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Abstract

The constraints imposed by maximal supersymmetry on multi-loop contributions to

the scattering of four open superstrings in the U(N) theory are examined by use of the

pure spinor formalism. The double-trace term k2 t8(trF
2)2 (where k represents an external

momentum and F the Yang–Mills field strength) only receives contributions from L ≤ 2

(where L is the loop number) while the single-trace term k2 t8(trF
4) receives contributions

from all L. These statements are verified up to L = 5, but arguments based on super-

symmetry suggest they extend to all L. This explains why the single-trace contributions

to low energy maximally supersymmetric Yang–Mills field theory are more divergent in

the ultraviolet than the double-trace contributions. We also comment further on the con-

straints on closed-string amplitudes that suggest that supersymmetry forbids ultraviolet

divergences in N = 8 supergravity up to at least eight loops.

13/8/2009



1. Introduction

Supersymmetry imposes crucial constraints on the structure of scattering amplitudes

in supersymmetric gauge and gravitational theories, which generally leads to a moderation

of ultraviolet divergences. These constraints are particularly strong for maximally super-

symmetric theories, which are difficult to analyse using conventional superspace techniques

due to the absence of an off-shell superspace formalism. However, it is possible to analyse

such field theory supersymmetry constraints by considering the low energy limit of the

corresponding open or closed superstring theories. In particular, the pure spinor formal-

ism [1,2] is a framework for constructing multi-loop string theory amplitudes in a manner

that preserves all the space-time supersymmetries. An example of constraints obtained

in this manner comes from the analysis of multi-loop contributions to the four-graviton

amplitude in type II superstring theory [3]. These constraints imply that interactions of

the form ∂2k R4 (where R4 denotes a particular contraction of four Riemann curvatures)

do not get any perturbative contributions beyond k loops in the ten-dimensional theory,

at least for k ≤ 6. These conditions follow from the fact that interactions with k < 6 are

F -terms that are given by integrals over a fraction of the full 32-component superspace.

A striking consequence of this that follows on purely dimensional grounds is that ultravi-

olet divergences should be absent up to at least nine loops in four-dimensional (D = 4)

N = 8 supergravity [4]. By contrast, analyses of counterterms that exploit less than the

full N = 8 supersymmetry give weaker conditions [5,6].

The main purpose of this paper is to extend these considerations to open string theory

and, hence, to its low energy limit — maximally supersymmetric Yang–Mills (SYM) theory.

1.1. General properties of the four-gluon amplitude

For simplicity we will consider the case of open strings scattering on N coincident Dp-

branes, for which the world-sheet is orientable and which corresponds to a U(N) gauge

theory in the low energy field theory limit. It has long been known that ultraviolet di-

vergences are absent in maximally supersymmetric Yang–Mills field theory in dimensions

D ≤ 4 to all orders in perturbation theory — one does not even need to exploit the full

power of maximal supersymmetry to argue that the theory is UV finite [7,8,9]. Indeed,

there are finite N = 2 and N = 1 super Yang–Mills theories. It is sufficient to know

that the dimension four operator t8F
4 factors out in the sum of Feynman diagrams at

every order in perturbation theory (where t8 is a standard eight-index tensor reviewed in
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appendix 9.A. of [10] that contracts the space-time indices in F 4 while the contraction of

the gauge indices will be discussed later). It follows by simple dimensional analysis that

the perturbative contributions are ultraviolet finite at each order (all L) in dimensions

D ≤ 4. However, the situation is better than that because the CP-even t8F
4 is related by

supersymmetry to the CP-odd anomaly cancelling term B ∧ F 4 in ten dimensions, which

is expected to be one-loop exact [11,12,13,14,15]. This means that the L > 1 contributions

to the string scattering amplitude must have a low energy limit that behaves as sγL t8 F 4

with γL ≥ 1, so that the prefactor contains at least two extra powers of momentum1. We

may interpret this contribution as a term of the form ∂2γL t8 F 4 in the effective action

and in the following we will often pass between the amplitude and the effective action

without comment. In fact, there are indications that γL = 1 for L > 1 from direct pertur-

bative evaluations of the four gluon amplitude in maximally supersymmetric Yang–Mills

theory [16,17,18] or by N = 3 superspace arguments in four dimensions [5]. Assuming

γL = 1, it is easy to see using dimensional analysis that an L-loop amplitude with a

prefactor of s t8F
4 is ultra-violet finite in dimensions D < 4 + 6/L.

Although extended supersymmetry determines the dynamical prefactor to be of the

form sγL t8F
4 [19], there is also a dependence on the gauge group and on the string

coupling constant gs, which is related to the Yang–Mills coupling gYM by gs = g2
YM/4π.

For example, for the gauge group U(N) (which is the simplest example) there are two

independent group theory structures in the field theory four-gluon amplitude — a single

trace term t8tr(F
4) and a double-trace t8(trF

2)2 term, where we are now taking F to be

an N × N matrix in the defining representation of U(N) and tr denotes a trace on these

indices. Contributions to the amplitude of the general form sγL t8tr(F
4) and sβL t8(trF

2)2

will be constrained by supersymmetry in different manners at a given order in perturbation

theory (i.e., for a given power of gs). Our aim is to determine the values of γ and β by

considering the low energy limit of the four-gluon amplitude in open superstring theory.

Certain properties of the open superstring four-gluon amplitude are well known. For

example, at tree-level (L = 0) the world-sheet is a disk with all vertex operators describing

the external states coupled to the boundary. In this case, in the low energy limit only

a single-trace g−1
s t8 tr(F 4) term contributes. For L = 1 the world-sheet is an annulus,

1 The factor of s
γL in this expression, and all those that follow, is intended to indicate the

power of Mandelstam invariants – the precise expression involves a function of s, t, u with a detailed

structure that will not concern us here.
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which has two boundaries. When all vertex operators are attached to a single boundary

there is a low energy contribution that behaves as N t8 tr(F 4) (where the factor of N arises

from a trace over the free boundary). There is also an L = 1 contribution when there is a

pair of vertex operators attached to each boundary, which reduces in the low energy limit

to terms of the form t8(trF
2)2. These are F -terms that are protected from higher-loop

(L > 1) quantum corrections. By an F -term, we mean a term which cannot be expressed

as an integral over 16 θ’s of a gauge-invariant integrand. On the other hand, a D term is

a term which can be expressed as an integral over 16 θ’s of a gauge-invariant integrand.

We will confirm, using string loop calculations, that t8tr(F
4) and t8(trF

2)2 are F -terms

that satisfy the expected L > 1 non-renormalization properties, at least up to L = 5.

