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ABSTRACT. This paper concerns some novel features of maximal para-
bolic Eisenstein series at certain special values of their analytic parame-
ter, s. These series arise as coefficients in the R* and 9* R* interactions
in the low energy expansion of the scattering amplitudes in maximally
supersymmetric string theory reduced to D = 10 — d dimensions on a
torus, T¢ (0 < d < 7). For each d these amplitudes are automorphic
functions on the rank d + 1 symmetry group Fi11.

Of particular significance is the orbit content of the Fourier modes of
these series when expanded in three different parabolic subgroups, cor-
responding to certain limits of string theory. This is of interest in the
classification of a variety of instantons that correspond to minimal or
“next-to-minimal” BPS orbits. In the limit of decompactification from
D to D + 1 dimensions many such instantons are related to charged %—
BPS or i-BPS black holes with euclidean world-lines wrapped around
the large dimension. In a different limit the instantons give nonpertur-
bative corrections to string perturbation theory, while in a third limit
they describe nonperturbative contributions in eleven-dimensional su-
pergravity.

A proof is given that these three distinct Fourier expansions have cer-
tain vanishing coefficients that are expected from string theory. In par-
ticular, the Eisenstein series for these special values of s have markedly
fewer Fourier coefficients than typical maximal parabolic Eisenstein se-
ries. The corresponding mathematics involves showing that the wave-
front sets of the Kisenstein series in question are supported on only a
limited number of coadjoint nilpotent orbits — just the minimal and triv-
ial orbits in the %-BPS case, and just the next-to-minimal, minimal and
trivial orbits in the i-BPS case. Thus as a byproduct we demonstrate
that the next-to-minimal representations occur automorphically for Fs,
E7, and Eg, and hence the first two nontrivial low energy coefficients in
scattering amplitudes can be thought of as exotic f-functions for these
groups. The proof includes an appendix by Dan Ciubotaru and Peter
E. Trapa which calculates wavefront sets for these and other special
unipotent representations.
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String theory is expected to be invariant under a very large set of dis-
crete symmetries (“dualities”), associated with arithmetic subgroups of a

variety of reductive Lie groups.

For example, maximally supersymmet-

ric string theory (type II superstring theory), compactified on a d-torus
to D = 10— d space-time dimensions, is strongly conjectured to be invariant
under Eg41(Z), the integral points of the rank d + 1 split real form! of one
of the groups in the sequence Eg, E7, Eg, SO(5,5), SL(5), SL(3) x SL(2),
SL(2) x R*, SL(2) listed in table 1.

a2

O—0O0—C0O——20

a1

Qs ay g1

FiGURE 1. The Dynkin diagram for the rank d+1 Lie group
Eg.1, which defines the symmetry group for D = 10 — d.

IThe split real forms are conventionally denoted E, (), but in this paper we will trun-
cate this to E,, since no other forms of F,, are needed.
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These symmetries severely constrain the dependence of string scattering
amplitudes on the symmetric space coordinates (or “moduli”), ¢411, which
parameterise the coset Fy,1/Kg11, where the stabiliser K1 is the max-
imal compact subgroup of Eg.1. The list of these symmetry? groups and
stabilisers is given in table 1. These moduli are scalar fields that are in-
terpreted as coupling constants in string theory. A general consequence of
the dualities is that scattering amplitudes are functions of ¢441 that must
transform as automorphic functions under the appropriate duality group
E41(Z). Tt is difficult to determine the precise restrictions these dualities
impose on general amplitudes, but certain exact properties have been ob-
tained in the case of the four-graviton interactions, where a considerable
amount of information has been obtained for the first three terms in the low
energy (or “derivative”) expansion of the four graviton scattering amplitude
in [1] (and references cited therein). These are described by terms in the
effective action of the form

Eom@ar)RY, ELD (ar) ' RY, ED) (6asn) PR, (1)

where the symbol R* indicates a contraction of four powers of the Riemann
tensor with a standard rank 16 tensor. The coeflicient functions, 8((5(1)) (Pd+1),

are automorphic functions that are the main focus of our interests (the
notation is taken from [1,2] and will be reviewed later in (2.3)). More
precisely we will focus on the three terms shown in (1.1) that are protected
by supersymmetry, which accounts for the relatively simple form of their
coefficients.

The coefficients of the first two terms satisfy Laplace eigenvalue equations
(2.6-2.7) and are subject to specific boundary conditions that are required
for consistency with string perturbation theory and M-theory. The solutions
to these equations are particular maximal parabolic Fisenstein series that
were studied in [2] (for cases with rank < 5) and [1] (for the Es, E7 and
Eg cases), and will be reviewed in the next section. The required bound-
ary conditions in each limit amount to conditions on the constant terms in
the expansion of these series in three limits associated with particular max-
imal parabolic subgroups of relevance to the string theory analysis. Such
subgroups have the form P, = L, U,, where «a labels a simple root, U, is
the unipotent radical and L, = GL(1) x M, is the Levi factor. The three
subgroups of relevance here have Levi factors L,, = GL(1) x SO(d,d),
Lo, = GL(1) x SL(d + 1), and Lo, , = GL(1) x Ey, respectively. In each
case the GL(1) parameter, r, can be thought of as measuring the distance
to the cusp®, as will be discussed in the next section. A key feature of the
boundary conditions is that they require these constant terms to have very

2The continuous groups, E411(R), will be referred to as symmetry groups while the
discrete arithmetic subgroups, Fqy1(Z), will be referred to as duality groups.

3Each of the groups we are considering has a single cusp. The various limits correspond
to different ways of approaching this cusp.
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D Eq1(R) Kq Eq1(Z)
10A RT 1 1
10B SL(2,R) SO(2) SL(2,7)

9 SL(2,R) x Rt SO(2) SL(2,7)

8 | SL(3,R) x SL(2,R) | SO(3) x SO(2) | SL(3,Z) x SL(2,7Z)
7 SL(5,R) SO(5) SL(5,7Z)

6 SO(5,5,R) SO(5) x SO(5) SO(5,5,7)

4 E;(R) SU(8)/Za E;(Z)

TABLE 1. The symmetry groups of maximal supergravity in
D =10 — d < 10 dimensions. The group E441(R) is a split
real form of rank d+1, and Ky is its maximal compact sub-
group. In string theory these groups are broken to the dis-
crete subgroups, Fg441(Z) as indicated in the last column [3].
The split real form E;,1(R) is determined among possible
covers or quotients by its maximal compact subgroup Kg,1,
which shares the same fundamental group. The terminology
10A and 10B in the first column refers to the two possible
superstring theories (types IIA and IIB) in D = 10 dimen-
sions.

few components with distinct powers of the parameter r. These conditions

pick out the unique solutions to the Laplace equations, which are,*
10—d E
Eon® = 2¢(3) B (1.2)
for the groups E1, Ey, Es, Eg, E7, and Fg [1,2] and
10—d E
eLn? = <) B (1.3)

for the groups F1, Eg, Er, and Eg [1]. Here Egs is the maximal parabolic
Eisenstein series for a parabolic subgroup Pz C G that is specified by the
node (3 of the Dynkin diagram (see (2.12) for a precise definition). This

generalizes results for the SL(2, Z) case (relevant to the ten-dimensional type
IIB string theory). The functions 5(%7%;@ and 5((112)—d)
rank cases involve linear combinations of Eisenstein series [2], which will be

discussed later in section 4. The third coefficient function, 5801;@ satisfies

in the intermediate

an interesting inhomogeneous Laplace equation and is not an Eisenstein
series [1,5]. Its constant terms in the three limits under consideration were

A [1,2,4] the series were indexed by the Dynkin label [10--- 0] of the root a;. In the
present paper, we will index the series according the labeling of the simple root in figure 1.
We have as well changed the normalisations of the Eisenstein series, since our series there

was instead Eﬁéf}o];s = 2{(28)Ef{i§1~



SMALL REPRESENTATIONS, STRING INSTANTONS, AND FOURIER MODES 5

also analysed in the earlier references but it will not be considered in this
paper, which is entirely concerned with Eisenstein series.

In other words, our previous work showed that the particular Eisenstein
series in (1.2) and (1.3) have strikingly sparse constant terms as required to
correctly describe the coeflicients of the %—BPS and i—BPS interactions. But
the string theory boundary conditions also determine the support of the non-
zero Fourier coefficients in each of the three limits under consideration. In
string theory, the non-zero Fourier modes describe instanton contributions
to the amplitude. These are classified in BPS orbits obtained by acting on a
representative instanton configuration with the appropriate Levi subgroup.
A given instanton configuration generally depends on only a subset of the
parameters of the Levi group, L, = GL(1) x M,, so that a given orbit
depends on the subset of the moduli that live in a coset space of the form
M./H (i), where HY) ¢ M, denotes the stabiliser of the i-th orbit. The
dimension of the i-th orbit is the dimension of this coset space.

In particular, the coefficients in the s = 3/2 cases covered by (1.2) must be
localized within the smallest possible non-trivial orbits (“minimal orbits”)
of the Levi actions, as required by the %—BPS condition. Furthermore, in
the s = 5/2 cases covered by (1.3) the coeflicients must be localized within
the “next-to-minimal” (NTM) orbits (see section 2.2).

This provides motivation from string theory for the following

String motivated vanishing of Fourier modes of Eisenstein series:
(i) The non-zero Fourier coefficients of Efld_gl (d = 5,6,7) in any of
72

the three parabolic subgroups of relevance are localized within the
smallest possible non-trivial orbits (“minimal orbits”) of the action
of the Levi subgroup associated with that parabolic, as required by the
%—BPS condition.

(ii) The non-zero Fourier coefficients of Eff.? (d=5,6,7) are localized
)

within “next-to-minimal” (NTM) orbits, as required by the $-BPS
condition.

While the special properties of the Fourier coefficients of the s = 3/2 series
is implied by the results in [6], the corresponding properties for the NTM
orbits at s = 5/2 is novel. One of the main mathematical contributions of
this paper is to give a rigorous proof of these statements using techniques
from representation theory, by connecting these automorphic forms to small
representations of the split real groups E4y1. The Fourier coefficients in
the intermediate rank cases not covered by (1.2) and (1.3) satisfy analogous
properties as we will determine by explicit calculation later in this paper.

2. OVERVIEW OF SCATTERING AMPLITUDES AND EISENSTEIN SERIES

Since this paper covers topics of interest in both string theory and math-
ematics, this section will present a brief description of the background to
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these topics from both points of view followed by a detailed outline of the
rest of the paper.

2.1. String theory Background. We are concerned with exact (i.e., non-
perturbative) properties of the low energy expansion of the four-graviton
scattering amplitude in dimension D = 10 — d, which is a function of the
moduli, ¢411, as well as of the particle momenta k, (r = 1,...,4) that are
null Lorentz D-vectors (k2 = k, - k. = 0) that are conserved (Yr_, k» =
0). They arise in the invariant combinations (Mandelstam invariants), s =
—(k1 4+ k2)?, t = —(k1 + kq)? and u = —(ky + k3)? that satisfy s+t +u = 0.
At low orders in the low-energy expansion the amplitude can usefully be
separated into analytic and nonanalytic parts

Ap(s,tyu) = A5 tu) + AR (s pu)(2.1)

(where the dependence on ¢411 has been suppressed). The analytic part of
the amplitude has the form

A%”alytic(s,t,u) = Tp(s,t,u)ls R*, (2.2)

where ¢p denotes the D-dimensional Planck length scale and the factor
R* represents the particular contraction of four Riemann curvature tensors,
tr(R*) — (trR?)?/4, that is fixed by maximal supersymmetry in a stan-
dard fashion [7]. The scalar function Tp has the expansion (in the Einstein
frame®)

Tp(s,t,u) = &Qq, Ty Z 5 02 ol (2.3)
p,q>0

(D)

= 303+ £y + £

(D)
(1,0) 92 + 5(071)03 + .-

Symmetry under interchange of the four gravitons implies that the Man-
delstam invariants only appear in the combinations o9 and o3 with o, =
(8" +t" +u") (6% /4)". Since s,t,u are quadratic in momenta the successive
terms in the expansion are of order n = 2p + 3¢ in powers of (momenta)?.
The degeneracy, d, = [(n+2)/2] — |(n + 2)/3], of terms with power n is
given by the generating function®,

1 o0
e B DL 24

sodO:1,d1:0anddn:1f0r2<n<5
The coefficient functions in (2.3), £ (p q)(¢d+l) are automorphic functions

of the moduli ¢441 appropriate to compactification on T¢. The first term
on the right-hand side of (2.3) coefficient is identified with the tree-level

5The Einstein frame is the frame in which lengths are measured in Planck units rather
than string units, and is useful for discussing dualities.

6This is the same as the well-known dimension formula for the space of weight 2n
holomorphic modular forms for SL(2,Z), which are expressed as polynomials in the (holo-
morphic) Eisenstein series G4 and Gs.
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contribution of classical supergravity and has a constant coefficient given
by 5((511)(¢d+1) = 3. The terms of higher order in s, t, u represent stringy
modifications of supergravity, which depend on the moduli in a manner
consistent with duality invariance. This expansion is presented in the Ein-
stein frame so the curvature, R, is invariant under Ey,1(Z) transformations,
whereas it transforms nontrivially in the string frame since it is nonconstant
in ¢gr1 € Eqr1(R). Apart from the first term, the power series expansion
in (2.3) translates into a sum of local interactions in the effective action.
The first two of these have the form

G [ dPa /=GO TN RY, 0P [ dPa V=GP g[l) 0'RY . (25)

(D) (D) (D)
€00y Eo) #d €
displayed in the second equality in (2.3) are specially simple since they are
protected by supersymmetry from renormalisation beyond a given order in

perturbation theory. In particular, the R* interaction breaks 16 of the 32
supersymmetries of the type II theories and is thus %—BPS, while the 9*R*

interaction breaks 24 supersymmetries and is i—BPS; likewise, the 9%R*

The three interactions with coefficient functions

interaction breaks 28 supersymmetries and is %—BPS. The next interaction

is the p = 2,¢ = 0 term in (2.3), 8((21?3) O®R*. Naively this interaction
breaks all supersymmetries, in which case it is expected to be much more
complicated, but it would be of interest to discover if supersymmetry does
constrain this interaction.”

It was argued in [2], based on consistency under various dualities, that
the coefficients £ £P) and &P satisfy the equations

(0,0)” ~(1,0) (0,1)
(A(D) G —DD)(217—8)) P = 6mdns, 26)
(A(D) _5(12 —DD_)(QD — 7)) 8((53) = 40((2)dp7, (2.7)
(A(D) ~6(14 —DD_)(;) — 6)) 5((51)) _ (555(])))2+ 120¢@)5pa, (25)

where AP) is the Laplace operator on the symmetric space E11-p/Ki1-p.
The discrete Kronecker § contributions on the right-hand-side of these equa-
tions arise from anomalous behaviour and can be related to the logarithmic
ultraviolet divergences of loop amplitudes in maximally supersymmetric su-
pergravity [4].

Recall that automorphic forms for SL(2,7Z) have Fourier expansions (i.e.,
g-expansions) in their cusp. For higher rank groups, automorphic forms have
Fourier expansions coming from any one of several maximal parabolic sub-
groups P,, , where the simple root «, corresponds to node r in the Dynkin

(9)

(2,0) in nine dimensions can be found in [8, sec-
,

TA discussion of the properties of £
tion 4.1.1].
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diagram for F4y in figure 1. We are particularly interested in this Fourier
expansion for r = 1,2, or d + 1, because each of these expansions has a dis-
tinct string theory interpretation in terms of the contributions of instantons
in the limit in which a special combination of moduli degenerate. These
three limits are:

(i) The decompactification limit in which one circular dimension, 74,
becomes large. In this case the amplitude reduces to the D + 1-
dimensional case with D = 10 — d. The BPS instantons of the
D = (10 — d)-dimensional theory are classified by orbits of the Levi
subgroup GL(1) x Ey4. Apart from one exception, these instantons
can be described in terms of the wrapping of the world-lines of black
hole states in the decompactified D + 1-dimensional theory around
the large circular dimension (the exception will be described later).
This limit is associated with the parabolic subgroup Py, ;-

(ii) The string perturbation theory limit of small string coupling constant,
in which the string coupling constant, /yp, is small, and string
perturbation theory amplitudes are reproduced. The instantons are
exponentially suppressed contributions that are classified by orbits
of the Levi subgroup GL(1) x SO(d,d). This limit is associated with
the parabolic subgroup F,,.

(iii) The M-theory limit in which the M-theory torus has large volume
Vi+1, and the semi-classical approximation to eleven-dimensional su-
pergravity is valid. This involves the compactification of M-theory
from 11 dimensions on the (d 4 1)-dimensional M-theory torus,
where the instantons are classified by orbits of the Levi subgroup
GL(1) x SL(d + 1). This is associated with the parabolic subgroup
P,,.

The special features of the constant terms that lead to consistency of all
perturbative properties in these three limits appear to be highly nontrivial,
and indicate particularly special mathematical properties of the Eisenstein
series that define the coefficients of the R* and 9*R* interactions. The
solutions to equations (2.6-2.8) satisfying requisite boundary conditions on
the constant terms (zero modes) in the Fourier expansions in the limits (i),
(ii), and (iii) were obtained for 7 < D < 10 in [2], and for 3 < D < 6 in [1].
In particular, (1.2) and (1.3) were found to be solutions for the cases with
D
00
8((5 3) are given in terms of Eisenstein series that satisfy Laplace eigenvalue

(((fl))? of the %-BPS interaction

0%R*, is an automorphic function that satisfies an inhomogeneous Laplace
equation. Various properties of its constant terms in these three limits were
also determined in [1,2].

Whereas the earlier work concerned the zero Fourier modes of the coeffi-
cient functions, in this paper we are concerned with the non-zero modes in

duality groups Eg, F7 and Eg. Whereas the coefficient functions £ and

equations on the moduli space, the coefficient £
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the Fourier expansion in any of the three limits listed above. These Fourier
coefficients should have the exponentially suppressed form that is character-
istic of instanton contributions. In more precise terms, the angular variables
involved in the Fourier expansion with respect to a maximal parabolic sub-
group P, come from the unipotent radical U, of P,, and are conjugate to
integers that define the instanton “charge lattice”. Asymptotically close to
a cusp a given Fourier coefficient is expected to have an exponential factor
of exp (—S®), where S?) is the action for an instanton of a given charge,
as will be defined in section 3.1. In the case of fractional BPS instantons
the leading asymptotic behaviour in the cusp is the real part of S® and is
related to the charge (B.4), which enters the phase of the mode.

In each limit the %—BPS orbits are minimal orbits (i.e., smallest nontriv-
ial orbits) while the 2-BPS orbits are “next-to-minimal” (NTM) orbits (i.e.,
smallest nonminimal or nontrivial orbits). The next largest are %-BPS or-

bits, which only arise for groups of sufficiently high rank; in the Eg case
there is a further %—BPS orbit beyond that. These come up again as “char-
acter variety orbits”, a major consideration in sections 5 and 6. They are
closely related to — but not to be confused with — the minimal and next-to-

minimal coadjoint nilpotent orbits that are attached to the Eisenstein series

((ODg) and 5((1]33) in (1.2) and

that arise in the solutions for the coefficients, &
(1.3), respectively.

Note on conventions. Following [1, Section 2.4], the parameter asso-
ciated with the GL(1) factor that parameterises the approach to any cusp
will be called r and is normalised in a mathematically convenient manner.
It translates into distinct physical parameters in each of the three limits
described above, that correspond to parabolic subgroups defined at nodes
d+ 1, 1 and 2, respectively, of the Dynkin diagram in fig. 1. These are

summarised as follows:

Limit (i) r* = rq/f11_q, 74 = radius of decompactifying circle,

Limit (i) r~2 VYD = string coupling constant ,

e ey e 2(1+d) d+1
Limit (iii) » 3 = Vgr1/¢{] ", Vis1 = vol.of M — theory torus.

(2.9)

The D-dimensional string coupling constant is defined by yp = g¢2¢2¢/Vy,
where D = 10 — d and g, is either the D = 10 IIA string coupling constant,
ga, or the IIB string coupling constant, gg, and V; is the volume of T¢ in
string units.® The Planck length scales in different dimensions are related

8We will use the symbol T? to denote the string theory d-torus while using the symbol
T for the corresponding M-theory (d+ 1)-torus expressed in eleven-dimensional units.
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to each other and to the string scale, £, by

1
(£1140)8 = 629124) (EIBB)S = Eggéa Ell == gjgsa
1
(KD)D*Q - ESD72 yp = (EDH)D*l pt for D <8 (d > 2)

d

1 1

6= Ly =) — = (1)’ —. (2.10)
TA B

(note the two distinct Planck lengths in the ten-dimensional case and the
distinction between 1 = r4 and r; = rp in the two type II theories).

2.2. Mathematics background. Let us begin by recalling some notions
from the theory of automorphic forms that are relevant to the expansion
(2.3), specifically from [1, Section 2]. Let G denote the split real Lie group
E,,n <8, defined in table 1. For convenience we fix (as we may) a Chevalley
basis of the Lie algebra g of G, and a choice of positive roots @ for its root
system ®. Letting 3 C & denote the positive simple roots, the Lie algebra
g has the triangular decomposition

g = ndadn_, (2.11)

where n (respectively, n_) is spanned by the Chevalley basis root vectors
X, for positive roots a € ® (respectively, a € ®_), and a is spanned by
their commutators H, = [X,, X_4]. Let N C G be the exponential of n; it
is a maximal unipotent subgroup. Likewise A = exp(a) is a maximal torus,
and is isomorphic to rank(G) copies of RT. The group G has an Iwasawa
decomposition G = NAK, where K = K, is the maximal compact subgroup
of GG listed in table 1. There thus exists a logarithm map H : A — a which
is inverse to the exponential, and which extends to all g € G via its value
on the A-factor of the Iwasawa decomposition of g.

The standard maximal parabolic subgroups of GG are in bijective corre-
spondence with the positive simple roots of G. Given such a root 8 and
a standard maximal parabolic Pg, the maximal parabolic Fisenstein series
induced from the constant function on Pj is defined by the sum

Egs = Z e?sws(H(9) - Res > 0, (2.12)
v € (PsNG(2)\G(Z)

where wg, the fundamental weight associated to (3, is defined by the con-
dition (wg, ) = dq4,3. These series generalize the classical nonholomorphic
Eisenstein series (the case of G = SL(2)), and more generally the Epstein
Zeta functions (the case of G = SL(n) and 3 either the first or last node
of the A,,_1 Dynkin diagram). Because of this special case, we often refer
to the § = ay series (in the numbering of figure 1) as the Epstein series
for a particular group, even if it is not SL(n). These series are the main
mathematical objects of this paper.
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As shorthand, we often denote a root by its “Dynkin label”, that is, string-
ing together its coefficients when written as a linear combination of the posi-
tive simple roots X. Thus as+ a3+ 2a4+ a5 could be denoted 0112100 - - - or
[0112100- - -], with brackets sometimes added for clarity. Note that Eisen-
stein series of the type (2.12) are parameterized by a single complex variable,
s, whereas the more general minimal parabolic series in (5.3) has rank(G)
complex parameters.

The series (2.12) is initially absolutely convergent for Re s large, and
has a meromorphic continuation to the entire complex plane as part of a
more general analytic continuation of Eisenstein series due to Langlands.
Its special value at s = 0 is the constant function identically equal to one.
This corresponds to the trivial representation of G(R), and clearly has no
nontrivial Fourier coefficients. The main result of the following sections
extends this phenomenon to other special values of s which are connected
to small representations of real groups (see sections 2.2.2 and 5), and which
have very few nontrivial Fourier coefficients. This will be demonstrated to
be in complete agreement with a number of string theoretic predictions, in
particular the one stated in section 2.2.2.

The main results of [1] were the identifications (1.2) and (1.3) of gp)

(0,0)
and 5((1D 3), respectively, in terms of special values of the Epstein series, for
3< D =10-d < 5. The more general automorphic function £ (D) which

0,1)’
satisfies (2.8) was also analysed in [1], but will not be relevant (in )this pa-
per. The case of SO(5,5) was also covered in [1], but is somewhat more
intricate; it will be explained separately. We will show in a precise sense
that these Epstein series at the special values at s = 0, 3/2, and 5/2 corre-
spond, respectively, to the three smallest types of representations of G (see
theorem 2.13) below.

2.2.1. Coadjoint nilpotent orbits. Let g be the Lie algebra of a matrix Lie
group G, whether over R or C. An element of g is nilpotent if it is nilpo-
tent as a matrix, i.e., some power of it is zero. The group G acts on its
Lie algebra g by the adjoint action Ad(g)X = gXg~ !, and hence dually
on linear functionals A : g — C through the coadjoint action given by
(Coad(g)M\)(X) = M(Ad(g)X) = MgXg~1). Actually g is isomorphic to its
space of linear functionals via the Killing form, and so the coadjoint action
is isomorphic to the adjoint action. Following common usage, we thus refer
to the orbits of the adjoint action of G on g as coadjoint nilpotent orbits
(even though they are, technically speaking, adjoint orbits).

