(F*) . (3.3)

If in addition to V7 and V5 colliding, one also had V3 and Vj colliding, one could
potentially get an additional inverse derivative factor of (ki - ko) 2. In this case, one would
need to get two extra d, zero modes from the b ghosts in order to replace the two d, zero

modes in the vertex operators which were contracted with 6’s. It is easy to see from (3.1)

that this is possible at L = 4 by changing two (AId) contributions to (Ard?) contributions.
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This gives two extra r, zero modes and, because two 6 zero modes in the vertex operators
are contracted, the number of #’s at L = 4 coming from the vertex operators is increased
from 12 to 16. After including the inverse derivative factor of (k; - k)2, this means that

the term with fewest derivatives at L = 4 is

(ky - k2)—2(%)1ﬁw4 ~ 0% tgtr(F?), (3.4)

resulting in the same operator as in (3.3).

So we have seen that colliding vertex operators reduce the momentum dependence
of the tgtr(F?) term from 93tgtr(F*) to 9%tz tr(F?*) at L = 3, and from d%tgtr(F4) to
0*tgtr(F*) at L = 4. However, the momentum dependence of the double-trace term is
unaffected and remains 921%/2ltg (trF?)2 = 0*g (trF?)? at L = 3 and 0*g (trF?)? at
L=4.

We will now analyze the second possible source of inverse derivative factors coming
from the degeneration of the L = Ly 4+ Lo world-sheet into two world-sheets with L; and
Lo loops. In practice we will find it convenient to describe the closed string version of
this plumbing decomposition, which is related to the open string version by the usual
doubling trick. So we will consider the degeneration of a genus g = g; + g2 closed-string
world-sheet into two world-sheets of genus ¢g; and gs. To analyze this degeneration, it is
convenient to use the standard “plumbing” decomposition of the surface into a genus g;
surface with a small hole at p;, a genus g, surface with a small hole at ps, and a cylinder of
length —log(y) connecting the two holes. The Beltrami differential for the cylinder length
is [ dyy~*!, and the corresponding b ghost is integrated around the circumference of the
cylinder. The remaining 3g — 4 b ghosts are split into 3g; — 2 b ghosts on the g; surface
(with one of them at p;) and 3go — 2 b ghosts on the g, surface (with one of them at po).

To compute the correlation function in this degeneration limit, it is convenient to map
the cylinder of length —log(y) into an annulus which has one small boundary of radius
vy and one large boundary of radius 1/,/y. The annulus coordinate will be called w,
which is related to the cylinder coordinate p by w = e”. To get an inverse derivative
factor, the correlation function on the annulus must contribute a factor of y*1%2, so that
after integrating over the moduli using the Beltrami differential for y, one gets a factor of
[dyy=ty" v~ (k- ko)t

The correlation function on the annulus is given by

Vilw=5) [ dwube) Va(w = Vi7y) (3:5)

14



where V7 comes from the operators on the genus g; surface, V5 comes from the operators
on the genus gy surface, and the b ghost is integrated around the countour |w| = 1. If
gluons 1 and 2 are on the gy surface and gluons 3 and 4 are on the gy surface, V; will
be proportional to e!(¥1t%2)2 and V;, will be proportional to e~*kF1+k2)z Sq if the b ghost
does not contribute any y dependence, the correlation function gives the desired factor of
ykikz

However, when y — 0, the b ghost cannot contribute any d,, or II zero modes. This
is easy to see since when y — 0, the g holomorphic one-forms split into g; holomorphic
one-forms which are non-vanishing only on the genus g; surface and g, holomorphic one-
forms which are non-vanishing only on the genus go surface. The b ghost on the annulus
contributes either the term MId or Ard?. In the first case, the nonzero mode of the IT must
contract with e’(¥11k2)% o give a factor of k, and the nonzero mode of d, must contract
with a % in Vi or V5. Furthermore, one needs an extra d, zero mode to come from
one of the other b ghosts (which is possible when L > 3 as before). Putting all of these
factors together, one gets a total factor of k? which cancels the inverse derivative factor of
(k1 - k2)~t. In the second case where the b ghost on the annulus contributes Ard?, the two
nonzero modes of d, must contract with two 6“’s in V; or V5, and one needs two extra d,,
zero modes to come from the other b ghosts (which is possible when L > 4). Again putting
these factors together, one gets a total factor of k2 which cancels the inverse derivative
factor of (ki - ko)~ L.

