NONCOMMUTATIVE TODA CHAINS, HANKEL
QUASIDETERMINANTS AND PAINLEVE II EQUATION

VLADIMIR RETAKH AND VLADIMIR RUBTSOV

ABsTRACT. We construct solutions of an infinite Toda system and an analogue of
the Painlevé II equation over noncommutative differential division rings in terms of
quasideterminants of Hankel matrices.

INTRODUCTION

Let R be an associative algebra over a field with a derivation D. Set Df = f' for
any f € R. Assume that R is a division ring. In this paper we construct solutions
for the system of equations (0.1) over algebra R

(0.1-n) (0071 = 0,107 — 0,071, n>1

n—17

assuming that 1 = ¢,00 = ¥~ !, ¢, € R and its “negative” counterpart (0.1’)
(0.1-m) () = M=t = Ny Tl=ms M > 1

where 79 = ¢~ -1 = 9.

Note that #’0~! and 6~ '6' are noncommutative analogues of the logarithmic
derivative (log#)’.

We use then the solutions of the Toda equations under a certain anzatz for
constructing solutions of the noncommutative Painlevé II equation

1
PII(U,ﬁ): u”:2u3_2$u_2ux+4(6+§)

where u,z € R, '’ = 1 and S is a scalar parameter, 8/ = 0.
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Unlike papers [NGR] and [N] we consider here a “pure noncommutative” version
of the Painlevé equation without any additional assumption for our algebra R.

Our motivation is the following. In the commutative case one can consider an
infinite Toda system (see, for example [KMNOY, JKM]):

(0.2-n) T o — (7','L)2 = Tp+1Tn—1 — 9157/’7}2;

with the conditions m = ¢, 79 = 1,71 = 9.
Let n > 1. By setting 6,, = 7,,/7,_1 the system can be written as

(log 7)" = On 416" — d1).

For n = 1 we have the equation (0.1-1)with 6; = ¢,0, = ¥»~!. By subtracting
equation (2.2-n) from (2.2-(n+1)) and replacing the difference log 7,41 — log 7, by
log - one can get (0.1-n).

Similarly, the system (0.2-m) for positive m implies the system (0.1" — m) for
O—m = Tem/T—m+1-

By going from 7,’s to their consequtive relations we are cutting the system of
equations parametrized by —oco < n < oo to its “positive” and “negative” part.

A special case of the semi-infinite system (0.1) over noncommutative algebra with
0, ' formally equal to zero was treated in [GR2]. In this paper solutions of the Toda
system (0.1) with 65" = 0 were constructed as quasideterminants of certain Hankel
matrices. It was the first application of quasideterminants introduced in [GR1] to
noncommutative integrable systems. This line was continued by several reseachers,
see, for example, [EGR1, EGR2], papers by Glasgow school [GN, GNO, GNS] and
a recent [DFK].

In this paper we generalize the result of [GR2] for fy = ¢! and extend it to the
infinite Toda system. The solutions are also given in terms of quasideterminants
of Hankel matrices but the computations are much harder. We follow here the
commutative approach developed in [KMNOY, JKM]| with some adjustments but
our proofs are far from a straightforward generalization. In particular, for our proof
we have to introduce and investigate almost Hankel matrices (see Section 2.2).

From solutions of the systems (0.1) and (0.1’) under certain anzatz we deduce
solutions for the noncommutative equation Pry(u, 3) for various parameters 3 (The-
orem 3.2). This is a noncommutative development of an idea from [KM].

We start this paper by a reminder of basic properties of quasideterminants, then
construct solutions of the systems (0.1) and (0.1’), then apply our results to non-
commutative Painlevé II equations following the approach by [KM].

Our paper shows that a theory of “pure” noncommutative Painlevé equations
and the related tau-functions can be rather rich and interesting. The Painlevé II
type was chosen as a model and we are going to investigate other types of Painlevé
equations.
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1. QUASIDETERMINANTS

The notion of quasideterminants was introduced in [GR1], see also [GR2-3,
GGRW].

Let A = ||aij||, 4,j = 1,2,...,n be a matrix over an associative unital ring.
Denote by AP? the (n — 1) x (n — 1) submatrix of A obtained by deleting the p-th
row and g-th column. Let r; be the row matrix (a1, as2,...aij, ..., ain) and c; be
the column matrix with entries (aij,as;,...aij,...,an;).