The next term that arises in the low energy expansion is the dimension ten operator

s t8tr(F
4), which can be expressed as a term in the effective action given by a superspace

integral, of the form I1/4 =
∫

d10x
∫

d16θ θ8 tr(W 4), where Wα is the gaugino superfield

(α is a space-time spinor index). This expression is schematic since we have not specified

how to factor out the eight powers of θ in a covariant manner. However, this term is a

“fake” F -term because it can be rewritten as a D-term, at least after compactification to

dimension D < 10. For example, in four dimensions it has the form I1/4 =
∫

d4x
∫

d16θ K,

where K = tr(ϕiϕi) is the Konishi operator and ϕi is the scalar superfield in the 6 of the

R-symmetry group SO(6) ∼ SU(4) [20,6]. The fact that this integral contains ∂2 t8tr(F
4)

follows from the nonlinear completion of the linearised N = 4 superfield. Our string

calculations will confirm that ∂2 t8tr(F
4) is not protected against quantum corrections

and receives contributions for all L > 1, as expected for D-terms. We will also show from

string theory that the corresponding double-trace contribution s t8(trF
2)2 ∼ ∂2 t8(trF

2)2

only receives perturbative corrections up to two loops (L ≤ 2), as expected for a protected

F -term that cannot be written as a D-term.

Furthermore, the dimension-twelve double-trace operator s2 t8(trF
2)2 can be ex-

pressed as a term in the effective action, I1/8 =
∫

d4x
∫

d16θ θ4 (trW 2)2, which can also be

rewritten as a D-term using
∫

d4x
∫

d16θK2 and
∫

d4x
∫

d16θ T 2 where TAB is the sym-

metric traceless supercurrent [20]. An analogous description of this D-term in terms of

a scalar superfield should exist in all dimensions with D < 10. We will again use the

string theory multi-loop amplitude prescription to argue that this double-trace contribu-

tion s2 t8(trF
2)2 ∼ ∂4 t8(trF

2)2 receives perturbative corrections at all loop orders, as

expected for a D-term.
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1.2. Organization of the paper

In section 2 we will review the construction of scattering amplitudes on orientable

planar world-sheets with L open-string loops, in the non-minimal version of the pure

spinor formalism. This describes open strings moving in D dimensions and scattering

on N coincident Dp-branes (where D = p + 1). The amplitude for the scattering of

four gluons will be considered in section 3, where we will highlight the distinction be-

tween contributions from single trace and double trace terms. We will also make a

short comment that completes the arguments concerning F -terms in graviton scatter-

ing in type II closed string theories in [3]. In section 4 we will discuss the contributions

of world-sheet handles, which are associated with the coupling of the closed-string (i.e.,

gravitational) sector and generate contributions suppressed by O(1/N2) relative to the

zero-handle terms. In section 5 we will show how the structure of these string theory

expressions explains the pattern of ultraviolet divergences in maximally supersymmetric

U(N) Yang–Mills theory at L loops in D dimensions. Whereas the onset of ultraviolet

divergences of the single-trace term s t8tr(F
4) to the L-loop amplitude occurs in dimen-

sions D = 4 + 6/L, our results imply that the dimensional dependence of the double-trace

terms is different. Given the overall prefactors described above, together with dimensional

analysis we will see that ultraviolet divergences for the double-trace terms arise when:

• D = 8 for the L = 1 term t8(trF
2)2;

• D = 7 for the L = 2 term s t8(trF
2)2;

• D = 4 + 8/L for the term s2 t8(trF
2)2 at L ≥ 3.

This explains the apparent puzzles that have arisen in the explicit multi-loop calcula-

tions, where the double trace t8 (trF 2)2 contribution to the L-loop counter-term is absent

in dimensions D = 4 + 6/L for L = 3 and L = 4 (as reviewed in [18]). Finally, we

will summarize our results in section 6 and make some preliminary comments concerning

higher-point gluon amplitudes.

2. Open-string scattering amplitudes in the pure spinor formalism

The functional integral that defines the scattering amplitude with M external mass-

less ground states (“gluons”) includes a sum over boundaries, handles and cross-caps (for

theories with non-orientable world-sheets). Recall that a world-sheet with M open-string

vertices and with B boundaries, H handles and C cross-caps is weighted with a factor g−χ
s ,

where χ, the Euler number, is given by χ = 2 − 2H − B − C and where gs is the string
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coupling. When describing the scattering of open strings on a collection of Dp-branes we

need to consider orientable world-sheets, so that C = 0. In addition we will initially neglect

the contributions of world-sheets with handles so we will set H = 0. We are interested

in taking the limit in which gravity decouples from Yang–Mills and handles describe the

gravitational contributions. However, handles also contribute finite residual pieces to pure

super-Yang-Mills amplitudes. These contributions are suppressed by at least two powers

of N in the large N limit (since one handle takes the place of two free boundaries). So

we will be interested initially in the L = B − 1 - loop oriented open string corrections

with χ = 1−L. In the low-energy limit, these open superstring amplitudes describe U(N)

super-Yang-Mills amplitudes to leading order in 1/N2.

A general property of these open-string amplitudes is the possibility of divergences

associated with closed strings coupling to the Dp-brane via the world-sheet boundaries.

The simplest example is the single-trace contribution at one loop, L = 1 (B = 2), which

may be viewed as a cylinder carrying zero (p+1)-dimensional longitudinal momentum and

with both boundaries fixed at the same transverse point. The potential divergence arises

from the massless state propagating in the cylinder, which gives a contribution proportional

to

lim
x→0

∫ x−1

d9−pq⊥(q⊥)−2 , (2.1)

where q⊥ is the transverse momentum in the cylinder, which is integrated in order to

fix the boundaries at the same transverse positions. This expression diverges for p ≥ 7,

which indicates that the gravitational back reactions of Dp-branes with p ≥ 7 cannot be

neglected. In the following, we will restrict our considerations to the situation in which

these gravitational effects can be ignored, so we will be considering Yang–Mills in D < 8

dimensions.

2.1. The multi-loop functional integral for world sheets with B boundaries

The M -gluon amplitude is expressed as a sum of terms in which the M vertex operators

are partitioned among the B boundaries in all possible ways and there is a sum over the

order of the operators attached to each boundary. This gives

AL =
∑

orderings

gB−2
s tr(T

a
(1)
1

· · ·T
a
(1)
n1

) · · · tr(T
a
(B)
1

· · ·T
a
(B)
nB

)A(a
(1)
1 ···a(1)

n1
)···(a

(B)
1 ···a(B)

nB
)

L (2.2)

where {nr} is the number of vertex operators attached to each boundary labelled r =

1, . . . , B and
∑B

r=1 nr = M . The quantity A(a
(1)
1 ···a(1)

n1
)···(a

(B)
1 ···a(B)

nB
)

L is the colour-ordered
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partial amplitude. The sum is over all partitions of the M vertex operators on the B

boundaries, including all possible orderings of the operators on each boundary. The gauge

group generators, Tai
are N × N matrices with indices in the defining representation

of the gauge group, U(N) (which is the Chan–Paton prescription). Such a surface has

3B = 3L + 3 real moduli for L > 1 (and one modulus for L = 1). Note that there is a

factor of tr(1) = N for each boundary that has no vertex operators attached, leading to

an overall factor of NBf (where Bf is the number of free boundaries in a given term in

the sum).