The book [9] is a standard reference for the general theory of coadjoint
nilpotent orbits. When G is a real or complex semisimple Lie group there are
a finite number of orbits, each of which is even dimensional. The smallest of
these is the trivial orbit, {0}. On the other hand, there is always an open,
dense orbit, usually refereed to as the principal or regular orbit. Another
orbit which will be important for us is the minimal orbit, the smallest orbit
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Group Orbit Dimension Basepoint
SL(2) 0 0
2 X1
0 0
SL(3) x SL(2) 2 an SL(2) root
4 an SL(3) root
0 0
SL(5) 8 X1111
12 X1110 + Xo111
0 0
50(5, 5) 14 X19911
20 Xot111 + Xi1211
0 0
Es 22 X122321
32 X111221 + X112211
40 Xo11221 + X111210 + X112211
0 0
Er 34 X2234321
52 X1123321 + X1223221
54 Xo112210 + X1112201 + X11922110
0 0
58 X23465432
Es 92 X23354321 + X22454321
112 X22343221 + X12343321 + X12244321
114 X11232221 + X12233211

TABLE 2. Basepoints of the smallest coadjoint nilpotent or-
bits for the complexified F, groups. The notation X, de-
notes a root vector for the simple root «, which are written
here in terms of the Dynkin labels described in the text.
The SL(3) x SL(2) case comes from the E5 Dynkin diagram,
which is the Eg Dynkin diagram from figure 1 after the re-
moval of nodes 4, 5, 6, 7, and 8. It is a product of two
simple Lie algebras, and has a different orbit structure than
the others; its smallest orbits come from the respective fac-
tors.

aside from the trivial orbit. Since our groups G are all simply laced, it can
be described as the orbit of any root vector X, for any root a.

Tables 2 gives a list of some orbits that are important to us, along with
their basepoints.
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2.2.2. Automorphic representations. The right translates of an automorphic
function by the group G span a vector space on which G acts. For a suit-
able basis of square-integrable automorphic forms and most Eisenstein se-
ries, this action furnishes an irreducible representation. As we discussed
in [1, Section 2], the Eisenstein series are specializations of the larger “min-
imal parabolic Eisenstein series” defined in (5.3). The automorphic repre-
sentations connected to the latter are principal series representations, an
identification which can be made by comparing the infinitesimal characters
(that is, the action of all G-invariant differential operators). They are also
right- K-invariant, and thus by definition their special values are spherical
subrepresentations of these principal series representations.

An irreducible representation is related to coadjoint nilpotent orbits through
its wavefront set, also known as the “associated variety” of its “annihilator
ideal”. It is a theorem of Borho-Brylinski [10] and Joseph [11] that this set
is always the closure of a unique coadjoint nilpotent orbit. Thus a coadjoint
nilpotent orbit is attached to every irreducible representation.

(Large_ér orbits)

NTM Orbit ) ES 5/

Trivial Orbit EG

;0

!

FIGURE 2. Schematic of small representations and Eisen-
stein special values

Part (iii) of the following theorem is the main mathematical result of this
paper, in particular the cases of F; and Eg. Part (i) is trivial, while part (ii)
is contained in results of Ginzburg-Rallis-Soudry [6], following earlier work
of Kazhdan-Savin [12].

Theorem 2.13. Let G one of the groups Fg, E7, or Eg from table 1. Then

(i) The wavefront set of the automorphic representation attached to the
s = 0 Epstein series is the trivial orbit.

(ii) The wavefront set of the automorphic representation attached to the
s = 3/2 Epstein series is the closure of the minimal orbit.
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(iii) The wavefront set of the automorphic representation attached to the
s = 5/2 Epstein series is the closure of the next-to-minimal (NTM)
orbit.

The closure of the minimal orbit is simply the union of the minimal orbit and
the trivial orbit, while the closure of the next-to-minimal orbit is the union
of itself, the minimal orbit, and the trivial orbit. Theorem 2.13 will be used
in proving theorem 6.1, which is the mathematical proof of the statement
concerning vanishing Fourier modes motivated by string considerations at
the end of section 1.

2.3. Outline of paper. This paper combines information deduced from
string theory with results in number theory involving properties of Eisen-
stein series, which we hope will be of interest to both string theorists and
number theorists. In particular, each subject is used to make nontrivial
statements about the other). Sections 3-4 and appendices B-E are framed
in string theory language and provide information concerning the structure
expected of the non-zero Fourier modes based on instanton contributions in
superstring theory and supergravity. The subsequent sections provide the
mathematical foundations of these observations and generalize them signif-
icantly.

Section 3 presents the classification of the expected orbits of fractional
BPS instantons in the three limits (i), (ii), and (iii) considered in section 2.1,
from the point of view of string theory. The BPS constraints imply that
these instantons span particular small orbits generated by the action of the
Levi subgroup acting on the unipotent radical associated with the parabolic
subgroup appropriate to a given limit. These orbits can be thus thought of
as character variety orbits, which are discussed at the beginning of section
4.

In the rest of section 4 and appendix E we will consider explicit low-rank
examples (with rank d + 1 < 5) of the Fourier expansions of the functions
Eééj%;d) and 5((117%70 in the parabolic subgroups corresponding to each limit.
In the cases with d+1 < 4 (D > 7), the definition (2.12) implies that the
coefficient functions are combinations of SL(n) Eisenstein series that can
easily be expressed in terms of elementary lattice sums. In these cases it
is straightforward to use standard Poisson summation techniques to exhibit
the precise form of their Fourier modes. In particular, the non-zero Fourier

((é%;d) = 2((3) Efﬁb will be determined in the three limits

under consideration for the rank d +1 < 4 cases. These modes are localized
within the minimal character variety orbits that contain precisely the %—
BPS instantons that are anticipated in section 3. We will see, in particular,
that in the decompactification limit (i) the precise form for each of these

coefficients matches in detail with the expression determined directly from

modes of &€
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a quantum mechanical treatment of D-particle world-lines wrapped around
a St cTd?
Explicit examples of the Fourier expansion of the coefficient of the %-

BPS interaction, 5((1]) 8), will also be presented in section 4 and appendix E.

This function is equal to ((5) ngéz/é

and other Eisenstein series for 6 < D < 9. In order

for D = 10, but involves particular

. E
combinations of £ ¢t!
a1;5/2

to give a complete analysis of the contributions to 5((17 )0), we will make use

of a representation of Ejfg% that expresses it as the Mellin transform of

the SO(5,5) Eisenstein series EES?S’;)
for this representation in the literature, we present it in proposition 4.1.
The resulting Fourier expansions contain contributions localized within the
minimal (3-BPS) character variety orbit and the next-to-minimal (%-BPS)
character variety orbit, comprising precisely the instantons anticipated in
section 3.

The highest rank case that is amenable to classical lattice summation
techniques is the D = 6 case (with duality group SO(5,5,7Z)), where we have

made use of an integral representation of the series E:EIO 5(5’5). The coefficient

(6)
€(0,0)

supported within the minimal (%—BPS) character variety orbits in any of the

three limits. On the other hand the next coefficient, 5((6)

1,0)’
of the regularized values of EAiOS;) and E§g§5’5). Although we have not
computed the Fourier expansion of the second series, it is still possible to
show that the non-zero Fourier coefficients of this sum are supported within
the minimal and next-to-minimal (i.e., %- and %-BPS) character variety
orbits in each of the three limits. This will be discussed at the end of
section 4.

Sections 5, 6, and 7 are primarily concerned with the exceptional group
cases, which correspond to d > 5 and D < 5. Since classical lattice summa-
tion techniques are difficult to apply in this context, we instead use results
from representation theory to show a large number of the Fourier coefficients
vanish. Indeed, avoiding explicit computations here is one of the main nov-
elties of the paper. Section 5 discusses aspects connected to representation
theory and contains a proof of theorem (2.13), which makes important use of
appendix A by Ciubotaru and Trapa on special unipotent representations.

Section 6 then applies these results to Fourier expansions, using a de-
tailed analysis of character variety orbits. We will see that the spectrum
of instantons that are expected to vanish on the basis of string theory is

precisely reproduced by the Eisenstein series in (1.2), (1.3). For the s = 3/2

. As we are not aware of a reference

involves only this series at s = 3/2, and its non-zero Fourier modes are

involves the sum

9The term D-particle refers to any point-like BPS particle state obtained by completely
wrapping the spatial directions of Dp-brane states.
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case (the 3-BPS case) we will reproduce the statements in [6,13,14] that
only the minimal orbit and the trivial orbit contribute to the Fourier expan-
sions of the Eisenstein series. However, we will find that this generalizes for
s = 5/2 (the 1-BPS case) to the statement that no orbits larger than the
next-to-minimal (NTM) orbit can contribute. The analysis in [1] showed
the striking fact that the particular Eisenstein series in (1.2) and (1.3) have
constant terms with very few powers of r (defined in 2.9) in their expan-
sion around any of the three limits under consideration. The analysis in
this paper demonstrates analogous special features of the orbit structure of
the non-zero modes. Theorem 6.1 gives a precise statement about which
Fourier modes automatically vanish because of representation theoretic rea-
sons. This set of vanishing coefficients is exactly those that are argued to
vanish for string theory reasons in section 3.

It is important to point out that our methods show the vanishing of a pre-
cise set of Fourier coefficients, but typically do not show the nonvanishing of
the remaining Fourier coefficients. However, this is accomplished in a num-
ber of low rank cases by explicit calculations in section 4.1 and appendix E,
and we hope to treat some of the higher rank cases in a future paper. Sec-
tion 7 discusses square-integrability of the coefficients and conditions under

which 8(((])3 0))7 8((1D 8) is square-integrable for higher rank groups.

3. ORBITS OF SUPERSYMMETRIC INSTANTONS

From the string theory point of view our main interest is in the system-
atics of orbits of BPS instantons that enter the Fourier expansions of the
coefficients of the low order terms in the low energy expansion of the four
graviton amplitude. Before describing these orbits in sections 3.3 — 3.5 we
begin with a short overview of the special features of such instantons that
follow from supersymmetry. A short summary of the M-theory supersym-
metry algebra and BPS particle states is given in appendix B (although
this barely skims the surface of a huge subject), where the structure of
the eleven-dimensional superalgebra is seen to imply the presence of an ex-
tended two-brane (the M2-brane) and five-brane (the M5-brane) in eleven
dimensions. Compactification on a torus also leads to Kaluza-Klein (K K)
point-like states and Kaluza—Klein monopoles (K K M), one of which is in-
terpreted in string theory as a D6-brane. All the particle states in lower
dimensions can be obtained by wrapping the spatial directions of these ob-
jects around cycles of the torus.

3.1. BPS instantons. One class of BPS instantons can be described from
the eleven-dimensional semi-classical M-theory point of view by wrapping
euclidean world-volumes of M2- and M5- branes around compact directions
so that the brane actions are finite. These branes couple to the three-form
M-theory potential and its dual, and the BPS conditions constrain their
charges, Q)| to be proportional to their tensions, T, where p = 2 or 5 (as
briefly reviewed in appendix B). Wrapping the world-volume of a euclidean
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M2-brane around a 3-torus, 73 C 7%, or a euclidean M5-brane around a

6-torus, 76 c T4+, gives a %-BPS instanton, which has a euclidean action

of the form S®) = 27 (T(p) + iQ(p)). This gives a factor in amplitude of the

form e @

brane.

In addition, the “AK K instanton” is identified with the euclidean world-line
of a K K charge winding around a circular dimension. The magnetic version
of this is the “A KM instanton”, one manifestation of which appears in
string theory as a wrapped euclidean D6-brane. Recall that a K K monopole
in eleven dimensional (super)gravity with one compactified direction labelled
o% has a metric of the form [15]

that has a characteristic phase determined by the charge of the

ds? =V~ (da® + A-dy)* +Vdy-dy —dt* +-dzk, V= 1+2§’ , (3.1)
where ds% = —dt’ + dazg is the seven-dimensional Minkowski metric and the
other four dimensions, =7, y = (y1,%2,y3), define a Taub-NUT space, and
ly|? = Z?:1 y2. The coordinate z# is periodic with period 27rR and the
potential, A, satisfies the equation V x A = —VV = B. Poincaré duality
in the ten dimensions (¢, xg,y) relates the 1-form potential, A, to a 7-form,
ie, *dA = dCD. If z# is identified with the M-theory circle, C(7) couples
to a D6-brane in the string theory limit. This gives an instanton when
its world-volume is wrapped around a 7-torus. More generally, z# can be
identified with other circular dimensions of the torus 7+1, giving a further d
distinct K K M’s, each one of which appears as a finite action instanton when
wrapped on an M-theory 8-torus, 7% (i.e., when d = 7). When describing
these in the string theory parameterisation (on the string torus T7) these
will be referred to as “stringy K KM instantons”. Furthermore, it is well
understood how to combine wrapped branes to make %—, i— and %—BPS
instantons [16,17]'% in a manner analogous to combining p-branes to make
states preserving a fraction of the symmetry.

This description of instantons is directly relevant to the discussion of the
semi-classical M-theory limit (case (iii)) associated with the Fourier expan-
sion in the parabolic subgroup F,, in section 3.5. This is the large-volume
limit in which eleven-dimensional supergravity is a valid approximation.
Similarly, the instanton contributions in limits (i) and (ii) can be described
by translating from the M-theory description to the string theory descrip-
tion of the wrapped branes. These wrapped string theory objects comprise:
the fundamental string and the Neveu-Schwarz five-brane (NS5-brane) that
couple to Bys; Dp-branes that couple to the Ramond-Ramond (p + 1)-form
potentials C'®+1) (with —1 < p <9); and KK charges and K K monopoles

10We are concerned with compactification on tori, but more generally the BPS con-
dition requires branes to be wrapped on special lagrangian submanifolds (SLAGs) or on
holomorphic cycles [16].
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that couple to modes of the metric associated with toroidal compactification
on T9.

Knowledge of this instanton spectrum is a valuable ingredient in under-
standing the systematics of the Fourier modes of the Eisenstein series that
enter into the definitions of the coefficients of the low order interactions in
the expansion of the scattering amplitude. In particular, it connects closely
with the study of the Fourier expansions of specific Eisenstein series that

(D) (D)
(0.0) and 5(1’0)

as with the Fourier expansion of the more general automorphic function

enter into £ (that will be discussed later in this paper), as well

S((p q)) (that will not be discussed in this paper).

3.2. Fourier modes and orbits of BPS charges. The Fourier expansion
associated with any parabolic subgroup, P, = L, Uy, of Eg41 is a sum over
integer charges that are conjugate to the angular variables that enter in its
unipotent radical U,. These determine the phases of the modes. The Levi
factor is a reductive group that has the form L, = GL(1) x M, where M,
is its semisimple component.

The conjugation action on U, of L, — or more specifically, its intersection
with the discrete duality group L, N Egy1(Z) — relates these charges by
Fourier duality. Thus this action carves out orbits within the charge lattice,
with each given orbit only covering a subset of the total charge space. This
viewpoint is expanded upon in more detail in section 4.1. In this subsection
we classify these orbits in cruder form, by considering the action of the
continuous group L, on the charge lattice. Our purpose here is to isolate
broad families of charges which have common features. Indeed, since we are
mainly interested in the algebraic nature of the group action, we sometimes
look at the less refined action of the complexification of L, in order to avoid
subtle issues about square roots.

As will be explained in section 4.1, the action of L, on the charge lattice
is related to the adjoint representation on the Lie algebra of U,. This
representation is irreducible if and only if U, is abelian. That is the case
for the unipotent radicals we consider of every symmetry group Egz.1(R) of
rank d + 1 < 6. Otherwise, the Fourier expansion is only well-defined after
averaging over the commutator subgroup (see (4.3)), and hence does not
capture the full content of the function. We devote the rest of this section
to relating these orbits to BPS instantons in the three limits we consider.
In each particular case we will explain the origin of the non-abelian nature
of the unipotent radicals, which have charges that do not commute with the
other brane charges. A discussion of such effects within string theory can
be found, for example, in [18].

We now describe the adjoint action Vj on the unipotent radical, where &
labels the node immediately adjacent to « in the Dynkin diagram (fig. 1).
For the three parabolic subgroups of interest to us the representations of the
unipotent radical are as follows:
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(i) The maximal parabolic P, ;.
In this case & = ag and Lq,,, = GL(1) x E4. The following lists
the representations V,, for each value of 2 < d < 7.

Ed+1 Mad+1 Vad
Es E7 qZ . 56, q: 1
E7 E6 qi 1 27
Eg SO(5,5) Sq 116
SL(5) SL(3) x SL(2) | vjg:3x2
SL(3) x SL(2) | SL(2) x R* Vg : 2

The notation in the last column indicates the irreducible represen-
tations indexed by their dimensions. Both the fundamental repre-
sentation and the trivial representation of E; occur, because the
unipotent radical U,, is a Heisenberg group. The lower dimensional
representations are: the fundamental representation for Fg; a spinor
representation for SO(5,5); the rank 2 antisymmetric tensor repre-
sentation for SL(5); a bivector representation for SL(3) x SL(2);
and a scalar-vector representation for SL(2) x R™.
(ii) The maximal parabolic P,,.

In this case & = a3, which is a spinor node (following the number-
ing of figure 1) and Lo, = GL(1) x SO(d,d). The representation Vj
always includes a spinor representation of SO(d, d). It is irreducible
except in the cases of d = 6,7. The case of SO(6,6) C E7 also
includes a copy of the trivial representation, because the unipotent
radical is again a Heisenberg group; the case of SO(7,7) C Eg also
includes a copy of the standard 14-dimensional “vector” representa-
tion.

(iii) The maximal parabolic P,,.

In this case & = a4 and Lo, = GL(1) x SL(d+1). The representa-
tion V; always includes a rank 3 antisymmetric tensor of SL(d+ 1),
Vijk, of dimension 4 (d+1)d(d—1). It is irreducible when the rank is
less than 6 (see table 3) for the dimensions in the higher rank cases.

In each case, the charges form a lattice within the first listed piece of Vj,
that is, the irreducible subrepresentation coming from the “abelian part” of
Us. More precisely, these are the nontrivial representations in part (i), the
spinor representations in part (ii), and the rank 3 antisymmetric tensors v;;j,
in part (iii). This space is identical with the “character variety orbit” u_;
introduced in section 4.1.

Before proceeding with the explicit list of orbits based on the counting of
states and instantons in the next three subsections, we will recall basic prop-
erties of the space of charges. Apart from the most trivial case (with duality
group SL(2,7Z)), the %—BPS orbits only fill a subset of the whole space. For
the E4y1 groups with 1 < d < 5 the complementary space to the %—BPS
space is filled out by %—BPS orbits. For E7 and Ejg the full space is spanned
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Group first node || second node || last node
SL(3) x SL(2) | 2 0 1 0 3 0
SL(5) 4 0 4 0 6 0
SO(5,5) 8 0 10 0 10 0
Eg 16| 0 20 1 16| 0
E~ 32 1 35 7 271 0
Eg 64| 14 || 56| 8+ 28 |56 | 1

TABLE 3. Dimensions of the unipotent radical U,, for the
standard maximal parabolic subgroup P,, where ¢ =1, ¢ = 2
and 7 = d. For each node the first column gives the dimension
of the character variety u_; (see section 4.1), and the second
column gives the dimension of the derived subgroup [U,U].
The sum of the two is the dimension of U. The unipotent
radical U is abelian when the dimension in the second column
is zero; it is a Heisenberg group when this dimension equals
1 and even more non-abelian when it is > 1.

by the union of %—, %— and %—BPS orbits. The Fourier coefficients of the BPS
protected operators will have nonvanishing Fourier coefficients only associ-
ated to these nilpotent orbits. The classification of possible charge orbits
only depends on the semi-classical nature of the associated BPS configura-
tions, but does not provide any detailed information about strong quantum
corrections. Such information should be encoded in the precise form of the
instanton contributions to the Fourier modes.

The instanton spectrum will now be considered in each of these limits
in turn. In each case we will list the single-particle BPS states and single
instantons that form the basis of the charge orbits. These numbers are equal
to the dimensions of the full space of charges spanned by the orbits. Since we
will be only interested in BPS (supersymmetric) orbits we will not discuss
all the possible nilpotent orbits of F7 and Eg. A complete discussion of the
orbit structure is given in section 6.1.

3.3. BPS instantons in the decompactification limit: F,, .

The parabolic subgroup of relevance to the expansion of the amplitude in
D = 10 — d dimensions when the radius r4 defined in (2.9) of one circle of
the torus T¢ becomes large is Pe,.,» which has Levi factor Lq,,, = GL(1) x
FE,4. In this limit there is a close correspondence between the spectrum of
instantons in D = 10 — d dimensions and the spectrum of black hole states
in D+ 1= 11 — d dimensions. This follows from the identification of the
euclidean world-line of a charged black hole of mass M wrapping around
a circular dimension of radius r with an instanton with action 27 Mr that
gives rise to an exponential factor of e 2™™7 in the amplitude. In addition
to instantons of this type, there can be instantons that do not decompactify
to particle states in the higher dimension because their actions are singular
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in the large-r limit. In any dimension there are also instantons with actions
independent of r that are inherited from the higher dimension in a trivial
manner.

The spectrum of BPS black hole states in compactified string theory has
been studied extensively. We will here follow the analysis in [19,20], which
considered the spectrum of branes wrapped on T¢. This generates charged
%— and i— BPS black hole states that correspond to singular solutions in
supergravity since they have zero horizon size and hence zero entropy. In
addition, for Fg, F7 and Eg there are %—BPS states that correspond to black
holes that have non-zero entropy (as well as states with zero entropy), the
prototypes being the analysis of black holes in D = 5 dimensions (with Fg
duality group) in [21,22]. The discussion of the associated nilpotent orbits
was given in [23]. Our main interest is to extend the analysis in order to
account for BPS instantons.

We shall, for convenience, use the M-theory description starting from
eleven dimensional supergravity compactified on a (d+ 1)-torus that will be
denoted 79!, The BPS particle states in any dimension are obtained by
wrapping all the spatial dimensions of the various extended objects in super-
gravity around the torus. These include the M2-brane and the M5-brane,
together with the Kaluza—Klein modes of the metric and the magnetic dual
Kaluza—Klein monopoles. The BPS instantons can be listed by completely
wrapping the euclidean world-volumes of these objects on these tori.

3.3.1. Features of Py, , orbits.

The details of the enumeration of BPS states and instantons in the de-
compactification limit are reviewed in appendix C, the results of which are
summarised in this subsection. These states are labelled by a set of charges
that couple to components of the various tensor potentials in the theory and
span a space whose dimension is given in the second column of table 4 on
page 21 for each Levi group, M, ,, with 0 < d < 7. Correspondingly, the
dimension of the space of instanton charges is given in the third column.
Table 5 on page 22 lists the BPS orbits for each Levi group in the range
0<d<T.

Table 4 shows that, with one exception, the number of BPS instantons in
dimension D equals the sum of the number of BPS particle states and the
BPS instantons in dimension D + 1, as anticipated above. The exceptional
case is the parabolic subgroup with M,, = E7, where the number of instan-
tons, 120, is one greater than the number of BPS states, 56, plus instantons,
63 in D = 4.

The BPS orbits for each value of d = 10 — D with Levi factor Lg4, =
GL(1) x E4 are shown in table 5. The tensors v, vq, viq, vi; and the spinor
S are introduced in section 3.2. I3 and I are cubic and quartic invariants
of Fg and FE7, respectively, which are defined in terms of the fundamental
representation, ¢’, of Eg and E, as reviewed in appendices C.6 and C.7. A
general feature that is valid in for each d > 0 is that the %—BPS states fill
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= Ma,,, = Eq | # point charges | # instanton charges
10—-d (dim Ua,,,) | = # +ve roots of Eg
10A 1 1 0
10B SL(2) 0 1
9 SL(2) x RT 3 1
8 SL(3) x SL(2) 6 4
7 SL(5) 10 10
6 SO(5,5) 16 20
5 Eg 27 36
4 E; 56 (57) 63
3 FEg 120 120

TABLE 4. The dimensions of the spaces spanned by the BPS
point-like charges and BPS instantons of maximal supergrav-
ity for the Levi subgroups in FP,, ,. The parenthesis for
M,, = E7 indicates that the number of BPS states is one
less than the dimension of the unipotent radical, Uag, of the
parabolic subgroup P, of Ej.

out orbits of the form

Egiq

O%—BPS = W, (ng,...,ng) = (O, 3,6, 10, 16,27, 57) (32)

The integers nqy1 are the dimensions of the unipotent radicals, Uy, ,, listed
in table 3 on page 19; they are also the numbers of BPS states for the
symmetry groups Fg4y1 listed in table 4, apart from the case of d = 7 where
Uag 1s an element of a non-abelian Heisenberg group. As mentioned earlier,
Uas has dimension 57 while the E7 point-like states (charged black holes)
are labelled by only 56 charges. The missing charge arises from the fact that
among the 120 instantons in D = 3 dimensions (see table 4) there is one
that is a wrapped K KM with x# (the fibre coordinate in (3.1)) wrapped
around the direction that is identified with (euclidean) time. Since particle
states in D = 4 dimensions are obtained by identifying the decompactified
direction with time, the exceptional instanton is one for which 27 grows in
the cusp and its action becomes singular. By contrast, 56 of the D = 3
instantons have action proportional to 77 and are seen as point-like states in
four dimensions, and the other 63 have no r; dependence and decompactify
to instantons in four dimensions.

It is interesting to speculate about an additional line to table 5 which we
did not list, namely one for M,, = Eg inside the affine Kac-Moody group
Ey. While this latter group is infinite dimensional, one can still make sense
of the orbits in terms of the finite dimensional vector space u_ in (4.5).
Indeed, u_ here is 248-dimensional and the action of Ejg is isomorphic to the
adjoint action on its Lie algebra. Thus the orbits there coincide with the
coadjoint nilpotent orbits for Eg.
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My, , = Eq4 | BPS BPS condition Orbit Dim.
SL(2) Z - 1 0
+ 1 _ RTxSL(2)

SL(2) xR 5 VU =0 S o 1
1 + SL(2
7} Vg £ 0 R™ x 50(2) 3
1 ab ., .. SL(3)xSL(2)
2 € viavjp = 0 (RTxSL(2))xR? 5
SL(3) x SL(2) | | Wy ot £0 SL(3)xSL(2) 6
1 € viaVjp 7 SL(2)xR2
1 igklm o _ SL(5)
2 € Vij g = 0 (SL(3)xSL(2))xR® 7
SL(5)
1 ikl SL(5
i €T v v # 0 O(2,3§ o 10
1 m SO(5,5
50(5,5) 1 . 50(5.5) .
1 (ST 8)#0 O(3.4) xR® 6
973 _
1 P sl | 17
2 oI, O(5,5) xRS
and W#O. (5,5)
E, 1 I3=0, 2320 Lo __ 26
6 1 aq’ O(4,5)xR16
1 * Ee¢
3 I3#0 R* x Faa) 27
_ o'y _
Iy = 9qi0g] » =0,
3 oy Fonk 28
2 8°1y Eg xR
and Bk 7
1,=214
1 o Jo
) 2 v
B 1 and 214 #0. (0(5,6) xR3?) xR 45
8q*oqI Adi
]E7
1 _o oL Er
8 14_07 E)q% ?50 F4(4) xR26 55
1 + « _Er
3 I41>0 R™ x Foa) 56

TABLE 5. The orbits of instantons associated with the par-

abolic subgroup P,

d+1"

With one exception these are orbits

of charged black hole states satisfying fractional BPS condi-
tions that are generated by the action of the Levi subgroup,
GL(1) x Eg, on a representative BPS state. The notation is
explained in the text.