For n = 1, |A|11 = a11. For n > 1 the quasideterminant |A|;; is defined if the
matrix A% is invertible. In this case

|A|” = aij — T'Z'AijCj.

If the inverse matrix A™' = [|byy|| exists then by, = |A|,' provided that the
quasideterminant is invertible.
If R is commutative then |A|;; = det A/ det A* for any 7 and j.

Examples. (a) For the generic 2 x 2-matrix A = (a;;), ,j = 1,2, there are four
quasideterminants:

|Al11 = a11 — 01202_21021, |Al12 = a12 — 011(12_11@22,
|Al21 = a21 — (122611_216111, |Al22 = ag2 — 6121(11_11@12-

(b) For the generic 3 x 3-matrix A = (ai;), 4,j = 1,2, 3, there are 9 quasideter-
minants. One of them is

|Al11 = a11 — a12(ag2 — a23a§31a32)_1a21 — a12(as2 — 03302_31022)_1631

-1 -1 -1 -1
- 6113(6123 — (22039 a33) a21 — 6113(&33 — 432 - Qg9 a23) asi.



4 VLADIMIR RETAKH AND VLADIMIR RUBTSOV

Here are the transformation properties of quasideterminants. Let A = ||a;;|| be
a square matrix of order n over a ring R.

(i) The quasideterminant |A|,, does not depend on permutations of rows and
columns in the matrix A that do not involve the p-th row and the g-th column.

(ii) The multiplication of rows and columns. Let the matrix B = ||b;;|| be ob-
tained from the matrix A by multiplying the i-th row by A € R from the left, i.e.,
bl’j = )\aij and bkj = Ofj for k 75 1. Then

A Al if k =1,
| Blkj = . . o
| Al if £k # 4 and A is invertible.

Let the matrix C' = ||c;;|| be obtained from the matrix A by multiplying the j-th
column by p € R from the right, i.e. ¢;; = a;;p and c¢;; = ay for all 4 and [ # j.

Then ) ‘
o= { A i01=s
’ | Al if | # j and p is invertible.
(iii) The addition of rows and columns. Let the matrix B be obtained from

A by replacing the k-th row of A with the sum of the k-th and I-th rows, i.e.,
bkj = ag; + aiy, bij = Qj for ¢ # k. Then

|A|7,_7:|B"L]; ’l,=1,k—1,k+1,n, j:1,,’l?,

We will need the following property of quasideterminants sometimes called the
noncommutative Lewis Carroll identity. It is a special case of the noncommutative
Sylvester identity from |GR1-2] or heredity principle formulated in [GR3].

Let A = ||asl|, 4,5 = 1,2,...,n. Consider the followng (n — 1) x (n — 1)-

submatrices X = ||zp4/], p,¢ = 1,2,...,n — 1 of A: matrix Ag = ||ap,|| obtained
from A by deleting its n-th row and n-th column; matrix B = ||b,,|| obtained from
A by deleting its (n — 1)-th row and n-th column; matrix C' = ||cpq|| obtained from

A by deleting its n-th row and (n — 1)-th column; matrix D = ||dp,|| obtained from
A by deleting its (n — 1)-th row and (n — 1)-th column. Then

(1.1) [Alnn = |Dln-1,n-1 = [Bln-1,n-1/40l5 21 n-1/Cln-1,n-1

2. QUASIDETERMINANT SOLUTIONS OF NONCOMMUTATIVE TODA EQUATIONS

2.1. Noncommutative Toda equations in bilinear form. Let F' be a com-
mutative field and R be an associative ring containing F'-algebra. Let D : R — R
be a derivation over F', i.e. an F-linear map satisfying the Leibniz rule D(ab) =
D(a)-b+a-D(b) for any a,b € R. Also, D(a) = 0 for any o € F. As usual, we set
v = D(u),u” = D(D(u)),.... Recall that D(v=') = —v~1v'v~! for any invertible
v E R.
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Let ¢, € R and R be a division ring. We construct now solutions for the
noncommutative Toda equations (0.1) and (0.1°) assuming that 6y = ¢, 6; = ¢

and no = ¢~ 1, n_1 = 9.
Set (cf. [KMNOY, JKM] for the commutative case) ag = ¢, by = ¥ and

(21) an=a, s+ Y amay, bu=b, ,+ > bigh;, n>1.

Construct Hankel matrices A,, = ||a;+j||, Bn = ||bi+;/],4, =0,1,2...,n.