So degeneration of the surface cannot give inverse derivative factors when L < 5.
However, when L > 5, there are contributions to the low-energy effective action which
require using the more complicated regulator. Although we will not go into details here,
we will sketch how degeneration of the surface can give rise to inverse derivative factors
when L > 5.

When L = 5, there are 12 b ghosts which can contribute the term (Ard?)'? ~ r!2d%4.
This term diverges when A — 0 as A~'? which means one needs to use the complicated
version of the regulator. Note that one of the 12 r’s in this term must contribute a
nonzero mode (since there are only 11 independent r, zero modes). As shown in [2,21],
the complicated regulator involves a term d,s* with nonzero modes, and after contracting
the s nonzero mode in the regulator with the r, nonzero mode, one is left with a term
proportional to r'1d?>. After including the 4 d,’s from the vertex operators and the
5 x 11 = 55 d,, zero modes from the regulator, one has a total of 84 d,’s. At L =5, one

needs 80 d, zero modes, so 4 of the 84 d,’s can contribute nonzero modes.
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If the L = 5 surface degenerates in two places, one gets two inverse derivative factors
which produce (k; - k2)~2. The two b ghosts on the two annuli will involve these four d,
nonzero modes which will contract with four of the 6’s on V7 or V5. Since no 6’s come
from the regulator, one needs to get 20 6’s from the vertex operators. So at L = 5, the
number of derivatives in the double-trace term is k=*(2)%tr(W?2)? ~ 9* t5(trF?)2. Note
that this is one derivative lower than the 9°tg (trF?)? term one would get in the absence
of inverse derivative factors.

For the single-trace term, one can use two of these four d, nonzero modes to give an
inverse derivative factor of k=% from colliding vertex operators V; with V5 and V3 with
V4. The remaining two d, nonzero modes can be used in the b ghost on an annulus which
degenerates the L = 5 surface in one place, which gives an additional factor of k~2. Since
each d, nonzero mode is contracted with a 6 from the vertex operators, one again needs
20 ¢’s from the vertex operators, so at L = 5 the single-trace term is proportional to
k‘G(%)ZOtr(WA‘) ~ 02 tgtr(F4).

So after including the inverse derivative factors coming from these two sources, one
finds that the single-trace term is proportional to 9%*tgtr(F?*) for L > 1 and the double-
trace term is proportional to 9%tg (trF?)? for 1 < L < 2 and 9*g (trF?)? for L > 2. This
was verified up to L = 5.

Finally, it is easy to show that neither of these sources can contribute inverse derivative
factors for closed string scattering. This is because the number of d, and 8 nonzero modes
is doubled (since one has both left and right-moving contributions), but the number of
inverse derivative factors from the massless propagator (ki - ko)~ ! is the same as in the
open string scattering. So the number of £’s in the numerator is always equal or greater
than the number of k£’s in the denominator.

The previous paragraph clarifies a statement in [3] concerning graviton scattering in
type II theories. In that case, integration over fermionic and bosonic zero modes in four-
graviton scattering at genus g led to a prefactor in the low-energy amplitude of the form
sIRYI(s,t,u) for g < 6, multiplying a complicated dynamical function of the external
momenta. The conclusion that these terms are F-terms relied on the absence of inverse
powers of s in I(s,t,u) arising from potential closed-string poles in the dynamical factor
multiplying the zero-mode prefactor. The arguments of the previous paragraph verify that
no such inverse powers are present and these terms are indeed F-terms. This lends support
to the arguments in [4] that ultraviolet divergences are absent in N' = 8 supergravity up

to at least eight loops.
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4. Contributions of handles

Open superstring theory is well-known to generate a closed-string, or gravitational,
sector in string perturbation theory, starting at one loop (L = 1). In order to decouple
gravity in the low energy limit one needs to take the large-N limit, where each additional
handle is suppressed by a power of 1/N?. Nevertheless, it is interesting to consider how
the inclusion of handles in the world-sheet computation at finite N (and the resulting
coupling to closed string modes) affects the tgtr(F?4) and tg(trF?)? terms in the low-energy
superstring effective action.

