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ABSTRACT. Recently, the first author has extended the definition of the zeta
function associated with fractal strings to arbitrary bounded subsets A of the
N-dimensional Euclidean space RV for any integer N > 1. It is defined by
Ca(s) = fA(; d(z, A)*~Ndz for all s € C with Re s sufficiently large, and we
call it the distance zeta function of A. Here, d(z, A) denotes the Euclidean
distance from z to A and Ay is the §-neighborhood of A, where ¢ is a fixed
positive real number. We prove that the abscissa of absolute convergence of (4
is equal to dimp A, the upper box (or Minkowski) dimension of A. Particular
attention is payed to the principal complex dimensions of A, defined as the
set of poles of ¢4 located on the critical line {Res = dimpA}, provided ¢4
possesses a meromorphic extension to a neighborhood of the critical line. We
also introduce a new, closely related zeta function, C4(s) = f06 t5=N=1| Ay| dt,
called the tube zeta function of A. Assuming that A is Minkowski measurable,
we show that, under some mild conditions, the residue of C~ A computed at
D = dimp A (the box dimension of A), is equal to the Minkowski content of
A. More generally, without assuming that A is Minkowski measurable, we show
that the residue is squeezed between the lower and upper Minkowski contents
of A. We also introduce transcendentally quasiperiodic sets, and construct a
class of such sets, using generalized Cantor sets, along with Baker’s theorem
from the theory of transcendental numbers.
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1. INTRODUCTION

In this article, we provide a far-reaching extension of the theory of zeta functions
for fractal strings, to arbitrary fractal sets in Euclidean spaces of any dimension.
Fractal strings have been introduced by the first author (M. L. Lapidus) in the
early 1990s. The related theory of zeta functions of fractal strings, developed in
the course of the last more than two decades of active research, can be seen in an
extensive monograph of the first author with van Frankenhuijsen [Lap-vFr3].

The new zeta function (4, associated with any fractal set A in RY, has been
introduced in 2009 by the first author, and its definition can be found in Equation
(2.1) below. We refer to it as the distance zeta function of A. Here, by a fractal
set, we mean any bounded set A of the Euclidean space RY, with N > 1. The
reason is that, in this paper, the fundamental role is played by a certain notion
of fractal dimension, more specifically, by the upper box dimension of a bounded
set (also called the upper Minkowski dimension, Bouligand dimension, or limit
capacity, etc.). This new class of zeta functions enables us to obtain a nontrivial
extension of the theory of complex dimensions of fractal strings, studied by the
authors of [Lap-vFrl-3], to arbitrary bounded fractal sets in Euclidean spaces of
any dimension.

A systematic study of the zeta functions associated with fractal strings and frac-
tal sprays was motivated and undertaken, in particular, in the 1990s in papers
of the first author, [Lapl-3], as well as in joint papers of the first author with
C. Pomerance [LapPol-3] and with H. Maier [LapMal-2]. In a series of papers,
as well as in three monographs with M. van Frankenhuijsen [Lap-vFrl-3|, and in
the book [Lap4], it has grown into a well-established theory of fractal complex di-
mensions, and is still an active area of research, with applications to a variety of
subjects, including spectral theory, harmonic analysis, number theory, dynamical
systems, probability theory and mathematical physics. We also draw the attention
of the reader to [DubSep], [ElLapMacRo], [Esl-2], [EsLil-2], [Fal2], [HamLap],
[HeLap], [HerLapl-2], [LalLapl-2], [Lap5-6], [LapLéRo], [LapLu], [LapLu-vFr1-2],
[LapPel-2], [LapPeWil-2], [LapRaZul-7], [LapRo], [LapRoZu], [LéMen], [MorSep],
[MorSepVil-2], [O11-2], [RatWi], [Tep1-2], along with the relevant references therein.
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The contemporary state of the theory of fractal strings, fractal sprays and their com-
plex dimensions, as well as its trends and developments, is described in the research
monograph [Lap-vFr3] and, in particular, in [Lap-vFr3, Chapter 13].

Other, very different approaches to a higher-dimensional theory of some special
classes of fractal sets, namely, fractal sprays and self-similar tilings, were developed
by the first author and E. Pearse in [LapPe2-3], as well as by the first author,
E. Pearse and S. Winter in [LapPeWil-2] via fractal tube formulas and the asso-
ciated scaling and tubular zeta functions. (See also [Pe] and [PeWi].) An earlier
approach, based directly on tube formulas but not using any kind of zeta func-
tion was proposed in [LapPel]. An exposition of these approaches can be found,
respectively, in [Lap-vFr3, Sections 13.1 and 12.2.1].

The definitions of zeta functions introduced in [LapPe2-3] and [LapPeWil-2]
differ considerably from those studied in this article. Therefore, it would be of
interest to see when they give rise to the same complex dimensions. We note that,
according to an example provided in [LapPe2], complex dimensions of self-similar
sets depend on the choice of the iterated function system generating them. It would
be of great interest to compute the tube zeta function, introduced in this article
in Definition 3.6 below, in the case of the Koch snowflake curve, and to compare
the resulting formula with the one obtained in [LapPel]. A similar question can
be raised for fractal sprays and self-similar tilings, for the tube formulas obtained
in [LapPe2-3] and [LapPeWil—2]. We point out that using the fractal zeta functions
introduced in this paper, it is possible to generalize the fractal tube formulas and
a Minkowski measurability criterion obtained for fractal strings in [Lap-vFr3] to
arbitrary compact sets in Euclidean spaces; see [LapRaZu4-5].

1.1. Contents. The rest of this paper is organized as follows:

In Section 2, the distance zeta function (4 of a bounded set A ¢ R is introduced
in Definition 2.1. Then, the main result of Section 2 is obtained in Theorem 2.5,
in which it is shown (among others) that the abscissa of (absolute) convergence of
the distance zeta function (4 of any bounded subset A of RY is equal to dimpA,
i.e., to the upper box dimension (or the upper Minkowski dimension) of A. (All
of the subsets denoted by A appearing in this paper are implicitly assumed to be
nonempty.) As a useful technical tool in the study of fractal zeta functions, we
introduce the notion of ‘equivalence’ between tamed Dirichlet-type integrals (see
Definition 2.22). We also define the set of ‘principal complex dimensions’ of A,
denoted by dimpc A (see Definition 2.18), as a refinement of the notion of the
upper box dimension of A. Moreover, in the one-dimensional case (i.e., in the case
of a bounded fractal string £), we show that (4, the distance zeta function of A
(the boundary of the string £), and (., the geometric zeta function of £, contain
essentially the same information. In particular, (4 and (. are equivalent in the
above sense, and hence, have the same principal complex dimensions (see Sections
2.3 and 2.4); they also have the same (visible) complex dimensions (with the same
multiplicities) in every domain of C\ {0} to which one (and hence, both) of them
can be meromorphically continued. Finally, we show that the distance zeta function
has a nice scaling property; see Proposition 2.24. ~

In Section 3, we introduce the so-called ‘tube zeta function’ (4 of the set A
(which is closely related to the distance zeta function (4; see Theorem 3.1 and the
associated functional equation (3.14)), and study its properties; see, in particular,
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Definition 3.6 in Section 3.2. Under suitable natural conditions, we show that the
residue of the tube zeta function 5 4, computed at D = dimp A (assuming that the
box dimensions exists), always lies between the lower and upper (D-dimensional)
Minkowski contents of A; see Theorem 3.7. In particular, if A is Minkowski mea-
surable, then the residue of (4 at D coincides with the Minkowski content of A.
Similar results are obtained for the distance zeta function (4 of the fractal set A;
see Theorem 3.3. In fact, we also show that (4 and (4, the distance and tube zeta
functions of A, contain essentially the same information. These results are illus-
trated by means of several examples, including a class of generalized Cantor sets
(Examples 3.4, 3.9 and 3.17), a-strings (Example 3.10), as well as ‘fractal grills’
introduced in Section 3.4; see Theorem 3.15.

In Section 4, we introduce a class of ‘n-quasiperiodic sets’ (Definition 4.10).
The main result is stated in Theorem 4.14, which can be considered as a fractal
set-theoretic interpretation of Baker’s theorem from transcendental number theory
and in which we construct a family of transcendentally n-quasiperiodic sets, for
any integer n > 2. An important role in the construction of quasiperiodic sets is
played by the class of generalized Cantor sets C'(™% depending on two paramters,
introduced in Definition 4.1. Moreover, in Section 4.4, we close the main part
of this paper by connecting the present work to future extensions (notably, the
construction of transcendentally co-quasiperiodic sets), the notion of hyperfractal
(and even, maximally hyperfractal) set, and more broadly, the notion of fractality
within the context of this new general theory of complex dimensions. In short, much
as in [Lap-vFr1-3], we say that a bounded subset A C R¥ is fractal if its associated
zeta function (i.e., the distance or the tube zeta function, ¢4 or §A7 of A or when
N = 1, the geometric zeta function (;, where L is the fractal string associated
with A) has at least one nonreal complex dimension (with positive real part) or
else has a natural boundary beyond which it cannot be meromorphically continued
(i.e., A is “hyperfractal”). Observe that, unlike in the one-dimensional theory
of complex dimensions developed in [Lap-vFr1-3], we now have at our disposal
precise definitions of fractal zeta functions of arbitrary bounded subsets of RY and
hence, of the complex dimensions of those sets (i.e., of the poles of these fractal
zeta functions); see Definition 2.19 and the beginning of Section 3.2. The complex
dimensions of a variety of classic and less well-known fractals will be computed in
subsequent papers [LapRaZu2-5] and in the forthcoming monograph [LapRaZul].
(See also the survey articles [LapRaZu6,7].)

The aim of Appendix A is to introduce the class of ‘extended Dirichlet-type inte-
grals’ (or functions), i.e., of EDTIs, which contains all of the fractal zeta functions
studied in the present paper (and in [LapRaZul-7]); see Definition A.1. We study
some of the key properties of EDTTs and introduce two closely related (but distinct)
notions of equivalence; see Definitions A.2 and A.6.

1.2. Notation. Throughout this paper, we shall use the following notation. By
|E| = |E|n, we denote the N-dimensional Lebesgue measure of a measurable subset
E of RN. Given r > 0, the lower and upper r-dimensional Minkowski contents

M*7(A) and M7 (A) of a bounded subset A of RV are defined by

e A . | A
1.1 "(A) = lim inf *T(A) = lims .
(1.1) ME(A) iminf -—", M (A4) m sup 4=
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Here, A; := {x € RN : d(z,A) < t} denotes the t-neighborhood (or tubular neigh-
borhood of radius t) of A, and d(x, A) is the Euclidean distance from x to A. The
function ¢ +— |A¢|, defined for ¢ positive and close to 0, is called the tube func-
tion associated with A. From our point of view, one of the basic tasks of fractal
analysis is to understand the nature of the tube functions for various fractal sets.
The notion of Minkowski content has been introduced by H. Federer in [Fed]; the
above definition coincides with Federer’s definition up to a (positive) multiplicative
constant depending only on N and r, the value of which is not important for the
purposes of this article.
The upper box dimension of A is defined by

(1.2) dimpA = inf{r > 0: M*"(A) = 0};
it is easy to see that we also have
(1.3) dimpA = sup{r > 0: M*"(A) = +o0}.