Theorem 2.1. Set 0,11 = |Aplpp, N—g—1 = |Bqglq,q- The elements 6, forn > 1
satisfy the system (0.1) and the elements n_.,, m > 1 satisfy the system (0.1°).

This theorem can be viewed as a noncommutative generalization of Theorem
2.1 from [KMNOY]. In [KMNOY] it was proved that in the commutative case the
Hankel determinants 7,41 = det A,,n > 0,79 = 1,7_,,_1 = det B,, n < 0 satisfy
the system (0.2).

Example. The (noncommutative) logarithmic derivative 6,07 " satisfies the non-
commutative Toda equation (0.1-1):

(01071) = 0207 — .

In fact,

(01071) = (a1ag")" = (a2 — aotpao)ag ' — (arag ')
= (ag — alaalal)aal —ap = 0207 — ¢

Our proof of Theorem 2.1. in the general case is based on properties of quaside-
terminants of almost Hankel matrices.

2.2. Almost Hankel matrices and their quasideterminants. We define al-
most Hankel matrices Hy,(i,7) = ||last||, s,t = 0,1,...,n, 4,5 > 0 for a sequence
ap, a1, a2, ... as follows. Set a,, = a;4; and for s,t < n

st = sttty OQnt = Qi4t, Asqn = Osin-

and Gpn = Q4 -

Note that H,(n,n) is a Hankel matrix.

Denote by hy,(i,j) the quasideterminant |Hp(%,j)|nn- Then hy,(i,5) = 0 if at
least one of the inequalities 1 < n, 7 < n holds.
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Lemma 2.2.

J

(2.2) h(i,5) = 6n(iy§) =Y ap_1%hn(i—p,5) — Y hn(i,j — Q)thag—1
p=1

q=1
where
(2.3a) bin(i,5) = hn (i +1,5) = Bp_1(d,n — Dt (0= 1,n = 1)hy(n, 5).
Also,
(2.3bb) = hn(i,5+1) = hn(i,n)h; 2 (n — 1,n — Dh,_1(n — 1, 7).

Note that some summands h,, (i — p, j), hn (4,7 — ¢) in formula (2.2) can be equal
to zero.

Since hy,(i,5) = 0 when 7 < n or j < n we have the following corollary.
Corollary 2.3.
hn(n,n) = knp(n,n),

(3

ho(iyn) = kp(i,n) — Zas_lwhn(i —s,n),
s=1

J
I (1,5) = fin(n,§) =D ha(n,j — v)ay_1.

v=1

Proof of Lemma 2.2. We prove Lemma 2.2 by induction. By definition,

i+5—1 i—1
. —1
hi(,5) = Gitj1 — Z apPirj—1—k — (Qip1 — Zas¢ai—1—2)ao a;
k=0 s=0
j—1
-1 -1 -1
+a;aq arap — ajay (@41 — Z aj—1—tat).
t=0

Set
) )y f— . . . _1 . . _1 _1 _1
k16 J) = Gigj1 — Gip10g a5+ aiag a105 a5 — aiag G4,

we can check formulas (2.3a) and (2.3b). The rest of the proof for n =1 is easy.
Assume now that formula (2.2) is true for n > 1 and prove it for n + 1. By the
noncommutative Sylvester identity (1.1)

(2.4) Prni1(i,5) = hn(i,§) — hp(i,n — )R H(n, n)hy(n, 5).
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Set hp+1(i,7) = Kpt1 + Tny1(i,J) where k,41 contains all terms without .
Then

bn1(i,7) = bn(i,§) — Kn(i,n)h (0, n)ha(n, 5)
+hy (5, 0)hy, (0, n) K (n, n) by, (0, n) Ry (1, §) = b (4, 0) e (1, 0) K (1, ).

By induction, the first two terms can be written as
hn(i+1,5) = hn-a(i;n = Dhy 2y (n = 1,n = 1hn(n, 5)
+hn(i+1,n) — hy_1(i,n — Dbt (0 — 1,n — 1)hy(n,n)]h, (0, n)hn(n, §)

= hn(i+1,5) = ha(i + 1, )bz (n,n)hn(n, ).

This expression equals to h,11(i + 1,7) by the Sylvester identity.
The last two terms in k41 (4, j) can be written as

(3, n) R (0, ) [h (n41,0) —hp 1 (R, n—1)R 1 (n—1,n—1)h,(n,n)]h; (0, n) by (R, )
ha (i, )b (0, 1) [ (741, ) = b1 (n,n = Dy 24 (n = 1,0 = 1)ha(n, 5)]
= hn(i,n)h;  (n, ) [hn(n + 1,0) — by (i, n) b, L (n, n)hn(n + 1, 5)]

= hy (i, m)hy  (nyn) A g1 (n + 1, §)

also by the Sylvester identity.