3.4. The string perturbation theory limit: F,,.

In this limit BPS instantons give non-perturbative corrections to string
perturbation theory. This involves an expansion in the parabolic subgroup
P, , with Levi factor Lo, = GL(1) x SO(d, d). This limit is analogous to the

23
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limit considered in the previous subsection with the role of the decompacti-
fying circle radius, rq, replaced by the inverse string coupling in D = 10 —d
dimensions, which is denoted 1/,/yp. In this case the orbits of BPS charges
do not correspond to black hole charge orbits.

The BPS instantons that enter in this limit are easiest to analyse in
terms of the wrapping of euclidean world-volumes of Dp-branes, the NS5-
brane and stringy K K M instantons. The Dp-branes enter for all values of
d > 0 and their contribution alone leads to an abelian unipotent radical,
Uqa,. The NS5-branes contribute on tori of dimension d > 6 and the K K M
instantons contribute for d = 7. Both these kinds of instantons render the
unipotent radical nonabelian. In section 3.4.1 and appendix D we review
the classification of Dp-brane instantons in terms of the classification of
SO(d,d) chiral spinor orbits, which leads to the following features:

e For d < 3 there is only one non-trivial orbit, which is %—BPS.

° %—BPS orbits arise when d > 4 and have dimensions 2471, the same
as that of the full spinor space.

e For d = 4 the %—BPS orbit is parameterised by a spinor satisfying
the SO(4,4) pure spinor constraint, S-S = 0, while the full eight-
component spinor space (with S-S # 0) parameterises the %—BPS
orbit.

e For d = 5 the %—BPS orbit is parameterised by a SO(5,5) spinor
satisfying the pure spinor constraint,!! ST*S = 0, and once again
the unconstrained spinor parameterises the %—BPS orbit.

e For d = 6 the %—BPS orbit is defined by a SO(6,6) spinor satisfying
the pure spinor constraint,

12
Fy = 1Y STSda' Ada? = 0, (3.3)

ij=1
where the i—BPS orbit is parameterised by a spinor satisfying the
weaker constraints
K # 0, FKr,ANFy = 0. (34)

In addition there is a %—BPS orbit which is identified with the space
of a spinor satisfying

Fo N Fy 7é 0, *Fo NFy = 0, (35)

where * is the Hodge star operator, and a second %-BPS orbit iden-
tified with the space spanned by an unconstrained 32-component
spinor.

HThe Dirac matrices I' (i=1,...2d) form a 25 1x981 representation of the Clifford
algebra C¢(d,d). We will denote the antisymmetric product of r Dirac I' matrices by
i = Lyt s, (=)W1 (™) where (—)7 is the signature of the permutation

ag.
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e For d = 7 there are nine nontrivial orbits (in addition to the trivial
orbit) that were determined by Popov [24]. The 3-BPS case is the
smallest non-trivial orbit, which is the space spanned by a spinor

satisfying
1 A - , ,
Iy = 31 Z STU*S da A da? Ada® = 0, (3.6)
) i?.]ilc:]‘

where S is a SO(7,7) spinor and I'? (i = 1,...,14) are corresponding
Dirac matrices. However, the description of the remaining orbits in
terms of covariant constraints involving F3 analogous to those of
(3.4) and (3.5) is not known to our knowledge.

We now turn to a detailed description of these orbits, which draws from
the information in section 6.1.

3.4.1. Classification of spinor orbits. A review of the method for classifying
spinor orbits of G = Spin(d, d) (the subgroup of even and invertible elements
of the Clifford group C¥(d, d) associated with SO(d, d)) can be found in [25]
(based on the original work in [26] for d < 6, and [24] for d = 7).

The following tables will summarise some facts about these orbits, which
are cosets of the form O = SO(d,d)/H, H being the stabilizer of a point in
the orbit. For each value of d we will give a representative spinor of each
orbit (labelled S° in column 1 and defined in appendix D), together with
its stabiliser (H in column 2), its dimension (dim(G/H) in column 3) and
the fraction of supersymmetry it preserves — i.e., its BPS degree N/2971 is
determined by the number of linearly independent spinors IV of the orbit
representative S°. In the following we will only list the BPS orbits appearing
into the Fourier coefficients of the coefficients we are interested in. A more
complete discussion is given in section 6.1.

The tables that follow have the following general properties:

e The bottom row is the trivial orbit and the top row is the dense
orbit of a full spinor.
1

e The first non-trivial orbit is the 5-BPS configuration with orbit

parametrized by the coset!?
SO(d,d)
O1_pps = a(d—1) (3.7)
2 SL(d) x R™2

of dimension 14d(d—1)/2. This is the orbit of a spinor satisfying the
pure spinor constraint and can be obtained by acting on the ground
state of the Fock space representation of the spinor with SO(d,d)
rotations.

12Although the orbits listed in this section are over R or C, the structures are largely

independent of the ground field. For example, this particular orbit has the same form over
d(d—1)

any field k& with characteristic different from 2, but with the R factor replaced by k= 2 .
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e The second non-trivial orbit (the NTM, or %-BPS, orbit) arises for
d > 4 and is the coset

- $S0(d, d) (38)
1-BPS— (Spin(7) x SL(d—4)) Ua—naenn '

where where Us is a unipotent group of dimension s (which is non-
abelian for d > 6).

In more detail, the specific orbits for each SO(d, d) group are as follows:

» SO(1,1) is trivial. For SO(2,2) and SO(3, 3) the action of the spin group
is transitive and there are only two orbits: the trivial one of dimension 0,
and the Weyl spinor orbit. This is in accord with the discussion in the
previous subsection.

G = S0(2,2)
SY | stabilizer H | dim(G/H) | BPS
1| SL(2)xR 2 3
0 Spin(4) 0 ——
G = S0(3,3)
SO [ stabilizer H | dim(G/H) | BPS
1| SL(3) x R? 4 3
0 Spin(6) 0 ——

» For d > 4 the action of the spin group is not transitive and there are
several non-trivial orbits represented by constrained spinors.'3

G = SO0(4,4)
SO stabilizer H | dim(G/H) | BPS
1+emss | Spin(7) 8 1
1 SL(4) x RS 7 :
0 Spin(8) 0 ——
G = SO(5,5)
SO stabilizer H | dim(G/H) | BPS
1+ e1934 | Spin(7) x R® 16 1
1 SL(5) x R0 11 :
0 Spin(10) 0 ——

L3 The symbols e;,...;, and e, .., labelling the spinor 59 are defined in appendix D.
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» The SO(6,6) case involves some noncommutative unipotent subgroups Us
of dimension s. The full spinor orbit of dimension 32 is R* x SO(6,6)/SL(6).

G = S0(6,6)
SO stabilizer H dim(G/H) | BPS
1+ el + eds + €3g SL(6) 32 0
L+eqy+ez5 Sp(6) x R 31 g
1+eiy, (SL(2) x Spin(7)) x Uy7 25 1
1 SL(6) x R1? 16 3
0 Spin(12) 0 ——

» For SO(7,7) the full spinor orbit of dimension 32 is GL(1)xSO(7,7)/(G2 %z,
G2), where G is the exceptional group of rank 2 and where H; xz, H de-
notes the almost direct product of two groups intersecting on Zy. Of the
total of 10 orbits obtained in [24], we only list the ones relevant for the
analysis of the Fourier modes discussed in this paper.

G =50(7,7)
SO stabilizer H dim(G/H) | BPS
1+ek SL(6) x R!? 44 1
L4t iy | (Sp(6) xz R)xR® | 43 | 1
1+ ei234 (SL(3) x Spin(7)) x Uay 35 i
1 SL(7) x R 22 i
0 Spin(14) 0 __

3.4.2. Neveu—Schwarz five-brane and stringy K KM instantons.

The wrapped world-volume of the NS5-brane produces a new kind of
instanton when d > 6, which is a source of Byg flux. Whereas the Dp-brane
instantons have actions of the form C/gs with C independent of g, the
wrapped NS5-brane has an action of the form C/g2. This means that such
NS5-instantons are suppressed by e=C/9: , and so, in the string perturbation
theory regime they are suppressed relative to the Dp-brane instantons. The
presence of the charge carried by this wrapped NS5-brane instanton leads to
a non-commutativity of the unipotent radical, U, , which lies in a Heisenberg
group (this is analogous to the fact that the K K M instanton in D = 3 led
to non-commutativity of the unipotent radical U,, in the P,; parabolic
subgroup of Eg). The non-commutativity arises because the presence of
a NSbh-brane charge generates a non-trivial Byg background. This affects
the definition of the D-brane charges due to the dependence on Bys of
their field-strengths, F® .= dc® + dBxs A CD and xFW = doc®) +
C®) A dBng — dC®) A Byg. Since there is only one euclidean NS5-brane
configuration on a 6-torus (the D = 4 case) the non-commutative part of
U,, is one-dimensional, so the unipotent radical forms a Heisenberg group.
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Upon further compactification on T7 to D = 3 there are 7 distinct
wrapped NS5-brane world-volume instantons, one for each six-cycle. In ad-
dition, there are 8 M-theory K K M instantons that are distinguished from
each other in the M-theory description by identifying the coordinate z# with
any one of the 1-cycles, as explained earlier. In string language, one of these
is the wrapped euclidean D6-brane that has been counted as one of the 64
components of the SO(7,7) spinor space and contributes to the abelian part
of the unipotent radical Uy,,. The other 7 are KK M instantons with %
identified with a circle in one of the 7 other directions. These are T-dual
to the 7 wrapped NS5-branes. The presence of the D6-brane and KKM
instantons leads to a higher degree of non-commutativity of the unipotent
radical, due for example, to the non-linear dependence of the D6-brane field
strength on Bys through +dC) = dC7) + 1 Byg A dC®) — 2dBys A CO) —
$Bxs A Byg A dC® + 1 Byg A dBys A dC®).

We will see later that this counting coincides with that expected from
a group theoretic analysis of the dimension of the abelian and non-abelian
(i.e., derived subgroup) parts of the unipotent radical summarised in the
columns labelled “first node” of table 3 on page 19.

3.5. BPS instantons in the semi-classical M-theory limit: F,,.

This is the limit in which the volume, V1, of the M-theory torus 74+
becomes large and semi-classical eleven-dimensional supergravity is a good
approximation. The Fourier modes of interest are those associated with the
maximal parabolic subgroup P,,, which has Levi subgroup L., = GL(1) x
SL(d+1). The constant terms in the Fourier expansion were considered in [1]
and shown to match expectations based on perturbative eleven-dimensional
supergravity.

The instanton charge space can be described as follows. The wrapped K K
world-lines do not give instantons in this limit since their action is indepen-
dent of the volume, V;,1. Wrapped euclidean M2-branes appear in D < 8
dimensions (corresponding to symmetry groups with rank > 3), while the
wrapped euclidean M5-brane arises for D < 5 dimensions (corresponding
to symmetry groups with rank > 6) and the wrapped world-volume associ-
ated with the K KM enters first in D = 3 dimensions (i.e., for symmetry
group Eg). These instanton actions have the exponentially suppressed form
exp(—C/V§,,), where C is independent of Vg1 in the limit V4,1 — 0, and
a = 3/(d+ 1) for the wrapped M2-brane, a = 6/(d + 1) for the wrapped
M5-brane and a = 7/(d + 1) for the wrapped K K M.

The space spanned by the 3-form, vj;;;; that couples to M2-brane world-

sheets wrapping 3-cycles inside 7%+! has dimension
(d+1)!
3 (d—2)1"

which equals 1, 4, 10, 20, 35, and 56, respectively, for tori of dimensions 3, 4,
5, 6, 7, and 8 (corresponding to the duality groups Es, ..., Eg). Similarly, the

Dl (3.9)
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space of euclidean five-branes wrapping 6-cycles inside 7%t! has dimension

(d+1)!

Dd+1 _
M5 61(d — 5)!”

(3.10)

which equals 1, 7, and 28, respectively, for d4+1 = 6, 7, and 8 (corresponding
to duality groups Fg, F7, and Eg). Finally, a finite action K K M instanton
only exists if there are 8 circular dimensions, so it only contributes for the
Fg case. As argued earlier, there are 8 distinct objects of this kind since 27
is distinguished from the other circular coordinates.

Again these dimensions can be compared with those listed in section 6.1
and summarised in table 3 on page 19 under the heading “second node”.
The wrapped euclidean M 2-branes contribute the dimensions of abelian part
of the unipotent radical for this maximal parabolic subgroup. In fact the
numbers in the left-hand column of the second node heading are equal to
Dﬁ; for all 0 < d < 7. The M5-brane charge space of dimension Dﬁ;,
equals the dimension of the non-commutative part (i.e., derived subgroup) of
the unipotent radical for Fg and E;, while for Eg there is also a contribution
of 8 from the K KM instantons. In this case the non-abelian component of
the unipotent radical arises from the K KM instanton dependence on the
3-form A®) configurations (analogous to the way the Byg configurations
induced the non-commutativity in the previous section).

Although we have given a list of dimensions of the space spanned by the
orbits, in this case we have not analysed the BPS conditions to discover how
the complete space decomposes into orbits with fractional supersymmetry.
However, the latter part of this paper analyses the complete orbit structure
for the subgroup P,, and the list of orbits is given in table 8 on page 55.
From this we can identify, for each value of d, the minimal (%-BPS) and
NTM ($-BPS) orbits, as well as many others that arise when d > 5 (i.e. for
E67 E7 and Eg)

4. EXPLICIT EXAMPLES OF FOURIER MODES FOR RANK < 5.

4.1. Fourier expansions for higher rank groups. Suppose that ¢ €
C>(I'\G) is an automorphic function, and that A C G is an abelian sub-
group which is isomorphic to R for some m > 0. If ' N A corresponds
to a lattice in R under this identification, then ¢’s restriction to A, ¢(a),
has a Fourier expansion. The same is true for any right translate ¢(ag), for
g fixed. A prime example of this is A equal to the unipotent radical U of
a maximal parabolic subgroup P = LU of GG, when U is abelian and I' is
arithmetically defined:

oug) = Yo, ol = | N (@
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where the sum is taken over all characters y of U which are trivial on I'NU.
In particular the special case u = e,

d9) = > oxl(9), (4.2)

reconstructs ¢ as a sum of its Fourier coefficients ¢,. When U fails to be
abelian the coefficients ¢, still make sense, though ¢ is no longer a sum of
them. Instead, it is the integral of ¢ over the commutator subgroup'* [U, U]
of U which has an expansion

du = . ‘
/I"O[U,U]\[MU] d)(ug) U ZX: ¢x(g) ; (4 3)

in other words, the Fourier expansion only captures a small part of ¢’s
restriction to U — the part which transforms trivially under [U, U].

A character on U can be viewed as a linear functional on its Lie algebra
u, via its differential. In our case, in which U is the unipotent radical of
a maximal parabolic subgroup P = F,; for some simple root a;, u has a
graded structure

u = uy Guy d--- (4-4)

in which uy is the span of root vectors for roots of the form o« = ) ¢, with
c; = k. The Killing form exhibits the dual u* of u as the complexification
of the Lie algebra

U = U1 Du_o P ---. (4.5)

The commutator subgroup [U, U] has Lie algebra us @ ug & -- -, so the dif-
ferential of a character is sensitive only to u;. Again through the bilinear
pairing of the Killing form, its dual space uj is isomorphic to the complexi-
fication u_; ® C of u_;. The exponential of any such a linear functional is a
character of U, and hence u_; ® C is known as the character variety of U.
Now let x be a character of U which is invariant under the discrete sub-
group I'NU. The above correspondence guarantees the existence of a unique

Y € u1®C suchthat x(e¥X) = B (4.6)

where B(-,-) is the Killing form. Decompose P = LU, where L is the
Levi component. Then formula (4.1) and the automorphy of ¢ under any
v € I'N L imply that

ox(vg) = / d(y tuyg) x(u) " du

CNU\U @

= / d(ug) x(yuy™H) " du.
PNU\U

14The commutator subgroup [U, U] is the smallest normal subgroup of U which contains
all elements of the form [u1,uz], for ui,us € U.
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1

Here we have changed variables u +— ~yuvy™", which preserves the measure

du. In terms of (4.6)
X, -1y _ Xy B(YaXyTh)  _ B(YT'Y9,X)
x(verv™) = xl(e ) = e = e ;o (4.8)
because of the invariance of the Killing form under the adjoint action; the
character in the second line of (4.7) is hence equal to the character for the
Lie algebra element 7 'Yy e u_; ® C.

Consequently, the Fourier coefficients (4.1) are related for characters y
which lie in the same I' N L-orbit under the adjoint action on u_; ® C. It
should be remarked that u_; — like each space u; — is invariant under the
adjoint action of L, and typically furnishes an irreducible representation of
L. The complexification L¢ of L likewise acts on u_; ® C according to
an irreducible representation, and carves it up into finitely many complex
character variety orbits. Similarly, the adjoint action of I' N L on the set
of characters of U which are trivial on I' N U refines these complex orbits
into myriad further “integral” orbits. Those characters naturally form a
lattice inside of iu_1 C u_1 ® C, and this last action is that of a discrete
subgroup of L on a lattice, e.g., the action of GL(n,Z) on Z™ in a particular
special case. These are more subtle to describe because of number-theoretic
reasons; indeed, even describing I' N L for a large exceptional group is quite
complicated. Recall that this is the charge lattice from section 3.

Each of these complex character variety orbits (and hence each of the
I' N L-orbits on the set of characters that are trivial on I' N U) is thus con-
tained in a single (complex) coadjoint nilpotent orbit. It therefore makes
sense to categorize the complex character variety orbits by giving their base-
points and dimensions. This information was provided in section 3, based
on the analysis of BPS states in string theory. This analysis focused on
the supersymmetric orbits and did not cover all possible orbits. A system-
atic and detailed analysis of the remaining orbits for the maximal parabolic
subgroups we study will be given in 6.1. These have long been known for
the classical groups by the study of “classical rank theory”; the paper [27]
contains a listing for all maximal parabolic subgroups of exceptional groups.
In addition, the integral orbits are also known in many cases: Bhargava [28,
Section 4] and Krutelevich [29] treat certain cases, with additional cases to
appear in forthcoming work of Bhargava.

Note that the calculation (4.7) shows that each coefficient ¢, — which is
determined by its values on L — is automorphic under any ~ that lies in both
I' and Stabp(x), the stabilizer of x within L. In terms of the differential,
these are the elements of I'N L for which the adjoint action fixes the element
Y € u_; ® C from (4.6). One can therefore use (4.7) to write the sum of
oy (g), for x ranging over one of the integral orbits, as the sum of left -
translates of a fixed ¢,, where v now ranges over cosets of I'" L modulo the
stabilizer of this fixed character. The vanishing of any Fourier coefficient ¢,
as a function of L is equivalent to that of all Fourier coefficients in its orbit.
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The following subsections (together with details that are presented in
appendix E) concern some specific, explicit examples of the Fourier modes

of the coefficient functions 5((5 8) and 8((5 3) for the low rank duality groups
with d < 4 (i.e. D > 6). In these cases standard, classical techniques can
be used to obtain exact expressions, including the arithmetical divisor sums
that appear. These techniques have the virtue of being relatively simple in
these special low rank cases; the higher rank cases of Eg, F7 and Eg will
be discussed in the later sections, although without precise calculations —
our chief contribution is to use representation theory to show that many of
them vanish.

In each particular case we will explicitly identify the character y, which
lies in the lattice of characters of U that are trivial on I' N U, with a tuple
of integral parameters m;, and use the notation

FIO (mi) = (5((5‘1)))x and  F§o(mg) = (EBS,) ~— (49)
to refer to the Fourier modes of 5((5) and Eg <> respectively.

The precise details of these Fourieg)coeﬂ“icients could, in principle, be inde-
pendently checked against an explicit evaluation of instanton contributions
to the graviton scattering amplitude, but in practice such detailed verifica-
tion is very difficult. However, most details of the contribution of %—BPS
instantons to these coefficients in limit (i), the decompactification limit in
which r4 > 1, can be motivated directly from string theory. This is the
limit in which, for these low rank cases, the instantons are identified with
wrapped world-lines of small black holes of the (D + 1)-dimensional theory.
The asymptotic behaviour can be understood by studying the fluctuations
around %-BPS D-particle configurations in a manner that generalises the
arguments of [30], leading to an expression for the modes in D =10—d <9
dimensions of the form
—Sp(k)

D)a r n e
Foo ™ (k) = (722)" orp(k) — 5 (1+0(22)). (410)

Sp(k) 2
Here Sp(k) = 2r|k|rgm. is the action for the world-line of the D-particle
2

wound around the circle of radius r4 and m1, which is a function of the
2

moduli, is the mass of a “minimal” %—BPS point-like particle state in D 4 1
dimensions — that is, a state that is related by duality to the lightest mass
single-charge D-particle. Such states can form threshold bound D-particles
of mass pmy. The divisor sum, oy (k) = k" 0_n (k) = 3_ ;. ¢", sums over the

winding nur?nber q of the world-lines of such D-particles (where k = p x ¢q)
and can be identified with a matrix model partition function. The factor
of Sp(k)P=8)/2 comes from integration over the bosonic and fermionic zero
modes and np is a constant that depends on the dimension D. Because
of the high degree of supersymmetry preserved by the %—BPS configuration
it turns out that this approximation is exact in several cases. We have
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not completed an independent quantum calculation of the %—BPS instanton

contributions, which are more subtle, but we hope to discuss these in a
separate publication.

42. D =10B: SL(2,7Z).
The simplest nontrivial (but very degenerate) example arises in the case of
the IIB theory with D = 10, where the discrete duality group is SL(2,7).'

In this case the %— and %—BPS interactions, 5(%%)) and 8((11’%)), are given by

Eisenstein series [31, 32]
0 =203) ES" Py, el =¢5) BP9, (4.11)

(0,0) 3 (1,0) 5

where 2((2s) E5(£2) is a non-holomorphic Eisenstein series and Q := Q; +
iQ2 = CO +i/ /ym.

It is useful to parametrize the coset SL(2)/SO(2) (the upper half plane)
associated with the continuous symmetry group, SL(2,R), by the coset de-
scribed by the parabolic subgroup consisting of matrices of the form

1
1 /1 Q 2,2 0 1 Q
e — - <o Ql> _ (%0 (0 11) L (412
02 2 0 @
where the (somewhat trivial) Levi factor L is the diagonal GL(1) factor and

the second factor, which depends on €21, is the unipotent radical, U. The
SL(2) Eisenstein series can be expressed as

s Q3
20(2s) ESMP(Q) = D (mipe) = >, m’
My€72\{0} (m,n)€Z2\{0} (4.13)
4.13
where the SL(2,Z)-invariant (mass)? is defined by
m + nQ?
m%L(Q) = My-gy- My = Im & nQ2f” 0 | , (4.14)

where go = e - el and My = (n,m) € Z*\{0}.
It is straightforward to determine the Fourier coefficients using the stan-
dard expansion of such series in terms of Bessel functions,

By(Q) = 3 FSHD) (n) 2 (4.15)
nez

The zero Fourier mode is

2s —1
P00 — 05+ 2=l (4.16)

15The type ITA theory has no instantons, which means that only the 0-dimensional
trivial orbit contributes.
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where &(s) = 7~%/?T'(5/2)((s). The non-zero mode with phase e is

1
_ 295 oan(nl)
£(25) |psmz T2

where gq(n) = 3 g, d* is the divisor function, and the non-zero mode
with frequency n is proportional to K'__ 1, which is a modified Bessel function
2

of the second kind.

In this degenerate case the only limit to consider is {2 — oo, which is
the limit of string perturbation theory organized as a power series in €2, 2
corresponding to the genus expansion of a closed Riemann surface. In this
limit the expansion of the coefficient functions is dominated by the two

FF P (n)

(27|n|Qs), (4.17)

power behaved constant terms in the zero mode FfL@)(O) in (4.16), while
the non-zero modes have asymptotic behaviour at large (9,

FSLO) () = m e~2Ini% (14 0(05")) | (4.18)

where the asymptotic expansion of the Bessel function

K,(x) = \/Ze_x (1+0@=™), (4.19)

for > 1 has been used.

The two power behaved terms have the interpretation of terms in string
perturbation theory, which is an expansion of y1¢, the square of the string
coupling constant. Furthermore, the Eisenstein series with s = 3/2 and with
s = 5/2 have the correct power-behaved terms to account precisely for the
known behaviour of the R* and 9*R* terms in the low energy expansion of
the four graviton amplitude in 10 dimensions. In [1] it was shown that this
is in agreement with string perturbation theory extends to the higher rank
cases where the pattern of constant terms is more elaborate. Furthermore,
the exponential terms in the expansion in (4.18) correspond to the expected
D-instantons that arise in the D = 10 type IIB theory. This illustrates the
fact, common to all BPS instanton processes, that the exponential decay of
a Fourier mode is proportional to the charge n that determines the phase of
the mode. The correction term of order Q! in (4.18) indicates perturbative
corrections to the instanton contribution given by an expansion in powers of
the string coupling constant that corresponds to the addition of boundaries
in the Riemann surface.