The lower box dimension of A, denoted by dimpzA, is defined analogously, with
M (A) instead of M*7(A) on the right-hand side of (1.2) and (1.3). Clearly, since
A is bounded, we always have 0 < dimgA < dimgpA < N. If both dimgA and
dimp A coincide, their common value is denoted by dimp A and is called the box
dimension of A (or Minkowski—Bouligand dimension, or else, Minkowski dimension).
Various properties of the box dimension can be found, e.g., in [Fall], [Lapl-3],
[Mat], [LapPo2], [Tri] and [Lap-vFr3]. A discussion of equivalent forms of the
definition of the Minkowski dimension can be found in [LapRoZu].
If there exists a nonnegative real number D such that

0 < MP(A) < M*P(A) < o,

we say that A is Minkowski nondegenerate. If A is nondegenerate, it then follows
that dimp A exists and is equal to D. If MP(A) = M*P(A), their common value
is denoted by MP(A) and called the Minkowski content of A. If, in addition,

MP(4) € (0, +00),

then A is said to be Minkowski measurable. The notion of Minkowski measura-
bility has been introduced by L. L. Staché [Sta], inspired by [Fed]. The notion of
Minkowski nondegeneracy has been introduced in [Zu4] (and was studied earlier in
[LapPo2] for N = 1). Throughout, we will assume implicitly that the bounded set
A C RY is nonempty; see also [LapPo3] when N > 3.

We note that since |A4;| = |(A),| for every ¢ > 0, the values of M%(A), M*"(A),
dimp A, dimpA (as well as of MP(A) and dimp A, when they exist) do not change
when we replace the bounded set A C RY by its closure A in RY. Therefore,
throughout this paper, we might as well assume a priori that A is an arbitrary
(nonempty) compact subset of RYV. Observe that, as is well known, this is in sharp
contrast with the Hausdorfl dimension (and associated Hausdorff measure Hp);
see, e.g., [Fall]. For example, if A = {1/j : j € N}, then (since A is countable),
dimg A = 0 and Hy(A) = 0, while D := dimp A = 1/2 and MP(A) = 2v/2; see
[Lapl, Example 5.1].

Moreover, for notational simplicity and because this is the case of most fractal
sets of interest in the applications of the theory, we also implicitly assume that the
closure of A has N-dimensional Lebesgue measure zero: |A|y = 0. We refer to
[LapRaZul] for a brief discussion of the case when |A| > 0 (and hence, dimpA =
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dimzA = N), which also applies to the broader notion of relative fractal drum
(RFD) that is the object of [LapRaZu3-5] and of [LapRaZul, Chapters 4 and 5].

Finally, given an extended real number o € RU{%00}, we denote by {Re s > a}
the open right half-plane {s € C: Re s > a} (which coincides with C or ) if &« = —o0
or 400, respectively). Furthermore, if & € R, we denote by {Re s = a} the vertical
line {s € C: Res = a}. Also, we let i := /—1.

2. DISTANCE AND TUBE ZETA FUNCTIONS OF FRACTAL SETS

2.1. Definition of the distance zeta functions of fractal sets. In this section,
we study some basic properties of the distance zeta function (4 = (a(s) associated
with an arbitrary bounded subset A of RY, introduced by the first author in 2009.
Throughout this paper, we assume that |A|x = 0.

Definition 2.1. Let § be any given positive number. The distance zeta function
Ca of a bounded subset A of RY is defined by

(2.1) Cal(s) = d(z, A)*~Ndz.

As
Here, the integral is taken in the sense of Lebesgue (hence, the complex-valued
function d(-, A)*~% is absolutely integrable on As) and we assume that s € C is
such that Re s is sufficiently large.

As we shall see in Theorem 2.5, the Lebesgue integral in (2.1) is well defined if
Re s is larger than dimp A, the upper box dimension of A; furthermore, dimp A =
D(Ca), the abscissa of (absolute)iconvergence of (4. Moreover, under the additional

hypotheses of Theorem 2.5(¢), dimpg A also coincides with Dyo1(C4), the abscissa of
holomorphic continuation of (4. Here, by definition,

(2.2) D(Ca) :=inf {a eR: / d(z, A)*Ndz < oo}
As
while
(2.3) Dyoi(€a) :=inf {a € R : {4 is holomorphic on {Re s > a} }

Hence, the half-plane of (absolute) convergence of (a, II(C4a) := {Res > D(Ca)}
(resp., the half-plane of holomorphic continuation of (4, H(Ca) := {Res > Dpoi(Ca)})
is the largest open half-plane of the form {Res > a}, for some a € RU {£o0}, on
which the Lebesgue integral [ A d(z,A)*"Ndz is convergent or, equivalently, ab-
solutely convergent (resp., to which {4 can be holomorphically continued). It will
follow from our results that D(C4) € [0, N] while Dyo1(Ca) € [—00, D(C4)], and that
both D(C4) and Dyo1(Ca) are independent of the choice of § > 0; see Proposition
2.23 along with Definition 2.22.

Again, the same comment can be made about D(C4) and Dpe(Ca), given exactly
as in (2.2) and (2.3), respectively, except for (4 replaced by Ca (the tube zeta
function of A, see Definition 3.6). Actually, if dimpA < N, then D(C4) = D(Ca)
and Dyei(Ca) = Dhol(fA); see Corollary 3.2.

Given any meromorphic function f, the abscissa of holomorphic continuation of
f, denoted by Dyei(f), can be defined in exactly the same way as Dpo1(Ca), except
with (4 replaced by f in the counterpart of (2.3). The same comment is not true
for D(f), which may not make sense unless f is given by a Dirichlet-type integral
(DTI); see Section 2.4 and Appendix A below.
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As will be shown in Proposition 2.23, the dependence of (4 on the choice of §
is inessential, since the difference of two distance zeta functions corresponding to
the same set A and different values of § can be identified with an entire function.
Note that without loss of generality (in fact, simply by replacing A by its closure),
we could assume that A is an arbitrary (nonempty) compact subset of RY. Similar
comments could be made about the tube zeta functions introduced in Definition
3.6 below.

We shall see in Theorem 2.5 below that (4 is holomorphic in the half-plane
{Res > dimpA}, and that the bound dimpA is the best possible for the Lebesgue
(i.e., absolute) convergence of (4. Also, we shall extend the definition of the zeta
function so that the value of § will become unimportant. Furthermore, we will
supplement the original definition of the complex dimensions of fractal strings in-
troduced by the first author and M. van Frankenhuijsen in [Lap-vFr1-3]. Here, we
mostly deal with the principal complex dimensions in the higher-dimensional case;
see Definition 2.18. The situation with general complex dimensions is already quite
nontrivial in the one-dimensional case; see [Lap-vFrl1-3].

2.2. Analyticity of the distance zeta functions. The main result of this sec-
tion is stated in Theorem 2.5. It shows that the zeta function (4 is analytic (i.e.,
holomorphic) in the half-plane {Re s > dimp A}, and that (under the mild hypothe-
ses of part (¢) of Theorem 2.5) the lower bound is optimal. In other words, the
abscissa of absolute convergence D(C4) of the Dirichlet-type integral defined by the
right-hand side of (2.1) is always equal to the upper box dimension of A and under
the additional hypotheses of Theorem 2.5(c), it also coincides with the abscissa of
holomorphic continuation Dye1(Ca).

In order to prove Theorem 2.5, we shall need a result due to Harvey and Polking
(see [HarvPo, p. 42]), that we formulate in a different, but equivalent way:

(2.4) If € (—o0,N—dimpA), then fA5 d(z, A)7"dz < oo,

where ¢§ is an arbitrary positive number. This result and its various extensions is
discussed in [Zu3, Lemma 1 and Theorem 2], [Zu4, Sections 3 and 4] and [Zu5,
Theorem 4.1]. For the sake of completeness, we provide an extension of (2.4), that
we shall need later on. We omit the proofs of the following two lemmas. They
can be obtained by using, e.g., the identity [on f(2)*dz = o [J°t*7H{f > t}| dt,
where f : RN — [0, +00] is a Lebesgue measurable function and o € (0, +00) (see
[Fol, p. 198]) and by using the definition of the upper box dimension dimpA given
in (1.2) and (1.3) above.

Lemma 2.2. Let A be a bounded subset of RN, § >0 and v € (—oo, N —dimpA).
Then

§
(2.5) d(z, A)~ dz = 67| As| + / 771 Ay dt.
A5 0

Furthermore, both of the integrals appearing in (2.5) are finite; hence, they are
convergent Lebesgue integrals.

Lemma 2.3. Let A be a bounded subset of RN, § >0 and v > N —dimpA. Then
Ju, Az, A)7Vdz = +o0.

Remark 2.4. If v := N —dimpgA, then the conclusion of Lemma 2.3 does not hold,
in general. Indeed, a class of counterexamples is provided in [Zu4, Theorem 4.3].
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In the formulation of the following theorem, we shall need the abscissa of holo-
morphic continuation of (4, denoted by Dpoi(C4) and defined so that {Res >
Dyoi(€a)} be the largest open right half-plane on which (4 is holomorphic; see
(2.3) above and the discussion following it.

On the other hand, recall that the abscissa of Lebesgue (i.e., absolute) conver-
gence of Ca, given by (2.2) is denoted by D(C4) and defined so that {Res > D(Ca)}
be the largest open right half-plane on which (4 is Lebesgue (i.e., absolutely) con-
vergent. For a more general setting, see Definition 2.12 below and the ensuing
discussion (from which it will follow that both II(C4) and II(C4) are well defined
and have the claimed maximality property). We shall also usually say more briefly
that D(C4) is the abscissa of convergence of (4, meaning the abscissa of Lebesgue
(i.e., absolute) convergence of (4; see (2.2) and the comment following it.

Theorem 2.5. Let A be an arbitrary bounded subset of RN and let § > 0. Then:

_(a) The zeta function 4 defined by (2.1) is holomorphic in the half-plane {Re s >
dimp A}, and for all complex numbers s in that region, we have

(2.6) CU(s) :/ d(z, A)* Nlogd(z, A) dx
As
(b) We have
(2.7) dimpA = D(Ca),

where D(C4) is the abscissa of Lebesgue (i.e., absolute) convergence of 4. Further-
more, in light of part (a), we always have Dyo1(Ca) < D(Ca)-

(¢) If the box (or Minkowski) dimension D := dimp A exists, D < N, and
MP(A) >0, then (a(s) — +oo0 as s — DT, s € R. In particular, in this case, we
also have that

(28) dimB A = D(CA) = Dhol(CA)~

Proof. (a) Denoting the right-hand side of (2.6) by I(s), and choosing any s € C
such that Res > dimpgA, it suffices to show that

(2.9) R(h) = Al hf)L —6als) i)

_ /A (d(w’/gh_l —logd(x,A)) d(z, AN da

converges to zero as h — 0 in C, with h # 0.
Let d := d(x, A) € (0,0). Defining

dh—1
h

and using the MacLaurin series e = )

(2.10) f(h) = —logd = %(eﬂogd)h —1) —logd,

>0 j—J,, we obtain that

(log d)*h*

2 .
(2.11) f(h) = h{log d) ;) k+2)( k+1) Kl
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Furthermore, assuming without loss of generality that 0 < ¢ < 1, and hence logd <
0, we have

SO0l < 2hlogay Y LB
k=0
= %Ihl (log d)?e~Uee DI = \h| (log d)%d~ 1"
Therefore,
1
(2.12) RO < 510 [ logda, 4) (e, 4.
5

Let € > 0 be a sufficiently small number, to be specified below. Taking h € C such
that |h| < €, since § <1 and hence d(z, A) <1 for all x € A5, we have

RO < 310l [ Do dte, A) P, 4)d(a, 47N
As

Since there exists a positive constant C' = C(d,¢) such that |logd|*d® < C for all
d € (0,9), we see that

1
(2.13) |R(h)| < 5C|h| d(z, A)Res—N=2eqy,
As
Letting v := 2¢ + N — Res, we see that the integrability condition v < N —
dimp A stated in (2.4) is equivalent to Re s > dimpA + 2. Observe that this latter
inequality holds for all positive € small enough, due to the assumption Res >
dimpA. Hence, R(h) — 0 as h — 0 in C, with h # 0. This proves part (a).