We will now suppose the world-sheet has H handles and B boundaries. The open
string amplitude with M vertex operators on a world-sheet of given topology carries a
factor g, X, where y = 2 — 2H — B is the Euler number (where we again set the number
of crosscaps C' = 0 as appropriate for oriented strings). We are particularly interested in
the case M = 4. Note that each handle is associated with a power g2, which is equivalent
to the insertion of two boundaries, but whereas each free boundary generates a factor IV,
a handle does not depend on N. Each handle is associated with three complex moduli
and bring three b-ghosts and their complex conjugates, so a world-sheet with H handles
and B boundaries has 3(2H + B — 2) b-ghost insertions. The four-gluon amplitude on a
world-sheet with L = B 4+ 2H — 1 boundaries and H handles is a simple generalization
of (2.2) and (2.3), with each handle counting as two boundaries and an appropriate change

in the power of N as described above.

N o NS

-
o) —

Fig. 1: Three-loop contribution to the single-trace term in four-gluon

scattering and its connection to the trF™* term in Yang-Mills theory in the
low energy limit.

Figure 1 illustrates a contribution to the single-trace amplitude with three loops and no
handles, H = 0, B = 4, and an example of a Feynman diagram that arises in the low energy
planar Yang—Mills limit. Figure 2 illustrates a contribution of the same order in string

coupling that has one handle, H = 1, B = 2. Two distinct boundaries of moduli space
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Fig. 2: A world-sheet with one handle and two boundaries that contributes
to the single-trace term at the same order as the four-boundary amplitude of
figure 1. The figure illustrates examples of field theory diagrams that arise
from the short-handle and long-handle boundaries of moduli space in the low
energy limit.

contribute in the low energy field theory limit. One of these arises from the short handle
limit, which contributes a sum of three-loop non-planar Yang—Mills diagrams, which give
contributions analogous to those of figure 1, but with two fewer powers of N. The other
arises from the limit in which the handle is long and picks out the ground state graviton
exchange, resulting in a sum of Yang—Mills loop diagrams with a graviton propagator
attached.

The first example where a handle contributes is the addition of a handle (H = 1) to
the tree-level disk world-sheet — i.e., to the world-sheet with B = 1. This is associated
with a factor of g, stgtrF* in the low energy limit, whereas the two-loop (B = 3, H = 0)
tgtr F4 term has a factor of g; N2 stgtrF'*. So to order g5, the analytic contribution to the

low-energy expansion of the four-point open string amplitude is given by
.A%n:aé ~ (s ((6370N2 + 6171) S tg tr(F4) -+ dgvoNS tg(tI‘F2)2) y (41)

where cp i and dp g are coefficients which in principle could be computed. There is no
canonical way of separating the open-string and closed contributions to the ¢; ; coefficient
which is subleading in 1/N?. We will return to this point in the next section when we will
discuss the connection with the pure field theoretical super-Yang-Mills results of [17,18,23].

With L = 3 the B = 4, H = 0 term is accompanied by a contribution with B = 2,
H = 1, which is a 1/N? correction. In this case the leading contribution to the analytic
part of the low-energy expansion of the three-loop four-point open string amplitude is

given by
Agna. ~ gg ((0470]\73 + C2,1 N) S tg tI‘(F4) + (d470N2 + d271)82 tg(tI‘F2)2) R (42)

where the double-trace term is proportional to s? because of the absence of inverse deriva-

tive factors as described earlier in section 3.2.
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With L =4 the B =5, H = 0 term is accompanied by the contributions of a world-
sheet with B =3, H =1 and B = 1, L = 2 for both the single trace and the double
trace terms. In this case the leading contribution to the analytic part of the low-energy

expansion of the three-loop four-point open string amplitude is given by

Adna- gg ((6570N4 + s N2 4 1) sts tI‘(F4) + (d570N3 —i—d3’1N)32 ts(tI‘F2)2) . (4.3)