In this case the only instantons are %—BPS D-instantons — there are no
%—BPS instantons in the ten-dimensional type IIB theory. However, it is
known from string theory arguments that the Eisenstein series at s = 3/2 is
associated with the %—BPS R* term while the series at s = 5/2 is associated
with the i—BPS 0*R* contribution. This leaves unresolved the question as
to what features of these series at special values of s encode the fraction
of supersymmetry that these terms preserve? This must be encoded in the
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measure. Indeed in the s = 3/2 case it was argued in [30, 33] that the
measure factor o_s(|n|) arises from the 3-BPS D-instanton matrix model,
which was verified in [30,34]. Presumably, the s = 5/2 measure should arise
in a similar manner.

In most of the higher-rank examples that follow there is a less subtle
distinction between the %—BPS and i—BPS cases since in typical cases there
are %—BPS instanton configurations that break % of the supersymmetry. As
will be shown in the following, these generally enter into non-zero Fourier

modes of the coefficient 5((1D 3) for 3 < D < 10 (although, as will also be seen

later, only the %—BPS orbit contributes in the P,, parabolic with D = 7,8,9).
The subtleties of the measure factor are not required in order to identify the
fraction of supersymmetry preserved in such cases. However, there are no %—
BPS configurations for D > 5. Therefore, for D > 5 the distinction between

the coeflicient &€ (é) 1) and the ones which preserve more supersymmetry is

again not determined by the spectrum of instantons that contribute in the
various limits under consideration. This indicates that the -BPS nature of

8
£(D)

0.1) must be encoded in the form of the measure factor.

43. D=9: SL(2,7).
The coefficients of the R* and 9*R* interactions in this case are [2,35, 36]

_3 4
g((g,)o) =20(3) vy * EgL(Q) +4¢(2)ry, (4.20)
£y = COwy T By 4 C(l);()va“gm) + C(l);()ul T, (421)

7
where v1 = ((5/rp)? = g3 (’I“A/f‘iqo)% with rp the radius of the compact
dimension in the IIB theory and r4 = f2/rp the radius in the IIA the-
ory. The ITA string coupling, g4, is related to that of the IIB theory by
ga = g ls/rp. Furthermore, the D = 9 theory can be viewed as the com-
pactification of M-theory from 11 dimensions on a 2-torus, 72, with volume

_ 23 2
Vo =17 1.

The limit 77 — 0 is the limit in which the R™ parameter of the continuous
symmetry, SL(2,R) x R*, becomes infinite, which is the decompactification
limit to the D = 10 IIB theory (rp — oo) while the limit vy — oo is
the semi-classical M-theory limit in which, Vs, the volume of 72 becomes
infinite. Equations (4.20) and (4.21) show that there are no non-zero modes
in either of these limits. Since 29 = g;er /ls, the perturbative IIB limit,
Q9 — 00, is also the D = 10 type ITA limit, r4 — oo. This is the limit in the
parabolic subgroup GL(1) x U of the SL(2) factor (given in (4.12)) in which
the parameter in the GL(1) Levi factor in the SL(2) becomes infinite. The

non-zero Fourier modes of the expression for 5((3)0) in (4.20) that contribute

in this limit are obtained by using the mode expansion of E3/5 given in the
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previous section in (4.20), giving

(9) — 9)  —2irkQ
Flan (k) = /[Ol]dmf;(ome )
1 _3
—  87Q3 y1702|(ILT|)K1(27T|mQ). (4.22)

The limit 9 — oo in the Bessel function in the second line gives the D-
instanton contribution to the coefficient of the R* interaction in the type
IIB perturbative string theory limit, which has the form, after reinstating
the power of ¢y in the effective action, (2.5),

) TR e
2 FO k) =B \Bro_o(ln]) ————
fo T o0 = 7 (inD (27 |k| Qo) 2

—27|k| Qs
(14+0(92,1), (4.23)

where the factor of rp/ls shows that this term survives the limit rg — oc.
On the other hand, taking the large radius r4/¢19p — oo limit in the ITA

case gives

—27|klram1

1 ro

ly (0,0)

(1) =~ VEr (k) (1+O(tro/ra)) » (4.24)

(27T|k’TAm%)_%

where m 1= 1/(¢sga). This expression reproduces the asymptotic behaviour

for the 1-BPS contribution given in (4.10) with D = 9, np = —1 and
Sy = 27|k|ram 1. The exponent has the interpretation of the action of the
euclidean world-line of a type IIA DO-brane of charge p wrapped ¢ times
around the circle of radius 74, where kK = p x ¢ (and the sum over ¢ is in

a—2([k[))-

A similar expansion of the two Eisenstein series in (4.21) gives the mode
expansion of the coefficient S((? )0) as the sum of two terms. The occurrence of

both the s = 3/2 and s = 5/2 series demonstrates that the 9* R* interaction

contains a piece that is %-BPS as well as a piece that is %—BPS. Repeating the
9)

above analysis for the i—BPS part of 8((1 0) (the Es/o term in (4.21)), making
use of (4.18) with s = 5/2 gives (after multiplying by £3 to reproduce the
0*R* interaction in (2.5))

_1 eA 3 e*Sg(’n)
BFD 0 ~ et (B2) o S
9Y(1,0) 107947 {7, (So(n))—3

(4.25)

As with the D = 10 examples, the distinction between the s = 3/2 and
s = 5/2 Eisenstein series is not seen in the instanton orbits (both series
contain the same 1-dimensional orbit) but must be encoded in the different
measure factors, such as the divisor function, which takes the form o_4(|k|)
when s = 5/2. In contrast to the 3-BPS case we have not derived (4.25), or
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the analogous expressions for D < 9 obtained below, by explicitly evaluating
the %—BPS instanton contributions.

44. D=8 SL(3,Z) x SL(2,7Z).
(8)

The coefficient function 5(0 0) is given in terms of Eisenstein series by

[1,2,36,37]

E{op) = lim <2C(3+2 ) BSEY) ag(2- )Effj”(b{)) . (4.26)

’2

It was shown in [2] that the poles in € of the individual series in parentheses
cancel and the expression is analytic at € = 0. The coefficient function 5((f )0)
is given by

e® = ¢(5) B 4 C( ) psLe) ES" P . (4.27)

(170) 06172 a1;— 5

We have suppressed the dependence of the SL(3) series on the 5 parameters
of the SL(3)/SO(3) coset, but have indicated that the SL(2) series depends
on U, the complex structure of the 2-torus, T? (see appendix E for details).

(i) The maximal parabolic P,, = GL(1) x SL(2) x RT x Uy,

This is relevant for the decompactification limit r9/f9 — oo. The Fourier
modes, which are integrals with respect to the U,, factor in (E.16), get
contributions from the sum of the modes of the SL(3) and SL(2) Eisenstein

series. The modes of &£ (D)

(0,0) are defined by

F®)a

(00) (kp1, kpa, k') = / dC'® dBsdity e~ 2k C® +p2Bxs) =20kt ®)
0.1)

(0,0)°
(4.28)
where ged(p1,p2) = 1 and C®, Bng and U are the components of the
unipotent radical in (E.16). Using the definition in (4.26) the Fourier modes
of 5((3,)0) are given by the sum of the Fourier modes of the SL(3) and SL(2)
series defined in (E.17) and (E.19)'

f((o)m (kp1, kp2, k) = 2¢(3) F, SL(g)aQ(kpl,kp2)+4C( 2) FPE A1) (4.29)

Using the expression in (E.20) with s = 1 for the SL(2) Fourier modes and
Uy =r9)r1 =19/1B We obtain!”

FMO0) = dmo_y (i) eI (4:30)

The exponent can be identified with minus the action of the world-line of a
%—BPS charge p KK state wrapped ¢ times around a circle of radius ry, with
p x ¢ = k’. The divisor sum o_;(|k’|) weights the different values of p with

16The nodes on the SL(3) Fourier coefficients are labelled in the notation of the stan-
dard Dynkin diagram for SL(3).
17Here, and in the following we will use the type IIB description, in which ry = rp.
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a factor of 1/p. The expression (4.30) agrees with the general asymptotic
formula (4.10), but it is notable that in this case there are no perturbative
corrections.

The SL(3) part is obtained from (E.18) with s = 3/2,

—2r k| lp2+pP12| 1

FSED () hpg) = 2oy (k) e > VR T (4.31)

2

where ged(p1, p2) = 1. This expression reproduces the asymptotic behaviour
(which is again exact) for the 2-BPS contribution given in (4.10) with D = 8.
The exponent can be written as

p2 +p192| 1
|g— = =2m|k|lramp, p, , (4.32)

VQy Vs

where the £k = 1 contribution is minus the action for the world-line of a state
of mass

— 27|k

T
My bs = P2 + P19 - (4.33)

wound around the circle of radius rp. This is the mass of a (non-threshold)
bound state of po fundamental strings and p; D-strings wound around the
dimension of radius r1. In the limit r9/fg — oo the Fourier coefficients
with different p;’s and pso’s fill out an orbit under the action of the discrete
subgroup, SL(2,7Z), of the Levi factor, which is the nine-dimensional dual-
ity group. This is made manifest by expressing m,, p, in nine-dimensional
Planck units,
m Vo — [p2 + P19 3/
P1,p2 *9 \/Qi 27 1 )
where SL(2,7Z) acts with the usual linear fractional transformation on (2
and leaves vy invariant. For & > 1 in (4.31) describe world-line actions of
threshold bound states of mass p x my, ,,, wound ¢ times around the circle
of radius ro with £ = p X ¢ and the divisor sum weights the contributions
with a factor of 1/]q|.

Thus, in the decompactification limit these instantons correspond to the
expected contributions from the point-like %—BPS black hole states in nine
dimensions listed in appendix C.2. The Kaluza—Klein %—BPS states in (4.30)
are in the singlet v and the (p, ¢)-string bound state in (4.31) in the doublet
vg of SL(2). These contributions come from separate configurations (v = 0,
vg # 0) and (v # 0, v, = 0) so that the condition vv, = 0 is satisfied.
®)

(4.34)

The Fourier modes of the coefficient &,/ in the P,, parabolic are defined

(10)
as
Fy ep, kpa, k) o= | dCP dBsduty =2k o1 mbs)—2imkth g8
(1,0) 01 (1,0)
(4.35)

where we have chosen to extract the greatest common divisor k so that

ged(pr, p2) = 1. Note that, unlike in the case of 5((3)0), the integral does not
(8)
1

split into the sum of two terms even though U,, is block diagonal since S( 0)
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contains the product of two FEisenstein series. Substituting the expression
(4.27) for 5((1 )0) (which includes a term quadratic in Eisenstein series), it is
straightforward to perform the Fourier integration with the result

vy prkpa,K) = C(5) FLE0 (kp, o) (4.36)
274 o
T 135 La ;(iz(kpl’km)FfL(Q)(k’)

The k = 0 or ¥’ = 0 terms are determined by §—BPS instantons arising from
the winding of the nine-dimensional %—BPS states, listed in appendix C.2,
around the decompactifying circle.

The i—BPS part is contained in the k # 0, ¥’ # 0 modes of the second
contribution in (4.36). Applying (E.22) with s = —1/2 and s’ = 2, and
after extracting the greatest common divisor ¢ = ged(k, k') and setting k =
lq1, k' = Lqy with ged(qr,g2) = 1, these can be written as

iga (1eqr]) o—3(|¢ga)) L+ 27|lqy||p2 + p1QTy 14 27|lga|Us
1080 T%’ S ’ Ip2 + p1Q3 Us
x exp(—2m|lq1||p2 + p1QT2 — 27|lqa|Us) . (4.37)

3 1
Taking the limit r9/fg — oo and recalling that T = v, " Q, ? ro/ly and
4

Uy = ro/r1 = 1] 12/lg, the leading behaviour of this expression is

C( ) 54 exp(—27r€r2m%)
3 0 1 03(/a1]) o3(|g2) p—— —.  (4.38)
(11| 2% 0 )2 s (] )2

where the i—BPS mass is given by

_ lp2 +p1Q| -2 i
mily = |Q1!W vy T+ g2l v, (4.39)
or in string units
1 1
mils = |q1||p2 + P15 + |g2| = . (4.40)
4 68 Tl

Thus, as anticipated, the instanton action is described by the world-lines
of the constituents (in this case bound states of F' and D strings and KK
charge) of -BPS bound states on a circle S' of radius r5, Much as be-
fore, the divisor functions encode the combinations of winding numbers and
charges carried by these world-lines although the combinatorics are here

more complicated than in the %—BPS and deserve further study.

(ii) The maximal parabolic P,, = GL(1) x SO(2,2) x Uy,
This is relevant to the string perturbation theory limit, in which the
string coupling constant, yg gets small. The unipotent factor U,, in (E.23)
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is parametrized by (C®),€Q;). In this case the non-zero Fourier modes of

5((5)0) are obtained from (E.25) with s = 3/2,
Flom (kpr, kpa) = /[ . O dCP e 2 CE g (4.41)
0,1
4 T T
_ Am oo(lk) VT K <27r\k| lp2 + p1 |> '
Vs |kl p2 +piT| VTays

Its asymptotic form for yg — 0 is given by

3
T 2 _onlk |[pa+p1 7|
v12ys e M

27
lim F& (kpy kpo) ~ & ook <
( P1 p2) Us 2(‘ |) |/€||p2+p1T|

ys—0 (0,0)
(4.42)
where ged(p1,p2) = 1 and the asymptotic form of the Bessel function has
been used in the last line in order to extract the leading instanton con-
tribution in the perturbative limit, yg — 0 with 75 fixed [2] (recalling
ys = (23Ty)~! is the square of the string coupling). In this limit these
non-perturbative effects behave as e "¢/V¥ as expected of D-brane instan-
tons. The p; = 0 and ps # 0 terms are D-instanton contributions and those
with p; # 0 are the wrapped D-string contributions of charge (p1,p2) that
are related by the SL(2,Z) action on the 7' modulus, which is part of the
perturbative T-duality symmetry.

The Fourier modes of 8((?7)0) are given by

®ar . 2)  —2irk(p1C@ +pay) o(8)
.7:(1’0)1 = /[0 . dQldC( ) e (P1C* +p2 1)5(170) (4.43)

16¢(2) oa(|k|) T < |p2 +p1T|>

= Ky | 27|k| ———

y§ k|2 |p2 + piT|? ? il VI2ys

8¢(4)E2(U) oa(|k) [p2 + piT| ( 2 +p1T|)

+ Ki | 27 |k| ———

Y I A G L P

with ged(p1,p2) = 1. In the limit of small string coupling, ys — 0 and
recalling that g = £ yé/ 6, the first line on the right-hand side behaves as

5
2 8¢(2 T 2 T
&5 (e ) e (—om 22 2) o
s ys k| |p2 + 1T VIys
1_

which is characteristic of the 5-BPS configuration due to a euclidean world-
sheet of a (p1, p2) D-string wrapped k times around T2,
The second line behaves in the small string coupling limit ys — 0 as

N[

s Vsl >_ ( [p2 +P1T|>
S A4 E>(U)o_o(|k _ ex —2m|k|—/———— | ,
Eg C( )yS 2( ) 2(’ D <|]€| |p2 +p1T\ p ‘ | \/TZ/S

(4.45)
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which is suppressed relative to (4.44) by y2, which is four powers of the string
coupling. As in the D = 9 and D = 10 cases, the distinction between the
%—BPS and %—BPS cases is not seen in the argument of the Bessel function,
which determines the exponential suppression at small ys. In other words,
there are no %—BPS instantons so the second term on the right-hand side
of (4.43) has the same exponential suppression in the ys — 0 limit as the
first line. The distinction between the 3- and 3-BPS contributions in (4.43)
again lies in the properties of the measure rather than in the spectrum of

instantons.

(iii) The maximal parabolic P,, = GL(1) x SL(3) x U,

This corresponds to the limit in which the volume of the M-theory 3-
torus, Vs, gets large. The unipotent factor U,, (E.26) depends only on U
and the Fourier modes in this case only involve the modes of the SL(2,Z)
Eisenstein series,

]:((g,)o(? = o ALy e~ 2 Kt 5((3)0) = 2oy (|k]) e 2 IkItez (4.46)

Recalling [2] that Uy = V3/¢3, is the volume of the M-theory 3-torus, we see
that these coefficients are exponentially suppressed in V3, and correspond
to the expected contributions from euclidean M2-branes wrapped k times
on the 3-torus.

Furthermore, the divisor function reproduces the one derived from a direct
partition function calculation in [38]. The form of this measure factor can
also be seen from a simple duality argument using the fact that the wrapped
M2-brane instanton is related to the Kaluza—Klein world-line instanton by
the SL(2,Z) part of the duality group. This duality interchanges 7" and
U and, hence, the factor exp(—27|k|/v/Qara) = exp(—27|k| T2) in (4.30) is
related to exp(—27|k|Us) in (4.46). This explains the fact that the measure
factor, o_1(|k|), is the same in both these equations.

45. D=T: SL(5,7).

In this case the coefficient functions are given in terms of Eisenstein series
by [1,2]

iy = 2(3) EjLE;") : (4.47)
Y sns) . 24C(4 —2€)¢(5 — 2¢) _s1(5)
8(170) B 221(1) <<(5 - 26)Eo¢1;%+e + 2 Ea4;g—5 (4‘48)

It was shown in [2] that the pole of the individual series in the parenthesis
cancel in the limit ¢ — 0 and the resulting expression is analytic at € = 0.
The detailed properties of the Eisenstein series that appear on the right-hand
side are reviewed in appendix E.2.
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(i) The maximal parabolic P,, = GL(1) x SL(3) x SL(2) x U,,

This is the decompactification limit in which r3/fg = r? — oo (where
r is the GL(1) parameter that parameterises the approach to the cusp).
Recalling the relation between the volume of the 3-torus v3 and the volume
of the 2-torus v, [2], the limit under consideration is one in which vz =

5
v$ (r3/ls)~2 — 0. The unipotent radical is abelian and has the form

_ (2 @
Ua, = <02 I;) : (4.49)

where I, is the rank n identity matrix and )4 is the 2 x 3 matrix defined
in (E.37).
Specialising the Fourier modes of ngﬁg"’) that are given in (E.40) to the

case s = 3/2 and using the relation between the GL(1) parameter and the

(7)

radius of compactification, r? = r3/fg, gives the Fourier modes of 5(0 0)

in (4.47)

]:((g)OC)M(k, Ny) = / 43 Bsd3C® o~ 2imk tr(Ny-Qu4) 5((5)0)
’ [0,1]6 ,
4
rs3 5
= <€> 471'(70(|l<:\)Ko(27r]k|7"3171%)7 (4.50)
8

where gcd(](ﬂ;) = 1 and the support of the non vanishing Fourier coefficients
is determined by the rank 1 integer-valued matrix Ny in M (3, 2;7) of the
form Ny = m” n with n = (n;) € Z* and m = (m,) € Z>. This matrix
satisfies the relation

2
Z Eab(]ivfﬁl)ia(]i’]'4)jb = 07 Vlv.j = 17 27 3 (451)
a,b=1
with €120 = €91 = —1 and €7 = €99 = 0, which is precisely %—BPS condition

discussed in appendix C.3. The argument of the Bessel function in (4.50) is
proportional to the mass of %—BPS states, where

mQ% lg = tf(9§1N4g2NZ) = m%L(Z) X m%L(S) ) (4.52)

where m%L@) is given in (4.14) and m%L(g) is given in (E.8). This is the
mass of a %—BPS bound state of fundamental strings and D-strings with
Kaluza—Klein momentum. This expression is covariant under the action

of the symmetry group SL(3) x SL(2) of the Levi factor. In the limit

r3/ls — 0o the expression for the Fourier modes ]:((07 )00;4 takes the form

—27|k|rsm1
e

Jk|rsma
2

which is in accord with the behaviour described in (4.10) with D = 7.

T3

f((g,)o?%m = <€8> 21 oo(|k|) (1+0(ls/r3)),  (4.53)
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The Fourier modes of 5((1 )0)

as

in (4.48) in this parabolic subgroup are defined

(4.54)

(7)o 3 3 —2imk tr(N. (7)
f(m) (k, Ny) := /[01]6d Bnsd*C® e tr( 4Q4)5(1 8

with ged(Ng) = 1. The expression for these Fourier modes is obtained by
adding (E.40) for the series Eﬁﬁ@ to (E.55) for the series E,iﬁga in the
correct ratio and setting s = 5/2.

The Fourier modes of the Eisenstein series ng;gg’) will be computed by
noting that this series can be represented as the Mellin transform of the
B0 geri kin f the following proposition.

ar:d series, making use o g prop

We consider H = vg~7, where v € SL(d,Z) and g is the SL(d) matrix
parametrizing the coset space SL(d)/SO(d). Letting Hj, be the bottom right
k x k minor of H the general minimal parabolic Eisenstein series associated

with the minimal parabolic subgroup P(1,...,1),

SL(d >\d k+1 )\d k1
Eﬁ;sf,.)..,sul = > H (det Hy) , (4.55)
v€SL(n,Z)/B(Z)

Here we have set 2sp = Ag—gy1 — gk — Ll for 1 <k <d—1,and ¢ =1
if sp Z0and ep = 01if s =0 and B = Zf;ll €;3; where [3; are the simple
roots of SL(d) with the usual labelling.

Proposition 4.1. The SL(d) series ngéd) is given by the Mellin transform

of the SO(d, d) series E Old.d)

Ldj2o1 according

4¢(25)€(2s — 1) ESD — 2¢(d — 2) / " av vl pSo. "Dy gy, (4.56)
0

B2;s 1,5 1

where G = V' g parametrizes the coset SO(d, d)/SO(d) x SO(d) and det g =
1. An equivalent integral representation for the series ESdL_(ld,L is obtained by
the use of the functional equation.

Proof. In [2, appendix B.2] an integral representation for these SL(d) Eisen-
stein series was given. The construction considered the integral

A 2s—1 d*r
Is(A, g) == ; avv f*F(dd)(Vg, 7) (4.57)

where A > 0, I'(qq)(G;7) is the genus one lattice sum for the self-dual
lorentzian lattice of rank d. The metric G parametrizing the coset
SO(d,d)/SO(d) x SO(d) is decomposed as G = V g with detg = 1 and
g parametrizes the coset space SL(d)/SO(d). This integral was evaluated
in [2, appendix B.2] with the result

AQS N E A2s—1 SL(d)

555 — 1 Lenl +4€(25)€(2s — 1) B30 (4.58)

;S

IS<A7g) - 2<<23)
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. . S0(d,d)
On the other hand we have the following representation of the Eg s
series [2, appendix C]

d,d d2
262 BS(G) = [ T 0Tua(@  (459)

T

Since ESL( ) = 1 this implies that the series E (d)( ) is the Mellin trans-

form with respect to the parameter V' of the SO(d d) series ESO(d dl)(V 9)

given in (4.56). The series E ( ) is obtained from E (d) by the functlonal
SL(d) equation

€(d — 28)E(d — 1 — 2s) E;L_(i)g_s = £(25)6(2s — 1) B3 (4.60)

leading to

£(2s)¢(2s — 1) B :g(d—1)/ v v&1=d ROy lg) - (4.61)
d—15S 0 ﬁ1’§,

O

This construction, which differs from the one presented in [39], is very

useful for explicitly evaluating the Fourier coefficients of the series ES . 3(5)-

By applying the proposition in the SL(5) case (and noting that the relation
of the standard labelling of the simple roots of SL(5), (3;, to our labelling,

a;, in figure 1 implies that Ef,f;@ = ESL(5) nd Ea4g) E@li )) the
expression for the coefficient of the 9*R* 1nteractlon is given by the sum of
two contributions,

7)a 7)o Mo
Fi () = F{ O N+ (T (V) (1.62)

where .7:((1 )0)
arises from the terms in (E.56) and contains the 1-BPS configurations, while
f‘(7)044

(1,0) 11
based on the terms that arise from the contribution to the Eisenstein series,
ESLY) in (E.57). This contains the 1-BPS contributions.

The 3-BPS contributions are given in (E.40) and (E.56)

(k,N4) depends on the rank 1 integer valued matrix Ny that

(N4) depends on the rank 2 integer valued matrix, Ny, given in (4.64)

. 2 mi
.7:(7)a4(k,N4) _ 47‘(2 <T3> U2<‘k’> 2 1(27‘(‘|/€|7‘3m%)

(1L0)1 ls k| In|]
r3mi
2 (7’3)2 (S(UTL) 587 —27r3 |klmy
+ <\ > 1 3 ¢ :
3 \o) \ 2o Tl |

(4.63)
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where Ny = nT - p with n € Z% and p € Z2 with m. is defined in (4.52),
2

Ipll> = p" g5 " p, Inll> =n" g5 n, |ul* =" gs-uand 6(x) = 1if 2 =0
and 0 otherwise.

The %—BPS contributions are characterized by Fourier coefficients local-
ized on the contribution from rank 2 matrix

Ny=m"p—nq,  m=(my),n=(n;) €Z%p=(pa),q=(¢a) € Z*.

(4.64)
The expression derived in (E.57) reads
3 [t 142 2rg/l
Y RSN Sm——
’ 2% oo p+ qriP(¢?)2
(4.65)
where gecd(Ny) = 1 and the mass in the exponent is given by
m(11) ls = [p +qni[Vn? + [m +nm |V 2, (4.66)

where n?2 =nT - g3 -n and ¢ = ¢7 - g» - ¢. In the limit r3 > (g the integral

(4.65) is dominated by the minimum value of m(7;), which is at 71 = 0
(using the fact that N4 has rank 2). The result is that the dominant mass
1

is the sum of the masses of two 5-BPS states given in (4.52).