(b) Lemma 2.3 implies that for any real number a < D = dimpA, we have
fA (z, A @=N'dzr = +00. On the other hand, in light of estimate (2.4), we know

that Ca(a) = [, d A, (r,A)*Ndr < oo for any o > D. We therefore deduce from

the deﬁmtlon (2.2) of D(C4) that D(C4) = dimpA. This completes the proof of
part (b).

(¢) Condition MP(A) > 0 implies that for any fixed § > 0 there exists C' > 0
such that for all ¢ € (0, )7 we have |A;| > CtV~P. Using (2.4) and Lemma 2.2, we
see that for any v € (0, N — D),

s

oo > I(v) ::/ d(xz, A)™"dx = 67| As| —|—’y/ t7Y 7 Ay dt

As 0

N—-D—~

N-—-D—~’
Therefore, if v — N — D from the left, then I(vy) — +o00. Equivalently, if s € R is
such that s — D™, then (4 (s) — +oo. Hence, (4 has a singularity at s = D. Since,
in light of part (a), we know that (4 is holomorphic for Res > D, we deduce that
{Res > D} is the maximal right half-plane to which (4 can be holomorphically
continued; i.e., H(Ca) = {Res > D} and so Dypi(Ca) = D. Since, in light of
part (b) (and because dimp A exists, according to the assumptions of part (c)),

D :=dimp A = D(Ca), we conclude that (2.8) holds and hence, the proof of part
(¢) is complete. This concludes the proof of the theorem. O

5
> AC / tN=D=7=1qt = 4C
0
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Remark 2.6. An alternative proof of part (a) of Theorem 2.5 can be given by using a
well-known theorem concerning the holomorphicity of functions defined by integrals
on As depending holomorphically on a parameter. In applying this theorem (see
[LapRaZul] and the text of Definition 2.12 below) one needs to use the (obvious)
fact according to which the function x — d(z, A) is bounded from above (by §);
in other words, (4 (as defined by (2.1)) is a tamed DTI (in the sense of Definition
2.12 below).

Next, we comment on some of the hypotheses and conclusions of Theorem 2.5.

Remark 2.7. (i) The condition MP(A) > 0 in the hypotheses of Theorem 2.5(c)
cannot be omitted. Indeed, for N = 1, there exists a class of subsets A C [0, 1] such
that D = dimp A exists and MP(A) = 0, while (4(D) = fAs d(z, A)P~Ndz < o0;
see [Zu4, Theorem 4.3].

This class of bounded subsets of R can be easily extended to RY for any N > 2
by letting B := A x [0, 1]V =1 c [0, 1]V.

(74) The inequality Dnei(Ca) < D(Ca) is sharp. Indeed, there exist compact
subsets of RY such that Dy,o1(Ca) = D(Ca). For example, A = C x [0,1]¥~! where
C is the ternary Cantor set or, more generally, C = 0} is the boundary of any
(nontrivial) fractal string & C R. (In that case, we have Dpo(Ca) = D(Ca) =
dimpA = N — 1+ dimpg C.) This follows from Theorem 2.10 in Section 2.3 below
and the comment following it.

(#41) The assumptions of part (¢) of Theorem 2.5 are satisfied by most fractals
of interest to us. (One notable exception is the boundary A of the Mandelbrot
set (viewed as as a subset of R? ~ C), for which dimy A = 2 (and consequently,
dimp A = 2), according to Shishikura’s well-known theorem [Shi].) We note that,
on the other hand, there exists a bounded subset of RY not satisfying the hypotheses
of part (¢) of Theorem 2.5 and such that Dyoi(Ca) < D(Ca). Indeed, an easy
computation shows that, for example, for N = 1 and A = [0,1], we have that
Droi(€a) =0 and D(Ca) = 1. At present, however, we do not know whether there
exist nontrivial subsets A of R (or, more generally, of RY) for which Dy01(C4) <

D(Ca)-

2.3. Zeta functions of fractal strings and of associated fractal sets. In
Example 2.9 below, we show that Definition 2.1 provides a natural extension of the
zeta function associated with a (bounded) fractal string £ = (¢;);>1, where (¢;);>1
is a nonincreasing sequence of positive numbers such that > =1 £ < oo:

(2.14) Ce(s) =),
j=1

for all s € C with Re s sufficiently large. Note that the sequence (¢;);>1 of positive
numbers is assumed to be infinite.

The study of zeta functions of fractal strings arose naturally in the early 1990s
in joint work of the first author (Michel Lapidus) with Carl Pomerance [LapPol-3]
and with Helmut Maier [LapMal—-2] (see also, e.g., [Lapl-3] and [HeLap]) while
investigating direct and inverse spectral problems associated with the vibrations of
a fractal string. Such a zeta function, (., called the geometric zeta function of L, has
since then been studied in a number of references, including several monographs;
see [Lap-vFrl1-3]. (See also the broader list of references given in the introduction.)
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Recall that, geometrically, a fractal string is a bounded open set 2 C R. It can be
uniquely written as a disjoint union of open intervals I; (Q = U2, 1 ;) with lengths
U (ie., ¢; = |I;| for all j > 1). Without loss of generality, one may assume that
(¢;)j>1 is written in nonincreasing order and that £; — 0 as j — co: £1 > fg > ---.
In order to avoid trivial special cases, we will assume implicitly throughout this
paper that £ is nontrivial; i.e., that £ consists of an infinite sequence of lengths
(or ‘scales’) and hence, that Q does not consist of a finite union of bounded open
intervals. If £ is trivial, then we must replace Dyo1((z) by max{Dpe({z),0} in
(2.15) of Theorem 2.8 (since then, Dyo1(¢z) = —oo and D({z) = dasq > 0). From
the point of view of fractal string theory, one may identify a fractal string with the
sequence L of its lengths (or scales): £ = (¢;);>1. The bounded open set 2 is then
called a geometric realization of L. Note that |Q] = Z;’;l ¢; < 00, where |Q| = |Q]4
denotes the 1-dimensional Lebesgue measure (or length) of 2.

We now recall a basic property of (., first observed in [Lap2], using a key result
of Besicovich and Taylor [BesTay]. (For a direct proof, see [Lap-vFr3, Theorem
1.10 or Theorem 13.111]; see also [LapLu-vFr2].)

Theorem 2.8. If L is a nontrivial fractal string (i.e., L = ({;);>1 is an infinite
sequence), then the abscissa of convergence D((r) of (¢ coincides with the (inner)
Minkowski dimension dgq of 0L = 0N :

(2.15) D(Cc) = Dnol(Ce) = doa-
Recall that, by definition,

(2.16) D(Cc) := inf {a €R : ie;* < oo},

j=1

while dsq is then defined in terms of the volume (i.e., length) of the inner epsilon
(or tubular) neighborhoods of 99, namely, (0). NQ = {z € Q : d(z,09Q) < €};
see [Lap-vFr3, Chapter 1]. In [Lap-vFr3], the abscissa of convergence D((z) of (.
is denoted by o.

In order to establish the equality D({z) = Dpo1({z) from Theorem 2.8, one first
notes that (, is holomorphic for Res > D((.) and that {Res > D({,)} is the
largest open right half-plane having this property; i.e., D(¢z) = Dnoi({z). The
latter property follows from the fact that (because (. (s) is initially given in (2.14)
by a Dirichlet series with positive coefficients) ((s) — +oco as s — D1, s € R,
where D := D((¢) = daq; see, e.g., [Ser, Section VI.2.3]. The proof of the equality
D(¢r) = dpq requires significantly more work; see the aforementioned references.

Note that, more precisely, dimp A, = dgq is equal to dimg (992, ), the Minkowski
dimension of 99 relative to Q (also called the inner Minkowski dimension of 9%,
or, equivalently, of £) which is defined (as in [Lap1-3] and [Lap-vFr3, Chapter 1))
in terms of the volume (i.e., length) of the inner tubular neighborhoods of Q. More
specifically, dsq is given by (1.2) or (1.3), except for | A¢| replaced by |A; Ny, with
A := 09, in the counterpart of the second equality of (1.1).

In fractal string theory, one is particularly interested in the meromorphic con-
tinuation of (. to a suitable region (when it exists), along with its poles, which are
called the complex dimensions of L. In particular, in the theory of complex dimen-
sions developed in [Lap-vFr1-3], are obtained explicit formulas applicable to various
counting functions associated with the geometry and the spectra of fractal strings,
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as well as to V(g), now defined as the volume of the inner tubular neighborhood
of 90 (i.e., of L£). These explicit formulas are expressed in terms of the complex
dimensions (i.e., the poles of (,) and the associated residues. Furthermore, they
enable one to obtain a very precise understanding of the oscillations underlying
the geometry and spectra of fractal strings (as well as of more general fractal-like
objects); see [Lap-vFr3], especially Chapters 5-8.

From the perspective of the theory developed in the present work, a convenient
choice for the set A, corresponding to the fractal string £ = (¢;);>1 is

(2.17) Ag={ay:k>1}, where ap:=3 ;5 ¢; foreach k=>1.

As follows easily from Theorem 2.8 and the definition of A, the function (, in
(2.14) is holomorphic for s € C with Res > dimpA,z. Moreover, this bound is
optimal. In other words, dimpgA coincides with the abscissa of convergence of L.
Furthermore, (;(s) — 400 as s € R converges to dimpA, from the right (see
[Lap-vFr3, p. 15]); compare with Theorem 2.5 above. In light of Theorem 2.8,
Theorem 2.5(b) and Equation (2.15), we then have the following equalities:

(2.18) dimpAz = D(Ca,.) = D({z) = Dnol(¢c) = o0.

The following example shows that the study of the geometric zeta function .
of any (bounded) fractal string £ can be reduced to the study of the distance zeta
function (4, of the associated bounded set A on the real line. (See also Remark
2.11 below.)

Example 2.9. Let (I))r>1 be a sequence of bounded intervals, I}, = (ag+1,ax),
k > 1, where the a;’s are defined by (2.17), and let s be a complex variable. Using
(2.1), we see that the distance zeta function of A = A is given by

o0

& oo
(2.19) Cals) = 2/ o5 da + Z d(x,0I;)* tdr = 25716% + Z Ji(s),
0

k=1"1k k=1

where the first term in this last expression corresponds to the boundary points of
the interval (0,a;). Assuming that § > ¢1/2, we have that for all k > 1,

(2.20) Ji(s) = s 1217505,

We also assume that s € C is such that Res > D((,), so that the series Y- | Ji(s)
appearing in (2.19) is convergent. In light of (2.14)—(2.17) and (2.19), we then
obtain the following relation:

(2.21) Ca(s) = s712175¢, (5) 4+ 25 10",
The case when 0 < § < ¢1/2 yields an analogous relation:

(2.22) Ca(s) = u(s)Ce(s) +v(s),

where again u(s) := s712'7%, with a simple pole at s = 0. Note that here, u(s) and
v(s) = v(s, d) are holomorphic functions in the right half-plane {Res > 0}. Hence,
by the principle of analytic continuation and since (, is holomorphic for Res >
dimpA, the same relation still holds for the meromorphic extensions of ¢4 and of
Cc (when they exist, see Theorem 2.10) within the right half-plane {Res > 0}.

The following result is in accordance with Theorem 2.8.
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Theorem 2.10. Let L = ({;);>1 be a (nontrivial) fractal string such that 3~ £; <
00, and let Ay = {ak = ijk U k> 1}, Then

(2'23) D(CAg) = D(Cﬁ) = Dhol((ﬁ) = diimBA[l-

Furthermore, given ¢ > 0, the sets of poles of the meromorphic extensions of Ca,
and (r (if one, and therefore both, of the extensions exist) to the open right half-
plane {Re s > ¢} coincide. Moreover, the poles of (4, and (¢ (in such a half-plane)
have the same multiplicities.

More generally, given any subdomain U of C\ {0}, Ca, has a meromorphic
continuation to U if and only (c does, and in that case, (4, and (. have the same
visible poles in U and with the same multiplicities.