5. Connections with maximal SYM theory in various dimensions

We will now discuss the connections between the low energy limit of open-string
results with multi-loop amplitudes in maximally supersymmetric Yang—Mills field theory
in D dimensions. We are considering the open string theory on N coincident Dp-branes
where p = D — 1. If the corresponding low energy U(N) Yang—Mills theory coupling

constant (which has non-zero dimension when D > 4) is fixed so that
g2 = gs 1P7* = constant (5.1)
as [y — 0, the gravitational coupling vanishes,

I =gym " =0, (5-2)

2 _
K =J9s

provided D < 8 (or p < 7), which is the condition that the gravitational back reaction of
the Dp-brane can be ignored.

As mentioned earlier, although we are decoupling the closed-string sector, world-sheet
handles are nevertheless expected to make a contribution to the theory in the low energy
limit. In section 4 we discussed the effect of handles on the low-energy expansion of
the open string amplitudes and we saw that there is no way of separating ‘open string’
contributions from ‘closed string’ contributions to the sub-leading 1/N? corrections. One
way to see this is to consider, for instance, the following contribution to the two-loop

effective action from the four-point amplitude
SL:2 = /de vV—093s Z;O_D (63’0N2 + 01’1) 62t8tr(F4). (53)

Using the relations (5.1) and (5.2) one can write the 1/N? correction to the effective action
either as a super-Yang-Mills contribution c; ; g%M lg(PD)@Ztgtr(F 4) or as a mixed Yang-
Mills and gravity contribution c; 1 x18~P 9%*tgtr(F*). Because there is no way of (and no
meaning in) separating the gravitational contribution from the super-Yang-Mills in string
theory, we will only focus on the large N contribution by restricting our attention to the

terms of order N and N¥~!  which get no contribution from world-sheet handles.
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5.1. Onset of ultraviolet divergences in various dimensions

In the limit [; — 0 the string theory results have clear implications for the structure of
the ultraviolet divergences of the four-gluon SYM field theory calculations. In particular,
we see why the single trace term has worse ultraviolet divergences than the double-trace
term. A clear way of characterising this is by determining the “critical dimension”, D,,
which is the minimal dimension in which a L-loop term diverges in the ultraviolet — i.e.,
the dimension in which the ultraviolet divergence is logarithmic.

To begin, we note that the superficial degree of divergence of a L-loop Feynman
diagram contribution to the four-gluon amplitude in D dimensions is AP~%L where A is
a momentum cut-off. Since there is also a prefactor of tgF'* at all orders, the divergence is
reduced to AP~HL=4 However, in the case of the single trace term we found that there is
a factor of gL=1 92 tgtrF* for 1 < L < 5, so that the degree of divergence is A(P~9E=6_ We
therefore reproduce the result that the single-trace term is ultraviolet finite in dimensions
satisfying D < D. = 4+ 6/L, at least up to L = 5 and quite probably for all L. In these
dimensions the amplitude has a negative mass dimension indicating the presence of infrared
divergences given by inverse powers of the external momenta. In the case of the L-loop
contribution to the double-trace term the prefactor has the form g=—1 921%/21 tg(trF?)2 so
that the degree of divergence is, for 1 < L < 4, A(P—HL=2[L/21-4  For this range of L
the amplitude is ultraviolet finite in dimensions satisfying D < D, =4+ (4+ 2[L/2])/L.
Although we have no firm statements at higher loops, we expect that since 9% tg(trF?)? is a
D-term it will receive corrections from all L > 5. It would then follows that for L > 3 there
are no ultraviolet divergences in D < D, =4+ 8/L. In these dimensions the double trace
contribution to the amplitude has a negative mass dimension, again indicating the presence
of infrared divergences represented by inverse powers of the external momenta. The results
are summarised by the table below and match the field theory results of [17,18,23] for the

evaluation of the four gluon amplitude up to L = 4.