(ii) The maximal parabolic P,, = GL(1) x SO(3,3) x Uy,
(7)

The instanton contributions to 5((;0) in the perturbative string limit as-
sociated with Lo, = GL(1) x SO(3,3) are given by (E.44) upon setting
s = 3/2. The relation between the GL(1) parameter and the string coupling
constant in 7 dimensions is r 2 = yé and the relation between the 7 dimen-
sion Planck length and the string length is 7 = /4 y;/ > [2]. In this case the
unipotent radical is abelian and has the form

_(1s @
Uﬂél - <61 11> ’ (467)

where @1 is a SO(3,3) spinor defined in (E.42).
This leads to the expression for the Fourier modes

(M« o 4 —27ik NT. (7)
Fiopy (ks N1) = /[01}461 Qre 2N @ g
2] IV |
Am oo (|k)) Ky () (4.68)
y%% || [l

where | N1]|? := N{ -g4- N1 with Ny € Z*\{0}, such that gcd(N) = 1, and g4
is a 4 X 4 matrix parametrizing the coset space SO(3,3)/SO(3) x SO(3). In
the limit y; — 0 the right hand side of (4.68) has the exponential suppression
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characteristic of an instanton contribution and contributes

3
(7) o 2 \/ZE 2 H 1 H
€7‘7:(0,0) (kal) Ngs yr 02(|k|) <’k" HN1||> eXp( 27T|k| \/E)
(4.69)
to the effective R* action with D = 7 in (2.5).

Terms with N7 = (1,0,0,0) are D-instanton contributions. Terms with
Ny # (1,0,0,0) are f—BPS contributions due to wrapped Euclidean bound
states of fundamental and D-strings. The rank 4 integer vector N is unre-
stricted.

The Fourier modes in this parabolic of 8((7) 0) &re given for the series E

n (E.44) and in (E.64) for the series ES 25/)2
and setting s = 5/2 gives

_7:(7)al (k’ Nl) — / d4Q1 e—27rik:N1T~Q1 8(7)
0.1)4

L(5)
135/2

Adding these contributions

(1,0) (1,0)

o oalb) 1 g (2oL
3y WP TN N

4 d(m - N1) | [[Vi] <27T|/<3|||N1||>
+ — Ky ()
7 \odimy 00 ) B

where Ny € Z*\{0} such that gcd(N7) = 1 and m? = m” - g;* - m. In the
limit y7 — 0 these modes give instantonic contributions of the form

27(2 ’k‘HNlH % 2/l|k’ HNlH
0 .7:(7)041 k, N ~£§—a k < eXp| ———
! (1’0)( 2 3Y7 a(l#]) VY7 P VY7

1
o(m-Ni) |\ 1 (k][ Na]]'? 27| k||| V4 |
+3 2y ——s | = ( exp|——— | »
2wer ) e Uy N
(4.71)

(4.70)

to the effective 9*R* action with D = 7 in (2.5).

The two contributions to the Fourier modes have the same support (i.e., in
both cases the charges are labelled by the matrix N;) because there are no }1
BPS instantons in the expansion at node o (see section 3.4.1). The different
BPS nature of each contribution must be encoded in the factor multiplying
the Bessel functions. Once more, we see that the %—BPS contribution in the
second line has an extra four powers of the string coupling constant y2.

4.6. D =6: SO(5,5,7).

The coefficient functions in this case are given by combinations of Eisen-
stein series [1],

Elony = 2(3) B9, (4.72)
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and

£

(1,0)

. s0(5,5) , 8C(6) s0(55)
= 1]_1?5 <C(5 + 26)E 5+€ + T5Ea5’3 (473)

It was shown in [1] that the pole of the individual series in the parenthesis
cancel in the limit ¢ — 0 and the resulting expression is analytic at ¢ = 0.
Whereas the previous cases involved SL(n) Eisenstein series, which could
be expressed as lattice sums that were easy to manipulate, there is much
less understanding of the SO(5,5) series in terms of such explicit lattice

sums. Various properties of Eglo 55) were considered in [2] (where the series

was denoted (2((2s))? Eﬁ%go‘? ), based on the integral representation to
be reviewed below. This is sufficient to discuss the Fourier modes of the
coefficient 5((0)0), but since 5((1 )0) also involves the series E550;§5’5), detailed
evaluation of its Fourier modes will not be performed in this paper due to
space limitations. However, we are able to determine its orbit content as
will be discussed later in this subsection.

The integral representation for the SO(d, d) Eisenstein series Ealo §d D 5

a theta-lift of SL(2) Eisenstein series was presented in [2,40,41] in the form

d>r
2629 BS009 = [ B, (T, (.74)
2
where the lattice sum is
1—\(5’5) _ ‘/(5) Z e 7z ~ (m+nt)T(g+B)-(m+n7) ‘ (4‘75)
(mi,ni)eZ10

The symmetric matrix g and the antisymmetric matrix B parametrize the
coset SO(5,5)/S0O(5) x SO(5). The Fourier modes of this series at node as
and node «; will now be described.

(i) The maximal parabolic P,, = GL(1) x SL(5) x U,

This parabolic subgroup has Levi factor Lo, = GL(1) x SL(5) (recalling
from figure 1 that in our conventions as is a spinor node of E5 = SO(5,5)).
We will here evaluate the Fourier modes using the same methods as used
for computing the constant term of the series Ealo S(d D iy [2, appendix C].
The Fourier modes are defined as

Fo?losw ,5)as (NQ) — / dQs e 2im tr (NT-Q2) Eglo’(S ,5) (476)
[0,1]°
where Q2 is a 5 X 5 antisymmetric matrix parametrizing the abelian unipo-
tent radical U,,, and Np is an antisymmetric 5 x 5 matrix with integer
entries.

We find that the Fourier modes of the series E£10;§5’5) are localized on the

rank 1 contributions where Ny satisfies the constraints
5
> EHM(Ny)(No) =0,  V1<m<5, (4.77)
3,9,k l=1
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where €7F™ is the totally antisymmetric symbol with €234 = 1. This
constrains is the %—BPS condition discussed in appendix C.4.

This condition can be solved as

Ny =mTn —nTm; m,n € Z°, (4.78)
with ged(N2) = 1. Applying the method of orbits for the SL(2) action on
50(5,5)

7, the Fourier modes of Fa,s * take the form

oo e8] £ (m ‘rn)T< -(m+7n)
FS0GRas(y) = YO [ g [T AT g gy bV, g
b 5(5) —0o0 0 7—22 572
(4.79)

Setting s = 3/2 in this equation, using Ey(7) = 1 and V(5 = (r4/07)%/2,
(see [2, section 3.4]) gives

) ri\? ¢y
9 (No) =4nm [ — k 4.
Flo0) (NV2) = 4 <€7> o1 ([k]) Hramg (4.80)
where

mé (2 .= tr(g5Nogs No) = m*n? — (m -n)?. (4.81)

with m? = m” - g5 - m, and with identical definition for n? and m - n. The
expression in (4.80) reproduces the asymptotic (actually exact in this case)

behaviour for 2-BPS contribution in (4.10) with D = 6.

2
The Eisenstein series ESS§5’5) has a single pole at s = 5/2 with residue

equal to the s = 3/2 series E’io,é?’;)

1-BPS contributions. The complete coefficient 5((? )0), defined in (4.73), also

gets a %—BPS contribution from Efgs(s’S), which has a pole at s = 3 such

that the resulting combination in (4.73) is analytic as shown in [1].
(ii) The maximal parabolic P,, = GL(1) x SO(4,4) x Uy,

In this parabolic subgroup the Levi factor is L,, = GL(1) x SO(4,4).
The elements of the unipotent radical are parametrized by the 4 x 2 matrix

Q1= (Qu Q), vi<I<4. (4.82)

In the type IIA string theory description this matrix is parametrized by
the 4 euclidean DO0-brane charges, and 4 euclidean D2-branes wrapped on
3-cycles of T*.

The Fourier modes of (4.74) are defined as

discussed above. This series only receives

F505(5,5)a1 (Ny) == / d8Q16—2i7rtr(NlTQ1) E§O§5’5) (4.83)
13 1; ? :
[0,1]®
where N7 is the 4 x 2 matrix
Ny = (min;), VI<I<A4. (4.84)

The entries m! corresponds to the 4 different ways of wrapping the 1-

dimensional euclidean world-volume of a DO0-brane on the 4-torus, and the
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entries ny the four ways of wrapping the three dimensional euclidean world-
volume of a D4-brane on the 4-torus. The energy of the DO0-brane is Fy =
Z?Zl m!Ry/(sgs) and the energy of the D4-brane is Fy =V} Z?:l nils/(Rrgs)
where Vjy = RiRoR3Ry/ E‘sl is the volume of the 4-torus. In order to make a
contact with the orbit classification in section 3.4.1 we have introduced the
vector (pr,pr) in the even self-dual Lorentzian lattice I'(44). The 4-vector

ph = m!Ry/ls x 1/\/Va + nils/Rp x /Vi and phy = m!Ry/ts x 1/y/Vy —
nils/Ry X VVyfor 1 <1 <4,

The energy the (D0,D2) bound-state is given by v/Vi/gs x /D3 + p%.
1

Introducing ys = ¢2/V4 the GL(1) parameter is r = y, *. We remark
that the lattice is even p% — p% = 224}:1 mm! € 2Z. In terms of the
modes matrix Ny in (4.84) this is expressed as p? — p% = tr(N1JN{') where
J = (1) (1)> By triality the SO(4,4) vector (pr,pr) is equivalent to a
SO(4,4) chiral spinor used for the orbit classification in section 3.4.1.

By extending the constant term computation in [2, Appendix C] the

Fourier coefficients are given by

V & —7r ﬁ—ﬂ"r T
Fgl%S,E)MI(Nl) - Qfé;;) Z / drye T 2(p%ﬂ%)x
kez\{0} 7Y
1
2 —inT1 (p2 —p%)
X ) dn ES_%(T) e . (4.85)
-3

It is significant that setting s = 3/2 and using Ey(7) = 1, the integration
over 171 projects onto the condition p% — p%% = (0 which is the pure spinor
condition for SO(4,4). Using the triality relation between vector and spinor
representation of SO(4,4) this condition is the 1-BPS (pure spinor) con-
dition S -5 = 0 discussed in section 3.4.1. It is then straightforward to

evaluate the integrals in (4.85) to evaluate the Fourier modes of the coeffi-
(6)

cient function &€ (0.0)

, giving

o 1 k 1
Flow (V) =4V yg * > gy (2ni v 2 \/203) 6(v] = PR)

kez\{0} \/2D%
(4.86)
1 -

where the contributions are localized on the 3-BPS pure spinor locus p% —
p% = 0 which is the condition tr(N;JN{) = 0 on the mode matrix Ny. As
expected, the argument of the Bessel function is proportional to 2 = 1/ NATY
the inverse of the string coupling with D = 6, so its asymptotic expansion is
that expected from the contribution of %—BPS states from wrapped D-brane
on the 4-torus T*.

When s # 3/2 the 7y integral in (4.85) does not impose the restriction

p? —p% = 0 and so the solution fills a generic SO(4,4) orbit and the solution
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is 1-BPS. Although the function 5((1 )0) in (4.73) is a linear combination of the

é?;) and the spinor series, ESSO?EE) o) at present
we know little about the exphclt structure of the latter, so we will only
discuss the former here. The Fourier modes of the vector series at s = 5/2

are given by

vector Eisenstein series, E

k
F510(5 5)a1(N1) = Z / dry 677”"27277”—210 Wy +7R)
2 keZ\{O}
1
X ’ dry By () e¥™m (P —PR) (4.87)

Wl

The series E§S§5’5) has a single pole at s = 5/2 from the single pole of the

SL(2) series Fs(7) at s = 1 in the integral representation in (4.85). The
Fourier modes depend on the finite part Fj(7) defined by the expansion
n (E.14). Using the fact that E1(7) = —7 x log(72|n(7)|*) gives the result

SO(5 !
Fal,( 5) e "'(N1) = —167Vigyy ) 1(2‘10% — pgl) Z K| >
2 keZ\{0}

1
K (2myg ® K] \/9} + v+ 9, — )
VP + %+ 0] — P

where the mode matrix Ny in (4.84) is unconstrained and p? —p% = tr(N1JN{) €
27 is an even integer.

o (4.88)

(6)

In summary, the non-zero Fourier modes of £ have support on the %—

(0,0)
BPS orbit in limits (i), (ii) and (iii). One of the contributions to 5((1 )0) is the
regularised series Ea §5 ) This has non-zero Fourier modes with support

on the $-BPS orbit in limits (i) and (iii), but on both the -BPS and 3-BPS
orbits in limit (ii). Although we have not computed the modes for the other

contribution to 5((1)0 SO(5 5)
by use of techniques similar to those 1n section 6.2. The result is that the
non-zero Fourier modes of this series have support on the %—BPS and i—BPS
orbits in limits (i) and (iii), but only on the 1-BPS orbit in limit (ii). In

other words the complete coefficient 5((1 )0)

the %—BPS and %—BPS in its non-zero Fourier modes in all three limits.

)~ the series £, — we do know its orbit content

has the expected content of both

5. THE NEXT TO MINIMAL (NTM) REPRESENTATION

This section contains the proof of theorem 2.13, drawing on some results
in representation theory that can be found in appendix A by Ciubotaru and
Trapa. As we remarked just before its statement, cases (i) and (ii) are by now
well known, and so we restrict our attention to case (iii): the s = 5/2 series.
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To set some terminology, let G = N AK be the Iwasawa decomposition of the
split real Lie group G, B the minimal parabolic subgroup of G containing
NA, and ac = a ®g C be the complexification of the Lie algebra of A.
Without any loss of generality we may assume it is the complex span of the
Chevalley basis vectors H,, where a ranges over the positive simple roots.
For any A € ag, the dual space of complex valued linear functionals on ac,
define the vector space of functions on G

Vi = {f:G—>(C|f(nag) :e()‘+p)(H(a))f(g),Vn€N,aEA,gEG}.

(5.1)
The transformation law and Iwasawa decomposition show that all functions
in V) are determined by their restriction to K. Then G acts on V) by the
right translation operator

(ma(h)f) (9) == [flgh), (5.2)

making (my, V3) into a representation of G commonly called a (nonunitary)
principal series representation. It is irreducible for A in an open dense subset
of ag,, but reduces at special points with certain integrality properties — such
as the ones of interest to us. The representation V) has a unique K-fixed
vector up to scaling, namely any function whose restriction to K is constant.
These are also known as the spherical vectors of the representation, and any
representation which contains them is also called “spherical”. When V) is
reducible, it clearly can have at most one spherical subrepresentation.
The minimal parabolic Eisenstein series is defined as

EG()\,g) = Z e(/\ﬂ))(H(vg))’ (5.3)
YEB(Z)\G(Z)

initially for A in Godement’s range {\|[(A, ) > 1 for all @ € ¥}, and then by
meromorphic continuation to all of ag. When A has the form A\ = 2swg — p,
it specializes to the maximal parabolic Eisenstein series (2.12). For generic
A in the range of convergence, the right translates of E“(),g) span a sub-
space of functions on G(Z)\G(R) which furnish a representation of G that is
equivalent to Vy; the group action here is also given by the right translation
operator (5.2). The spherical vectors in this representation are the scalar
multiplies of E@ (), g), because the function H(g) — the logarithm of the Iwa-
sawa A-component — is necessarily right invariant under K. For general X at
which E@ (), g) is holomorphic, its right translates span a spherical subrep-
resentation of V), again with the group action given by the right translation
operator (5.2).

As mentioned above, the principal series V) reduces for special values of \.
This reducibility reflects special behavior of the Eisenstein series E& (), g).
This is most apparent at the point A = —p, where the transformation law
(5.1) indicates that the constant functions on K extend to constants on
G, and hence that the trivial representation is a subrepresentation of V_,.
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G = Eq G=E. G = Fy
s=0
Mom | ILLLLLY | [LLLLLLL | [L,LLLLLL
SGRS
?KS
s=23/2
Mom | [LL,L,0,1,1] | [L,1,1,0,1,1,1] | [1,1,1,0,1,1,1,1]
SGRS 1/4 5/18 19/58
K 7/22 11/34 19/58
s=05/2
Adom [071717071a1] [1>17170717071] [1,1,1,0,1,0,1,1]
SGRS 1/2 1/18 11/58
2KS none 33/34 11/58

TABLE 6. The values of X for the three values of s and three
groups in theorem 2.13. Weights A € af. are listed here in
terms of their inner products with the positive simple roots
as [(A, a1), (A, a2),...]. For comparison with [6,12], we have
listed the parameters sgrs (the quantity s on [6, p.71]) and
zks (the quantify z(G) from [6, p.86]) for s = 3/2, as well
as their corresponding generalizations for s = 5/2. These
parameters coincide for the group Eg. The parameter zks is
not relevant to the s = 5/2 case for Eg because the relevant
Weyl orbits do not intersect (cf. [1, Section 3.1]).

Likewise, the specialization of the minimal parabolic Eisenstein series at
A = —p is the constant function identically equal to 1, a compatible fact.

The proof of theorem 2.13 rests upon special properties of the spherical
subrepresentation of Vy at the values of A relevant to the s = 5/2 Epstein
series. We recall that for this maximal parabolic Eisenstein series, A has the
form A = 2sw,, —p; it is characterized by having inner product 2s—1 with ayq,
and inner product —1 with each o, j > 2. Write A\gom for a dominant weight
in the Weyl orbit of A, i.e., one whose inner product with all positive roots
is nonnegative. Table 6 on page 52 gives dominant weights for the groups
in Theorem 2.13 as well as its three values of s € {0,3/2,5/2}, although of
course only the last value is of immediate relevance in this section.

The case of G = Ej is slightly easier than the others because of a low-
dimensional coincidence, which in fact is mostly independent of the actual
value of s in that the same statement holds for generic s. Namely, the
representation V) we consider is part of a family of degenerate principal
series representations, induced from the trivial representation on the reduc-
tive SO(5, 5) factor of the Levi component GL(1) x SO(5, 5) of the maximal
parabolic subgroup F,,. These representations are indexed by the one di-
mensional family A = 2swqs, —p, s € C, which is related to the GL(1) factor.
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Though they may reduce at particular points, their Gelfand-Kirillov dimen-
sion'® is equal to the dimension of the unipotent radical of that parabolic,
16; likewise, any subrepresentation of it cannot have larger dimension. Since
the dimension of the wavefront set of a representation is twice the Gelfand-
Kirillov dimension, it is bounded by 32. For Ejg, the orbits in Figure 2 have
dimensions 0, 22, and 32; all other orbits have larger Gelfand-Kirillov di-
mension. Hence the orbit attached to the s = 5/2 Eisenstein series for Eg
is either the trivial orbit, the minimal orbit, or the next-to-minimal orbit.
It cannot be the trivial orbit, because only the trivial representation is at-
tached to it. Likewise, Kazhdan-Savin [12] proved a uniqueness statement
for the minimal orbit, that (up to Weyl equivalence) only the s = 3/2 series
is related to the minimal representation. We thus conclude it is attached to
the next-to-minimal orbit.

To explain the s = 5/2 cases for E7 and Eg we need to rely on some recent
results from representation theory, and some notions from there concerning
unipotent and special unipotent representations. A striking feature from
the table is that (Agom, ;) has all 1’s except for a single zero for the s =
3/2 case, and two zeroes for the s = 5/2 case. This phenomenon, which
came up here because of physical arguments, also arose in work on special
unipotent representations. These A\jom take the same value on simple roots
as a particular element H of the Cartan subalgebra of g. In our three
examples there is a unique coadjoint nilpotent orbit containing a nilpotent
element X such that there is a homomorphism from sly to g carrying (3 )
to X and (%) to H. In terms of Figure 3 these three related “dual”
orbits are the top three listed, though in the reverse order. Appendix A
describes a related construction for more general types of orbits beyond the
ones considered in this paper.

As part of the more general result given in appendix A, corollary A.6 then
asserts that the spherical subquotient of each of the three principal series
Ve has wavefront set equal to the closure of the dually related orbit listed
in figure 3. This proves theorem 2.13 for F; and FEj.

6. FOURIER COEFFICIENTS AND THEIR VANISHING

6.1. Dimensions of orbits in the character variety. In sections 3.3-3.5
we listed a number of explicit features of the orbits of instantons for the par-
abolic subgroups Pa,, Pa,, and P, (in the numbering of figure 1). These
are the character variety orbits discussed at the beginning of section 4.1. In
this section we give more details, in particular basepoints and dimensions for
each of the finite number of orbits under the complexification L¢ of the Levi

factor of the parabolic. As shorthand, we will refer to these as the “complex

18The Gelfand-Kirillov dimension is a numerical index of how “large” a representation
is; it is half the dimension of the associated coadjoint nilpotent orbit (i.e., the orbit
whose closure is the wavefront set of the representation). For example, finite dimensional
representations have Gelfand-Kirillov dimension equal to zero.
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Marking of Orbit

Es Er Ex
Principal orbit [1,1,1,1,1,1] LLLLLLI) [1,1,1,1,1,1,1,1]
1,1,1,0,1,1] [1,1,1,0,1,1,1] [1,1,1,0,1,1,1,1]
[0,1,1,0,1,1] [1,1,1,0,1,0,1] [1,1,1,0,1,0,1,1]
{ Fuzzy séruoturc }
@ 1,0,00,01]  [0,0,1,0,0,0,0] [1,0,0,0,0,0,0,0]
dim 32 dim 52 dim 92
@ 0,1,0,00,00  [0,0,0,0,0,0,1] [0,0,0,0,0,0,0,1]
dim 22 dim 34 dim 58
@ 0,0,0,0,0,0] [0,0,0,0,0,0,0]  [0,0,0,0,0,0,0,0]
dim 0 dim 0 dim 0

FiGURE 3. The largest and smallest orbits, with markings.

orbits of the Levi”. We shall also use the notation Y, to refer to the root
vector X_,, in order to keep the listing of basepoints more readable.

This information is quoted from the paper [27], which lists the corre-
sponding information for any maximal parabolic subgroup of an exceptional
group. We also describe the group action of the Levi in some of the cases,
the rest being described in [27]. Recall that the dimensions of the character
varieties were given earlier in table 3 on page 19. In the following subsec-
tions, we give more details for the groups E5 = SO(5,5), Eg, E7, and FEg.
For ease of reference, tables 7 on page 55, 8 on page 55, and 9 on page 56
give the orbit dimensions for the parabolic subgroups Py, Pa,, and Po,,,
of each of these groups, respectively.

6.1.1. SO(5,5). Recall that we label our E5 = D5 Dynkin diagram accord-
ing to the numbering in Figure 1. This does not match the customary
numbering of the D5 Dynkin diagram, but has the advantage of allowing for
a uniform discussion of all of our cases of interest.

Node 1 is the so-called “vector” node, because P,, has Levi component
isomorphic to GL(1) x SO(4,4), which acts on the 8-dimensional, abelian
unipotent radical by the usual 8-dimensional representation of SO(4,4).
This action breaks into 3 complex orbits: the trivial orbit; a 7-dimensional
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Group dimensions
SL(2) O 1| -1-1-1-1-1-1-1-
SLB)xSL(2) (0| 2| - | -|-|-|-|-1-1-
SL(5) o4 | -1-1-1-1-1-1-1-
SO(5,5) 0718 | -1 -1-1-1-1-1-
Eq ol11|16] - |- -|-|-|-]-
E; 0116253132 - | - | - | - | -
Eg 0(22]35]43 |44 |50 |54 |59 |63 |64

TABLE 7. Dimensions of character variety orbits for the Levi
component of the parabolic formed by deleting the first node
of E4 = SL(5), E5 = 50(5,5), Eﬁ, E7, and Eg. A dash, -,
signifies that there is no orbit. The character variety orbits in
this parabolic subgroup are the SO(d, d) spinor orbits listed
in section 3.4.1.

Group dimensions

SL(2) O -1 -1-1-1-1-1-1-1-
SLB)xSL(2) [0 1 | - |- -|-1{-1-1|-1]-
SL(5) ol 4| -1-1-1-1-1-1-1-
SO(5,5) 0| 7110 - 1| -|-|-1|-1]-1-
Eg 0110151920 - | - | - | - | -
E; 0|13]20]21(25|26|28 31|34 35

Eg 0|16|25|28 3132353840

TABLE 8. Dimensions of character variety orbits of the Levi
component for the parabolic formed by deleting the second
node of £y = SL(5), E5 = SO(5,5), Eg, E7, and Eg. A dash,
—, signifies that there is no orbit. Not all Eg orbits are listed
(there are 23 total).

orbit with basepoint Y,,; and the open, dense 8-dimensional orbit with
basepoint Y1110 + Y11101 (see table 7).

Nodes 2 and 5 are the “spinor nodes”, and have identical orbit structure
(up to relabeling the nodes). Here the Levi component of P,, or P, is
now isomorphic to GL(1) x SL(5), and acts on the 10-dimensional abelian
unipotent radical by the second fundamental representation, also known as
the exterior square representation. In other words, the action of the SL(5)
piece is equivalent to that on antisymmetric 2-tensors x Ay = —y Az, where
x and y are 5-dimensional vectors. This action also has 3 complex orbits
(part of a general description for abelian unipotent radicals of maximal
parabolic subgroups given in [42]): the trivial orbit; a 7-dimensional orbit
with basepoint Y,, in the case of node 2, and Y, in the case of node 5;
and the open, dense 10-dimensional orbit with basepoint Y1211 + Y11111 (see
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Group dimensions
SL(2) 0| -1 -1-1-+-
SL(3)xSL(2)|0| 1 |3 |- |-
SL(5) 0|56 -|-
SO(5,5) 0| 7110 - | -
Es ol11]16] - | -
E; 0|17]26|27]| -
Eg 0|28 |45 55|56

TABLE 9. Dimensions of character variety orbits of the Levi
component for the parabolic formed by deleting the last node
of E4 = SL(5), E5 = 50(5,5), Eﬁ, E7, and Eg. A dash, -,
signifies that there is no orbit. The character variety orbits
in this parabolic subgroup were also listed in table 5 based
on enumeration of instanton orbits.

table 8, or table 9). This last basepoint is in the open dense orbit for either
P, or P,,.