In the non minimal pure spinor formalism the prescription for each colour-ordered

open-string amplitude is given (for B = L + 1 > 2) by

A(a
(1)
1 ···a(1)

n1
)···(a

(B)
1 ···a(B)

nB
)

L =

∫

d3B−6τ
〈

3B−6
∏

i=1

(µi|b)N
M
∏

i=1

∫

dti : Vai

i (ti)e
iki·x :

〉

(2.3)

where (µ|b) :=
∫

d2y µz̄
z bzz (and µz̄

z(τa) = gzz̄∂gzz/∂τa is the Beltrami differential) and

τa are the Teichmüller parameters of the bordered Riemann surface. For a given colour

factor the positions of the vertex operators Vai

i are integrated in a given order along the

boundary.

The angular bracket 〈· · ·〉 represents the path integral over the matter fields

[xm, θα, pα] and the pure spinor ghosts which consist of left-movers, [λa, wa, λ̄α, w̄a, rα, sα],

and right-movers, [λ̃α, w̃α, ˜̄λα, ˜̄w
α
, r̃α, s̃α], weighted by the pure spinor action

〈· · ·〉 =

∫

D10xD16θ

∫

[Dλ][Dλ̄][Dr]
L

∏

I=1

∫

[DwI ][Dw̄I ][DsI ] · · · e−Sps , (2.4)

where the action is (setting 2πα′ = 1)

Sps =

∫

d2z

(

1

2
∂xm∂̄xm + pα∂̄θα + wα∂̄λα + w̄α∂̄λ̄α + sα∂̄rα

+ p̃α∂̃θ̃α + w̃α∂̃λ̃α + ˜̄w
α
∂̃ ˜̄λα + s̃α∂̃r̃α

)

.

(2.5)

This integral generically needs to be regularised by introducing the quantity N that will

be reviewed below.

The pure spinor ghosts λα, λ̄α and rα satisfy the constraints

λγmλ = 0 , λ̄γmλ̄ = 0 , λ̄γmr = 0 , (2.6)
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which implies that they each have eleven independent components. A conformal weight

zero field has a single zero mode so θα has 16 fermionic zero modes and rα has 11 fermionic

zero modes, which all have to be saturated in the functional integral. Likewise, each

conformal weight one field has L real zero modes. This means that pα has 16L real

zero modes while sα has 11L, which also need to be saturated. The bosonic pure spinor

ghosts λα and λ̄α each have 11 independent components which need to be integrated.

Singularities in these integrals need to be regulated [1,2,21,22]. Similarly, the conjugate

bosonic variables, wα and w̄α, each have 11L components.

The integration measures are given by

λαλβλγ [Dλ] = (ǫT −1)αβγ
k1···k11

Dλk1 · · ·Dλk11

[Dλ̄][Dr] = Dλ̄α1
∧ · · · ∧ Dλ̄α11

× ∂rα1
∧ · · · ∧ ∂rα11

,
(2.7)

where the tensor T , which is totally antisymmetric on the ki indices and fully symmetric

and γ-traceless on the αβγ indices, has the form [1]

(ǫT )k1···k11

αβγ = ǫk1···k11r1···r5
16 (γm)((α|r1| (γ

n)β|r2| (γ
p)γ))r3

(γmnp)r4r5
. (2.8)

The integration measure of the conjugate ghosts is given by

λα1 · · ·λα8 [DwI ] = Mα1···α8
m1n1···m10n10

DNm1n1 I · · ·DNm10n10 IDJI

[Dw̄I ][DsI ] =
10
∏

i=1

DN̄ I
mini

∧ DJ̄I ∧
10
∏

i=1

∂SI
mini

∧ ∂SI

(2.9)

where
Mα1···α8

m1n1···m10n10
=(γm1n1m2m3m4

)((α1α2(γm5n5n2m6m7
)α3α4

(γm8n8n3n6m9
)α5α6(γm10n10n4n7n9

)α7α8))
(2.10)

and ((· · ·)) means that one considers the symmetrised γ-traceless part. The quantities

Nmn = λγmnw , J = λαwα

N̄mn = λ̄γmnw̄ − rγmns , J̄ = λ̄ · w̄ − r · s
Smn = λ̄γmns , S = λ̄ · s ,

(2.11)

are conserved world-sheet currents.

The b-ghost is a composite quantity, which is defined to satisfy the BRST condition

[Q, b] = T , where Q is the BRST charge and T is the energy-momentum tensor. This takes

the form [1,2],

b = s∂λ̄ +
λ̄α bα

λ · λ̄ , (2.12)
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and

bα ≡ Gα +
rβ

λ · λ̄Hαβ +
rβrγ

(λ · λ̄)2
Kαβγ +

rβrγrδ

(λ · λ̄)3
Lαβγδ , (2.13)

where

Gα ≡ 1

2
Πm(γmd)α − 1

4
Nmn(γmn∂θ)α − 1

4
J∂θα − 1

4
∂2θα

Hαβ ≡ 1

192
(γmnp)αβ ((dγmnpd) + 4!NmnΠp)

Kαβγ ≡ 1

16
(γmnp)

[αβ(γmd)γ]Nnp

Lαβγδ =
1

128
(γmnp)

[αβ(γpqr)γδ]NnmNqr .

(2.14)

The pieces of the b-ghost satisfy the relations

{Q, Gα} = λα T , {Q, Hαβ} = λα Gβ ,

{Q, Kαβγ} = λα Hβγ , {Q, Lαβγδ} = λα Hβγδ .
(2.15)

The regulator N in (2.3) given by

N = exp [Q, Ψ]

= exp
[

− λ · λ̄ − r · θ
]

× exp
[

−
L

∑

I=1

(1

2
N I

mnN̄ I mn + JI J̄
I
)]

× exp
[

−
L

∑

I=1

1

4
SI

mn(dIγmnλ) + SI(λdI)
]

,

(2.16)

In this expression we have defined the I’th zero mode of any current in (2.11), OI , as

the integral of O around the I’th a-cycle of the doubled open-string world-sheet, OI =
∮

aI
dzO.

