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Abstract

Recently, it has been observed the interconversion between dif-
ferentiated and stem-like cancer cells. Here, we model the in witro
growth of heterogeneous cell cultures in the presence of interconver-
sion from differentiated cancer cells to cancer stem cells, showing that,
targeting only cancer stem cells with cytotoxic agents, it is not al-
ways possible to eradicate cancer. We have determined the kinetic
conditions under which cytotoxic agents in in vitro heterogeneous cul-
tures of cancer cells eradicate cancer. In particular, we have shown
that the chemotherapeutic elimination of in vitro cultures of heteroge-
neous cancer cells is effective if it targets all the cancer cell types, and
if the induced death rates for the different subpopulations of cancer
cell types are large enough.

1 Introduction

Stem cells are cells with the ability of generating mature cells of a tissue
by differentiation, having also the ability of self-renewal, persisting during
the life time of an animal, [8]. Stem-like cells have been identified in several
tumours, making them particularly aggressive, [6, 1].

Recently, it has been observed that non-stem cancer cells give rise to
cancer stem cells (CSC) in vivo and in wvitro, [3, 5]. This has been observed
in cultures of breast cancer cells, and the rates of interconversion between
differentiated cells and stem-like cells have been measured, [5]. As noted



by Chaffer et al., [3], this interconversion can annulate the effectiveness of
clinical treatment of cancer by targeting only CSC.

Chaffer et al., 3], and Gupta et al., [5], considered several samples of ep-
ithelial breast cancer cells divided into three subpopulations: luminal cells,
basal cells and stem-like cells. Then, they have grown in vitro cultures of
these cells, initiated from different proportions of initial subpopulations. Af-
ter several hours of cell growth in nutrient-rich media, the cell culture sub-
populations converged to constant cell number proportions. In the presence
of nutrients, cells continue to grow, with constant relative cell-state propor-
tions. With the help of cell proliferation mathematical models, theses authors
estimated the rates of transition between cell states and have shown that dif-
ferentiated cell types, basal and luminal, can convert to stem-like cells after
self-renewal.

The experimental data has been analysed with simplified cell proliferation
models. Chaffer et al., [3], developed a continuous time simplified model,
where they have considered a non zero rate transition from a differentiated
cell state to a stem cell state. Gupta et al., [5], used a discrete Markov chain
model for cell-state interconversion between stem (s), basal (b) and luminal
states (1). For example, in one of the cultures of Gupta et al., [5], (SUM149),
the calculated transition probability between cell-states are: p,_.s = 0.61,
Po—b = 090, Pi—1 = 099, Ps—1 = 030, Pi—s = 001, Ps—b = 009, Po—s = 0.01
and pp—; = 0.08. From these quantitative values, it follows that CSC can
regenerate from non-CSC.

Our goal here is to model the growth of heterogeneous cell cultures in the
presence of interconversion between differentiated cancer cells to CSC cells,
and to evaluate the efficacy of chemotherapeutic strategies. There are sev-
eral mathematical modelling strategies to analyse the growth of cancer cells.
Some of the models focus on the growth rate and form of tumours, others
are centred on the kinetics of in witro cultures of tumour cells. From the
therapeutic point of view, in wvitro tumour cells growth gives a first approach
to estimate the kinetic rate parameters for in vivo tests, [2].

This paper is organised as follows, in section 2 we derive a proliferation
model for in wvitro cultures of cells with two subpopulations (stem-like cells
and non-stem or differentiated cells). This model includes not only all the
possible rates of transitions between the two subpopulations (interconver-
sion), but also includes the effect of cytotoxic agents. Then, we analyse the
growth rate of the population of cell, showing that in the presence of re-
sources and growth factors, the cell subpopulations grow indefinitely with
fixed proportion between subpopulations. In this model, nutrients are con-
sidered freely available. In section 3, we analyse the inhibition of growth of
CSC and of differentiated cells by the action of cytotoxic external agents. Fi-



nally, in section 3 we discuss the main conclusions of the paper. To simplify
the exposition, all the formal proofs were moved to Appendix A.

2 Modelling heterogeneous cell growth

We consider two types of cells in an in vitro culture. Stem-like cells denoted
by S and differentiated cells denoted by D. From the modelling point of
view, these cell can be normal cells or cancer cells. In in vitro cultures and
in the presence of nutrients, these cells duplicate by mitosis and can self-
renew in different cell types. We describe the process of cell duplication in
the presence of nutrients by the kinetic diagrams,
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where k; are rate constants and d; are degradation rates. Cells only self-
renew in the presence of nutrients and growth factors that are generically
represented by A. It has been shown experimentally that, in in vitro cultures
of breast cancer cells, all the transition described in (1) occur with positive
rates, [5]. The degradation rates described by the two last diagrams in (1)
will be used to simulate the inhibition effects of cytotoxic agents.