6.1.2. Eg. Node 1 and 6 are related by an automorphism of Dynkin di-
agram, and have identical orbit structure (up to relabeling the nodes).
Here the Levi component is isomorphic to GL(1) x SO(5,5), which acts
on the 16-dimensional, abelian unipotent radical by the spin representa-
tion of SO(5,5). There are three complex orbits: the trivial orbit; an 11-
dimensional orbit with basepoint Y,, in the case of node 1, and Y,, in
the case of node 6; and the open, dense 16-dimension orbit with basepoint
Yi11221 + Y112011 for either nodes 1 or 6 (see table 7 or table 9).

Node 2 is the first case we encounter with a non-abelian unipotent radical.
It is instead a 21-dimensional Heisenberg group, and its character variety has
5 complex orbits (another general fact for Heisenberg unipotent radicals of
maximal parabolic subgroups [43]): the trivial orbit; a 10-dimensional orbit
with basepoint as; a 15-dimensional orbit with basepoint Yi11291 + Yi12211; a
19-dimensional orbit with basepoint Yyi1291 4 Yi11211 4 Yi12210; and the open,
dense 20-dimensional orbit with basepoint Yj19111 + Y112210 (see table 8).

6.1.3. E;. This is the first group for which the three nodes have math-
ematically different structures. Node 1 has a 33-dimensional unipotent
radical which is a Heisenberg group, and Levi component isomorphic to
GL(1) x SO(6,6). The action on the 32-dimensional character variety again
has 5 complex orbits: the trivial orbit; a 16-dimensional orbit with base-
point Y,,; a 25-dimensional orbit with basepoint Yj123321 + Y1203221; & 31-
dimensional orbit with basepoint Y7129221 + Y1123211 + Y1223210; and the open,
dense 32-dimensional orbit with basepoint Y1011111 + Y1223210 (See Table 7
on page 55).

Node 2 has a 42-dimensional unipotent radical, and a 35-dimensional
character variety. The Levi component GL(1) x SL(7) acts with 10 complex
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orbits: the trivial orbit; a 13-dimensional orbit with basepoint Y,,; a 20-
dimensional orbit with basepoint Y7129201 4+ Y1123211; a 21-dimensional orbit
with basepoint }/0112221 + }/1112211 + Y1122111; a 25-dimensional orbit with
basepoint Y1112221 +Y1122211+ Y1123210; @ 26-dimensional orbit with basepoint
Y1111111+Y1123210; @ 28-dimensional orbit with basepoint Yop112201+Y1112011+
Y1122111+Y1123210; @ 31-dimensional orbit with basepoint Yp112201 +Y1111111+
Yi123210; a 34-dimensional orbit with basepoint Yg112211+Y1112111+Y1112210+
Yi122110; and the open, dense 35-dimensional orbit with basepoint Yp112111 +
Yo112210 + Yit11111 + Yit12110 + Yii22100 (see table 8 on page 55).

Node 7 has a 27-dimensional abelian unipotent radical, and Levi compo-
nent isomorphic to GL(1) x Eg 6. The latter acts with 4 complex orbits: the
trivial orbit, a 17-dimensional orbit with basepoint Y,,, a 26-dimensional
orbit with basepoint Y7123321 + Y1223221, and the open, dense 27-dimensional
orbit with basepoint Ypi12221 + Y1112211 + Y1122111 (see Table 9 on page 56).

6.1.4. Eg. This is the biggest of our groups, and the unipotent radicals of
its maximal parabolics are never abelian.

Node 1 has a 78-dimensional unipotent radical, and a 64-dimensional
character variety. The Levi component is isomorphic to GL(1) x SO(6,6)
and acts according to the spin representation of SO(6,6), with 10 com-
plex orbits: the trivial orbit; a 22-dimensional orbit with basepoint Y,,; a
35-dimensional orbit with basepoint Y79944391 + Y12343321; a 43-dimensional
orbit with basepoint Y79933301 + Y12243221 + Y12343211; a 44-dimensional orbit
with basepoint Y71122921 + Y12343211; a 50-dimensional orbit with basepoint
Y11233321 + Y12233221 + Y12243211 + Y12343210; @ 54-dimensional orbit with base-
point Y11229201 + Y12243211 + Y12343210; @ H9-dimensional orbit with basepoint
Yi1122221 + Y11233211 + Y12232211 + Y12343210; @ 63-dimensional orbit with base-
point Y11222221 + Y11232211 + Y11233210 + Y12232111 + Y12232210; and the open,
dense 64-dimensional orbit with basepoint Y71122111 + Yi1221111 + Y11233210 +
Y12232210 (see table 7 on page 55).

Node 2 has a 92-dimensional unipotent radical, and a 56-dimensional
character variety. The Levi component is isomorphic to GL(1) x SL(8)
and acts according to the third fundamental representation of SL(8), also
known as the exterior cube representation. It acts with 23 complex orbits,
the four smallest of which are: the trivial orbit; a 16-dimensional orbit with
basepoint Y,,; a 25-dimensional orbit with basepoint Yi123221 + Y11233211;
and a 28-dimensional orbit with basepoint Yi1122921 + Y11229211 + Y112321111
(see table 8 on page 55).

Node 8 has a 57 dimensional unipotent radical which is a Heisenberg
group. The Levi factor is isomorphic to GL(1) x E7 and acts with 5 com-
plex orbits on the 56-dimensional character variety: the trivial orbit; a 28-
dimensional orbit with basepoint Y,; a 45-dimensional orbit with base-
point Y29454321 + Y23354321; @ 55-dimensional orbit with basepoint Y79944321 +
Y12343321 + Y22343221; and the open, dense 56-dimensional orbit with base-
point Yp1122221 + Y22343211 (see table 9 on page 56).
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6.2. Applications of Matumoto’s theorem. In Section 2.2.2 we men-
tioned that representations of real groups have an invariant attached to
them, the wavefront set, that in a sense measures how big the representa-
tion is. Theorem A.5 indeed computes this wavefront set in many cases,
including ours. There is a theorem due to Matumoto [44] that asserts, in
a precise sense, that small representations cannot have large Fourier coef-
ficients. Namely, he proves that if an element Y € u_; associated to the
character x from (4.6) does not lie in the wavefront set, then the Fourier
coefficient ¢, from (4.1) must vanish identically.

For example, the trivial representation has wavefront set {0}, and like-
wise the constant function does not have any nontrivial Fourier coefficients.
In [27] a detailed analysis is given of the different character variety orbits
for each parabolic subgroup of an exceptional group, and which coadjoint
nilpotent orbits they are contained in. It is then a simple matter to apply
Matumoto’s theorem and determine a set of Fourier coefficients which au-
tomatically vanishes because their containing coadjoint nilpotent orbits lie
outside the wavefront set. In particular, it is shown in [27] that the closure
of the minimal coadjoint nilpotent orbit contains the two smallest character
variety orbits in each of the examples of Py, Pa,, and Py, , for the groups
Egy1,5 < d < 7 (this was known to experts, at least in special cases — see for
example [6]). Likewise, it is also verified there that the closure of the next-
to-minimal coadjoint nilpotent orbit contains the three smallest character
variety orbits in each of these nine examples.

Combining this with the characterization in Theorem 2.13 of the wave-
front sets for the Epstein series at s = 0, 3/2, and 5/2, we get the following
statement about the vanishing of Fourier coefficients. This gives a rigorous
proof of the vanishing statements on page 5.

Theorem 6.1. Let5 < d <7 and G = FE411 as defined in table 1 on page 3.
Then:

(i) All Fourier coefficients of the s = 0 Epstein series vanish in any of

the parabolics Py, , Po,, or Py, ,, with the exception of the constant
terms (which were calculated in [1]).

(ii) All Fourier coefficients of the s = 3/2 Epstein series Eocjl;3/2 vanish
in any of the parabolics Py, , Pa,, or Pa,,,, with the exceptions of the
constant term and the smallest dimensional character variety orbit.
This orbit has: dimension 11 for Eg and either Py, or P,,, and
dimension 10 for P,,; dimensions 16, 13, and 17 for E7 and P,,,
P,,, and P,., respectively; and dimensions 22, 16, and 28 for Eg
and Py, P,,, and P,,, respectively.

(iii) All Fourier coefficients of the s = 5/2 Epstein series E§1;5/2 vanish
in any of the parabolics Py, Po,, or Pu, ,, with the exceptions of

the constant term and the next two smallest dimensional character

variety orbits. This additional character variety orbit is: the 16, 15,
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and 16-dimensional orbits for Es and P,,, P.,, and P,,, respec-
tively; the 25, 20, and 26-dimensional orbits for E7 and P, P,,,
and P,.,, respectively; and the 35, 25, and 45-dimensional orbits for
Eg and P,,, P,,, and P,g, respectively.

7. SQUARE INTEGRABILITY OF SPECIAL VALUES OF EISENSTEIN SERIES

(D)
(0,0

) from the expansion (2.3) provide examples of square-integrable au-

In this section we remark that some of the coeflficient functions £

D)
(1,0
tomorphic forms on higher rank groups. In particular, we will prove this

is the case for 5((58) on F; and Eg. In light of (1.3), this proves the as-
sociated automorphic representation is unitary, since it can be realized in
the Hilbert space L?(E4y1(Z)\E4,1(R)). This unitary can also be demon-
strated by purely representation theoretic methods. At present this is more
of a curiosity, since we are not aware of any particular importance for our ap-
plications. The analysis in the proof also determines the exact asymptotics

of these coefficients in various limits, generalizing those studied in [1].

) and

Theorem 7.1. Let G denote the group Eqy1 defined in table 1 on page 3.
(i) The Epstein series ESI;O is constant, and hence always square-integrable.

(ii) The Epstein series ESI,S/Q and hence 5((3%;‘1) is square-integrable if
4<d<T.

(iii) The Epstein series E§1;5/2 and hence &€
6<d<T.

(10—d)

(1,0) is square-integrable if

Case (i) is obvious since the quotient Ej1(Z)\E44+1(R) has finite volume,
while case (ii) was proven earlier by [6]. We have included them here in the
statement for convenience and comparison. It should be stressed, though,
that Egl;s is certainly not square integrability for general s. The same
method treats the lower rank groups as well, though since the statements
are not needed here we refer to papers [6] and [45] for Ds.

Proof. Recall that the series ng'l; < is a specialization of the minimal parabolic
Eisenstein series E%(), g) from (5.3) at A = 2sw; — p. This is explained in
our context in [1, Section 2], where Langlands’ constant term formula is also
given in Theorem 2.18. The latter shows that the constant term of E¥(), g)
along any maximal parabolic subgroup P is a sum of other minimal parabolic
Eisenstein series on its Levi component. By induction, this is also true if P is
not maximal. In particular, since these Eisenstein series on smaller groups
are orthogonal to all cusp forms on those groups, the constant terms are
therefore orthogonal to all cusp forms on the Levi components — a meaningful
statement only, of course, when the parabolic P is not the Borel subgroup
B (so that the Levi is nontrivial). This means E%(), g) has “zero cuspidal
component along any such P” in the sense of [46, Section 3], or equivalently
that it is “concentrated” on the Borel subgroup B.
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The constant term along B is explicitly given in terms of a sum over the
Weyl group:

/ ESO\ng)ydn = 3 @M@y, (72)
N(Z)\N(R) wea

where M (w, \) is given by the explicit product over roots whose sign is
flipped by w,

Mw,x) = J[ c(ha)), (7.3)

a>0
wa <0
with £(s)
C(S) = m and 5(8) = w2 F(%) C(S) (74)

(see, for example, [1, (2.16)-(2.21)]). This formula is valid for generic A,
and develops logarithmic terms at special points via meromorphic continua-
tion. Moreover, certain coefficients M (w, A) may vanish, for example when
(A, @) = —1 and the respective factor in (7.4) has a zero owing to the pole
of £(s) at s = 0 (unless it is canceled by a pole from another factor). Be-
cause FY(), g) is “concentrated on B”, Langlands’ criteria in [46, Section 5]
asserts that it is square-integrable if and only if the surviving exponents wA
have negative inner product with each fundamental weight:

(WA, wq) < 0 foreach a > 0. (7.5)

The rest of the proof involves an explicit calculation to check that for each
w € Q, either M(w,\) vanishes or (7.5) holds. Actually, despite the enor-
mous size of the Weyl groups involved, M (w,A) vanishes for all but very
few w (because of the special nature of \).

Though the individual terms in (7.2) are frequently singular at the values
of A in question, the overall sum can be calculated explicitly by taking limits.
We now present the result of this calculation. To make the condition (7.5)
more transparent, we take g = a to be an element of the maximal torus A
(as we of course may, given that H(g) depends only on the A-component of
g’s Iwasawa decomposition). We then furthermore parameterize a by real
numbers r1,79,... via the condition that the simple roots on a take the
values

a® = e, a = e, ... (7.6)

For example, for G = Fg the limiting value of (7.2) as A approaches 3wy — p
can be calculated explicitly as e2713r2+4rs+6ratdrs+2rs ¢ipeq

3¢(3) (21178 4 et 6) 4 (e + €73 + €75) + 67 (rg + v — log(47))
3¢(3) .
(7.7)

This expression is dominated by eP(H(9) = 8ri+1lrat15rs+2lra+15r5+48r6 fi).
r; > 0, that is, (7.5) holds and hence Eg1;3 /2 is square-integrable — verifying

a fact proven in [6].
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We now turn to the two new cases, those of the s = 5/2 series for E7
and Eg. We recall the computational method of [1, Section 2.4] to find the
minimal parabolic constant terms, namely to precompute the set

S = {weQ | wa >0 forall i #1}. (7.8)

For w ¢ S, M (w, \) will include the factor c({\, a;)) = ¢((2sw1 — p, ;)) =
c(—{p,a;)) = ¢(—1) = 0 for some ¢ > 1. At the same time, at least for
Re s < 1, all inner products (A, «) will be negative, and hence none of
the other factors in (7.3) can have a pole (after all, ¢(s) is holomorphic for
Re s < 0). Thus the term for w in (7.2) vanishes identically in s by analytic
continuation, and the sum in (7.2) reduces to one over w € S.

For E; there are only 126 elements in S out of the 2,903,040 elements of
the full Weyl group 2. It can be calculated that all but three w of these
126 satisfy Langlands’ condition (7.5), and the three that do not have the
following expressions for M (w, \) for s =5/2 + &:

Exception 1 : ¢(2(e — 5))c(2€)%¢(2€ — 9)c(2e — 8)%¢(2¢ — 7)%¢(2¢ — 6)° x
X c(2e — 5)3¢(2e — 4)3¢(2e — 3)3¢(2e — 2)3¢(2e — 1)3 x
X (2 4 1)%¢(2e + 2)c(2e + 3)c(2e + 4)c(4e — 7)

Exception 2 : ¢(2€)%¢(2e — 9)c(2e — 8)2¢(2e — 7)%¢(2e — 6)3¢(2¢ — 5)® x
X ¢(2e — 4)3¢(2e — 3)3¢(2e — 2)3¢(2¢ — 1)%¢(2¢ + 1)?

X ¢(2€ + 2)c(2€ + 3)c(2e + 4)c(4e — 7)
Exception 3 : ¢(2(e — 5))c(2€)%¢(2€ — 11)¢(2€ — 9)¢(2€ — 8)%¢(2e — 7)% x
c(26 —6)3¢(2¢ — 5)%¢(2e — 4)3¢(2e — 3)3¢(2¢ — 2)3
c(2e — 1)3¢(2¢ + 1)%¢(2¢ + 2)c(2€ + 3)c(2¢ + 4)c(de — 7).

(7.9)
Each of these terms is in fact zero by dint of the triple zero counterbalancing
the double pole at € = 0. (Incidentally, the overall series Egl;S /2 Was shown
to be non-zero in [1] for both G = E7 and G = Ej).

For Eg there are 2160 elements in S out of the 696,729,600 elements of
the full Weyl group 2. Likewise, all but 258 of these 2160 w satisfy (7.5).
Again, all 258 of these terms vanish at s = 5/2 because their products have
a triple zero (coming from three c(s) factors evaluated at near s = —1) that
balance two poles (coming from two c(s) factors evaluated near s = 1).

O

8. DISCUSSION AND FUTURE PROBLEMS

In this paper we have studied the Fourier modes of the Eisenstein se-
ries that define the coefficients of the first two nontrivial interactions in the
low energy expansion of the four-graviton amplitude in maximally super-
symmetric string theory compactified on T¢, and verified they have certain
expected features. In particular, we have shown that their non-zero Fourier
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coeflicients contain the expected minimal and next-to-minimal (%—BPS and
1-BPS) instanton orbits for any of the symmetry groups, Eqg11 (0 <d < 7).
This extends the analysis of these functions in [1], where the constant terms
of these functions were shown to reproduce all the expected features of string
perturbation theory and semi-classical M-theory. Furthermore, in low rank
cases we were able to present the explicit Fourier coefficients of these func-
tions and show that they have the form expected of BPS-instanton contri-
butions. Indeed, the form of the %—BPS contributions match those deduced
from string theory calculations as summarised by (4.10).

For high rank cases this involved a detailed analysis of the automorphic
representations connected to these coefficients. Namely, we explained that
they are automorphic realizations of the smallest two types of nontrivial
representations of their ambient Lie groups, and why this property auto-
matically implies the vanishing of a slew of Fourier coefficients — precisely
the Fourier coefficients that the BPS condition ought to force to vanish. We
furthermore showed the most interesting cases — those of the next-to-minimal
representation for F7 and Eg — occur in L?(Egy1(Z)\E4;:1(R)).

This raises some obviously interesting questions, both from the string
theory perspective and from the mathematical perspective.

An immediately interesting mathematical direction would be the explicit

((ODg) and 5((1[)3) for the high

rank cases with groups Eg, F7 and Eg, in particular to get finer information
using the work of Bhargava and Krutelevich on the integral structure of
the character variety orbits. In a different direction, as mentioned in sec-
tion 3.3.1 it would be of interest to extend the considerations of this paper
to affine Fy and behind that to hyperbolic extensions.

Another question that is natural to ask in the context of string theory is to
what extent does our analysis generalise to higher order interactions in the
low energy expansion, which preserve a smaller fraction of supersymmetry?
Could there be a role for Eisenstein series with other special values of the
index s in the description of such terms? However, the evidence is that such
higher order terms involve automorphic functions that are not Eisenstein

(((?1)) (the coefficient of the £-BPS 9° R* interaction) is
expected to satisfy a particular inhomogeneous Laplace eigenvalue equation
[5]. Although its constant term has, to a large extent, been analysed for

the relevant values of D [1], it would be most interesting to analyse the

non-zero Fourier modes of S((é:’) 1))
BPS instantons in the four-graviton amplitude for low enough dimensions,
D. This should reveal a rich structure. For example, the instantons that
contribute in the limit of decompactification from D to D + 1 include the
%—BPS black holes of D 4+ 1 dimensions, which can have non-zero horizon
size and exponential degeneracy. It is not apparent at first sight whether

this degeneracy should be encoded in the solutions of the inhomogeneous

computation of the non-zero Fourier modes of &£

series. For example, &£

, which should describe the couplings of %—
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(D)
(0,1)

Fourier expansion of the coefficient function &€

. Indeed, we have seen in the i—BPS cases that the
(D)
(1,0)
limit does not determine the Hagedorn-like degeneracy of i—BPS small black
holes in D 4 1 dimensions. Rather, the divisor functions weight particular
combinations of charges and windings of the wrapped world-lines of such
objects.

These issues involve mathematical challenges. For example, the study of
inhomogeneous Laplace equations for the group SL(2,R) heavily relies on
explicit formulas for automorphic Green functions, which do not generalize
in an obvious manner to higher rank groups because they involve automor-
phic Laplace eigenfunction forms which do not have moderate growth in the
cusps (at present the existence of such functions is itself an open problem).

Another issue is to what extent this analysis can be extended to discuss
the automorphic properties of yet higher order terms in the expansion of the
four-graviton amplitude. Further afield are issues concerning the extension
of these ideas to multi-particle amplitudes, to amplitudes that transform
as modular forms of non-zero weight, and extensions to processes with less
supersymmetry.

equation satisfied by &£

in the decompactification
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The representations considered in Theorem 2.13 are examples of a wider
class of representations which have attracted intense attention in the math-
ematical literature. The purpose of this appendix is to recall certain results
(from a purely local point of view) which are especially relevant for the
discussion of Section 5.
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To begin, let G denote a real reductive group arising as the real points
of a connected complex algebraic group Ge. In [Arl] and [Ar2], Arthur
set forth a conjectural description of irreducible (unitary) representations
contributing to the automorphic spectrum of G. In many cases, these con-
jectures could be reduced to a fundamental set of representations attached
to (integral) “special unipotent” parameters. In the real case, Arthur’s
conjectures — and, in particular, the definition of the corresponding spe-
cial unipotent representations — are made precise and refined in the work
of Barbasch-Vogan [BV1] and, more completely, in the work of Adams-
Barbasch-Vogan [ABV]. The perspective of these references is entirely lo-
cal. (Of course an extensive literature approaching Arthur’s conjectures by
global methods exists and, for classical groups, is summarized in [Ar3].) As
we now explain, the representations appearing in Theorem 2.13 are indeed
special unipotent in the sense of Adams-Barbasch-Vogan.

Write gc for the Lie algebra of G¢ and fix a Cartan subalgebra b arising
as the Lie algebra of a maximal torus in G¢. Write 2 for the Weyl group of
hc in ge. The classification of connected reductive algebraic groups natu-
rally leads from G¢ to the Langlands dual G, a connected reductive com-
plex algebraic group, e.g. [Sp|. Let g denote the Lie algebra of G¢. The
construction of G¢ includes the definition of a Cartan subalgebra h¢ which
canonically identifies with the linear dual of ¢,

he ~ (he)". (A1)

Let A denote the cone of nilpotent elements in gc, and likewise let NV
denote the cone of nilpotent elements in g¢t. Write Ge\AN and GE\NY for
the corresponding sets of adjoint orbits. These sets are partially ordered by
the inclusion of closures. Spaltenstein defined an order-reversing map

d : GEWNY — Gc\W

with many remarkable properties which were refined in [BV1, Appendix];
see Theorem A.4 below.

Example A.1. Suppose the Dynkin diagram corresponding to g¢ is simply
laced (as is the case for the groups Eg.q from figure 1 and table 1). Then
gc ~ g¢ and Gt and G are isogenous. Thus G{\NY can be identified with
Gc\N and d can be viewed as an order reversing map from the latter set
to itself. With this in mind, consider Figure 3. The map d interchanges the
top three orbits with the bottom three orbits (in an order reversing way, of
course). In particular d applied to the sub-subregular orbit is the next to
minimal orbit. The complete calculation of d is given in [Ca].

Fix an element O of GE\N". According to the Jacobson-Morozov The-
orem, there exists a Lie algebra homomorphism

¢ : 5[(27C) _)g(\[/:
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such that the image under of ¢ of <0 1> lies in OV and

0 0

o(y O)ene= (A2)

with the last isomorphism as in (A.1).
The element in (A.2) depends on the choice of ¢. Its Weyl group orbit is
well-defined however (independent of how ¢ is chosen). So define

A0 =26 (y O enye (A3)

According to the Harish-Chandra isomorphism, A\(O") specifies a maximal
ideal Z(OV) in the center of the enveloping algebra U(gc). Recall that
an irreducible admissible representation of G is said to have infinitesimal
character \(OV) if its Harish-Chandra module is annihilated by Z(OV).

A result of Dixmier implies that there is a unique primitive ideal I(OV)
in U(gc) which is maximal among all primitive ideals containing Z(OV).
(A primitive ideal in U(gc) is, by definition, a two-sided ideal which arises
as the annihilator of a simple U(gc) module.) Given any two-sided ideal
I in U(gc), we can consider the associated graded ideal gr(I) with respect
to the canonical grading on U(gc). According to the Poincaré-Birkoff-Witt
Theorem, gr([) is an ideal in gr(U(gc)) =~ S(gc), the symmetric algebra of
gc, and hence cuts out a subvariety (the so-called associated variety, AV (1),
of I) of g¢.

It will be convenient to identify gc with g¢ (by means of the choice of an
invariant form) and view AV(I) as a subvariety of gc. (The choice of form is
well-defined up to scalar; since AV (/) is a cone, AV (1) becomes a well-defined
subvariety of gc.) A theorem of Joseph [11] and Borho-Brylinski [BoBrl]
(cf. the short proof in [V2]) implies that if [ is primitive, AV(7) is indeed
the closure of a single nilpotent orbit of G¢.

Theorem A.4 ([BV1, Corollary A.3]). In the setting of the previous para-
graph,

AV(I(OY)) = d(OV).
Example A.2. Suppose G is simply laced and make identifications as in
Example A.1. Suppose OV is respectively the regular, subregular, or sub-
subregular, orbit in Figure 3. Then AV (I(OV)) is the closure respectively
of the zero, minimal, or next-to-minimal orbit.

Definition A.3 (Barbasch-Vogan [BV1]). Fix an orbit OV as above. Sup-
pose further that OV is even or, equivalently, that \(OV) is integral. An
irreducible admissible representation of G is said to be (integral) special

unipotent attached to OV if the annihilator of its Harish-Chandra module
is I(OY).

Note that since I(OV) is a maximal primitive ideal, special unipotent
representations are, in a precise sense, as small as possible.
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Theorem A.5. Suppose G is split and 7w is an irreducible spherical rep-
resentation with infinitesimal character A\(OV) (with notation as in (A.3)).
Suppose further that OV is even. Then 7 is special unipotent in the sense of
Definition A.3.