Therefore, ky,+1(1, j) satisfies formula (2.3a). Formula (2.3b) can be obtained in
a similar way.

Let us look at the terms containing 1. According to the inductive assumption

J
ha(i,5) = kn(i, §) Zak 1P ha ( )= hn(i,j — Otpag_y.
=1

Using the Corollary 2.3 and formula (2.2) for n one can write r,.1(4,7) as

> an_1hn(i ky)—Zh i, j — £)pag
k=1

+Zak 1l (i — kyn)]he 2 (0, m) i (, 5)

k=1

+hn(i,n)h, " (n,n [Zau 1hn(n, j — £)as_q
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== ap_19[hn(i — k, j) = hn(i — k)0t (0, n) i (n, )]
k=1

= [ha(is g = £) + B iy n) i (0, n) hn (1, § — £)]hag—1.
=1

Our lemma follows now from the Sylvester identity applied to each expression in
square brackets.

Corollary 2.3 and formula (2.3a) immediately imply
Corollary 2.4. Forn > 1
B (n,n) hy (0, n) = hp(n +1,n)h; Y (n,n) — hp_1(n,n — )AL (n —1,n—1).

Note in the right hand side we have a difference of left quasi-Pliicker coordinates
(see [GR3]).

2.3. Proof of Theorem 2.1.
Our solution of the Toda system (0.1) follows from Corollary 2.4 and the following
lemma.

Lemma 2.5. Fork >0

[hk(k +1, k)lhlzl(k, k)]l = h’k-{-l(k +1, k + 1)h];1(ka k) - a0¢-

Proof. Corollary 2.3 and formula (2.3b) imply
hk(k + 1a k)l = hk(k + 17 k+ 1) - h’k:(k + 1a k)h];_ll(k - 17 k— 1)hk—1,k - aolﬁhk(lﬂ, k)

because hx(k+1—s,k) =0 for s > 1.
Then, using again formula (2.3b) one has

[hi(k + 1, k) hi (K, k)] =
[ (k+1,k+1) —hi(k+1,k)h "t (k—1,k— Dhg_1(k— 1, k) — aghy (k, k) by ' (k, k)
—hi(k+1, k)bt (K, k)[R (ky k+1)—hy (k, k)bt (=1, k= 1) hg—1(k—1, k) hy ' (k, k)
= [he(k + 1,k + 1) — hy(k + 1, k)bt (K, k) hi(k, k + 1)]hy Yk, k) — agtp =
hirr(k+ 1,k + 1At — agtp
by the Sylvester formula.

Theorem 2.1. now follows from Corollary 2.4 and Lemma 2.5. The statement for
N—m, M > 1 can be proved in a similar way.
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3. NONCOMMUTATIVE PAINLEVE 11

3.1 Commutative Painleve IT and Hankel determinants: motivation. The
Painleve II (Prr) equation (with commutative variables)

1
v’ = 2u® — dzu+4(8 + 5)

admits unique rational solution for a half-integer value of the parameter a. These
solutions can be expressed in terms of logarithmic derivatives of ratios of Hankel-

type determinants. Namely, if 8 = N + % then
d det A
u= — log P AN+1IT) N""l(x),
dx det Ay (z)

where An(x) = ||a;+j|| where 4,5 = 0,1,...,n — 1. The entries of the matrix are
polynomials a,(x) subjected to the recurrence relations:
n—1
ap=z, ar=1la,=a,_;+ Z @iy 1—i-
i=0
(see [JKM])

3.2 Noncommutative and “quantum” Painleve II. We will consider here a
noncommutative version of Pry which we will denote nc — Prr(z, 8):

1
u" = 2u® — 2zu — 2uz + 4(8 + 5),

where z,u € R, ' =1 and j is a central scalar parameter (3 € F, 3’ = 0).
This equation is a specialization of a general noncommutative Painlevé I1 system
with respect to three dependent noncommutative variables ug, w1, us:

ug = upUz + Usg + o
U] = —UUs — Uy + O
Uy = Uy — Up.
Indeed, taking the derivative of the third and using the first and second, we get
uhy = —(ug + uy)us — us(ug + u1) + a1 — ayp.
Then we have:
(up +u1)’ = —ubus — uguy + ap + g
and, immediately
—(uo +uy) =u2 — (g +a1)r—v,y€F.
Compare with u4 we obtain the following nc — Py :
uly = 2us — (o + 1) zus — (g + a1)us — 2yus + a1 — ap.