2.2. The open-string vertex operator

An open string vertex operator in (2.3) attached to a point t on a boundary, Va(t) eik·x,

is the k’th Fourier mode of the position-space superfield given by

Va(x, θ) = Aa
α(x, θ) ∂θα + Aa

m(x, θ) Πm + W a α(x, θ) dα +
1

2
NmnFa

mn(x, θ) , (2.17)

where Πm = ∂xm + i/2(θγm∂θ) , dα = pα − i/2 (θγm)α (∂xm + (θγm∂θ)/4), and Aa
α, Aa

m,

W a α and Fa
mn are the N = 1 D = 10 super-Yang-Mills superfields,

Aa
α(x, θ) =

1

2
(γmθ)α aa

m(x) − 1

3
(χa(x) γmθ) (γmθ)α − 1

32
F a

mn(x) (γpθ)α(θγmnpθ) + · · · ,
(2.18)
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aa
m(x) and χαa(x) are the gluon and gluino fields and F a

mn = ∂[maa
n], and

(γm)αβAm = DαAβ + DβAα

(γm)αβW β = DαAm − ∂mAα

DαW β =
1

4
(γmn)α

βFmn ,

(2.19)

where Dα = ∂/∂θα + 1/2(θγm)α∂m is the supersymmetric derivative. The superfield

Wα(x, θ) takes the form

W a α = χa α−1

4
(γmnθ)α F a

mn+
1

4
(γmnθ)(∂mχaγmθ)+

1

2 · 4!
(γpqθ)α(θγqγ

mnθ)∂pF
a
mn+O(θ4) .

(2.20)

The first two terms in (2.17) can be expressed by means of a normal coordinate expansion

around Z0 = (xm
0 , θα

0 ), giving

dZMAM = AM (Z0)dZ
M + FMN (Z − Z0)

MdZN + · · · (2.21)

The first term in this expression can be ignored since it can be written as the surface term

d(AM (Z0)Z
M ) which decouples using the standard canceled propagator argument. And

because Z −Z0 does not contain θ zero modes, FMN (Z −Z0)
MdZN + · · · only contributes

to terms in the effective action which are higher order in derivatives than the terms coming

from dαWα. This is easy to see since dαWα can contribute a dα zero mode whereas the

term Wα[(θ−θ0)dX−(X−X0)dθ]α in FMN (Z−Z0)
MdZN cannot contribute either dα or

θα zero modes. Furthermore, the term NmnFmn in (2.17) does not contain dα zero modes

so it also only affects terms which are higher order in derivatives than terms coming from

Wαdα. Therefore, when analyzing the terms in the effective action of lowest dimension at

a given genus, one only needs to consider the contribution from Wαdα in (2.17).

3. The scattering of four open strings

We will now specialise to the scattering of four massless open-string ground state

gluons with momenta kr (r = 1, 2, 3, 4) satisfying k2
r = 0. In this case there are two

distinct contributions at each order in perturbation theory, which differ in the way their

gauge indices are contracted. One of these is the single trace term in which all vertex

operators are attached to one boundary, resulting in an overall factor of NL sγL t8tr(F
4)

in the low energy limit of the amplitude without handles H = 0. For L = 1 we know
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γ0 = γ1 = 0 and we will argue shortly that γL = 1 for L > 1. As we will see later

in this section, s t8tr(F
4) gets contributions from all values of L > 1, as expected for a

D-term. The second kind of contribution is the double trace term, arising when the four

vertex operators are partitioned in pairs between two boundaries, resulting in a factor

NL−1 sβL t8(trF
2)2. There is no such contribution at tree level (L = 0) and we know that

β1 = 0. We will see shortly that βL = ⌈L/2⌉ for 1 < L ≤ 4 (recalling that ⌈x⌉ denotes the

smallest integer greater or equal than x) again up to at least L = 4. Terms of this form

will turn out to be “F -terms” when L ≤ 2.

The powers of momenta, 2γL and 2βL in the low energy amplitude depend crucially

on the analysis of the integrations over fermionic zero modes.

3.1. Zero-mode integrals and momentum prefactors

We will now discuss the integration over the fermionic zero modes that need to be

saturated in order to obtain a non-zero contribution to the amplitude. As explained in [2,3],

the regulator of (2.16) regularizes divergences in the pure spinor functional integral coming

from λ , λ̄ → ∞ and in the process provides essential fermionic zero modes. However, to

regularise potential divergences from the λ , λ̄ → 0 endpoint, one needs to introduce a more

complicated regulator involving non-zero modes of the world-sheet fields. Fortunately, it

was shown in [2,3] that this more complicated regulator is unnecessary for evaluating

contributions to “F -terms” in the effective action. Here, we are defining “F -terms” as

any term in the effective action where the external vertex operators contribute fewer than

sixteen θ zero modes. In other words, at least one θ zero mode must come from the

regulator of (2.16) when evaluating an “F -term”.

To absorb the 16L zero modes of d in the most efficient manner in an L-loop ampli-

tude, the (3L − 3) b-ghosts should contribute the terms (λ̄Πd)L−2(λ̄rd2)2L−1. Note that

increasing the relative number of (λ̄rd2) terms will allow some d’s to contribute nonzero

modes. But since each such term includes an extra r, it will increase the number of θ zero

modes which come from the external vertex operators. So changing a dα and θβ zero mode

to a dα and θβ nonzero mode forces the external vertex operators to contribute two extra

θ zero modes, which is equivalent to adding a factor of momentum. So each contraction

of dα with θβ in the computation adds a factor of momentum to the term in the effective

action.

We now wish to isolate the terms of lowest dimension – in other words, the terms with

the least number of θ’s taken out of the vertex operators. Using the normal coordinate

10



expansion of (2.21) it is easy to see that the vertex operator of lowest dimension is the

superfield Wα. Using the above contribution from the b-ghosts, the term with the lowest

power of momentum in the L-loop amplitude (for L > 1) is proportional to the correlation

function

∫

d3(L−1)τ
〈

(r · θ)
12−2L

(Sλd)
11L (

λ̄Πd
)L−2 (

λ̄ r d2
)2L−1

(λλ̄)−5L+4 (W d)4
〉

. (3.1)

In this expression the first two factors come from expanding the regulator N , the subse-

quent four factors come from the 3L − 3 powers of the b-ghost, and the last factor comes

from the vertex operators. We see that there are 12 − 2L powers of θ and therefore the

term of lowest dimension at L loops is proportional to

∫

d16θ θ12−2L W 4 ∼ ∂Lt8F
4 . (3.2)

This expression is symbolic since we have not specified the way in which the gauge indices

are contracted or the details of how the derivatives act on the four fields, but these are

determined by the explicit calculations. Since only terms with an even number of momenta

can be non-vanishing, one finds that ∂2t8F
4 is the term of lowest dimension at L = 2,

∂4t8F
4 is the term of lowest dimension at L = 3 and L = 4, and ∂6t8F

4 is the term of

lowest dimension for L ≥ 5.

This expression suggests that the D-term of lowest dimension is
∫

d16θ W 4 ∼ ∂6F 4.