Sketch. Chapter 27 in [ABV] defines special unipotent Arthur packets. Roughly
speaking, such a packet is parametrized by a rational form of an orbit OV
in GE\NY ([ABV, Theorem 27.10]). In the case that OV is even, these
packets are known to consist of representations appearing in Definition A.3
([ABV, Corollary 27.13]). As a consequence of [ABV, Definition 22.6] (see
also the discussion after [ABV, Definition 1.33]), such a packet also con-
tains a (generally nontempered) L-packet. In the case at hand, the special
unipotent Arthur packet parametrize by OV contains the L-packet consist-
ing of the spherical representation with infinitesimal character A\(OV). This
completes the sketch. O

Corollary A.6. The spherical subrepresentations of the principal series rep-
resentations V,, ~ from section & are integral special unipotent attached to
OV (Definition A.3) where OV is, respectively, the regular, subregular, and
sub-subregular nilpotent orbit (all of which are even). According to Corol-
lary A.4 and Example A.2, the wavefront sets of these representations are,
respectively, the zero, minimal, and next to minimal orbits.

Finally, we remark that since the special unipotent representation of Defi-
nition A.3 are predicted by Arthur to appear in spaces of automorphic forms,
they should be unitary.

Conjecture A.7. Suppose w is integral special unipotent in the sense of
Definition A.3. Then w is unitary.

The representations appearing in Theorem A.5 are known to be unitary
if G¢ is classical or of Type G2. This was proved by purely local methods
in [V1], [V2], and [B]. For a summary of results obtained by global methods,
see [Ar3].

For completeness, we discuss the analogs of these results in the p-adic
case. Let F' be a p-adic field, with ring of integers O, and finite residue field
Fy. The group G is now the F-points of a connected algebraic group G
defined over F. We assume for simplicity that G is split and of adjoint type.
Let K be the O-points of G, a maximal compact open subgroup of G. Let
I be the inverse image in K under the natural projection K — G#(F,) of a
Borel subgroup over Fj. The compact open subgroup I is called an Iwahori
subgroup.

The Iwahori-Hecke algebra H(G, I) is the convolution algebra (with re-
spect to a fixed Haar measure on () of compactly supported, locally con-
stant, I-biinvariant complex functions on G. It is a Hilbert algebra, in the
sense of Dixmier, with respect to the trace function f +— f(1), and the *-
operation f*(g) = f(g~1), f € H(G,I). Thus, there is a theory of unitary
remodules of H(G, I) and an abstract Plancherel formula.
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If (7,V) is a complex smooth G-representation, such that V! # 0, the
algebra H (G, I) acts on V! via

m(f)v = /Gf(x)w(z:)v de, veV! feH(G,I).

Theorem A.8 ([Bo)). The functor V. — VI is an equivalence of categories
between the category of smooth admissible G-representations and finite di-
mensional H(G, I)-modules

Borel conjectured that this functor induces a bijective correspondence
of unitary representations. This conjecture was proved by Barbasch-Moy
[BM1] (subject to a certain technical assumption which was later removed).

Theorem A.9 ([BM1]). An irreducible smooth G-representation (w,V') is
unitary if and only if V' is a unitary H(G,I)-module.

The algebra H(G, I) contains the finite Hecke algebra H (K, I') of functions
whose support is in K. Under the functor 7, K-spherical representations of
G correspond to spherical H(G, I)-modules, i.e., modules whose restriction
to H(K,I) contains the trivial representation of H(K,I).

The classification of simple H(G, I)-modules is given by Kazhdan-Lusztig
[KL].

Theorem A.10 ([KL]). The simple H(G,I)-modules are parameterized by
G{-conjugacy classes of triples (s¥,e¥,¢Y), where:
(i) s¥ € G{¢ is semisimple;
(ii) eV € NV such that Ad(s)e = qe;
(iii) ¥V is an irreducible representation of Springer type of the group of
components of the mutual centralizer Zgy(s",e") of sV and " in
G¢.
Let m(sY,e",4") denote the simple H(G, I)-module parametrized by [(sV,e",¥")].

Example A.4. In the Kazhdan-Lusztig parametrization, the simple spher-
ical H(G, I)-modules correspond to the classes of triples [(s¥,0,1)]. Here
sV is the Satake parameter of the corresponding irreducible spherical G-
representation. On the other hand, let OV be a fixed G-orbit in NV, and
set shv = (@) where Ao(OV) is any choice of representative of the el-
ement in (A.3). If ey belongs to the unique open dense orbit of Zay (sY)
on g, = {r € g, : Ad(s")z = gz} (in particular ej € OY), then the sim-
ple H(G,I)-module (and the corresponding irreducible G-representation)
parametrized by [(sfv, ey, ¢")] is tempered.

The Iwahori-Hecke algebra has an algebra involution 7, called the Iwahori-
Matsumoto involution, defined on the generators as in [IM]. It induces an
involution on the set of simple H(G, I)-modules, which is easily seen to map
unitary modules to unitary modules. The effect of 7 on the set of Kazhdan-
Lusztig parameters is given by a Fourier transform of perverse sheaves [EM],
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and therefore it is hard to compute effectively in general, except in type
A [MW]. (For a general algorithm, see [L].) However, it is easy to see that
if m(shv,0,1) is a simple spherical H(G, I)-module, then

7(m(sHv,0,1)) = 7(sHv, e, 1), (A.11)
where the notation is as in Example A.4. In particular, 7(s%,,0,1) is uni-

tary. Together with Theorem A.9, this gives the following corollary (cf. Con-
jecture A.7).

Corollary A.12. If 7 is an irreducible spherical G-representation with Sa-
take parameter sl € G{, then 7 is unitary.
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APPENDIX B. SUPERSYMMETRY AND INSTANTONS

The constraints of maximal supersymmetry are efficiently described by
starting with the superalgebra generated by the 32-component Majorana
spinor supercharge, Qo = [ J2d"z, where J! is the supercurrent (with
spinor index «, f = 1,...,32 and vector index I = 0,1,...,10). This satis-
fies the anti-commutation relations,

{Qa,Qp} = P, (TT") s+ Zap (B.1)
where the central charge is

Zap = Znp, (T'T1R) 4+ Zpy gy (DT10) (B.2)

af ’?
where I‘gﬁ are SO(1,10) Dirac matrices'® and P; is the eleven-dimensional
translation operator.

B.1. BPS particle states. Positivity of the anticommutator in (B.1) leads
to the Bogomol’'nyi bound that restricts the masses of states to be larger
than or equal to the central charge. States saturating the bound are BPS
states that form supermultiplets, the lengths of which depend on the fraction
of supersymmetry broken by their presence. The shortest multiplets are %—
BPS, with longer multiplets for smaller fractions.

The presence of the 2-form component of the central charge indicates
that the theory contains a membrane-like state (the M 2-brane) carrying a
conserved charge Q@ while the 5-form component indicates the presence
of a 5-brane state (the M5-brane) carrying a charge Q(®). The 2-form and
5—form in (B.1) are given by integration of the spatial directions of the M2
and M5 branes over 2-cycles Ar, 1, or 5-cycles Ay, .15,

Zn1, = Q<2>/ X, Zp.p = Q<5>/ P°X . (B.3)
An 1, Aqy g
The M2 and Mb5-branes are %—BPS states that preserve 16 of the 32 com-
ponents of supersymmetry. The 2-form charge couples to a 3-form potential
(C}?}Q 1,)> with field strength H (4) = @C®). This is analogous to the manner
in which the Maxwell 1-form potential couples to a point-like electric charge
(a O-brane), and H® is the analogue of the Maxwell field. Poincare dual-
ity gives a 7-form field strength defined by «*H® := H( which is solved
locally as H(" = dC©) + C®) A dC®) and defines the six-form potential,

191“(1113”“ is the antisymmetrized product of » Gamma matrices normalised so that
I-\lm'r — 1—\1 T
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C©) that couples to the five-brane. In other words, the M5-brane couples
to the magnetic charge that is dual to the electric charge carried by the
M2-brane. The BPS condition implies that the charge on the brane is equal
to its tension, T,

QU =1 (B.4)

The integrals in (B.3) are well-defined when all the spatial directions of the
branes are wound around the compact cycles of the M-theory torus, 791,
in which case the state is point-like from the point of view of the D = 10—d
non-compact dimensions (so there are finite-mass point-like states due to
wrapped M2-branes when d > 1 as well as wrapped Mb5-branes when d >
4).2% Other kinds of 3-BPS states also arise in the toroidal background, such
as point-like Kaluza—Klein (K K) charges, which are modes of the metric
that contribute for any d > 0. The magnetic dual of a K K state isa K KM,
which is described by a Taub-NUT geometry in four spatial dimensions,
leaving six more spatial dimensions that are interpreted as the directions on
a six-brane. This has a finite mass when wrapped around 79, so it can arise
when d > 5.

The complete spectrum of BPS states in an arbitrary toroidal compact-
ification of type ITA or IIB string theory can be deduced by considering
the toroidal compactification of the M-theory algebra (B.1) with appropri-
ate rescalings of the moduli [47]. Combining completely wrapped branes in
various combinations leads to point-like %—, %— and %—BPS states that are of
importance in discussing the spectrum of black holes in string theory [21,22].
This spectrum is of significance in classifying the orbits of instantons that
decompactify to black hole states in one higher dimension associated with

the parabolic subgroup P, , (where we will follow the discussion in [19,20]).

APPENDIX C. ORBITS OF BPS INSTANTONS IN THE
DECOMPACTIFICATION LIMIT

In this limit a finite action instanton in D = 10—d dimensions corresponds
to an embedded euclidean world-volume that can be one of three types: (a)
It has an action that does not depend on r4 as r; — oo and so is also an
instanton of the (D + 1)-dimensional theory — this contributes only to the
constant term in this parabolic and does not appear in non-zero Fourier
modes; (b) It is a euclidean world-line of a (D + 1)-dimensional point-like
BPS black hole with mass Mpp, which gives a term suppressed by a factor
of e=27raMpn in the amplitude in the limit 74/fpy1 — oo; (c) It has an
action that grows faster than r4/¢py1 so it does not decompactify to give
either a particle state or an instanton in D + 1 dimensions.

20T here is a huge literature of far more elaborate windings of such branes around
supersymmetric cycles in curved manifolds, in which case a fraction of the supersymmetry
may or may not be preserved.
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In order to illustrate this pattern the following list summarises the spec-
trum of particle states and instantons in each dimension in the range 3 <
D <10 (ie. 0<d<T7)2

C.1. D =10.

In this case there are no %-BPS states. In the type ITA theory the %—BPS
particle states consist of threshold bound states of DO-branes. There are no
instantons in the ITA theory and there is no symmetry group.

The type IIB theory has no BPS particle states but has the %—BPS D-
instanton, multiples of which can contribute to the amplitude. The duality
group of the IIB theory is SL(2,7Z) and there is only one orbit,

SL(2,R)

0y = T2 (C.1)

The bold face subscript, in this example and in the following, gives the
dimensions of the coset, dim(G/H) = dim(G) — dim(H).

C2. D=09.
This is obtained by considering M-theory on a 2-torus 7 2, where the discrete
duality group SL(2,7Z) is identified with the group of large diffeomorphisms
of T2
e The BPS particle states consist of the M2-brane wrapping 72, and
two Kaluza—Klein modes arising from the two cycles of the torus,
giving a total of 3 BPS states. Their charges are parametrized by
a scalar v and a SL(2) vector v,. The charges of the %-BPS states
are given by the condition [19] vv, = 0 and the -BPS states by
vug # 0.
e There is a single BPS instanton that can be identified with the wrap-
ping of the euclidean world-line of a Kaluza—Klein state formed on
one cycle around the second cycle of the torus — in this sense a
euclidean Kaluza—Klein state wraps a 2-cycle on a torus.

C3. D=38.
M-theory on a 3-torus 72 (duality group SL(3,Z) x SL(2,7)).

e There are 3 BPS states from the M2-brane wrapping 2-cycles, and
3 BPS states from the Kaluza—Klein states associated with 1-cycles,
giving a total of 6 BPS states.

e There is 1 BPS instanton from the world-volume of the M2-brane
wrapping the whole of 72, and 3 BPS instantons from the Kaluza—
Klein states wrapping 2-cycles, giving a total of 4 BPS instantons.

The 6 BPS states are parametrized by v;, transforming in the 3 x 2 of
SL(3)x SL(2). The £-BPS states are given by the condition [19] €% v; v} =

211y addition to the massive black hole states listed there is, in each case, the standard
charge-zero %—BPS massless supergraviton.
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0 and the %—BPS states by €ab v;qVjp # 0. This determines two BPS orbits

given by [23]

SL(3,R) x SL(2,R)

(Rt x SL(2,R)) x R3”’
SL(3,R) x SL(2,R)

L _BpsS : O = ’ ’

4 ¢ SL(2,R) x RZ

3—BPS : O5= (C.2)

(C.3)

C4. D=T.
M-theory on a 4-torus 7* (duality group SL(5,7)).

e There are 6 BPS states from the M2-brane wrapping 2-cycles, and
4 BPS states from the Kaluza—Klein states associated with 1-cycles,
giving a total of 10 BPS states.

e There are 4 BPS instantons from the M2-brane wrapping 3-cycles
and 6 BPS instantons from the Kaluza—Klein states wrapping 2-
cycles, giving a total of 10 BPS instantons.

The 10 BPS states are parametrized by the rank-2 antisymmetric represen-
tation vy;;) (4,7 = 1,...,5) in the 10 of SL(5). The 1-BPS states are given
by the condition [19] ekim v v = 0 and the i—BPS by eikim v g 7 0.

This determines two BPS orbits given by [23]

SL(5,R)
l _ N _= >
2 BPS 0 On (SL(3,R) x SL(2,R)) x R6’ (C4)
SL(5,R)
1 : _ _PLOR)
1-BPS i Ow= ot (C.5)
C.5. D =6.

M-theory on a 5-torus 7° (duality group SO(5,5,7Z)).

e There are 10 BPS states from the M2-brane wrapping 2-cycles and
5 BPS states from the Kaluza—Klein states associated with 1-cycles.
There is an additional BPS state due to the M5-brane wrapping the
whole of 77, giving a total of 16 BPS states.

e There are 10 BPS instantons from the M 2-brane world-volume wrap-
ping 3-cycles and 10 BPS instantons from euclidean Kaluza—Klein
states wrapping 2-cycles, giving a total of 20 BPS instantons.

The 16 BPS states are in a chiral spinor representation S¢ (o =1,...,16)
of SO(5,5). Such a spinor satisfies the identity (ST"™S)(SI™S) = 0, where
' (m=1,...,10) are Dirac matrices with suppressed spinor indices. The
configurations are %—BPS if .S satisfies the pure spinor condition, ST™S =
0 [19]. A standard way to analyse this condition is to decompose S into
U(5) representations, 16 = 15 & 5_3 @& —10; (where the subscripts denote

the U(1) charges), so it has components

S = (s,va,v“b), a,b=1,...,5. (C.6)
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The pure spinor (%—BPS) condition, ST™S = 0 is v, = 85;!16abcde vbeyde
which implies that the 5 is not independent of the other U(5) representa-
tions, so the space of such spinors has dimension 11. The %—BPS solution
is the unconstrained spinor space (excluding ST™S = 0) and has dimension
16. There are two BPS orbits given by [23]

S0(5,5,R)

l_ . — s Yy

l_BPS : On SLG.R) xR’ (C.7)
S0(5,5,R)

1_ . = AT

1-BPS : Osg B B (C.8)

C.6. D=5.
For M-theory on a 6-torus 79 (duality group Eg(Z)):

e There are 15 BPS states from the M2-brane wrapping 2-cycles, 6
BPS Kaluza—Klein states associated with 1-cycles, and 6 BPS states
from the M5-brane wrapping 5-cycles, giving a total of 27 BPS
states.

e There are 20 BPS instantons from the world-volume of the M 2-brane
wrapping 3-cycles, 15 BPS instantons from Kaluza—Klein states wrap-
ping 2-cycles, and 1 BPS instanton from the world-volume of the
M5-brane wrapping the whole of 76, giving a total of 36 BPS in-
stantons.

The 27 BPS states are in the fundamental representation, ¢* (i = 1,...,27),
of Fg and lead to %—, i— or %—BPS configurations depending on the following
conditions on the Fg cubic invariant I3 = Zl§i7j7k§27(13)ijkqiqjqk [19]

t—=BPS: I3 #0, (C.9)
I
1 _BPS: Iy =0, gqif 40, (C.10)
oI 921
1_BpPS: 1; = 3 — 3 4. 11
2 S 3 07 8q’ 07 8q13q3 7& 0 (C )

Clearly the first of these conditions (the §-BPS condition) is of dimension
27. The other conditions may be analysed by decomposing the 27 of Ejg
into SO(5,5) x U(1) irreducible representations, 27 = 1,®10_o®16;. This
means that ¢* decomposes as

¢’ = (s,0m, 5%, (C.12)

where s is a scalar, vy, is a SO(5, 5) vector of dimension 10 and S is a spinor
of dimension 16 (and the U(1) charges have been suppressed). The cubic
invariant I3 decomposes as [19], I3 =10_92®10_2® 1, $16; ® 16; ® 10_,,
which implies that

Is=sv-v+ (STS) v, (C.13)
where v - v is the SO(5,5) (norm)? of the vector v, and (STS) - v is the
SO(5,5) scalar product between the vector ST™S and v™.
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The %—BPS solution reduces to the condition
sv-v+(S['S)-v=0, (C.14)

with non-vanishing derivative with respect to s, v,, and S,. Therefore the
solution is given by the 26 dimensional space

(q")%_BPS = (=(v-v)"1(STS) - v, v, S%). (C.15)
The %—BPS condition implies the following conditions
v-v = 0, (C.16)
(ST™S) +sv™ = 0, (C.17)
(ST™),v™ = 0, (C.18)

which are solved by v™ = ST'™S (using the relation (ST™S)(ST™S) = 0).
The %—BPS solution is therefore given by the 17-dimensional solution

(@)1_pps = (5,5T"™S, ). (C.19)
To summarise, the BPS orbits in D = 5 are given by [23]
E
1_pBp : -6 9
3 S O17 SO(5.5) x R16’ (C.20)
E
i_pp : R 91
1 S O26 O(4,5) x RIS’ (C.21)
E
§-BPS 1 O =R x 6. (C.22)
4(4)

The charges in the %—BPS orbit can be generated by applying Eg(Z) trans-
formations to a 2-charge state corresponding to a null vector in the 27 dimen-
sional BPS state space. The charges in the %—BPS orbit can be generated
from a 3-charge state corresponding to space-like or time-like vectors with
I3 # 0 in the 27 dimensional BPS state space (note that, unlike [20] we
have included the scale factor R* in the definition of the orbit which is of
dimension 27).

C.7. D=4.
M-theory on a 7-torus 7' (duality group E7(Z)).

e There are 21 BPS states from the M2-brane wrapping 2-cycles, 7
BPS states from the Kaluza—Klein states wrapping 1-cycles, 7 BPS
states from the K K M’s wrapping 6-cycles, and 21 BPS states from
the M5-brane wrapping 5-cycles. This gives a total of 56 BPS states

e There are 35 BPS instantons from the M2-brane wrapping 3-cycles,
21 BPS instantons from the Kaluza—Klein states wrapping 2-cycles,
and 7 BPS instantons from the M5-brane wrapping 6-cycles. This
gives a total of 63 BPS instantons.
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The 56 BPS states are in the fundamental representation, ¢* (i = 1,...,56),
of E7. The %—, i— and %—BPS configurations are classified by the following
conditions on the quartic symmetric polynomial invariant I [19,48]

$—BPS: I, >0, (C.23)
ol
1-BPS: I, =0, 6; £0, (C.24)
oI, 91,
L_pBps: 1, =0, - =0, — 0, C.25
1 * aq 0 0G | oy, 7 (C.25)
0?1, 0314
l_Bps: 1, =0, — =0, — #0. (C.26
2 4 aqzaq] Adji, aqzaqj aqk ( )
The following is a summary of the BPS orbits [19, 20, 23]
E;
1_ : __ b
;~BPS : Os=p— 0 (C.27)
E
1 _BP : — d 2
1 S Os (0(5,6) x R32) xR’ (C.28)
E
l_Bp : =7 2
S S Oss Fya) x B2 (C.29)
E
1-BPS : Os=R"x . (C.30)
6(2)

The %—BPS orbit can be obtained by acting on a single charge, the %—BPS
orbit can be obtained by acting on a 2-charge system, the first %—BPS (with
dimension 55) has zero entropy and can be obtained by acting on a 3-charge
system the last orbit of dimension 56 is the %—BPS orbit with I, > 0 that has
entropy S = my/I;/Gy can be obtained by acting on a 4-charge system in
the 56 representation of Er as detailed in [23]. We have included the overall
scale factor in the definition of the orbit. Another orbit of dimension 56 is
R~ x E7/Eg that has Iy < 0 and does not correspond to a BPS solution
at all [19,20]. All these charge orbits can be understood in terms of the
superpositions of branes at angles and constructed from combinations of
(D0, D2, D4, D6) [49].

C.8. D=3.
M-theory on an 8-torus 7% (duality group Es(Z)).

e There are 28 BPS states from the M2-brane wrapping 2-cycles, 8
BPS states from the Kaluza—Klein states wrapping 1-cycles, 28 BPS
states from the K K Ms wrapping 6-cycles, and 56 BPS states from
the Mb-brane wrapping 5-cycles. This gives a total of 120 BPS
states.

e There are 56 BPS instantons from the M2-brane wrapping 3-cycles,
28 BPS instantons from the Kaluza—Klein states wrapping 2-cycles,
8 BPS instantons from the K K M wrapping 7-cycles, and 28 BPS
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instantons from M5-branes wrapping 6-cycles. This gives a total of
120 BPS instantons.??

APPENDIX D. EUCLIDEAN Dp-BRANE INSTANTONS.

We here sketch the background to the analysis of the euclidean Dp-brane
instanton configurations that contribute in the perturbative limit of string
theory discussed in section 3.4, based on an analysis of supersymmetry con-
ditions on the embeddings of world-sheets on the string theory torus T
Contributions from wrapped NS5-brane world-sheets also arise for d = 6,7
and K K monopoles for d = 7.

Wrapping a euclidean Dp-brane world-volume of either ten-dimensional
type II string theory on a (p+1)-cycle leads to an instanton in the transverse
R8P space-time. This %—BPS condition preserves a linear combination of
the supersymmetries that act on the left-moving and right-moving modes
of a closed superstring. This leads to the following constraint on the super-

symimetry parameters,
p+1

e=]]re (D.1)
i=1
where € and € are chiral sixteen-component SO(1,9) spinors parameterizing
the left- and right-moving super symmetries and I'* are the usual SO(1,9)
Gamma matrices that satisfy the Clifford algebra {T*,1V} = —21¥ where
7 is the Minkowski metric with signature (— + ---+).

When compactifying on a d-torus space-time becomes RM9~¢ x T? and a
SO(1,9) spinor decomposes into a sum of bispinors, ¢ = € ® ), where ¢ is a
SO(1,9 — d) spinor and 7 is a SO(d) spinor. The condition (D.1) becomes
a condition relating n and 7. T-duality transforms the I" matrices in (D.1)
by the action of the spin group SO(d,d), R~![[;T*R. This, in general,
transforms a wrapped Dp-brane into a Dg-brane so that the supersymmetry
conditions

¢+l prl
i=]]rn=]]1r"n, (D2)
=1 1=1

are satisfied. As remarked in [50], this this means the two spinors qu;l e
and Hf:ll I'e must be in the same SO(d, d) orbit.

A euclidean Dp-brane can be wrapped over cycles of a d-torus of dimen-
sion 0 < p+1 < d with p = 0 mod 2 for type ITA superstring theory
and p = —1 mod 2 for type IIB. These instanton configurations fill out a
chiral spinor representation, S4, of dimension szs (mod 2) (pil) = 24-1
with s = 0 or 1 of the T-duality group SO(d,d). The BPS condition on

Dp-branes wrapping a torus in (D.2) can be interpreted as a condition on

220ne of the KK M instantons wraps the euclidean time dimension and gives a van-
ishing contribution upon decompactification to D = 4 dimensions, as discussed following
(3.2).
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the spinor S4. The various brane configurations are then classified by or-
bits of S4 under the action of the T-duality group SO(d,d) (actually the
Spin group). In this manner the spinor parametrizes the commuting set of
instanton charges in the perturbative regime.

For d = 6 or d = 7 there are also contributions from NS5-branes wrapping
six-cycles. Such NS5-brane configurations give contributions to the instan-
ton charges that do not commute with those of the wrapped Dp-branes. In
other words, the Dp-brane charges in the spinor representation parametrize
the u_; component part of the unipotent radical U (the abelian part) for the
standard parabolic subgroup P,, of E;y; and the NS5-brane charge are in
the derived subgroup [U, U] component part of the unipotent radical for the
standard parabolic subgroup P,, of E4y1 in table 3 on page 19. For d = 6
this provides one extra charge configuration since there is a unique six-cycle.
For d = 7 there are 7 distinct six-cycles so there are 7 NS5-brane charges.
In addition there are 7 stringy K KM instantons. Recall that these arise
from Kaluza—Klein monopoles in ten-dimensional string theory in which the
fibre direction 27 is identified with a circle in T7 (whereas the D6-brane is
seen in M-theory as a KK M formed by identifying # with the M-theory
circle).