By the mass action law, [4], the concentrations of cells in culture evolve
in time according to the system of differential equations,

S = (kx—ks)AS + (ks + 2ke)AD — S
A = —(ky+ky+ks)AS — (kg + ks + ke)AD .

These equations describe the growth of a population of cells with two dis-
tinctive subpopulations in a culture medium. S(¢) and D(t) represent the
concentrations of stem-like and differentiated cells at time ¢, and A(t) is the
concentration of nutrients. This approach has been successfully used in cellu-
lar biology to describe quantitatively cell growth, [7], and provides the basic
framework to describe qualitatively avascular tumour growth, [2].
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Let us analyse first the dynamics of in vitro tumour growth. In this case,
we have, d; = dy = 0.

With dy = dy = 0 in equation (2), we have A + S + D = 0, obtaining the
conservation law, A(t) + S(t) + D(t) = A(0) + S(0) + D(0). From this con-
servation law, only two equations in (2) are independent, and the equations
describing the concentration of the cells in culture over time simplifies to,

{ § = ((kr ~ ka)S + (ks + 2ks) D)(co — 5 = D) )
D = ((ky+ 2ks)S + (ks — k¢)D)(co — S — D)

where ¢y = A(0) + S(0) + D(0) is a constant. Due to the dependence of
co on the initial conditions Sy and Dy, the phase space of equation (3) is
a right-angled triangle with one of the vertices at the origin of coordinates,
figure 1. The length of the edges along the S and D directions is ¢q. The
hypotenuse of this triangle is a line of fixed points and is defined by the
equation (cg — S — D) = 0. If A(0) > 0, any initial condition for equation
(3) is represented in phase space as a point inside this triangle.

The system of equations (3) has an isolated fixed point at the origin of
coordinates, (S*, D*) = (0,0). Then we have,

Proposition 1. We consider the system of equations (3) with co > 0 (Ay >
0) and k; > 0, fori = 1,...,6. Then, the zero fized point of the system
of equations (3) is Lyapunov unstable. Moreover, for any initial condition
inside the triangular region delimited by the line D = co—.S and depleted from
the point (0,0), in the limit t — oo, the solutions of the system of equations
(3) converge to points on the line D = ¢y — S.

The proof of Proposition 1 is in Appendix A.

In figure 1, we show the qualitative structure of the phase curves of the
system of equations (3).

As, for large values of t, we have approximately D(t) = ¢y — S(t), we
conclude that for large values of ¢, D(t)/co+ S(t)/co = 1 and, asymptotically
in time, the concentrations of the two subpopulations attain fixed proportions
such that D(t)/co + S(t)/co = D*/co + S*/cy = 1, where (S*, D*) is the
coordinate on the line D = ¢y — S of the limiting solution. It is not difficult
to prove that that the zero fixed point of the system of equations (3) is a
saddle point (see the proof of Proposition 1 in Appendix A).

Due to the conservation law A(t) + S(t) + D(t) = A(0) + S(0) + D(0),
asymptotically in time, the solutions of the system of equations (3) are
bounded. If we had assumed a continuous supply of resources such that
A = constant, the term (cy — S — D) in (3) should be substituted by the
constant A. In this case, it can be simply proved that, in the conditions of
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Figure 1: Phase space curves of the system of equations (3), for the parameter
values, k1 = ko = ky = ks = 1, k3 = k¢ = 0.5, A(0) = 0.7, ¢o = 1, and two
initial conditions (S, Dy) = (0.3,0) and (Sp, Do) = (0,0.3). All the solutions
with initial conditions in the interior of the triangular region converge as
t — oo to the line of fixed points D = ¢y — 5, and the zero fixed point is
unstable.

Proposition 1, the zero fixed point of the modified equation (3) is Lyapunov
unstable, and the asymptotic solutions of the modified equation diverge to
infinity, maintaining the fixed proportions D*/cq and S*/co. It is not difficult
to see that that the zero fixed point of the system of equations (3) is a sad-
dle point and the point (S*, D*) is the intersection of that tangent unstable
manifold of the fixed point at the origin with the line D = ¢y — S.

The model just described shows the same type of temporal behaviour as
the experimental observations of [5] (figure 3). It shows that, for the same
kinetic parameters, the fixed proportions of cell-state populations depends
only on the initial concentration of the subpopulations in culture.