Proof. The first claim follows from Theorem 2.8 combined with parts (a) and (b)
of Theorem 2.5. The second and the third claims are an immediate consequence of
the identity (2.22) in Example 2.9. O

Remark 2.11. An entirely similar proof shows that, in Example 2.9 and Theorem
2.10, we can replace Ay with A := 92, where the bounded open set 2 C R is any
geometric realization of the (nontrivial) fractal string £, provided dimp A := 6pq, as
defined in the comments following (2.16). Hence, with the notation used in (2.16),
we also have the following counterpart of (2.18) in this more general situation:

(2.24) D(CL) == Dhol(CL) = D(Cag) = (SQQ = dlimB(aQ, Q)

2.4. Equivalent zeta functions. In this section, we shall introduce an equivalence
relation ~ on the set of zeta functions (see Definition 2.22). Let us illustrate its
purpose in the case of the distance zeta function (4 of a given decreasing infinite
sequence A = (ay)g>1, converging to zero in R. As we saw in Example 2.9, it makes
sense to identify it with its simpler form (., where £ = (¢;);>1 is the associated
bounded fractal string, defined by ¢; = a; — a;j41. This is done by removing the
inessential functions u(s) and v(s) appearing in Equation (2.22) above. Therefore,
Ca~Ce.

Throughout this section (and Appendix A in which this topic is further de-
veloped), we will assume that E is a locally compact, Hausdorff topological (and
metrizable) space and that u is a local (roughly speaking, locally bounded) positive
or complex measure (in the sense of [DolFr], [JohLap|, [JohLapNi] or [Lap-vFr3,
Chapter 4]). In short, a local measure is a [0, +o00]-valued or C-valued set-function
on B := B(FE) (the Borel g-algebra of E), whose restriction to B(K), where K is
an arbitrary compact subset of F, is a bounded positive measure or is a complex
(and hence, bounded) measure, respectively. The total variation measure of u (see,
e.g., [Coh] or [Ru]) is denoted by |ul; it is a (local) positive measure and, if p is
itself positive, then |u| = p. We refer to [Coh, Fol, Ru] for the theory of standard
positive or complex measures.

We assume that the py-measurable function ¢ : E — R U {400} appearing in
Definition 2.12 just below is tamed, in the following sense: there exists a positive
constant C' = C(¢p) such that

(2.25) lul({e > C}) = 0;

i.e., ¢ is essentially bounded from above with respect to |u|. We then say that f,
defined by (2.26) below, is a tamed DTT.
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Definition 2.12. Given a tamed Dirichlet-type integral (tamed DTI, in short) func-
tion f = f(s) of the form

(2.26) f(s) = [E o(@)° du(a),

where p is a suitable (positive or complex) local (i.e., locally bounded) measure
on a given (measurable) space F [i.e,, u : B — [0,400] or pp : B — C], and
¢ : E = RU{+0c0} is a p-measurable function such that ¢ > 0 p-a.e. on E, we
define the abscissa of convergence D(f) € RU {£o0} by

D(f) := inf {a eR: / p(x)*d|p|(z) < oo}
B
=inf {a € R : p(x)® is Lebesgue integrable for Res > a}.

It follows that the half-plane of (absolute) convergence of f, namely, II(f) :=
{Res > D(f)}, is the mazimal open right half-plane (of the form {Res > a},
for some o € RU {£o0}) on which the function z — ¢(x)® is absolutely (i.e.,
Lebesgue) integrable. (Note that D(f) is well defined for any tamed Dirichlet-type
integral f.)

In (2.27), by definition, inf ) := +o00 and inf R = —co. Using a classic theorem
about the holomorphicity of integrals depending analytically on a parameter, one
can show that f is holomorphic on {Res > D(f)}. Hence, it follows that Dy (f) <
D(f). Here, Dyoi(f) € RU {%o0}, the abscissa of holomorphic continuation of f,
is defined exactly as Dyo1(Ca) in (2.3), except for {4 replaced by f.

In (2.27), the integral is taken with respect to |u|, the total variation measure
of p; recall that if p is positive, then |u| = . Note that we may clearly replace
©(z)* by ¢(z)R* in the second equality of (2.27), since for a measurable function,
Lebesgue integrability is equivalent to absolute integrability.

(2.27)

Remark 2.13. There are many examples for which Dy 1(f) = D(f) (see, e.g., Equa-
tion (2.23) in Theorem 2.10) and other examples for which Dyoi(f) < D(f) (this
is so for Dirichlet L-functions with a nontrivial primitive character, in which case
Dyoi(f) = —oo but D(f) = 1; see, e.g., [Ser, Section VI.3]).

Remark 2.14. All of the fractal zeta functions encountered in this work, namely, the
distance and tube zeta functions (see Section 2.1 above and Section 3.2 below), their
counterparts for relative fractal drums (see [LapRaZu3] along with [LapRaZul-2]),
the geometric zeta function of (possibly generalized) fractal strings ([Lap-vFr3,
Chapters 1 and 4]), as well as the spectral zeta functions of (relative) fractal drums
(see [Lap2-3], along with [LapRaZul,6]) are tamed DTTIs, i.e., they are Dirichlet-
type integrals (in the sense of (2.26), and for a suitable choice of set E, function
 and measure p) satisfy condition (2.25). This justifies, in particular, the use of
the expression “abscissa of (absolute) convergence” and “half-plane of (absolute)
convergence” for all of these fractal zeta functions, including the tube and distance
zeta functions which are key objects in the present paper.

For example, for the distance zeta function (4 (as in Definition 2.1 above), we
can choose E := A; (or else, £ := A; \ A), ¢(x) :=d(x, A) for x € E and p(dz) :=
d(z, A)~Ndx, while for the tube zeta function (as in Definition 3.6 below), we can
choose E := (0,9), ¢(t) :=t for t € E and p(dz) := t N A|dt =tV | A (dt/t).
In both cases, it is easy to check that the tameness condition (2.25) is satisfied,
with C' := 4.
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In closing, we note that the class of tamed Dirichlet-type integrals also contains
all arithmetic zeta functions (that is, all zeta functions occurring in number the-
ory); see, e.g., [ParSh1-2, Ser, Tit], [Lap-vFr3, Appendix A] and [Lap4], including
Appendices B, C and E, as well as the relevant references therein.

Recall from part (b) of Theorem 2.5 that we have the following result, which
is very useful for the computation of the upper box dimension of fractal sets (for
applications, we refer the interested reader to [LapRaZul-3)).

Corollary 2.15. Let A be any bounded subset of RN . Then
(2.28) dimpA = D(Ca).
Hence, we have 0 < D(C4) < N.

Following [Lap-vFr3, Sections 1.2.1 and 5.1], assume that the set A has the
property that (4 can be extended to a meromorphic function defined on G C C,
where G is an open and connected neighborhood of the window W defined by

W:={seC:Res>S(Ims)}.

Here, the function S : R — (—o00,D(C4)], called the screen, is assumed to be
Lipschitz continuous. Note that the closed set W contains the critical line (of
convergence) {Res = D(Ca)}. In other words, we assume that A is such that
its distance zeta function can be extended meromorphically to an open domain
G containing the closed right half-plane {Res > D((4)}. (Following the usual
conventions, we still denote by (4 the meromorphic continuation of (4 to G, which
is necessarily unique due to the principle of analytic continuation. Furthermore, as
in [Lap-vFr3], we assume that the screen does not contain any poles of (4.) A set
A satistying this property and for which (4 is ‘languid’ (in the sense of [Lap-vFr3,
Definition 5.2], that is, grows at most polynomially along the screen and a suitable
sequence of horizontal lines avoiding the poles of (4) is said to be admissible. (There
exist nonadmissible fractal sets; see [Lap-vFr3, Example 5.32] and [LapRaZul].) In
the present article, we will need to consider the set of poles of (4 located on the
critical line {Res = D(Ca)}, where D((4) is assumed to be a real number (see
Definition 2.18):

(2.29) Pe(Ca) ={w e W :wis apole of (4 and Rew = D((a)}-

It is a subset of the set of all poles of 4 in W, that we denote by P({4) or P(Ca, W)
(see Definition 2.19).

Remark 2.16. We assume in the definition of P.({4) that D({4) € R, which is the
case for example if A is bounded, according to Corollary 2.15. Note that clearly
(and in contrast to P({4a) = P(Ca, W), to be introduced in Definition 2.19), P.({4)
is independent of the choice of the window W.

Remark 2.17. We stress that because, in this paper, we will not use or extend
the pointwise and distributional explicit formulas obtained in [Lap-vFrl1-3] (and
for the validity of which the above polynomial growth conditions are essential, see
[Lap-vFr3, Chapters 5 and 8]), we do not need to include these polynomial growth
conditions in the above definition of admissibility. (Fractal tube formulas in the
context of the present higher-dimensional theory of fractal dimensions, are obtained
in [LapRaZu4-5]; see also [LapRaZul, Chapter 5].) Therefore, throughout this
article, an admissible set A is one for which a meromorphic continuation of {4 exists



16 MICHEL L. LAPIDUS, GORAN RADUNOVI(’]7 AND DARKO ZUBRINIC

in a connected open neighborhood of the given window W (but without requiring
any growth conditions on (4). The problem of constructing meromorphic extensions
of fractal zeta functions is studied in [LapRaZu2], under suitable hypotheses on the
geometry of A; see also [LapRaZul, Sections 2.3, 4.3 and 4.5].

In [LapRaZu2] (as well as in [LapRaZu3], the counterpart for relative fractal
drums of the present paper and of its continuation in [LapRaZu2]), we will provide
many examples of computations of the set of complex dimensions P(C4) (in Defi-
nition 2.19 below) and of principal complex dimensions P.({4) (in Equation (2.29)
above and in Definition 2.18 just below) for a variety of fractals (and relative fractal
drums).

The following definition is a slight modification of the notion of complex dimen-
sion for fractal strings introduced by the first author and Machiel van Frankenhui-
jsen in [Lap-vFrl], which depends not only on the string, but also on the window
W see [Lap-vFr3, Section 1.2.1].

Definition 2.18. Let A be an admissible subset of RY such that D(C4) € R. The
set of principal complexr dimensions of A, denoted by dimpc A, is defined as the
set of poles of (4 which are located on the critical line {Res = D(Ca)}:

(2.30) dimpc A := 'PC(CA>,
where P.(C4) is given by (2.29).

As we see, in Definition 2.18, if A ¢ R¥ is bounded, the singularities of (4 we
are interested in are located on the vertical line {Res = dimpA}.

Following and extending the definition of complex dimensions of fractal strings
(and other fractals) provided in [Lap-vFr1-3], we also introduce the following nat-
ural higher-dimensional generalization in our context.

Definition 2.19. Let A be an admissible subset of RY. Then, the set of visible
complex dimensions of A with respect to a given window W (often called in short,
the set of complex dimensions of A relative to W, or simply the set of (visible)
complez dimensions of A if no ambiguity may arise or if W = C), is defined as the
set of all the poles of (4 which are located in the window W:

(2.31) P(Ca) ={we W :wisapoleof (4}

Instead of P(¢4) we can also write P(Ca, W), in order to stress that the set depends
on W as well.

Next, we would like to extend the class of zeta functions to which a slight modi-
fication of Definition 2.18 and Definition 2.19 can be applied. Given a meromorphic
function f on a domain G C C containing the vertical line {Res = D(f)} (as in
Remark 2.16 above, we assume here that D(f) € R), and which (for all s € C with
Re s sufficiently large) is given by a convergent Dirichlet-type integral of the form
(2.26) and satisfying condition (2.25), so that D(f) < oo is well defined by (2.27)),
we define the set P.(f) in much the same way as in (2.29):

(2.32) Po(f) ={w € G :wis apole of fand Rew = D(f)}.
It is a subset of the set P(f) of all the poles of f belonging to G. In other words,
(2.33) P(f) ={we G:wisapoleof f}.
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Remark 2.20. If f = (4, where A is an admissible set for a given window W, then
(with G := W, the interior of the window) P.(f) = Pc(Ca), the set of principal
complex dimensions of A, while P(f,W) = P(f) = P(Ca) = P(Ca, W), the set
of (visible) complex dimensions of A (relative to W). This follows from the fact
that since A is admissible, (4 does not have any poles along the screen S; see the
discussion following Corollary 2.15.