Our equation corresponds the choice vy = 0,7 = 2(5 + 1), ap = —28.
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Remark. The noncommutative Painlevé 11 system above is the straightforward gen-
eralization of the analogues system in [NGR| when the variables u;,i = 0,1,2 are
subordinated to some commutation relations. Here we don’t assume that the “inde-
pendent” variable x commutes with u;.

Going further with this analogy we will write a “fully non-commutative” Hamil-
tonian of the system

1
H = 5(“0“1 + urug) + aruz
and introduce the “canonical” variables
1 2
Pi= Uz, §:=Up, T = §(u0 + uy + uj).

Proposition 3.1. Let a triple (z,p, q) be a “solution” of the “Hamiltonian system”
with the Hamiltonian H and oy = 2(8+ 1).

Then p satisfies the nc — Pry:
1
Paz = 2p° — 2px — 22p + 48+ 5)

Proof. Straightforward computation gives that:
Pe =p° +2¢ -2z
4z = o1 — (qp + pq).
Taking py, = pzp+ PP + 29, — 2 and substituting p, and g, we obtain the result.
We give (for the sake of completeness) the explicit expression of the Painlevé

Hamiltonian H in the ”canonical” coordinates:

1
H(z,p,q) = qz + 39 — ¢° — E(QPQ +p%q) +2(8+ 1)p.

3.3 Solutions of the noncommutative Painlevé and of the Toda system.

Theorem 3.2. Let ¢ and v satisfy the following identities:

(3.1) P =@ = 22 — 24,
(3-2) Yo' —P'p = 20.
Then

1) up = 010,71 satisfies nc — Prr(z, 8+ n —1);
2) u_, = 0" 0"} satisfies nc — Pry(x, B —n).

n

Let us start with the following useful (though slightly technical) lemma
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Lemma 3.3. Under the conditions of the Theorem 3.1 we have the chain of iden-
tities (n > 0):

1)0 01 +6 01 =2(84+n—1)0,_10; "

2)0"0-1 =2(z — 0,0, 1,).

Proof. Remark that the first step in the chain (n = 1) directly follows from our
assumption: 0, = ¢,0p =y~ ':

O™t + (v = 284716

Indeed, we have
Pt —yp Y =28y g !
where the result:
Yo' — ' = 2.

The second step (n = 2) is a little bit tricky.
We consider the Toda equation (¢'¢~1) = 03¢~1 — ¢1p and find easily 6, (using

¢! =2z — 2¢1)):
02 = 206 — dipp — (¢'9™1)24.

Taking the derivation and using the same Toda and the first step identity, we get
0y = 26(8+1) — /605,
The second (n = 2) identity is rather straightforward:

0 + (0,071 05 + (01,671)05 = 2(B +1)6;.

Again using the Toda and the first identity we obtain finally:
0507 " + 02671 — ¢ — (¢'¢71)* =0
and then
0505 " + 22 —2(¢9) + (¢'671)%) = 03651 — 2(z — 62671) = 0.

We will discuss one more step, namely the passage from n = 2 to n = 3 (then
the recurrence will be clear). We want to show that:

1) 0505 4 05051 = 2(8 + 2)6205

2) 04651 = 2(x — 0305 1).

From the second Toda and second identity we get

03 = 2$92 — 0291_192 — 9&92_19,2
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It implies
05 = 204 + 2205 — 0507 105 + 020710107 102 — 0207 105 —

—2(z — 62071)0% + (0505 1)205 — 0505 (22 — 202607 1)6,.
We simplify and obtain from this

05 = 205 + 02071 (05 + 0167 105) + 0507105 + (0505 1)205 — 20505 6.
By the identity for 6} we have
04 = 205 + 02071 - 2(1 + )01 + 0507 05 + 05051 (—03 — 0207 165).

which assure the first identity for n = 3.
Now we prove the second.
Set a = 2(8 + 2). We have

9§ = 0,02 — (9’292_1)93
Take the second derivation:
04 = abhy, — (0505 1) 03 — 0505165,
By using the formula for 6% we have
04 = afly — (0505 1) 05 — 0505 (aby — 05605 165).
The terms with a are cancelled and we have
0y = — (0565 ") 03 + (6505 ")%0s.