Although it is very complicated to describe how all possible compactifi-
cations of euclidean Dp-branes fit into different spinor orbits, the following
discussion will indicate the procedure. For this purpose it is convenient
to start in ten dimensions by defining chiral spinors of the complexified
group, SO(10;C) (complexification does not affect the BPS classification),
by means of the raising and lowering operators,

1
bps1 = §(I‘2k+1—if2k), bl T2+ 20y 0 <k <4, (D.3)

1
k+1 — )

so that b = (bz) and {by,b'} = 8¢ , and {bg, b} = {V*,b'} = 0. A ground
state | — — — ——) is defined so that by — — — ——) = 0, for 1 < k < 5.
Acting with b' gives the state b!| — — — ——) = | + — — ——), with analogous
states created by any linear combination of the b"’s, giving a total of 2°
states with + or — labelling each of the 5 positions. These states are graded
according to whether there an even or odd number of 4 signs. There are
therefore two chiral spinor representations of SO(10;C) of dimension 16.
Upon compactification on T¢ the spinor 7 in (D.2) is represented as a state
of the Fock space built by acting with b on the ground state |—°). It is
convenient to introduce the notation e;,...;, := bl - - b“[—d/2) and e}, =
bi, - - - by, |[+%2), which was used in section 3.4.1..

Spinors that are related by an SO(d, d) transformation exp(3_, ; z;7)
are associated with D-brane configurations that are equivalent under T-
duality. Each orbit listed in section 3.4.1, is characterized by a representative
SY. Therefore a SO(d, d) pure spinor is equivalent to the ground state of the
Fock space that we can denote by 1, corresponding to a pure spinor defining
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a D-brane wrapping a supersymmetric cycle. The notation e;,...;, and corre-
sponds to a D-brane configuration wrapping the directions {1, - ,4,} in T
and e ; a D-brane configuration wrapping the complementary directions
to {i1,--- ,iy} in T%

Upon compactifying on a torus of dimension d < 3, all possible brane
world-volumes are parallel, up to identification under SO(d, d;Z), and the
condition (D.1) ensures in this case that all instanton configurations are -
BPS. These are p = 0 and p = 2 wrappings in type IIA, and p = —1 and
p =1 in type IIB.

The theory compactified on a 4-torus T# in type ITA (for instance), in-
cludes instantons due to wrapping D0-brane world-lines on any of the four
1-cycles and D2-brane world-volumes on any of the four 3-cycles. These con-
figurations in general fill out an eight-dimension chiral spinor representation
of SO(4,4), Sa = Z?:a Ve b® + Zi,b,czl Vapeb®¢/3!. This parametrization
makes explicit the action of SL(4) on v, or u® = €™y, (or SU(4) in the
complexified case).

With a single DO-brane or a single D2-brane world-volume wrapped on T*
the condition (D.1) is always satisfied, and the configuration is %—BPS. How-
ever, wrapping both a D0-brane world-line and a D2-brane world-volume
results in further breaking of supersymmetry unless v, and u® satisfy condi-
tion (D.2). Tt is easily seen that this condition is satisfied for all n = | + +)
ifv-u=0. Butif u-v # 0 only n = |+ £) satisfy the solution which is
%—BPS. These two conditions are invariant under the action of the T-duality
group SO(4,4) acting on a spinor S4. The %—BPS condition corresponds to
imposing the pure spinor constraint S - .S = 0 while the %—BPS corresponds
to the complementary condition, S-S # 0, which defines the configuration
with the D0-brane world-line orthogonal to the D2-brane world-volume.

Extensions of these arguments lead to a classification of all BPS configu-
rations of euclidean Dp-brane world-volumes that are completely wrapped
on a torus. The orbits of such configurations are obtained by imposing
generalisations of the pure spinor constraint on the SO(d,d) spinor that
parametrizes the orbits. Orbits which preserve a smaller fractions of su-
persymmetry are larger and are associated with spinors satisfying weaker

constraints. The resulting orbits are described in section 3.4.1.

APPENDIX E. DETAILS OF MODES IN RANK 3 AND RANK 4 CASES

This appendix presents details of the modes of Eisenstein series that enter

in the expressions for the coefficients, 5((5 3) and 5((11’) 8) in dimensions D = 8
and 7, with symmetry groups SL(3) x SL(2) and SL(5), that are used in
sections 4.4 and 4.5 in the text. This summarises and extends the string
theory results in [2] (see [40,41,51-53] for related investigations). The D = 6

case, with symmetry group SO(5,5), is discussed in section 4.6.
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E.1. £y, and £(: SL(3,Z) x SL(2,2).

The coefficients are functions of the SL(2)/SO(2) symmetric space which
depends on U = U, + ildy, the complex structure of the 2-torus, T2, while
the SL(3)/SO(3) space depends on 5 parameters. We will parametrise the
SL(2)/S0O(2) coset by (4.12) (with © replaced by ¢) while the SL(3)/SO(3)
coset will be parameterised by the string fluxes as

1
-3
1 Bys C® 1By (2 ,° 0
€3 = 0 1 Ql 0 1/26 vV Q2 0 s (El)
0 0 1 8
0 0 2

1

where vy 2 = rira/03, = \/QT% is the volume of the 2-torus in 10 dimen-
sional Planck units and T5 = r179 /E? is the volume in string units. The five
parameters of the coset are packaged into (2,7, C(Q)), where Q = Q1 + i)y
and T'= T + iT5 (where T} = Bng). We shall also make use of the combi-
nation yg 1= 3Ty , which is the square of the inverse string coupling. The
complex parameters T is interpreted as the Kéhler structure of T2.

The coefficient functions £ and £€®)  are solutions of (2.6) and (2.7)

(0,0) (1,0)
with D = 8 [2,36],

8) o8  _
A® gy = 6m (E.2)
10
(A(S),E) ((i)o) = 0, (E.3)

where the SL(3) x SL(2) Laplace operator is defined in terms of the param-
eters introduced above by

A = ASEG) 4 gASH2) (E.4)
with
OB — N2 2
ASLB) — AQ+| = 2192 o +30,,(130,,) (E.5)
SL
ASHD 1 (@R, + 2R (E5)

The fact that the eigenvalue in (E.2) vanishes, together with the presence of
the 67 on the right-hand side is related to the presence of a 1-loop ultraviolet
divergence in eight-dimensional maximally supersymmetric supergravity [4].

The solutions to these equations are given in terms of SL(2) and SL(3)
Eisenstein series. The SL(2) series is given by (4.13) while the SL(3) Eisen-
stein (Epstein) series is given by

20(25) B3 (gs) = Y (mEpe) 7, (E.7)
M3zeZ3\{0}
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where, setting M3z = (m1 mams3) € Z3, the mass squared is given by

mine = Ms-gs- My (E.8)
3
= ;i (Jm1 4+ meQ + Bms|? + (mgﬁng)Q)
2
with ) . .
1 - a
D5 (Ve F(92)asB*B (92)abB> Eo
93 . €3 63 V2 ( (92)abBa (gQ)ab 5 ( . )
where
L aP o, _ (Bns  ®)
92 = o <Ql IE B:= c® ) B:=CY +QBns. (E.10)

The Eisenstein series Egﬁgg) is related to Eﬁjf’) by the following functional

relation,
£(25) ESE®) (g3) = €3 —25) E°"S) (g3). (E.11)

a1 agip—s
The solutions of (E.2) and (E.3) with appropriate boundary conditions
are combinations of these Eisenstein series, [2,35-37]

Eony = lim <2€(3)E51[;(33+6+4C(2—QE)ElsLE(Z)(U)) (E.12)
4

®  _ SL(3) | 27" _SL(3) ~SL(2)

8(1’0) - <(5)Ea1,% 135Ea1;—%E2 (Z/l) (El?))

(8)
(0,0)

€ — 0 limit. However, these poles cancel between the two terms [2], leaving
the hatted series that are defined by subtracting the pole terms, using

20(2 + 2¢) ESEO () = g + EZFO ) + 27(vp — og(2)) + O(e), (E.14)

The expression for £ is the sum of two series that each have poles in the

and

20(3+ 2¢) ESHP 2T

e = o T dm(yp —1) + Eii(%?)) +0(e). (E.15)
The Fourier modes of the coefficient functions can now be considered in each
of the three parabolic subgroups of interest, after putting the SL(3,7Z) part
together with the SL(2,7Z) part. The unipotent radicals in these three cases
are given by:

i) The unipotent radical U,y in the maximal parabolic P,, = GL(1) x
SL(2)xR* xU,, associated with the decompactification limit is parametrized

by (C®), Byg) and takes the block diagonal form,

1 Bns c®
0 1 0 0
Uas = 0 0 1 . (E.16)

1 U
6
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In this maximal parabolic subgroup the Fourier coefficients of the SL(3)
Eisenstein series in (E.7) are defined by 23

FSL®02 (kpy kpy) = / dBysdC? ¢~2imke1C®pabs) RSLE) - (E17)
b [0’1]2 b

with ged(p1,p2) = 1. Extending the constant term computation in [2] the
non vanishing Fourier coefficients are

1 1-28 _1-£ 0'23_2(]{) Ks_1(271'|k" |p2 +p1§2|T2)
ESLG)e2(pp) kpo) = ——Q, * T, 3 .
- R i

(E.18)
The Fourier modes of the SL(2) series are defined as

FPO) = | dly e ™ EFFO W), (E.19)
[0,1]

with ged(p1, p2) = 1. The non vanishing Fourier coefficients are

/
L) (1) 2Vl 0251 (IK']) - s W) (E.20)

£(2s) |k/|sfé 8

Finally, the Fourier modes of the product of the SL(3) and the SL(2)
series is given by

FEOSE (hpy kpy, k) = / dBygdC®) ¢~ 2k C+mBys) pSLE)

a1;s,s’ aq;8
" [0,1)2 ’

x iy e STy (B.21)
[0.1]

with ged(py, p2) = 1. The non vanishing Fourier coefficients are

FRCI @ (py kpa, 1) = FREO2 (kpy, ko) FLPP (W) (B.22)

a1;s,s’ ai;s s'

ii) The unipotent radical U,, in the maximal parabolic P,, = GL(1) x
SO(2,2)xU,, associated with the string perturbation regime is parametrized
by (Q1,C®?) and takes the form,

1 0 C®
01 O, 0
U, =1 \0 0 1 . (E.23)

)

In this maximal parabolic only the SL(3) series have non-vanishing Fourier
coefficients, which are defined by

FSL® (i, kpy) = / 0 dC®) ¢~ 2T CH ) BSLE) ( 24)

ai;s
(0,12

23The labelling of the simple roots a1 and ap on these Fourier coefficients uses the
conventional labelling of the SL(3) Dynkin diagram.
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with ged(p1,p2) = 1. Extending the constant term calculation in [2] leads
to

TQ—; 145 095 1(k) -1
§2s) % e [T + paf ™
(E.25)
iii) The unipotent radical U,, in parabolic P,, = GL(1) x SL(3) x Uq,
associated with the semi-classical M-theory limit is parametrized by U; and
takes the form

K, 1(27|k| [p1T + p2|Q2)
FSL® e (fp) kpo) = -

ar;s

100
010 0
Usy=| \0 0 1 : (E.26)
0

oy

In this maximal parabolic subgroup only the SL(2) series has non-vanishing
Fourier coefficients defined as

FSUOG) = [ty e pSLO ), (5:27)
[0,1]

which equals

2V/Us o251 (|K])
SL(2) 1.\ _ 2 025—1 ) /
FOW) = S piee K, 1 (2K 0). (E.28)

The evaluation of the non-zero Fourier coeflicients of 5((3)0) and 5((5)0) is
straightforwardly obtained by using the above expressions and is discussed
in section 4.4.

E.2. £y and £ ¢ SL(5,Z).

In D = 7 dimensions the coefficient functions are automorphic under the
action of the duality group SL(5,Z) and are functions on the 14-dimensional
coset space SL(5)/SO(5), which is parametrized, using the notation that

arises from string theory, by

0 0
Bly C@14qBl 0}

D (2)2 5 —1 Ds 0 0
N3 Byg C7°+ By vy

e5 = Byg C®3 4+ 0B 0 0 1.

0 1 th 0 0 0 BV 0

0 0 1 1

0 0 0 0 557

(E.29)

where )3 is the inverse string coupling constant, (1 is the type IIB RR
pseudoscalar, and B}q and Cc®i (i =1,...,3) the NS and RR charges.
The quantity N3 is a rank 3 upper triangular matrix and D3 a rank 3
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diagonal matrix. These are defined so that é3 = N3Dj3 parametrizes the
coset SL(3)/S0O(3). We will make use of the following combinations,

2 . 2
_1 17973 3 (rirers 1 o T1T2T3
v _< 03 ) _922< 03 ) ’ v = B (E.30)
10 s S

where 71, 75 and r3 are the radii of T? and y; is the 7-dimensional string
coupling. Note that 3 is invariant under the action of SL(2) x SL(3).
The coset space SL(5)/SO(5) is parametrized by the metric g5 = e5 - el

_2

g5 = ,/3% vy (93)ij + (92a)abe”B? (92)aB? ) (E.31)
(92)ab B (92)ab

This parametrisation is adapted to the maximal parabolic subgroup F,,,

which has Levi subgroup Lo, = GL(1)xSL(3)xSL(2) where g3 parametrizes

the SL(3)/S0(3) coset and g2 the SL(2)/SO(2) coset

L /197 ). Bls Bis Big
g2 = @ (Ql K B = cA1 o2 o23) - (E.32)
The SL(5) mass squared is given by the quadratic form
Mors = Msegs My (E-33)
_ y%‘ml"i_mQQ‘i‘nT'(C(z)—f‘QBNs)F +nT-g3-n
I Q s )
2 yI5
3

where M5 = (n1,n2,n3, mo, m1) € Z°\{0} and we have set n := (ny,ng,n3)
and defined Byg and C® as the first and second rows of the matrix B. This
expression will later be useful for describing the SL(5) Eisenstein series.

The %—BPS and %—BPS coefficients, 8((5’)0) and E((;)O), that solve (2.6) and
(2.7) together with the appropriate boundary conditions are given®® in [2]

by linear combinations of the E§ﬁ§5) and ng;gf) Eisenstein series

5((5,)0) = 2(¢(3) Efﬁg’) , (E.34)
M g sy | 24C(4 —2€)¢(5 — 2¢) _sr(5)
5(1’0) _E—I}%) (C(E) + 26) Eal;%Jre + T2 Ea4;%fe (E‘35)

The definition and Fourier expansions of the Fisenstein series in this expres-
sion will now be reviewed. .
e Fourier modes for the series Eal;g )

The Eﬁﬁ?) series may be written using (E.33) in the form

SL(5 -
20(2s) ESLS = > (Ms g5 Ms) ™", (E-36)
Ms5€Z5\{0}
24 [2] these series were defined as Eﬁﬁéﬁ]};s = 20(28)ESEY) and Eiﬁigis =

4¢(25)C(2s — 1)ESED)
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The constant terms with respect to the (2,3) parabolic subgroup P,,, the
(4,1) parabolic subgroup P,,, and the (1,4) parabolic subgroup P,,, were
evaluated in [2].

(i) The parabolic P,, = GL(1) x SL(2) x SL(3) x Uq,-

The unipotent radical for this parabolic subgroup is abelian and is given

by

I, Q4 g13 By CO14 QlB%IS)
Uay = ) = . E.37
’ <0 13) < <923 BYs C®%+ B (137

Poisson resummation on two integers, keeping the off-diagonal terms in the
parametrisation of [2, section B.5.2] results in the following Fourier expan-
sion of E&gﬁ@ with respect to F,, to get

ai;s ai;s

FSLGoa( N,y = /[0 16 d8Q, e~ 2im (N Q) pSL(5) (E.38)

where Ny € M(2,3;7Z).
For all values of s the Fourier modes are only non-zero when Ny has rank
1 and is given by given by Ny = k Ny with ged(Ng) =1
miny Mmani
N4 = an = | miny Mmong , n= (nz) € Zg, m = (ma) € ZQ, (E39)
ming 1mons

and takes the form

21 42 02 3(k])

FSLG)ai (g N, = (”1‘74”)8—% K, s (27ryk|r2 ||J\74||) :

138 F(S) ’k’s—% [lm]|
(E.40)
where we have defined
INa|? == tr(g5 ' Naga NJ);  [lm|* :=m" - g - m. (E.41)

The matrix Ny is transformed by the action of SL(3,7Z) on the left by
the action of SL(2,Z) on the right. This matrix has rank 1 and therefore
satisfies the -BPS conditions €,,(N4);*(N4);* = 0 of section C.3.

In other words, for any value of s, the Fourier modes fill out %—BPS orbits
— one for each value of k.

(ii) The parabolic P,, = GL(1) x SO(3,3) x Uy, .

The unipotent radical for this parabolic is abelian and is given, in our
parameterisation by

c@1 + QlBI{IS

_(1s O _ | 2+ 01 Big
Ua1 — <0 1 ) ) Ql - 0(2)3 + QlBI%]S 5 (E42)
0

where I is the 4 x 4 unit matrix and @, is a SO(3,3) spinor (a vector of
SL(4)).
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The Fourier modes are defined by

F3H (k, Ny) = /[0 1] d'Qy e T INT QL pSLO). (E.43)

138 138

where Ny € Z* is such that gcd(N1) = 1. These Fourier modes are evaluated
by a straightforward extension of the expansion given in [2, section B.5.1],
which kept only the constant terms (for which it is sufficient to set @1 =0)
and used the fact that SO(3,3) = SL(4). The result is

25 si6s g K, 1 (2[k|r? || N]]
FSE® (5, Ny) = 2 2 2ot 1K) oo ( 1 3 (E.44)
| L(s) k2 | Va]j°2

where ||N1||? ;= N{ - g4 - N1 and ged(Ny) = 1.
(iii) The parabolic P,, = GL(1) x SL(4) x Ua,

The unipotent radical is abelian and given by

1
Upy = (0 ?j) , Q2 = (Ch23 Craa Cazs Ci34) , (E.45)

where Q)2 is again a SL(4) (row) vector. The notation indicates that it is
parametrized by the 3-form flux of the M2-brane world-volume wrapped
on the M-theory 4-torus, 7¢. This translates into the NS components of
flux, Bxsi12, Bysas, Bysis, and the RR D2-brane flux, C\5). In type IIB
language these components become the NS flux Bngi2, the RR D-string
flux Cg) and the Kaluza—Klein momenta from the components of the metric
gi3 with ¢ =1, 2.

The Fourier coefficients in this parabolic are defined by for k£ € Z and
Ny € Z4 with ng(N4) =1

FSEBe2 (], Ny) = / d* Qs e~ 2im kNI Q2 pSL(5) (E.46)

138
(0,1]*

These coeflicient can again be evaluated by an extension of the computation
of [2, section B.5.1] keeping the off-diagonal terms, which gives

2% 4 _2s o9s—_4a(|k _
FSL(S)OQ(]C,N;Q — 7"4 5 2s 4(’ D ||N4”S 2K3,2 (27T|k“7"2 ||N4||) ’

o)k

(E.47)
where [[Ngl|? i= NT - g4 - Ny with ged(Ny) = 1.
e Fourier modes for the series ng;(f)

The expression for 5((17 )0) involves the Eisenstein series Eﬁﬁ?) in (E.35),

which is not related to the series Eﬁﬁ&”’) by the functional equations. The

Fourier modes will be evaluated using the Mellin transform representation
given in (4.56) from the proposition 4.1.
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(i) The parabolic P,, = GL(1) x SL(2) x SL(3) x U,,
It is convenient to start from the expression for I'(55) after Poisson re-
summation on two of the ten integers in (4.75),

U5 =
24 _
5 —7r § (min7)o5 L(mtnr) —7 Vr%g (ptar)-g3-(p+a?) g0 tr(NI-Q4)
- e Vg T 4
V3 2 ’

(mimy)€z8\{0}
(p®,q®)€z4\{0}

(E.48)
where the SL(2) metric g2 is an element of the coset SL(2)/SO(2) and the
SL(3) metric, g3, is an element of the coset SL(3)/SO(3). The integer-
valued matrix Ny € M (3,2;Z) can be written in the form

N4 = M3 - J - P2, (E49)

where
0 -1
o (o) @50

and

mi ni 1 1
My:=|mo no| € M(3,2,Z), Py:= (pg q2>eM(2,2;Z). (E.51)

m p- q

3 n3

Since y7' - J -y = J for all v € SL(2,7Z), the matrix Ny is invariant under
the action of since M3 — M3 -~ and Py — T - P,.

The integral (4.57) can be analysed by use of the method of orbits in [2,
appendix B.2] applied to the left action on P». This gives the sum of three
types of contributions arising from the singular orbit with P, = 0, the
degenerate orbit with det P, = 0, P> # 0, which can be reduced to terms
with ¢ = g2 = 0, and the non degenerate orbit with det P, # 0, which can
be written as a sum over matrices of the form

P2=<§ 2) . 0<j<kp#0. (E.52)
The result is
2 s
/ dTT L5 = V3 / dZQ L(3.3) (E.53)
/ dT1/ dT2 efﬂvr%% e ﬂrg%w*%“r(ﬂff@@
1
’ <sz9§§%

+oo dr 2 (p+q7)-93-(p+a7)
2 —7V 5 LR PP IR AR LS
+ / d7‘1/ E E ™ 2 X

0<J<k (m, n)€Z6

8 (m+nT)- g3 ('m+n7)
—rr5s —2 =

. T
X e Vs +2imtr(Ny Qa)

)
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where the matrix Ny = —n” - p has rank 1 and Ny = m” -¢—n” - p has rank
2.
The Fourier modes of ng;g‘r’) in the P,, parabolic are given by
F5£§5)a4 (N4) = /['0 1}6 dGQ €—2iﬂ' tr(NZQ4) E££g5) , (E54)

with Ny € M(3,2;Z) and Q4 is defined in (E.37). This can be written as
the sum of two types of contributions, one in which Ny is of rank 1 and one
in which Ny is of rank 2

FSEOs(Ny) = FIEO™ (W) + FIE (). (E.55)

43S ay;s T ayg;s Tl
Substituting (E.53) in the representation in (4.56), the rank 1 contribution
is given by

65+10

FSUea gy = T ° S(m-n) Ky a(2mr?|[Na]))
aa;s ] 4€(25)¢(2s—1) mezA (0} (mQ)S_% (p?)s—1 (| N2

)

(E.56)
where Ny = n” - p with n € Z3 and p € Z? with || Ny|? = tr(g3 ' Nagy "N},
andm2:mT-ggl-mandpzsz-g2-p.
The contribution when Ny = m” - ¢ — n” - p has rank 2 arises from the
non-degenerate orbit and has the form

F

ay;sIT

30—4s +00 2\ 55t 252
SLO s (N = gy 0 / dry ()2 ((m A nm)") 7 (E.57)
o0 (p+aqm)*) 2 (¢%) 2
Ko o(2nr?y/(m +nm)2 ?) K, 12072/ (p + qr1)2 n2).
(ii) The parabolic P,, = GL(1) x SO(3,3) x Uy,
The unipotent radical is parametrized by @)1 and after Poisson resumma-
tion the lattice sum becomes

X

16 [prgr2 4 (minn)gg D(mtnn) . <
—1 4 —rVrs PHaTlZ 3 4 —2ir NI-Q1
Lis5)lpae =V 1p5)d g 72 Vo i
(p,q)ELXL
(m,n)ezt xz4
(E.58)

where g4 parametrizes the coset SL(4)/SO(4) and Ny is the rank 4 vector
defined by

Ny:=Ms-J- P, (E.59)
where J is the matrix defined in (E.50) and
mi1 N
mo N2 p
Ms = eM4,2,7), P := eM2,1;Z). E.60
vim [ el emanz) . = (M) eMean. (E60
myg N4y

The vector N is invariant under the action of v € SL(2,Z) on the integers
P—~T.Pand M — M -~ because v - J -yI = J for all v € SL(2,7).
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The integral (4.57) can be evaluated when the lattice sum is given by (E.58)
by unfolding from the left SL(2) action on P; to give

s [N 251 [ BT
Is(A, g5)lpaay =75 avy ]__711(44)(‘/94)
-5 ,
+ rs / AV V25 / dTQ / dry e‘”%‘Qz”I’”T'Ql
0 3 mez\{o}
(n,m)€z8

4 (m+nTt)- g4 (m—‘—n?)
—7rb5

X e VT2 . (E.61)

Poisson resumming on m in the last term leads to

8s
Is(A, g5)|p(iay = 75 Is(A, g4)

+oo 2,
+ rs / AV V= 3/ dﬁ/ e_ﬂvp 2
0 3

PEZ\{O}
(r,n)€Z8

4
—7r5 To

n-g4_ n
\%

_4 PSP S ;
% 6_7T7—2Vr 5m-g4-m+227rm~n7'1—2’t7rp”'Ql. (E62)

The integral over 7 projects on the sector m -n = 0, for which the winding
and the Kaluza Klein numbers are orthogonal.
The finite part when A — oo gives the Fourier coefficients

F54L§5)al(k Nl) / d4Q1€2i7rkNT Q1 ngg) (E63)
[0,1]* ’
3—2s s_3
e §(N1-m) | [[Nef]°2
T 99 (9e — 1) K 272 ||| NV
£(2s)C(2s — 1) Z (|21 WS_% 377( KN

meZ*\{0}
with Ny € Z* with ged(Ny) = 1 and || Ny||? := N7 - g7 - Ny and ||m]? :==
mT - g4 -m.
(iii) The parabolic P,, = GL(1) x SL(4) x Ua,

Applying the same techniques for the P,, parabolic the Fourier coeflicients

FRiP02(k, No) = /[0 e NG Q2 gl (e (E.64)

438 438

are given by the rank 1 contribution Ny = pNy with k € Z and N, € Z4
with ged(Ng) =1

- 2 (2 - s)ms2
FSLGLa2 (L N,y — p2t3 E.65
o (RN2) = S e @s — T s = 1) (E.65)
o(m-Ny) | [k >
x - — K1 (2mr® K[| N2])
2 [[m||*=2 ][ Naf|*~*

mezZ4\{0}

and where || No||2 := NJ - g, ' - Ny and ||m]|? :== m” - g4 - m.
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