3 Chemotherapy effects

Introducing a cytotoxic agent B in the in vitro culture and assuming that its
effect is to destroy cells, we can describe this process by the kinetic mecha-
nisms,

B+S-%

B+D = (4)

Comparing the two mechanism in (4) with the last two mechanisms in (1),
with the identification d; = r;B, and assuming a constant concentration of



the cytotoxic agent B, the system of equations (2) describes the therapeutic
effect of B during the growth of culture cells. We could also have assumed two
specific cytotoxic agents B; and Bs, but the identification would be similar.

The system of equations (2) describes the effect of a chemotherapeutic
drug in n vitro culture of cells. In laboratories testing conditions, the effect
of a drug can be analysed with this simple modelling approach. A necessary
condition for the successfulness of a treatment leading to the elimination of
cancer cells is the possibility of choosing constants d; > 0 and dy > 0 such
that the solutions of the model equations (2) converge to the zero steady
state in the variables S and D.

In model equations (2), it is assumed that cells duplicate in the presence
of nutrients and growth factors, generically represented by A. Assuming the
worst possible situation, where growth factors and nutrients are freely avail-
able in the cell culture, we can consider that A is a constant along all the
process. In this case, the model equations (2) reduce to,

S = (ky— k3)AS + (ks + 2ke) AD — dy S 5)
D = (ky+ 2ks)AS + (k4 — kg)AD — dyD

where d; = r;B, for i =1, 2.

Generically, the linear equation (5) has a unique fixed point for (S, D) =
(0,0). If, d; = ds = 0 and in the conditions of Proposition 1, the zero fixed
point is unstable (see the proof of Proposition 1). A chemotherapy can only
be successful if there is a choice of the positive constants d; and dy such that
the zero fixed point of the system of equation (5) is Lyapunov stable. This
implies that, in the presence of resources and growth factors, the cytotoxic
agent is able to induce cell death rates that completely inhibits the growth
of cell cultures.

Proposition 2. We consider the system of equations (5) with A > 0 and
k; >0, fori=1,...,6. The zero fized point of the system of equations (5)
1s Lyapunov stable if and only if one of the following conditions is verified:

]) d1>0, dQZO, d1>Ak’1 (mdk6>k4.
2) dle, d2>0, d2>Al€4 andk:3>k1.

3) dy > (kl — k‘g)A, dy > (k‘4 — kG)A and dy > (Z — A2k1k‘4 — Adl(kg —
/{34))/(d1 + A(lﬁ}g — l{?l)), where Z = A2(k1k6 + k3k4 + k2k5 + 2k3]€5 +
ok + Bksk).

The proof of Proposition 2 is in Appendix A.
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Figure 2: Stability region of the zero fixed point of the model equation (5),
for the same parameter values of figure 1. The limit of the parameter region
of stability of the zero fixed point is given in case 3) of Proposition 2. For
this choice of parameter values and if d; and dy are sufficiently large, the
cytotoxic agent has an inhibitory effect on the growth of cancer cells.

An immediate consequence of Proposition 2-3) is that, if k; > k3 and
ky > kg, then dy > (k; — k3)A > 0 and dy > (ky — k¢)A > 0. If the
values of the degradation rates are sufficiently large, then the zero fixed point
is Lyapunov stable, and there exists of an effective inhibitory effect of the
cytotoxic agent over the cancer cells. In figure 2, we show the stability region
of the zero fixed point of the model equation (5), for the same parameter
values of figure 1. These situations can be achieved in vitro cell cultures by
increasing the concentration of the cytotox agent (d; = r;B). But, in vivo
cancer cells, screening effects due to the spatial extension of tumours must
be taken into account.

If k1 < ks and k4 < kg, the zero fixed point is Lyapunov stable for small
values of d; and d».

If chemotherapeutic inhibitory effects target exclusively CSC, we have,
by Proposition 2-1)-2), dy = 0 and if k4 > kg, the inhibitory effect of the
cytotoxic agent over the cancer cells are inefficient for any value of d; > 0.
Also, if d; = 0 and k; > k3, cytotoxic agents will not eliminate cancer cells.

Thus, we have shown that in the presence of interconversion between non-
stem and stem-like cancer cells and independently of the concentration of the
cytotoxic agent, there are particular growth conditions where chemotherapy
is not effective.



4 Discussion

We have derived a simple model to analyse the effectiveness of the cytotoxic
therapies to eliminate cancer cells from in vitro cultures. We have shown that
if the degradation rates induced simultaneously on cancer stem cell and on
differentiated cancer cells are sufficiently large, then it is possible to eliminate
cancer cells from a nutrient rich culture.