L=1 L=2 L=3 L=4 L =
0 tgtr(F*) | D.=8 |D.=T D.=6 D,=11/2 |D.=26/5

’}/120 ’ygzl ’}/321 ’y4=1 ’y5=1
0?Prtg(trF?? |D.=8 |D.=7 |D.=20/3 D.=6 D.=28/5
=0 |B2=1 Ps =2 fs =2 fs =2
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Although there is no canonical way of separating the gravitational contributions from
the pure Yang-Mills corrections in string theory, the 1/N? corrections described in section 4
qualitatively reproduce the result quoted in [18] with the exception of the absence of a

contribution independent of N to the 8% tgtrF* counterterm at four loops in D = 11/2.

6. Summary and comments on higher-point amplitudes

In this paper, we have analyzed open superstring four-point amplitudes using the
pure spinor formalism and determined non-renormalization properties of certain terms
in the low-energy effective action. Terms in the effective action proportional to tgtr(F*)
and tg(trF?)? were shown not to receive corrections above one-loop, as expected from their
connection to the anomaly-cancelling term BA F*. Furthermore, the 9tg(trF?)? term was
shown to not receive corrections above two loops. On the other hand, the d*ts(trF?)? and
O*tgtr(F*) terms are expected to receive corrections to all loops. These statements were
verified up to five loops using the pure spinor prescription for the four-point amplitudes.

This behaviour can be heuristically explained using supersymmetry arguments based
on F-terms and D-terms. The terms tgtr(F?), tg(trF?)? and §%*tg(trF?)? are F-terms
which are expected to satisfy non-renormalization conditions. For 92 tgtr(F*) and
0*tg(trF?)? the behavior is different since when D < 10, 92 tgtr(F*) can be written as
the D-term, [ d'°6 tr(¢g), where ¢ is a non-linear superfield whose lowest component is
a scalar, and 9% tg(trF'?)? can be expressed in terms of [ d'°6tr(pp)? and [d*z [ d'°0T?
where Tap is the symmetric traceless supercurrent [20]. So §%*tgtr(F?4) and 9% tg(trF?)?
are not expected to satisfy any non-renormalization conditions. In the analysis of open
superstring amplitudes, the tg(trF?)? and tgtr(F*) terms behave differently since inverse
derivative factors from colliding vertex operators are present in the tgtr(F*) computation
but are absent in the tg(trF?)? computation. It would be useful to better understand
the relation between these inverse derivative factors and the nonlinear construction of the
D-term [ d*®0 tr(pp).

Our analysis of tgtr(F?) and tg(trF?)? terms is consistent with the field theory com-
putations of [17,18,23] and explains the apparent puzzle that tg(trf?)? terms are less
divergent in the ultraviolet than tgtr(F*) terms. In addition, our analysis showed that
there are no inverse derivative factors in the analogous Type II computation, confirming

the previous claim of [3] that for g < 6, 929 R* terms do not receive contributions above
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genus g. This lends support to the arguments in [4] that ultraviolet divergences are ab-
sent in four-dimensional N' = 8 supergravity up to at least eight loops (or up to at least
five loops in five-dimensional maximal supergravity). Therefore, the first “surprise” would
arise if the four-graviton amplitude was not ultraviolet divergent at nine loops in four
dimensions (or six loops in five-dimensional maximal supergravity).

It would be very interesting to generalize the methods of this paper to higher-point
amplitudes beyond four points. Since higher-point amplitudes have massless poles, one
needs to first subtract out the massless poles before using the amplitudes to determine
non-renormalization properties of terms in the low-energy effective action. At the moment,
it is unclear how to verify that subtracting out the massless poles does not affect the non-
renormalization properties implied by the zero-mode counting. Nevertheless, one expects
that certain higher-point terms in the effective action will satisfy non-renormalization
conditions and one can make some preliminary speculations on how the behavior of F*
terms extend to F™ terms. In particular, the extension of our analysis of the zero mode
saturation to five-point amplitudes indicates that the trF?®, trF® x trF? should be one-
loop exact, that the 92 trF° and 0% (trF3)(trF?) should be two-loop exact, while 9% F®
are D-terms and should get contributions to all loops for all group theory structures. For
the six-point amplitude, the zero mode saturation indicates that the trF°, (trF3)? and
(trF?)3 should be one-loop exact, while % F¢ should receive perturbative contributions to

all orders for all group theory structures.
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