Remark 2.21. Observe that P.(f) is independent of the choice of the domain G
containing the vertical line {Res = D(f)}. Moreover, since as was noted earlier,
the function f is holomorphic for Res > D(f), there are no poles of f located in
the open half-plane {Res > D(f)}; this is why we could equivalently require that
the domain G C C contains the closed half-plane {Re s > D(f)} in order to define
Pe(f) and P(f).

Finally, we note that since P(f) is the set of poles of a meromorphic function, it
is a discrete subset of C; in particular, it is at most countable. Since P.(f) C P(f),
the same is true for P.(f). (An entirely analogous comment can be made about
Pc(Ca) and P(Ca) in Definition 2.18 and Definition 2.19, respectively.)

We next define the equivalence of a given distance zeta function f to a suitable
meromorphic function g (of a preferably simpler form), a notion which will be useful
to us in the sequel. Note that the relation ~ introduced in Definition 2.22 is clearly
an equivalence relation on the set of all tamed DTIs.

Definition 2.22. Let f and g be tamed Dirichlet-type integrals, as in Definition
2.12, both admitting a (necessarily unique) meromorphic extension to an open
connected subset U of C which contains the closed right half-plane {Res > D(f)}.
(As follows from the complete definition, this closed half-plane is actually the closure
of the common half-plane of convergence of f and g, given by II := II(f) = II(g).)
Then, the function f is said to be equivalent to g, and we write f ~ g, if D(f) =
D(g) (and this common value is a real number) and furthermore, the sets of poles
of f and g, located on the common critical line {Re s = D(f)}, coincide. Here, the
multiplicities of the poles should be taken into account. In other words, we view
the set of principal poles P.(f) of f as a multiset. More succinctly,

(2.34) f~yg D(f) =D(g) (€R) and Pc(f) =Pc(g).

If a tamed Dirichlet-type integral f is given (for example, a distance zeta func-
tion (4 corresponding to a given fractal set A), the aim is to find an equivalent
meromorphic function g, defined by a simpler expression. Satisfactory results can
already be obtained with functions g of the form g(s) = u(s)f(s) + v(s), for a
suitable choice of the functions u and v, as we have seen in Example 2.9.

We refer to Definition A.2 in Appendix A to this paper for an extension of
Definition 2.22 to the broader class of Dirichlet-type integrals (extended DTIs, for
short), as introduced in Definition A.1.

We also refer to Definition A.6 (and the comments surrounding it) at the end
of Appendix A for a closely related, but somewhat different (and perhaps more
practical) definition, allowing the meromorphic function g not to be a DTT (or
more generally, an EDTT of type I, in the terminology of Appendix A). These new
definitions (Definitions A.2 and A.6) can be applied to (essentially) all the examples
of interest in this paper and in [LapRaZul-7]. Towards the end of Appendix A, the
interested reader can find a large class of functions g giving the “leading behavior”

def,
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of fractal zeta functions f. They will arise in practice in the theory developed in
this paper and in [LapRaZul-7]. (See Theorem A.3 in Appendix A, along with its
consequences.)

In the following proposition, we consider the dependence of the distance zeta
function {4 on 6 > 0. For this reason, we denote (4 by Ca(-, As).

Proposition 2.23. Let A be a bounded subset of RN . Then, for any two positive
real numbers 01 and 02, we have (a(-, As,) ~ Ca(-, As,).

Proof. We assume without loss of generality that d; < d2, since for 6; = d2 there is
nothing to prove. For Re s > dimpgA, the difference of the functions (4 (s, As,) and
Ca(s, As,) is equal to

(2.35) / d(z, A)*Ndz.

Asy\Asy
Note that 61 < d(z, A) < d2 for every x € As, \ As,. Hence, the integral given by
(2.35) is an entire function. O

The following result deals with the scaling property of the distance zeta function.
Here, we write (4(s, As) : fA (v, A)* Ndx for s € C with Res > dimpA.

Proposition 2.24 (Scaling property of distance zeta functions). For any bounded
subset A of RN, § > 0 and A > 0, we have D({a(+,A(As))) = D(Ca(+, As)) =
dimpA and

(2.36) a8, A(As)) = A7Cals, As),

for all s € C with Res > dimgA. Furthermore, if w € C is a simple pole of the
meromorphic extension of Ca(s, As) to some open connected neighborhood of the
critical line {Res = dimpA} (we use the same notation for the meromophically
extended function), then

(2.37) res(Ona( -, A(As)),w) = Ares(Ca,w).

Proof. Equation (2.36) follows easily by noting that A(As) = (AA)as; we leave the
details to the interested reader. To prove Equation (2.37), note that {ya(s, As) —
Cra(s,A(Ag)) is an entire function; see Proposition 2.23. Therefore, also using
(2.36), we obtain that
I'GS(C)\A( i A(g),UJ) = res(@\A( T >\(A5))a OJ) = 3%(8 - UJ)CAA(S» )‘A)
= lim (s — w)A*Ca(s, A) = X res(Ca,w),
S—w

which concludes the proof of the proposition. O

This scaling result is useful, in particular, in the study of fractal sprays and
self-similar sets in Euclidean spaces; see [LapRaZu3,5|, as well as [LapRaZul].

3. RESIDUES OF ZETA FUNCTIONS AND MINKOWSKI CONTENTS

In this section, we show that the residue of any suitable meromorphic extension
of the distance zeta function (4 of a fractal set A in RY is closely related to the
Minkowski content of the set; see Theorems 3.3 and 3.7. Therefore, the distance
zeta functions, as well as the tube zeta functions that we introduce below (see
Definition 3.6), can be considered as a useful tool in the study of the geometric
properties of fractals.
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3.1. Distance zeta functions of fractal sets and their residues. Here we use
the notation 4 (s, As) for the distance zeta function instead of (4(s), in order to
stress the dependence of the zeta function on §. We start with an identity, which
will motivate us to introduce a new class of zeta functions, described by (3.6).

Theorem 3.1. Let A be a bounded subset ofiRN, and let § be a fized positive
number. Then, for all s € C such that Res > dimpA, the following identity holds:

5

(3.1) d(z, A)*Ndz = 5| As| + (N — s) / N=114, ] dt.
Ag 0

Furthermore, the function Ca(s) == f05 ts=N=1 A;| dt is absolutely convergent (and

hence, holomorphic) on {Res > dimpA}. The function Ca, which we have just

introduced, is called the tube zeta function of A (see Definition 3.6) and will be
studied in Section 3.2.

Proof. Equality (3.1) holds for all real numbers s € (D, +00), where D := dimpA.
Indeed, it follows immedately from Lemma 2.2, if we take v := N — s (note that
then v < N — D).

Let us denote the left-hand side of (3.1) by f(s), and the right-hand side by g(s).
Since f(s) = g(s) on the subset (D, +00) C C, to prove the theorem, it suffices to
show that f(s) and g(s) are both holomorphic in the region {Res > D}. Indeed,
the fact that (3.1) then holds for all s € C with Res > D follows from the principle
of analytic continuation; see, e.g., [Con, Corollary 3.8]. The holomorphicity of f(s)
in that region is precisely the content of Theorem 2.5(a).

In order to prove the holomorphicity of g(s) on {Res > D}, it suffices to
show that (4(s) is absolutely convergent on {Res > dimpA}. Note that Ca(s)
is the Dirichlet-type integral, C4(s) = S e(t)*dp(z), where E = (0,0), ¢(t) := t,
du(x) = t=N=1| A4 dt, and the latter measure is positive. Therefore, it suffices to
show that for any s € C such that Res > D, the Dirichlet-type integral C4(s) is
well defined. To see this, let € > 0 be small enough, so that Res > D + . Since
M*PFE)(A) = 0, there exists Cs > 0 such that |A;| < CstN=P~¢ for all t € (0, 4].
Then

)
Cals)] < / Res=N=114,] dy
0

9 _ SRe s—D—¢
< 05/ thes=D=e=1qt = Oy ————— < o0,

0 Res—D —¢
which concludes the proof of the theorem. O
Corollary 3.2. IfdimgA < N, then
(3.2) D(Ca) =D(Ca) and Duoi(Ca) = Dhoi(Ca)-
Proof. This follows at once from Equation (3.1) of Theorem 3.1 and from the defi-
nition of D(f) and Dy (f), for f =4 or f = (a. O

The following theorem is, in particular, a higher-dimensional generalization of
[Lap-vEr3, Theorem 1.17] and yields more information than the latter result, when
N = 1. (The problem of constructing meromorphic extensions of fractal zeta
functions is studied in [LapRaZu2] and in the monograph [LapRaZul].)
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Theorem 3.3. Assume that the bounded set A C RY is Minkowski nondegenerate
(that is, 0 < MP(A) < M*P(A) < oo, and, in particular, dimp A = D), and
D < N. IfCa(-, As) can be extended meromorphically to a neighborhood of s = D,
then D is necessarily a simple pole of Ca(-,As), and the value of the residue of
Ca(+,As) at D, res(Ca(-,As), D), does not depend on § > 0. Furthermore,

(3.3) (N — D)MP(A) <res(Ca(-,As),D) < (N — D)M*P(A),
and in particular, if A is Minkowski measurable, then
(3.4) res(Ca( -, As), D) = (N — D)MP(A).

Proof. Since MP(A) > 0, using Theorem 2.5(c) we conclude that s = D is a pole
of (4 = Ca(-, As). Therefore, it suffices to show that the order of the pole at s = D
is not larger than 1. Let us take any fixed § > 0, and let

| Ay
(3.5) Cs = sup .
te(,8) VP

Note that Cs5 < oo because M*P(A) < oo. Then, in light of (3.1), for all s € R
with D < s < N, we have

4
Cals, Ag) = [ d(w, A)=Ndz = 5°N|As| + (N — o) / N1 4, dt
(3.6) 4s 0
D oy — )2 (v — D)ot
< - - - ——
= 655 + 5( S)S - D 3 s—D

Therefore, 0 < (a(s, As) < C1(s — D)~ ! for all s € (D, N). This shows that s = D
is a pole of (4 (s, As) which is at most of order 1, and the first claim is established.
Namely, D is a simple pole of {4(s, As).

The fact that the residue of 4(s, As) at s = D is independent of the value of
0 > 0 follows immediately from Proposition 2.23. In order to prove the second
inequality in (3.3), is suffices to multiply (3.6) by s — D, with s real, and take the
limit as s — DT along the real axis:

(37)  xes(Ca(+,45),D) < (N = D) lim Co6*~P = (N = D)C.