However, this is too naive since it assumes that the remaining integrations over the non-

zero modes in (3.1) do not contribute inverse derivative factors such as (kr · ks)
−1. Such

factors do arise and play an important rôle in determining which terms are genuine F -terms

and which are fake F -terms. The systematics of these inverse derivatives is the subject of

the next subsection.

We will also consider the extension of this argument to four-graviton amplitudes in

the type II closed string theory where it was argued in [3] that terms proportional to ∂2kR4

with k ≤ 5 are F -terms that do not receive corrections beyond k loops. This also assumed

the absence of inverse powers of momentum arising from non-zero modes, which we will

justify at the end of the next subsection.
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3.2. Inverse derivative factors

When computing a massless four-point L-loop amplitude, one expects to get inverse

derivative factors of (k1 · k2)
−1 coming from massless poles when (k1 + k2)

2 = 2k1 · k2 = 0.

But the on-shell massless three-point amplitude vanishes beyond tree level (i.e., for L ≥ 1)

in superstring theory, so the massless four-point loop amplitude cannot have a physical pole

when k1 · k2 = 0. Nevertheless, there is the possibility that inverse factors of (k1 · k2)
−1

could cancel factors of (k1 · k2) in the prefactor of the amplitude from the zero mode

saturation. As will now be discussed, these inverse factors can come from performing the

contractions over the non-zero modes of the world-sheet fields and integrating over the

moduli of the amplitude. This could in principle reduce the D-term of lowest dimension

from
∫

d16θ W 4 = ∂6F 4 to a term with fewer derivatives.

In the superstring computation, these inverse derivative factors arise from the bound-

ary of moduli space where either two vertex operators collide or where the string world-

sheet splits into two world-sheets connected by a long open string strip (or closed

string tube). For example, a factor of (k1 · k2)
−1 could arise from the region of the

integral
∫

dz2V2(z2)V1(z1) when z2 approaches z1. This inverse derivative factor oc-

curs if V2(z2)V1(z1) has a term in its OPE which goes like (z2 − z1)
−1+k1·k2 so that

∫

dz2V2(z2)V1(z1) ∼
∫

dz z−1+k1·k2 ∼ (k1 · k2)
−1. Similarly, a factor of (k1 · k2)

−1 could

arise from the limit in which the L-loop world-sheet degenerates into L1-loop and L2-loop

world-sheets connected by a long open string strip (or closed string tube) where L = L1+L2

and k1 +k2 is the momentum going through the strip (or tube). Such an inverse derivative

factor could come from the y → 0 region of the integral
∫

dy y−1+k1·k2 ∼ (k1 · k2)
−1 where

− log(y) is the length of the open string strip, or from the y → 0 region of the integral
∫

d2y|y|−2+k1·k2 ∼ (k1 · k2)
−1 where − log(y) is the complex modulus of the closed string

tube.

It will now be shown that when L < 5, the only possible source of inverse derivative

factors comes from the collision of vertex operators. Furthermore, these inverse derivative

factors only affect the low-energy dependence of the sγL t8 tr(F 4) term, and do not affect

the sβL t8(trF
2)2 term. For L ≥ 5, one can also get inverse derivative factors from the

degeneration of the surface, and these inverse factors affect both the sγL t8 tr(F 4) and

sβL t8(trF
2)2 terms. It will also be shown that neither of these two sources of inverse

derivative factors affect the low-energy dependence of the sk R4 terms in closed superstring

scattering (at least for k ≤ 6).

12



We shall first discuss possible inverse derivative factors coming from the collision of

vertex operators. As explained in subsection 3.1, the term of fewest derivatives in the

effective action comes if each of the four vertex operators contributes Wαdα and these

four dα’s only contribute zero modes. When two such vertex operators collide, e.g. V1(z1)

and V2(z2), the resulting OPE is simply Wα
1 dαW β

2 dβ(z2 − z1)
k1·k2 . But to get an inverse

derivative factor of (k1 ·k2)
−1, the OPE must have a term proportional to (z2−z1)

−1+k1·k2 .

To get this additional factor of (z2 − z1)
−1, the dα variable in one of the vertex operators

must contribute a nonzero mode which contracts with a θα variable in the other vertex

operator.

Note that switching the order of the two vertex operators will reverse the sign from

(z2 − z1)
−1 to (z1 − z2)

−1, so the resulting OPE is antisymmetric under exchange of the

group theory factors T1 and T2. This immediately implies that this type of inverse deriva-

tive factor, which comes from colliding vertex operators, is not present for the t8(trF
2)2

term. If V1 and V2 are on the same boundary for the double-trace term, tr(T1T2) = tr(T2T1)

implies that the antisymmetric part of the OPE does not contribute. This is related to the

fact that the gluon vertex operator coming from the pole in the OPE of the two external

vertex operators would be a U(1) gluon which decouples from non-abelian states.

For the t8 tr(F 4) term, these colliding vertex operators could potentially reduce the

number of derivatives. However, for this to happen, the missing dα zero mode from the

colliding vertex operator needs to be replaced by an extra dα zero mode coming from the

b ghosts. The lowest value of L for which this is possible is L = 3, as can be seen from

(3.1) – by changing the (λ̄Πd) contribution to a (λ̄rd2) contribution, one gets an extra

dα zero mode. However, because one also gets an extra rα zero mode and because one of

the θ zero modes in the vertex operators was contracted with the dα nonzero mode, the

number of θ’s at L = 3 coming from the vertex operators is increased from 10 to 12. After

including the inverse derivative factor of (k1 · k2)
−1, this means that the term with fewest

derivatives at L = 3 is

(k1 · k2)
−1(

∂

∂θ
)12W 4 ∼ ∂2 t8tr(F

4) . (3.3)

If in addition to V1 and V2 colliding, one also had V3 and V4 colliding, one could

potentially get an additional inverse derivative factor of (k1 ·k2)
−2. In this case, one would

need to get two extra dα zero modes from the b ghosts in order to replace the two dα zero

modes in the vertex operators which were contracted with θ’s. It is easy to see from (3.1)

that this is possible at L = 4 by changing two (λ̄Πd) contributions to (λ̄rd2) contributions.
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This gives two extra rα zero modes and, because two θ zero modes in the vertex operators

are contracted, the number of θ’s at L = 4 coming from the vertex operators is increased

from 12 to 16. After including the inverse derivative factor of (k1 · k2)
−2, this means that

the term with fewest derivatives at L = 4 is

(k1 · k2)
−2(

∂

∂θ
)16W 4 ∼ ∂2 t8tr(F

4) , (3.4)

resulting in the same operator as in (3.3).

So we have seen that colliding vertex operators reduce the momentum dependence

of the t8 tr(F 4) term from ∂3t8 tr(F 4) to ∂2t8 tr(F 4) at L = 3, and from ∂4t8 tr(F 4) to

∂2t8 tr(F 4) at L = 4. However, the momentum dependence of the double-trace term is

unaffected and remains ∂2⌈3/2⌉t8 (trF 2)2 = ∂4t8 (trF 2)2 at L = 3 and ∂4t8 (trF 2)2 at

L = 4.