On the contrary, if cytotoxic agents target only cancer stem cells and if
the rate of renewal of differentiated cells is larger than the rate of conversion
of differentiated cells to cancer stem cells, then there is no effective strategy
to eliminate cancer cells from in vitro cell cultures. For example, according to
the quantitative results of Gupta et al., [5], for the breast cancer cell culture
SUM149, the probability of interconversion between basal (b) and steam-like
(s) cells is py—p = 0.90 > p_s = 0.01 and, in this case, it is not possible to
have an effective cytotoxic strategy targeting only CSC.

The chemotherapeutic elimination of in vivo cancer cell will be effective
if it is effective in in wvitro cultures, if it targets all the cancer cell types, and
if the induced death rates for the different subpopulations are large enough.

Appendix A

Proof. Proposition 1. Inside the triangle T = {(S,D) € R? : § > 0,D >
0,D < c¢y—S5,(S,D) # (0,0)}, the integral curves of equation (3) coincide
with the integral curves of the linear system,

{ S = (k1 —ks)S + (ks + 2ke) D (6)
D = (k‘g + 2]6’3)8 + (k’4 - k’@)D

Therefore, assuming that the fixed point (0,0) of the system of equations
(3) is Lyapunov unstable, the integral curves of equation (6) passing by
(S0, Do) € T cross the line D = ¢y — S in finite time, provided ¢y > 0. This
proves the second part of the proposition.

To prove that the fixed point (0,0) of the system of equations (3) is Lya-
punov unstable, we calculate the Jacobian matrix of (3) at (0,0), obtaining,

M — (Co(k’l — k‘g) Co(k’g, + Qk’ﬁ)) — <005L‘ CQC1>
co(ky +2ks)  co(ks —ke) ) CoC2 CoY )

Let us assume for the moment that the zero fixed point is Lyapunov stable
with ¢g > 0 and k; > 0, for © = 1,...,6. In this case, we have TraceM < 0
and DetM > 0. From these two conditions, with ¢y > 0, we obtain, x+y < 0



and xy — cico > 0. So, if the fixed point is Lyapunov stable, we must have
x <0,y <0 and xy — cico > 0. But,

DetM = kyx — koks — 2ksks — k1kg — 2kokg — 3kske < O

which contradicts the initial assumption of stability of the fixed point (0, 0).
Therefore, (0,0) is unstable and the proposition is proved. O

Proof. Proposition 2. To prove that the fixed point (0, 0) is Lyapunov stable,
we calculate the Jacobian matrix of (5) at (0,0), obtaining,

M= (Afék;f?’%k_g)dl A(fllfikiﬁ?kf)dz) . (é Cyl) |

The fixed point is stable if TraceM < 0 and DetM > 0. From these two
conditions, with A > 0, we obtain, x +y < 0 and xy — c;co > 0. Therefore,
we must have x < 0, y < 0 and xy — c1co > 0. Let us write,

DetM = dldg + d1A<l{?6 — k?4) + dQA(k’g - kl) + k1A2(k4 - k6) - Zl (7)
DetM = d1d2 + d1A<k'6 — k4) + dQA(]{Zg — kl) + k4142(k'1 — k’3) — Z// (8)
DetM = d1d2 + dlA(k?6 — k’4) + dQA(k‘g — k‘l) -+ A2k’1k’4 -7 (

=)
~—

where,

7 = Az(k3k4 + k’gk’g) -+ 2]{?3/{55 + 2k2k6 + 3]{33]{36) >0
7" = AQ(klkﬁ + koks + 2ksks + 2kokg + 3k3k6) >0
7 = AQ(klkﬁ + ksky + koks 4 2ksks + 2kokg + 3k3/{76) > 0.

If d; > 0 and dy = 0, by the trace conditions x < 0 and y < 0, we obtain,
A(ky —k3) < dy and (k¢ —ky) > 0. By (7), DetM = dy A(ke — ky) + k1 A% (ky —
k¢) — Z' > 0, which implies that, A(dy — k1 A)(k¢ —k4) > Z' > 0. So we must
have A(dy — k1A) > 0 and (kg — k4) > 0. Combining these conditions, 1) is
proved.

If d = 0 and dy > 0, by the trace conditions x < 0 and y < 0, we obtain,
ki < ks and A(ky — ke) < do. By (8), DetM = doA(ks — ki) + kyA?(ky —
k3) — Z" > 0, which implies that, A(dy — k4A)(ks — k1) > Z"” > 0. So we
must have A(dy — k4A) > 0 and (k3 — k1) > 0. Combining these conditions,
2) is proved.

We consider now the case d; > 0 and dy > 0. By the trace conditions
z < 0and y <0, we obtain, A(ky — k3) < d; and A(ky — k) < d2. By (9),
we obtain,

Z — A?kiky — Ady (ke — ky)
dy + A(ks — kq)

and 3) is proved. O

dy >
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