Since the residue of (4 (s, As) at D does not depend on ¢, (3.3) follows from (3.7) by
recalling the definition of Cs given in (3.5) and passing to the limit as § — 0 (note
that the function § — Cj is nondecreasing and that C5 — M*P(A) as § — 0%) on
the right-hand side of (3.7). The first inequality in (3.3) is proved analogously by
replacing the supremum by an infimum in the definition of Cj given in (3.5). O

Example 3.4 (Residues of the zeta function of the generalized Cantor set). Let
A = C@ be the generalized Cantor set defined by the parameter a € (0,1/2).
Recall that C(@) is obtained by deleting the middle interval of length 1 — 2a from
the interval [0, 1], and then continuing in the usual way, scaling by the factor a at
each step (for a = 1/3, we obtain the middle third Cantor set, which is studied
in detail in [Lap-vFr1-3] from the point of view of geometric zeta functions and
the associated complex dimensions). (An even more general class of Cantor sets,
depending on two auxilliary paramteres, will be introduced in Definition 4.1.) By
a direct computation, or using [Zu3, Equation (15) with 7 := N — s, we obtain the
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corresponding zeta function:

21-5(1 — 2a)*

26°s7 1.
s(1 — 2a%) a0t

(3-8) Cals, As) =

Its residue computed at D = D(a) := dimp A = log, ,, 2 is given by

2 (1 P
. . As),D) = S _a) .
(39) res(Cal- A0 D) = o (5~ )
On the other hand, the values of the lower and upper D-dimensional Minkowski
contents are respectively equal to (see [Zu2, Equations (3.12) and (3.13) for m = 2]):

b 1/ 2D \'7" . 1 bt
(3.10) M (A) = ) <1—D> , M*™W(A)=2(1-a) (2 - a> ,
and thus MP(A) < M*P(A) (see also Remark 3.5 below). It follows that C(® is
not Minkowski measurable (for a much more general result, see [Lap-vFr3, Theorem
2.16]). (We note that in the case of the classical Cantor set, where a = 1/3 and
D = logs 2, the values in (3.10), and hence, the Minkowski nonmeasurability of
C(/3) | have been first obtained in [LapPo2, Theorem 2.4].) Therefore, for any
generalized Cantor set A = C(®), with a € (0,1/2), we have that

(3.11) (1 - D)MP(A) < res(Ca(-,As), D) < (1 — D)M*P(A).
This is in agreement with (3.3) in Theorem 3.3. In particular, since the functions

(0,1/2) 3 a > MP(A) and a — M*P(A) are bounded, and D = logy/,2 — 17 as
a — 1/27, we have that for any positive ¢,

lim res(Ca(-,As),D)=0.

a—1/2—

The residues of (4 (s, As) at the poles si := D + kpi, k € Z, on the critical line
{Re s = D}, expressed in terms of the residue at D and the ‘oscillatory period’ (see
[Lap-vFr3]) p := 27/log(1/a), are the following:

D27 kPi(] — 2q)FPi

(3.12)  res(Ca(-, As), sk) = s

reS(CA('aA5)aD)a keZ.

Remark 3.5. As we have already noted, the two inequalities in (3.11) are in agree-
ment with (3.3) in Theorem 3.3. In [LapRaZu2] (see also [LapRaZul]), we shall
prove that the strict inequalities in (3.3) are not just a coincidence: indeed, they
hold for a large class of Minkowski nonmeasurable sets in Euclidean spaces. An
analogous remark applies to the inequalities (3.16) in Theorem 3.7 below, dealing
with tube zeta functions. Also, it is shown in [Lap-vFr3, Section 8.4, Theorem 8.23]
that all lattice self-similar strings (and hence, under mild assumptions, all lattice
self-similar sets in R satisfying the open set condition) are not Minkowski measur-
able. In [Lap3], the same result is conjectured to hold in higher dimensions, and we
suspect that the methods developed in this paper (as well as in [LapRaZul-7] and,
especially, in [LapRaZu4,5]) combined with those of [Lap-vFr3, Section 8.4] should
eventually enable one to prove it.
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3.2. Tube zeta functions of fractal sets and their residues. Going back to
Theorem 3.1, we see that it is natural to introduce a new fractal zeta function of
bounded subsets A of RV,

Definition 3.6. Let § be a fixed positive number, and let A be a bounded subset
of RN. Then, the tube zeta function of A, denoted by (a4, is defined by

B )
(3.13) Cals) = /0 N A dr,

for all s € C with Re s sufficiently large. As we know from Theorem 3.1, the tube
zeta function is (absolutely) convergent (and hence, holomorphic) on the open right
half-plane {Res > dimpA}.

We call (4 the tube zeta function of A since its definition involves the tube
function (0,d) > ¢ — |A¢|. Relation (3.1) can be written as follows (with (4(s) =

Ca(s, As), as before, and C4(s) = Ca(s, As), for emphasis):
(3.14) Cals, As) = 0"V As| + (N = 5)Cals, 4s),

for any § > 0 and for all s € C such that Res > dimpA.

From the functional equation (3.14) relating ¢4 and (4, it would seem that (4
has a singularity at s = N. However, from the second part of Theorem 3.1 we see
that for dimpA < N, the value s = N is regular (i.e., holomorphic) for Ca. It then
follows from (3.14) that the two fractal zeta functions (4 and €4 contain essentially
the same information.

In particular, still assuming that dimpA < N, f A has a meromorphic continua-
tion to a given domain U C C if and only if (4 does, and in that case (according
to the principle of analytic continuation), the unique meromorphic continuations
to U of (4 and (4 are still related by the functional equation (3.14). Also in that
case, the residues (or, more generally, the principal parts) of (4 and 5 4 of a given
simple (resp., multiple) pole of s = w € U are related in a very simple manner; see,
e.g., Equation (3.15) below in the case of the simple pole s = dimg A. Furthermore,
P(Ca) = P(Ca) and (assuming that U contains the critical line {Res = dimpA}),
Pe(Ca) = Pe(Ca)- - - -

Moreover, we have that D(Ca) = D(Ca), Dnoi(€a) = Dnoi(Ca) and Dier(Ca) =
Dier(Ca). (Here, Duer(f), the abscissa of meromorphic continuation of a given
meromorphic function f, is defined exactly as Dyoi(f) in Equation (2.3) and the sur-
rounding text, except for “holomorphic” replaced by “meromorphic”; and similarly
for the half-plane of meromorphic continuation of f.) Also, we have I1((4) = I1(C4)
and ”H(E 4) = H(Ca); similarly, the half-planes of meromorphic continuation of Ca
and (4 coincide.

Still in light of (3.14), it follows from Theorem 3.1 that (4 is holomorphic on
{Res > dimpA} and that (provided dimpA < N), the lower bound dimpA is
optimal from the point of the convergence of the Lebesgue integral defining (4
in (3.13); i.e., D(Ca) (= D(Ca)) = dimpA. More generally, the exact analog of
Theorem 2.5 holds for (4 (instead of C4), except for the fact that in the counterpart
of part (c¢) of Theorem 2.5 we no longer need to assume that D < N (where
D :=dimpg A).

Assuming that there exists a meromorphic extension of (4(s, As) to an open
connected neighborhood of D := dimpA, and D is a simple pole, D < N, then it
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easily follows from (3.14) that

(3.15) res(Ca, D) = iﬁres(CA(~,A5),b).
Indeed,
res(Ca(-,4s5), D) = 515%(5 — D)[6°N|As| + (N — 5)Ca(s)]
= (N = D) lim (s — D)Ca(s)

s—D
= (N —D)res(Ca, D).
Hence, the following result, in the case of D < N, is an immediate consequence

of Theorem 3.3 and relation (3.1) (or, equivalently, (3.14)), while in the case when
D = N, it can be shown directly.

Theorem 3.7. Assume that A is a bounded subset of RN such that D := dimp A
exists, 0 < MP(A) < M*P(A) < oo, and there exists a meromorphic extension of
C~A to an open neighborhood of D. Then D is a simple pole, and for any positive §,
the value of reS(gA,D) is independent of 6. Furthermore, we have

(3.16) MP(A) <res(Ca, D) < M*P(A),
and, in particular, if A is Minkowski measurable, then
(3.17) res(Ca, D) = MP(A).

In the following example, we compute the complex dimensions of the unit (N —1)-
dimensional sphere in RY, using the tube zeta function of the sphere.

Example 3.8. Let A := 9B;(0) be the unit (N — 1)-dimensional sphere in RY
centered at the origin. We would like to compute its complex dimensions. To this
end, we first compute the corresponding tube zeta function 5 4. Let us fix any
§ € (0,1). Since |4 = wn(1+ )Y —wn(1 =), where t € (0,1) and wy is the
N-dimensional Lebesgue measure of the unit ball in R"V, we have that for any fixed
5 €(0,1),

é 5
CA(s):/O tS_N_l\At|dt:wN/0 NN A+ )N — (1 —t)N)dt

=wy /05 st (é (JZ) (1- (1)’“)15’“) dt
§s—N+k

:wkf;_l(l - (-1)") (]Z)—uv—k)

for all s € C with Res > N — 1. The last expression can be meromorphically
extended to the whole complex plane, and we still denote it by (a(s). Therefore,
we have

R N s—N+k
(3.18) Cals) =wn ) (1= (=1)") (JZ)SE(N—k)
k=0

for all s € C, where the constants c; are defined as above. It follows that
dimp A = D(Ca) = D(C4) = N — 1,

(3.19) _
PC(CA) = PC(CA) = {N - 1}?
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as gxpected. (Note that dimp A = N — 1 < N, so that PC(EA) = P.(Ca) and
P(Ca) = P(Ca).) Moreover, still in light of (3.18), the set of complex dimensions
of A is given by

P =P = {N- @i+ =012 [N

:{N—1,N—3,...,N—(2{%J+1)}.

For odd N, the last number in this set is equal to 0, while for even IV, it is equal
to 1. Furthermore, the residue of the tube zeta function (4 at any of its poles
N —k € P(Ca) is given by res(Ca, N — k) = 2wN(]Z); that is,

(3.20)

(3.21) res(Ca,m) = 2wy (Z), for all m € P(Ca).

Note that in the case where m = D := N — 1, we obtain
(3.22) res(Ca, D) = 2Nwy = MP(A),

where the last equality is easily obtained from the definition of the Minkowski
content, as follows:
Al wn (140N —wy(1— N

MP(A) = i =i =2Nwn.
()= lim v=p = I i o

In other words, A is Minkowski measurable and
(3.23) MP(A) =2HP(A),

where HP denotes the D-dimensional Hausdorff measure. (Equation (3.23) is a
special case of a much more general result proved by Federer in [Fed, Theorem
3.2.39].) Equation (3.22) is in agreement with Equation (3.17) in Theorem 3.7.

3.3. Residues of tube zeta functions of generalized Cantor sets and a-
strings. We provide here two simple examples illustrating some of the main results
of this section.

Example 3.9 (Generalized Cantor sets, Example 3.4 continued). As an illustration
of inequality (3.16), we consider generalized Cantors sets, A = C® a € (0,1/2).
We obtain

(3.24) MP(A) < res(Cal-, As), D) < M*P(A),

where the values of the lower and upper Minkowski contents, M2 (A) and M*P(A),
are given by (3.10) and D = D(a) = log;,,2. It is worth observing that c(@)
becomes almost like a Minkowski measurable set for a close to 1/2, since both
M*P(A) and MP(A) tend to the common limit 1 as a — 1/27. Intuitively, this is
to be expected, since in the limit where a — (1/2)~, C(®) tends (with respect to the
Hausdorff metric) to the unit interval [0, 1], for which D = 1 and M*([0,1]) = 1.
Therefore, both MP(C®) and M*P(C(®) tend to 1 = M ([0,1]) as a — (1/2)~.
(Using the definition of upper and lower Minkowski content, it is easy to prove
that for any bounded subset A of RV we have that M™ (A) exists and, moreover,
MPN(A) = |A| . This shows that Federer’s theorem stated in [Fed, Theorem 3.2.39)
holds without any rectifiability assumption on A, provided we let m = N in the
statement of that theorem.)
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On the other hand, in the limit where a — 07, C(® remains Minkowski non-

measurable since
(3.25) lim M*P(A) =4, lim MP4)=2.

a—0t a—0t
Example 3.10 (a-strings). Given a > 0, the associated a-string is defined by
L = (fj)jzh where fj = 5% — (] + 1)—(1. Let A = A, = {j_a 1 J € N} be
the associated set; see Example 2.9 and the discussion preceding it. This set is
Minkowski measurable,

D 2! 5 1
(3.26) MP(4) = Go—pa (0=
This fractal string, introduced by the first author, has been studied from various
points of view in [Lapl, Example 5.1], [Lap2-3], [HeLap], [LapPo3] and [Lap-vFr3,
Section 6.5.1]. Due to (3.4) and (3.17), we know that

(3.27) res(Ca( -, A;5),D) = (1 — D)YMP(A), res(Ca, D) = MP(A).