We will now analyze the second possible source of inverse derivative factors coming

from the degeneration of the L = L1 + L2 world-sheet into two world-sheets with L1 and

L2 loops. In practice we will find it convenient to describe the closed string version of

this plumbing decomposition, which is related to the open string version by the usual

doubling trick. So we will consider the degeneration of a genus g = g1 + g2 closed-string

world-sheet into two world-sheets of genus g1 and g2. To analyze this degeneration, it is

convenient to use the standard “plumbing” decomposition of the surface into a genus g1

surface with a small hole at p1, a genus g2 surface with a small hole at p2, and a cylinder of

length − log(y) connecting the two holes. The Beltrami differential for the cylinder length

is
∫

dyy−1, and the corresponding b ghost is integrated around the circumference of the

cylinder. The remaining 3g − 4 b ghosts are split into 3g1 − 2 b ghosts on the g1 surface

(with one of them at p1) and 3g2 − 2 b ghosts on the g2 surface (with one of them at p2).

To compute the correlation function in this degeneration limit, it is convenient to map

the cylinder of length − log(y) into an annulus which has one small boundary of radius
√

y and one large boundary of radius 1/
√

y. The annulus coordinate will be called w,

which is related to the cylinder coordinate ρ by w = eρ. To get an inverse derivative

factor, the correlation function on the annulus must contribute a factor of yk1·k2 , so that

after integrating over the moduli using the Beltrami differential for y, one gets a factor of
∫

dyy−1yk1·k2 ∼ (k1 · k2)
−1.

The correlation function on the annulus is given by

〈V1(w =
√

y)

∫

dwwb(w) V2(w =
√

1/y)〉 (3.5)
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where V1 comes from the operators on the genus g1 surface, V2 comes from the operators

on the genus g2 surface, and the b ghost is integrated around the countour |w| = 1. If

gluons 1 and 2 are on the g1 surface and gluons 3 and 4 are on the g2 surface, V1 will

be proportional to ei(k1+k2)x and V2 will be proportional to e−i(k1+k2)x. So if the b ghost

does not contribute any y dependence, the correlation function gives the desired factor of

yk1·k2 .

However, when y → 0, the b ghost cannot contribute any dα or Π zero modes. This

is easy to see since when y → 0, the g holomorphic one-forms split into g1 holomorphic

one-forms which are non-vanishing only on the genus g1 surface and g2 holomorphic one-

forms which are non-vanishing only on the genus g2 surface. The b ghost on the annulus

contributes either the term λ̄Πd or λ̄rd2. In the first case, the nonzero mode of the Π must

contract with ei(k1+k2)x to give a factor of k, and the nonzero mode of dα must contract

with a θα in V1 or V2. Furthermore, one needs an extra dα zero mode to come from

one of the other b ghosts (which is possible when L ≥ 3 as before). Putting all of these

factors together, one gets a total factor of k2 which cancels the inverse derivative factor of

(k1 · k2)
−1. In the second case where the b ghost on the annulus contributes λ̄rd2, the two

nonzero modes of dα must contract with two θα’s in V1 or V2, and one needs two extra dα

zero modes to come from the other b ghosts (which is possible when L ≥ 4). Again putting

these factors together, one gets a total factor of k2 which cancels the inverse derivative

factor of (k1 · k2)
−1.

So degeneration of the surface cannot give inverse derivative factors when L < 5.

However, when L ≥ 5, there are contributions to the low-energy effective action which

require using the more complicated regulator. Although we will not go into details here,

we will sketch how degeneration of the surface can give rise to inverse derivative factors

when L ≥ 5.

When L = 5, there are 12 b ghosts which can contribute the term (λ̄rd2)12 ∼ r12d24.

This term diverges when λ → 0 as λ−12 which means one needs to use the complicated

version of the regulator. Note that one of the 12 r’s in this term must contribute a

nonzero mode (since there are only 11 independent rα zero modes). As shown in [2,21],

the complicated regulator involves a term dαsα with nonzero modes, and after contracting

the s nonzero mode in the regulator with the rα nonzero mode, one is left with a term

proportional to r11d25. After including the 4 dα’s from the vertex operators and the

5 × 11 = 55 dα zero modes from the regulator, one has a total of 84 dα’s. At L = 5, one

needs 80 dα zero modes, so 4 of the 84 dα’s can contribute nonzero modes.
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If the L = 5 surface degenerates in two places, one gets two inverse derivative factors

which produce (k1 · k2)
−2. The two b ghosts on the two annuli will involve these four dα

nonzero modes which will contract with four of the θ’s on V1 or V2. Since no θ’s come

from the regulator, one needs to get 20 θ’s from the vertex operators. So at L = 5, the

number of derivatives in the double-trace term is k−4( ∂
∂θ )20tr(W 2)2 ∼ ∂4 t8(trF

2)2. Note

that this is one derivative lower than the ∂5t8 (trF 2)2 term one would get in the absence

of inverse derivative factors.

For the single-trace term, one can use two of these four dα nonzero modes to give an

inverse derivative factor of k−4 from colliding vertex operators V1 with V2 and V3 with

V4. The remaining two dα nonzero modes can be used in the b ghost on an annulus which

degenerates the L = 5 surface in one place, which gives an additional factor of k−2. Since

each dα nonzero mode is contracted with a θ from the vertex operators, one again needs

20 θ’s from the vertex operators, so at L = 5 the single-trace term is proportional to

k−6( ∂
∂θ )20tr(W 4) ∼ ∂2 t8tr(F

4).

So after including the inverse derivative factors coming from these two sources, one

finds that the single-trace term is proportional to ∂2t8 tr(F 4) for L > 1 and the double-

trace term is proportional to ∂2t8 (trF 2)2 for 1 < L ≤ 2 and ∂4t8 (trF 2)2 for L > 2. This

was verified up to L = 5.

Finally, it is easy to show that neither of these sources can contribute inverse derivative

factors for closed string scattering. This is because the number of dα and θα nonzero modes

is doubled (since one has both left and right-moving contributions), but the number of

inverse derivative factors from the massless propagator (k1 · k2)
−1 is the same as in the

open string scattering. So the number of k’s in the numerator is always equal or greater

than the number of k’s in the denominator.