Note that
—(0205")" + (0305 ")" = 005" — 2(0565")'.

We already know that the first summand in the right hand side equals 2(z—626] ")
and by our Toda system

(05051) = 0305 — 0207 .

The n—th step of the recurrence goes as follows: from n—th Toda and recurrence
conjecture we have

Ot = 220, — 0,0 10, — 0.0-20"..
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It implies

0,1 = 20, + 220, — 0, 010, +0,0.1.0, _10-1.0,—0,0"06 —

n’'n—1
—2(z — 0,0,1)0, + (0.6, )20, — 6.0 (22 — 20,01 )6,

Then, after some simplifications we get

0 er = 200+ 007, 00+ 01 1077210,) + 0,071 00 + (0,051)%6), — 20,0726,

n’n—1

By the recurrent formula for 6, we have

Op i1 =
20, +0,0, 1 (2(B+n—1)0,_1—0),_10.1,0,)+0.,0.1,0,+(0.0. 10, —20..0, 20, =

n’n—1

=2(8+n)0, + 0,010, +0,0,1(0.,0.1,6/, —220,) =
=2(B+n)0, + 9;9;_110,,, + 007 (—Ong1 — 0,,,0;_119”) =
2B+ 1) +0.071160, — 0.0 0,1 —0.071.06,,.

n’n—1

which assure the first identity for n + 1.
We leave the proof of the second identity for any n as an easy (though a bit
lengthy) exercise similar to the case n = 3 above.

Lemma 3.4. For n = 1 the left logarithmic derivative ¢'¢~' =: uy satisfies to
nc — Prr(x, ).

Proof. From the previous lemma we have from the first Toda equation:
(@071 =020 —pp =¢"¢p" = (¢'97")? =2(z — ) — w3
and hence
020" = 2z — ¢ptp — u3.
In other hand, taking the derivative of the first Toda, we get
uf = (02071 — ) = 05671 — 02 tuy — (¢'9h + BY).
We replace 056~ by
208+ 1) —u162¢7" = 2(B+ 1) — ua (22 — ¢ — us}).

Finally we obtain

uf = 2u} — 2uyx — 27Uy + 2(B + 1) + urdy + dypuy — (¢ + '),
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but
w1 + dpur — (' + ') = dpd'd™ — ' = 28

which gives the desired result.

Our proof of Theorem 3.2 in the general case almost verbatim repeats the proof
of the Lemma 3.4.

Proof. Let uy, := 0,0-1. Now the same arguments, from the Lemma 3.2, show that:
a) Opp10;" =22 — 0,01 — u2;
b) 0741071 = 2(B+n) — 0,0, 001107
c) ul! = 2ud — 2zuy, — 2upr +2(B+n)+ 0,0, (0,01 +6),_161). This implies
that u), = 2ud — 2zu, — 2u,z 4+ 4(B8+n — 1).

Remark. Starting with the “negative” Toda hierarchy (0-1’-m) we can formulate
the similar identities for n,,. Using these identities we can prove the second state-
ment of the Theorem 3.1.

4. DISCUSSION AND PERSPECTIVES

We have developed an approach to integrability of a fully noncommutative analog
of the Painlevé equation. We construct solutions of this equation related to the
“fully noncommutative” Toda chain, generalizing the results of [GR2, EGR1]. This
solutions admit an explicit description in terms of Hankel quasideterminants.

We consider here only the noncommutative generalization of Painlevé II but it
is not difficult to write down some noncommutative analogs of other Painlevé tran-
scendants. It is interesting to study their solutions, noncommutative 7— functions,
etc. We hope that our equation (like its “commutative” prototype) is a part of
a whole noncommutative Painlevé hierarchy which relates (via a noncommutative
Miura transform) to the noncommutative m-KdV and m-KP hierarchies (see i.e.
[EGR1-2],[GN],[GNS]). Another interesting problem is to study a noncommuta-
tive version of isomonodromic transformations problem for our Painlevé equation.
The natural approach to this problem is a noncommutative generalization of gen-
erating functions, constructed in [JKM]. The noncommutative “non-autonomous”
Hamiltonian should be studied more extensively. It would be interesting to find
noncommutative analogs of Okamoto differential equations [OK] and to generalize
the description of Darboux-Backlund transformations for their solutions.

We shall address these and other open questions in the forthcoming papers.
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