3.4. Distance and tube zeta functions of fractal grills. It is of interest to
understand the dependence of the distance and tube zeta functions with respect to
the Cartesian products of sets. In this section, we restrict our attention to Cartesian
products of the form A x [0,1]* ¢ RV** which we call fractal grills. Here, A is a
bounded subset of RY and k is any positive integer.

Since the set A can be naturally identified with A x {0} < RN+ it will be
convenient to introduce the following notation for all s € C with Re s sufficiently
large:

)
(3.28) ¢M(s) = / d(z, A)*Nda, M(s):= / 5N 4, | vdt,
As 0

where the index [N] indicates that we view A as a subset of RY and |4y is
the N-dimensional Lebesgue measure of the t-neighborhood of A in RY. Hence,
~1[4N+1](3) = f(f t5~N=2| A;|yy1dt. Note that, by writing |A¢|y41, we interpret A,
as the t-neighborhood of A x {0} in R¥*!. Furthermore, observe that, in (3.28),

CL‘N] and Q:LN], are, respectively, the usual distance and tube zeta functions of A

(viewed as a bounded subset of RY) whereas, for example, &NH} is the tube zeta
function of A, but now viewed instead as a subset of RV*1. Moreover, in (3.30) and

(3.31) of Lemma 3.14 just below, CK\;TOI ]1] and ZX\;J[FJ ]1] stand, respectively, for the

usual distance and tube zeta functions of A x [0, 1] (naturally viewed as a subset of
RN'H).

In the sequel, if X is a given set of complex numbers and m € C a fixed complex
number, we let ¥ +m := {s +m : s € £}. We shall also need the following
definition.

Definition 3.11. Assume that f(s) and g(s) are two tamed Dirichlet-type integrals
(DTIs, in short) which are (absolutely) convergent on an open right half-plane
{Res > a}, for some « € R. Let their difference h(s) := f(s) — g(s) be a tamed
DTT such that D(h) < D(g). (Or, equivalently, that there exists a real number
B, with 8 < D(g), such that the integral defining A is absolutely convergent (and
hence, holomorphic) on {Re s > }.) Then we say that f and g are weakly equivalent
and write f ~ g.
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Remark 3.12. Tt can be checked that if f and g are tamed DTIs, then f — g (or,
more generally, any linear combination of f and g) is a tamed DTI (as is required
in Definition 3.11 just above) provided both the DTIs f and g are based on the
same underlying pair (E, ¢) in the notation of Defintion 2.12. Therefore, D(h) and
II(h) are well defined in that case. This situation arises, for example, for the tube
zeta function discussed in the present section. We then have E := (0,4), ¢(t) :=¢
forall t € F.

Note that in Definition 3.11, we do not assume that g possesses a meromorphic
continuation to a neighborhood of any point on its critical line {Re s = D(g)}. Case
(¢) of Lemma 3.13 below provides a simple and useful condition for the implication
f~g = f ~ g to hold, where the equivalence ~ is described in Definition 2.22
above.

Lemma 3.13. Assume that f and g are two tamed Dirichlet-type integrals such
that f ~ g. Then, the following properties hold:

(a) We have D(f) = D(g).
(b) The relation ~ is reflexive and symmetric.

(¢) If there exists a connected open set U C {Res > D(h)} containing the critical
line {Res = D(g)} and such that g can be meromorphically continued to U, then
f has the same property and P.(f) = P.(g). In particular, f ~ g in the sense of
Definition 2.22.

Proof. (a) Since, by Definition 3.11, f(s) = g(s) + h(s) and D(h) < D(g), we
conclude that D(f) < D(g). If we had D(f) < D(g), then we would have
(3.20) max{D(f), D(h)} < D(g).

On the other hand, the function (i.e., the DTI) g(s) = f(s) — h(s) is absolutely
convergent on {Res > max{D(f), D(h)}}, which is impossible due to (3.29). This
contradiction proves that D(f) = D(g).

Property (b) follows at once from (a) and Definition 3.11. Finally, property (c)
follows easily from the relation f(s) = g(s) + h(s). O

Lemma 3.14. Let A be a bounded subset of RN . Then
(3.30) il =M s =1+ s

and
(3.31) o () =M s = 1)+ )

for all s € C with Res > dimgA + 1. In particular, if A is such that (4 or
(equivalently, provided dimpA < N) C~A admits a (necessarily unique) meromor-
phic continuation to a connected open neighborhood of the critical line of Lebesgue
(absolute) convergence {Res = D(Ca)} (recall from Theorem 2.5 that D((4) =
dimpA), then

(3.32) o) = s =1 and T () 2 s =),

Hence, if Ca can be meromorphically continued to a connected, open set U con-
taining the critical line {Res = D(Ca)}, then P, ((AA;TJ]l) = PC(CLN]) + 1; that
18,

(333) dimpc(A X [0, ].D = dimpc A+1.
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In particular, if dimpA < N, then
N . .
D) = PEED) +1 = D) +1= D)

(3.34) I
=dimp(A x [0,1]) = dimpA + 1.

Proof. Let us first prove Equation (3.31). It is easy to see (cf. [Res, Remark 1])
that:

(3.35) [(AX [0, )t v = [Ael v - T+ [Ae g
Substituting into the second equality of (3.28), we conclude that

o
<1[4]\;T()1]1 (s) = /0 t87N72(‘At|N + |A¢|nyr) de

5 )
(3.36) :/ t(sfl)fN71|At|th+/ 5= (N+1)— |A |N+1dt
0 0

= M — 1)+ Y (s)

for all s € C with Res > dimpA + 1. (Here, we also use the fact that dimpA is the
same in the case of A C RVt as in the case of A C R¥; that is, the upper box
dimension of a set, as well as the lower box dimension, does not depend on N; see
[Res, Proposition 1].)
Let us next establish Equation (3.30). To this end, we use (3.14), which we write
in the following form:
[N]

(3.37) 5,[4N](3) A (8) = 0% N|As|w

N—s ’
for s € C with Res > dimpA and s # N. Making use of Equation (3.36), we
deduce that

Cieton () = 8V HA X0, sl (Vs — 1) = 560N |44y

(3.38) (N+1)—s N N —(s—1)
. 1[4N+1](S) _ 53_(N+1)|A6|N+1
(N+1)—s ’

for all s € C with Res > dimpA and s # N + 1. Since, in light of (3.35), we have
[(A % [0,1])s|n+1 = |4s|n + |As|n+1, after a short computation we conclude from
(3.38) that

(3.39) ) =M =1+ ),

for all s € C with Res > dimpA + 1, where we have also used the principle
of analytic continuation. Note that, according to Theorem 2.5, both CLN](S -1
and (VU (s) are holomorphic on {Res > dimpA + 1} (recall that dimp(A x

Axfo
[0,1]) = dimp A + 1, see [Fall]), while, according to the same theorem, the function
AJ\LTol]l]( )— LN]( -1)= LNH} (s) is holomorphic on {Re s > dimpA}. Therefore,

since D(C[NH]) =dimpA < dimpA+1 = D( LN](- —1)), it follows from Definition

3.11 that CL{VXT(}]I (s) ~ ¢M(s—1).

The remaining part of Lemma 3.14 can be deduced from part (c¢) of Lemma
3.13 by noting that since (4(s) can be meromorphically continued to the set U,
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then C4(s — 1) can be meromorphically continued to the set U + 1. Hence, by
Lemma 3.13(c), we have CL]\;J[F&]”(S) ~ LN](S — 1) in the sense of Definition 2.22,
and therefore,

Pe(Ciiy) = Pe(cC- = 1) = Pe(h) +1,

or, equivalently, dimpc (A4 x [0,1]) = dimpe A+ 1. This completes the proof of the
lemma. ]

Theorem 3.15. Let A be a bounded subset of RN and let m be a positive integer.
Then the following properties hold:

(a) The distance and tube zeta functions of A x [0,1]™ C RN+™ are given,
respectively, by

N+m - m N—+k
(3.40) AN OEDY (k)gg s —m+ k)
k=0
and
N+m = [N+k
(3.41) o)=Y ( ) s —m+ k),
k=0

for all s € C with Res > dimpA + m.

(b) If the distance zeta function (s (or equivalently, the tube zeta function C4)
can be meromophically extended to a connected open set containing the critical line

{Res = dimpA}, then

N+m N [N+m [N
(3.42) e (s) ~ (s —m), N (5) ~ EY (s — m)

and Pc(CAX[O,l]"L) = ,PC(CA) +m; that is,
(3.43) dimpe (A x [0,1]) = dimpe A + m.
In particular, if dimgpA < N, then

D¢ o) = D

(3.44) ) = D +m = DEY) +m = DE)

Ax[0,1]™

(
dimp(A x [0,1]™) = dimpA + m.

Proof. (a) Let us first prove Equation (3.40). We do so by using mathematical
induction on m. The case where m = 1 has already been established in Lemma
3.14.

Now, let us assume that the claim holds for some fixed positive integer m > 1.
From (3.30) we see that

[N4+m+1] [N+4+m] (N+1)+m]
Caxjoprtr (8) = Caspoapm (5= 1) + <A>< 0.1 (5):
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Therefore,
N+m i m N4k N i
C,[4><—'[_0,1—]tr11]+1(5)z<k> 1[4+](5*1 m+ k) +Z< > 7l +1+]( —m+k)
k=0
m—1

:CLN]< — 1)+ Z (k+1) [N+k+1]( —m4k)

=0

+ Z (’,?) G —m k) + G Gs)

m—+1

= Z (m“) A s = mr 1)+ h),

where in the last equality we have used the fact that (') + (1::1) = (Tg_tll) This
completes the proof of Equation (3.40).

Equation (3.41) can be proved by mathematical induction in much the same way
as in the case of the distance zeta function. This completes the proof of part (a) of
the theorem.

(b) To prove that ¢ Aj\;+(;"1]m (s) ~ LN] (s—m), it suffices to note that, by Equation

(3.40), the function

(3.45) (NI (o) - Z( ) NH (s ) = h(s)

k=1
has for abscissa of convergence D(h) = dimpA + (m — 1)} < dimgA +m =
D(CLN]( — m)), so that CA]i+()Tn1]m(S) ~ C[ ]( — m). Using part (¢) of Lemma

3.13, we deduce that (Xt[r(ﬁ]m(s) ~ 1[4 ](s —m) in the sense of Definition 2.22,
which proves the first relation in (3.42) The second relation in (3.42) can be proved
along the same lines. This completes the proof of claim (b), as well as of the entire

theorem. O

Remark 3.16. The relations appearing in (3.42) can be written in a less precise
form as follows:

(3.46) Caxojm(s) ~ Cals —m) and  Caxjop=(s) ~ Cals —m).
We propose to call these two properties the shift properties of the distance and tube
zeta functions, respectively.

Example 3.17. Assume that C("»® is the generalized Cantor set introduced below
in Definition 4.1 below and d is a positive integer. Then, using (3.42) and (4.6)
below, we obtain that

1
Cc<m~a>x[o,1]d(5) ~ 1= mas—d
Furthermore, from (3.43) we conclude that
: m,a 2r
(3.47) dimpc (C™ x [0,1]%) = (log, )y m + d) + ogm i7Z.

Moreover, by noticing that (com.e)x[p,1j¢ can be meromorphically extended to the
whole complex plane, we conclude from Equation (3.40) above and from the first
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part of Equation (4.7) below that the set of all complex dimensions of C("%) x [0, 1]¢
is well defined in C and given by

d

2T .
(348)  P(Commmxone) ={0,1,...,d} U ;90 ((logl/a m k) b nZ).