The previous paragraph clarifies a statement in [3] concerning graviton scattering in

type II theories. In that case, integration over fermionic and bosonic zero modes in four-

graviton scattering at genus g led to a prefactor in the low-energy amplitude of the form

sgR4 I(s, t, u) for g ≤ 6, multiplying a complicated dynamical function of the external

momenta. The conclusion that these terms are F -terms relied on the absence of inverse

powers of s in I(s, t, u) arising from potential closed-string poles in the dynamical factor

multiplying the zero-mode prefactor. The arguments of the previous paragraph verify that

no such inverse powers are present and these terms are indeed F -terms. This lends support

to the arguments in [4] that ultraviolet divergences are absent in N = 8 supergravity up

to at least eight loops.
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4. Contributions of handles

Open superstring theory is well-known to generate a closed-string, or gravitational,

sector in string perturbation theory, starting at one loop (L = 1). In order to decouple

gravity in the low energy limit one needs to take the large-N limit, where each additional

handle is suppressed by a power of 1/N2. Nevertheless, it is interesting to consider how

the inclusion of handles in the world-sheet computation at finite N (and the resulting

coupling to closed string modes) affects the t8tr(F
4) and t8(trF

2)2 terms in the low-energy

superstring effective action.

We will now suppose the world-sheet has H handles and B boundaries. The open

string amplitude with M vertex operators on a world-sheet of given topology carries a

factor g−χ
s , where χ = 2 − 2H − B is the Euler number (where we again set the number

of crosscaps C = 0 as appropriate for oriented strings). We are particularly interested in

the case M = 4. Note that each handle is associated with a power g2
s , which is equivalent

to the insertion of two boundaries, but whereas each free boundary generates a factor N ,

a handle does not depend on N . Each handle is associated with three complex moduli

and bring three b-ghosts and their complex conjugates, so a world-sheet with H handles

and B boundaries has 3(2H + B − 2) b-ghost insertions. The four-gluon amplitude on a

world-sheet with L = B + 2H − 1 boundaries and H handles is a simple generalization

of (2.2) and (2.3), with each handle counting as two boundaries and an appropriate change

in the power of N as described above.

Fig. 1: Three-loop contribution to the single-trace term in four-gluon
scattering and its connection to the trF 4 term in Yang–Mills theory in the
low energy limit.

Figure 1 illustrates a contribution to the single-trace amplitude with three loops and no

handles, H = 0, B = 4, and an example of a Feynman diagram that arises in the low energy

planar Yang–Mills limit. Figure 2 illustrates a contribution of the same order in string

coupling that has one handle, H = 1, B = 2. Two distinct boundaries of moduli space
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Fig. 2: A world-sheet with one handle and two boundaries that contributes
to the single-trace term at the same order as the four-boundary amplitude of
figure 1. The figure illustrates examples of field theory diagrams that arise
from the short-handle and long-handle boundaries of moduli space in the low
energy limit.

contribute in the low energy field theory limit. One of these arises from the short handle

limit, which contributes a sum of three-loop non-planar Yang–Mills diagrams, which give

contributions analogous to those of figure 1, but with two fewer powers of N . The other

arises from the limit in which the handle is long and picks out the ground state graviton

exchange, resulting in a sum of Yang–Mills loop diagrams with a graviton propagator

attached.

The first example where a handle contributes is the addition of a handle (H = 1) to

the tree-level disk world-sheet – i.e., to the world-sheet with B = 1. This is associated

with a factor of gs s t8trF
4 in the low energy limit, whereas the two-loop (B = 3, H = 0)

t8trF 4 term has a factor of gs N2 s t8trF
4. So to order gs, the analytic contribution to the

low-energy expansion of the four-point open string amplitude is given by

Aana.
L=2 ∼ gs

(

(c3,0N
2 + c1,1) s t8 tr(F 4) + d3,0Ns t8(trF

2)2
)

, (4.1)

where cB,H and dB,H are coefficients which in principle could be computed. There is no

canonical way of separating the open-string and closed contributions to the c1,1 coefficient

which is subleading in 1/N2. We will return to this point in the next section when we will

discuss the connection with the pure field theoretical super-Yang-Mills results of [17,18,23].

With L = 3 the B = 4, H = 0 term is accompanied by a contribution with B = 2,

H = 1, which is a 1/N2 correction. In this case the leading contribution to the analytic

part of the low-energy expansion of the three-loop four-point open string amplitude is

given by

Aana.
3 ∼ g2

s

(

(c4,0N
3 + c2,1 N) s t8 tr(F 4) + (d4,0N

2 + d2,1)s
2 t8(trF

2)2
)

, (4.2)

where the double-trace term is proportional to s2 because of the absence of inverse deriva-

tive factors as described earlier in section 3.2.
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With L = 4 the B = 5, H = 0 term is accompanied by the contributions of a world-

sheet with B = 3, H = 1 and B = 1, L = 2 for both the single trace and the double

trace terms. In this case the leading contribution to the analytic part of the low-energy

expansion of the three-loop four-point open string amplitude is given by

Aana.
4 ∼ g3

s

(

(c5,0N
4 + c3,1 N2 + c1,2) s t8 tr(F 4) + (d5,0N

3 + d3,1N)s2 t8(trF
2)2

)

. (4.3)

5. Connections with maximal SYM theory in various dimensions

We will now discuss the connections between the low energy limit of open-string

results with multi-loop amplitudes in maximally supersymmetric Yang–Mills field theory

in D dimensions. We are considering the open string theory on N coincident Dp-branes

where p = D − 1. If the corresponding low energy U(N) Yang–Mills theory coupling

constant (which has non-zero dimension when D > 4) is fixed so that

g2
YM = gs lD−4

s = constant (5.1)

as ls → 0, the gravitational coupling vanishes,

κ2 = g2
s l8s = g4

YM l16−2D
s → 0 , (5.2)

provided D < 8 (or p < 7), which is the condition that the gravitational back reaction of

the Dp-brane can be ignored.

As mentioned earlier, although we are decoupling the closed-string sector, world-sheet

handles are nevertheless expected to make a contribution to the theory in the low energy

limit. In section 4 we discussed the effect of handles on the low-energy expansion of

the open string amplitudes and we saw that there is no way of separating ‘open string’

contributions from ‘closed string’ contributions to the sub-leading 1/N2 corrections. One

way to see this is to consider, for instance, the following contribution to the two-loop

effective action from the four-point amplitude

SL=2 =

∫

dDx
√−g gs l10−D

s (c3,0N
2 + c1,1) ∂2t8tr(F

4). (5.3)

Using the relations (5.1) and (5.2) one can write the 1/N2 correction to the effective action

either as a super-Yang-Mills contribution c1,1 g2
YM l

2(7−D)
s ∂2t8tr(F

4) or as a mixed Yang-

Mills and gravity contribution c1,1 κ l6−D
s ∂2t8tr(F

4). Because there is no way of (and no

meaning in) separating the gravitational contribution from the super-Yang-Mills in string

theory, we will only focus on the large N contribution by restricting our attention to the

terms of order NL and NL−1, which get no contribution from world-sheet handles.
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5.1. Onset of ultraviolet divergences in various dimensions

In the limit ls → 0 the string theory results have clear implications for the structure of

the ultraviolet divergences of the four-gluon SYM field theory calculations. In particular,

we see why the single trace term has worse ultraviolet divergences than the double-trace

term. A clear way of characterising this is by determining the “critical dimension”, Dc,

which is the minimal dimension in which a L-loop term diverges in the ultraviolet – i.e.,

the dimension in which the ultraviolet divergence is logarithmic.

To begin, we note that the superficial degree of divergence of a L-loop Feynman

diagram contribution to the four-gluon amplitude in D dimensions is Λ(D−4)L, where Λ is

a momentum cut-off. Since there is also a prefactor of t8F
4 at all orders, the divergence is

reduced to Λ(D−4)L−4. However, in the case of the single trace term we found that there is

a factor of gL−1
s ∂2 t8trF

4 for 1 < L ≤ 5, so that the degree of divergence is Λ(D−4)L−6. We

therefore reproduce the result that the single-trace term is ultraviolet finite in dimensions

satisfying D < Dc = 4 + 6/L, at least up to L = 5 and quite probably for all L. In these

dimensions the amplitude has a negative mass dimension indicating the presence of infrared

divergences given by inverse powers of the external momenta. In the case of the L-loop

contribution to the double-trace term the prefactor has the form gL−1
s ∂2⌈L/2⌉ t8(trF

2)2 so

that the degree of divergence is, for 1 < L ≤ 4, Λ(D−4)L−2⌈L/2⌉−4. For this range of L

the amplitude is ultraviolet finite in dimensions satisfying D < Dc = 4 + (4 + 2⌈L/2⌉)/L.

Although we have no firm statements at higher loops, we expect that since ∂4 t8(trF
2)2 is a

D-term it will receive corrections from all L ≥ 5. It would then follows that for L ≥ 3 there

are no ultraviolet divergences in D < Dc = 4 + 8/L. In these dimensions the double trace

contribution to the amplitude has a negative mass dimension, again indicating the presence

of infrared divergences represented by inverse powers of the external momenta. The results

are summarised by the table below and match the field theory results of [17,18,23] for the

evaluation of the four gluon amplitude up to L = 4.

L = 1 L = 2 L = 3 L = 4 L = 5

∂2γL t8tr(F
4) Dc = 8 Dc = 7 Dc = 6 Dc = 11/2 Dc = 26/5

γ1 = 0 γ2 = 1 γ3 = 1 γ4 = 1 γ5 = 1

∂2βL t8(trF
2)2 Dc = 8 Dc = 7 Dc = 20/3 Dc = 6 Dc = 28/5

β1 = 0 β2 = 1 β3 = 2 β4 = 2 β5 = 2
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Although there is no canonical way of separating the gravitational contributions from

the pure Yang-Mills corrections in string theory, the 1/N2 corrections described in section 4

qualitatively reproduce the result quoted in [18] with the exception of the absence of a

contribution independent of N to the ∂2 t8trF
4 counterterm at four loops in D = 11/2.

6. Summary and comments on higher-point amplitudes

In this paper, we have analyzed open superstring four-point amplitudes using the

pure spinor formalism and determined non-renormalization properties of certain terms

in the low-energy effective action. Terms in the effective action proportional to t8tr(F
4)

and t8(trF
2)2 were shown not to receive corrections above one-loop, as expected from their

connection to the anomaly-cancelling term B∧F 4. Furthermore, the ∂2t8(trF
2)2 term was

shown to not receive corrections above two loops. On the other hand, the ∂4t8(trF
2)2 and

∂2t8tr(F
4) terms are expected to receive corrections to all loops. These statements were

verified up to five loops using the pure spinor prescription for the four-point amplitudes.

This behaviour can be heuristically explained using supersymmetry arguments based

on F -terms and D-terms. The terms t8tr(F
4), t8(trF

2)2 and ∂2t8(trF
2)2 are F -terms

which are expected to satisfy non-renormalization conditions. For ∂2 t8tr(F
4) and

∂4 t8(trF
2)2 the behavior is different since when D < 10, ∂2 t8tr(F

4) can be written as

the D-term,
∫

d16θ tr(ϕϕ), where ϕ is a non-linear superfield whose lowest component is

a scalar, and ∂4 t8(trF
2)2 can be expressed in terms of

∫

d16θ tr(ϕϕ)2 and
∫

d4x
∫

d16θ T 2

where TAB is the symmetric traceless supercurrent [20]. So ∂2t8tr(F
4) and ∂4 t8(trF

2)2

are not expected to satisfy any non-renormalization conditions. In the analysis of open

superstring amplitudes, the t8(trF
2)2 and t8tr(F

4) terms behave differently since inverse

derivative factors from colliding vertex operators are present in the t8tr(F
4) computation

but are absent in the t8(trF
2)2 computation. It would be useful to better understand

the relation between these inverse derivative factors and the nonlinear construction of the

D-term
∫

d16θ tr(ϕϕ).

Our analysis of t8tr(F
4) and t8(trF

2)2 terms is consistent with the field theory com-

putations of [17,18,23] and explains the apparent puzzle that t8(trF
2)2 terms are less

divergent in the ultraviolet than t8tr(F
4) terms. In addition, our analysis showed that

there are no inverse derivative factors in the analogous Type II computation, confirming

the previous claim of [3] that for g < 6, ∂2gR4 terms do not receive contributions above
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genus g. This lends support to the arguments in [4] that ultraviolet divergences are ab-

sent in four-dimensional N = 8 supergravity up to at least eight loops (or up to at least

five loops in five-dimensional maximal supergravity). Therefore, the first “surprise” would

arise if the four-graviton amplitude was not ultraviolet divergent at nine loops in four

dimensions (or six loops in five-dimensional maximal supergravity).

It would be very interesting to generalize the methods of this paper to higher-point

amplitudes beyond four points. Since higher-point amplitudes have massless poles, one

needs to first subtract out the massless poles before using the amplitudes to determine

non-renormalization properties of terms in the low-energy effective action. At the moment,

it is unclear how to verify that subtracting out the massless poles does not affect the non-

renormalization properties implied by the zero-mode counting. Nevertheless, one expects

that certain higher-point terms in the effective action will satisfy non-renormalization

conditions and one can make some preliminary speculations on how the behavior of F 4

terms extend to Fn terms. In particular, the extension of our analysis of the zero mode

saturation to five-point amplitudes indicates that the trF 5, trF 3 × trF 2 should be one-

loop exact, that the ∂2 trF 5 and ∂2 (trF 3)(trF 2) should be two-loop exact, while ∂4 F 5

are D-terms and should get contributions to all loops for all group theory structures. For

the six-point amplitude, the zero mode saturation indicates that the trF 6, (trF 3)2 and

(trF 2)3 should be one-loop exact, while ∂2 F 6 should receive perturbative contributions to

all orders for all group theory structures.
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