The sets of the form C(™® x [0,1]¢ (with m = 2, a = 1/3, d = 1) appear, for
example, in the study of the Smale horseshoe map; see, e.g., [Sma]. They also
appear in the study of the singularities of Sobolev functions and of weak solutions
of elliptic equations; see, e.g., [Zul] and [HorZu], where they are called the ‘Cantor
grills’.

Example 3.18. Similarly as in Example 3.17, sets of the form 9Q x [0,1]¥ 71,

where Q = , is a geometric realization of a fractal string (for example, the so-
called a-string, Q@ = U572, ((j +1)7%,77%)), where a > 0 and for which 0Q = {j7*:
j > 1}U{0} satisfies dimpd§ = 1/(a+1), are used in the study of fractal drums to
extend certain results from one to higher dimensions N > 2; see [Lapl, Examples
5.1 and 5.1°]. The open set  x (0,1)¥~!, whose boundary is

(3.49) (0 x [0, 1]V "1y U ([0,1] x 9((0,1)N 1)),

and where 9(([0,1]¥ 1) is taken in the space RV™!, is called a ‘fractal comb’ in
[Lapl-3]. (See also [LapRaZu6].) The subset 0((0,1)¥=1) of RN~1 is an (N — 2)-
dimensional Lipschitz surface (which for N = 2 degenerates to a pair of points),
so that the box dimension of [0,1] x 3((0,1)¥~1) is equal to N — 1. Therefore, by
the property of ‘finite stability’ of the upper box dimension (see [Fall]), we have
dimp(Q2x(0,1)V 1) = max{dimp (902 x [0, 1]V 1), N1} = dimp (02 x[0, 1]V ~1) =
dimpdQ)+ N — 1.
Since, according to [Lap-vFr3, Theorem 6.21],

(3.50) P(C@(Qa)) = {pv —p;—2p,—=3p, ... }7
where p :=1/(a + 1), we deduce from Theorem 3.15 that

P(Ca(ax0,1)8-1)) = P(Ca(a)x[0,1]¥-1)

3.51
(3:51) ={N-14+pN-1—-p,N—-1-2p,N—-1-3p,... },

still with p = 1/(a + 1). Furthermore, all of these complex dimensions are simple.

Remark 3.19. More precisely, it could be that beside p, which is always a (simple)
pole of (g, some of the numbers —np (n > 1) appearing in (3.50) are not the
poles of (sq (because the coresponding residue of (5 happens to vanish, for some
arithmetic reason connected with the value of a). And, hence, similarly, in (3.51).

Note that if, in Example 3.18 just above, = Q¢ is the Cantor string (i.e., the
complement of the classic ternary Cantor set in [0, 1]), then according to [Lap-vFr3,
Subsection 1.2.2, Equation (1.30)] and Equation (3.51), we have

(3.52) dimpc O(Q x (0,1)N 1) = (N — 1) + log 2) + 2

17,
log 3

which is a special case of (3.47).
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4. TRANSCENDENTALLY n-QUASIPERIODIC SETS AND THEIR DISTANCE ZETA
FUNCTIONS

The goal of this section is to describe a construction of some of the simplest
classes of quasiperiodic sets, a notion which we introduce in Definition 4.10 below.
The main result is obtained in Theorem 4.14. The construction will be carried out
by using a class of generalized Cantor sets depending on two auxiliary parameters.
We note that, as will be briefly discussed in Section 4.4 below, this construction and
its natural generalizations will play a key role in future developments of the present
higher-dimensional theory of complex dimensions of fractals; see [LapRaZuk?].

4.1. Generalized Cantor sets defined by two parameters. Let us introduce a
class of generalized Cantor sets C(™%) | depending on two parameters. As a special
case, we obtain the Cantor sets of the form C(®) := C'(%% discussed in Example 3.4.
The classical ternary Cantor set C'(*/3) corresponds to the case where m = 2 and
a=1/3.

Definition 4.1. The generalized Cantor sets C"® are determined by an integer
m > 2 and a positive real number a such that ma < 1. In the first step of the
analog of Cantor’s construction, we start with m equidistant, closed intervals in
[0, 1] of length a, with m — 1 holes, each of length (1 —ma)/(m — 1). In the second
step, we continue by scaling by the factor a each of the m intervals of length a; and
so on, ad infinitum. The (two-parameter) generalized Cantor set C(™® is defined
as the intersection of the decreasing sequence of compact sets constructed in this
way.

It can be shown that the generalized Cantor sets C' ("% have the following prop-
erties, which extend the ones established for the sets C(®). Apart from the proof
of (4.5), which is easily obtained, the proof of the proposition is similar to that for
the standard Cantor set (see [Lap-vEr3, Equation (1.11)]), and therefore, we omit
it.

Proposition 4.2. If (™% C R is the generalized Cantor set introduced in Defi-
nition 4.1, then

(4.1) D :=dimp C™ = D(C4) = log, /, m.

Furthermore, the tube formula associated with C"™®) is given by

(m,a)) _ 4,1-D 1
(4.2) ICm9)| = ¢ G(logt)

for all t € (0, 21(;1“;)), where G = G(7) is the following nonconstant, positive and

bounded periodic function, with minimal period equal to T =log(1/a), and defined
by

T—c T—c

(4.3) G(r) = P (ma)?("T°) 4+ 2Pma( 7).

Here, ¢ = %, and g : R — R is the 1-periodic function defined by g(x) =1—x

for x € (0,1].
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Moreover, the lower and upper Minkowski contents of C"™®) are respectively
given by

1/ 2D \'""
D (m,a) — mi —
ML (C ) =minG D (1 — D) ,
(4.4) . D1 a )
*D (m,a)y — _ —ma m(l—a
M*Z(C ) =max G (2(m1)) e

Therefore, C"™%) is Minkowski nondegenerate but is not Minkowski measurable.

Finally, if we assume that 6 > ﬁ, then, the distance zeta function of A :=

Cm9) s given by

(A5)  Cals) = /M d(z, A)~2dz — ( - ma))s_l 3(1 —ma_ 207

_s 2(m—1 1 —ma®) s

As a result, (a(s) admits a meromorphic continuation to all of C, given by the last
expression in (4.5). In particular,
1
1—mas’

(4.6) Cals)

and the set of poles of Ca (in C) and the residue of (4 at s = D are respectively
given by
P(Ca) = (D + piZ) U{0},

(4.7) L—ma (1—ma \""
res(Ca, D) = DT (2(m - 1)) 7

where p := 2m/T is the oscillatory period of C™%) (in the sense of [Lap-vFr3]).
Finally, each pole in P(Ca) is simple.

Remark 4.3. The values of the upper and lower Minkowski contents of C(™@)
have been obtained earlier in [Zu2, Equations (3.12) and (3.13)]. In the case of
the classical Cantor set, that is, for m = 2 and a = 1/3, we recover the values
first obtained in [LapPo2, Theorem 2.4]. (See also [Lap-vFr2-3, Chapter 11] for
further generalizations.) Finally, the tube formula (4.2) extends the one obtained
in [Lap-vFr3, Equation (1.11)].

Definition 4.4. According to the terminology introduced in [Lap-vFr3], the value
of p = 27w/ log(1/a), appearing in Proposition 4.2, is called the oscillatory period of
the generalized Cantor set A = C'("™9),

As we see from Equation (4.5) and from the equivalence in (4.6), the set of
all complex dimensions of the generalized Cantor set A = C("® and the set of
principal complex dimensions of A are given, respectively, by

P(Ca) = (D +piZ) U {0} Pe(Ca) = D + piZ.

4.2. Construction of transcendentally 2-quasiperiodic sets. In Example 4.5
below, we provide some basic ideas for further definitions and constructions. The
main result of this subsection is obtained in Theorem 4.11.

Example 4.5. Let us define two generalized Cantor sets A = C(®) = 02
[0,1], @ € (0,1/2), and B = C3*)  [2,3], where b € (0,1/3). We choose b so that
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D :=log;,,2 = logy, 3. We may take, for example, a = 1/3 and b = 37 log23,
Note that we then have 3b = 31719823 < 1. Also, we have

| A = 1P G (logt'™Y), By =t'"PGa(logt' ™).

The functions G; and G4 corresponding to A and B are T and S-periodic, respec-
tively, with T" = log(1/a) = log3 and S = log(1/b). Furthermore, the quotient
T/S =log3/log(1/b) = logs 2 is transcendental, which is a well-known result going
back to F. von Lindemann and K. Weierstrass; see [Ba, p. 4].

For our later needs, it will be convenient to introduce the following definition,
which partly follows [Vin].

Definition 4.6. We say that a function G = G(7) : R — R is transcendentally
n-quasiperiodic if it is of the form G(r) = H(r,...,7), where H : R* — R is
a function which is nonconstant and Ti-periodic in its k-th component, for each
k = 1,...,n, and the periods Ti,...,T,, are algebraically independent (that is,
linearly independent over the field of algebraic real numbers). The values of T; are
called the quasiperiods of G. The least positive integer n for which this definition
is valid is called the order of quasiperiodicity of G.

Remark 4.7. Tt is possible to define analogously a class of algebraically n-quasiperiodic
functions, but we do not study them here; see [LapRaZul].

Example 4.8. If G(7) = G1(7) + G2(7), where the functions G; are nonconstant
and T;-periodic (for ¢ = 1,2), such that T} /75 is transcendental, then G is tran-
scendentally 2-quasiperiodic (in the sense of Definition 4.6). In this case and in the
notation of Definition 4.6, we have H (11, 72) = G1(m1) + Ga(72).

In the sequel, we shall need a classic result due to Gel’fond and Schneider (see
[Gel]), proved independently by these two authors in 1934. We state it in a form
that will be convenient for our purposes.

Theorem 4.9 (Gel’fond—Schneider, [Gel]). Let m be a positive algebraic number
different from one, and let x be an irrational algebraic number. Then m® is tran-
scendental.

Definition 4.10. Given a bounded subset A C RY, we say that a function G :
R — R is associated with the set A (or corresponds to A) if A has the following
tube formula:

(4.8) |Ay| = NP (G(log(1/t)) +o(1)) as t — 0T,

where 0 < liminf, ., G(7) < limsup,_,., G(7) < oo. Note that it then follows
that dimp A exists and is equal to D.

In addition, we say that A is a transcendentally n-quasiperiodic set if the corre-
sponding function G = G(7) is transcendentally n-quasiperiodic.

Generalizing the idea of Example 4.5 above, we obtain the following result.

Theorem 4.11. Let A} = C™1@) C [0,1] and Ay = CU2:%2) C [2,3] be two
generalized Cantor sets (see Definition 4.1) such that their box dimensions coincide,
with the common value D € (0,1). Let {p1,p2,...,px} be the set of all distinct
prime factors of m1 and ms, and write

(4.9) my = pyipy? .. Rk, mQ:pflpgz...pg’“,
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where a;, B; € NU{0} fori=1,... k. If the exponent vectors
(4.10) (a1, 9,...,a;) and (B1,B2,...,Bk),

corresponding to my and ms, are linearly independent over the rationals, then
the function G = G1 + Ga, associated with A = Ay U As, is transcendentally
2-quasiperiodic; that is, the quotient Ty /T of the quasiperiods of G (i.e., of the
periods of G1 and G2) is transcendental.

Moreover, we have that

1 1
Cals) ~ 1—miai 1—mea§’

D(CA) =D, Dmer(CA) = =00,

and hence, the set dimpc A = P.(Ca) of principal complex dimensions of A coin-
cides with the following nonarithmetic set:
dimpe A =D + (%TZ U %Z)ﬁ.
Besides (dimpc A) U {0}, there are no other poles of the distance zeta function (4.
In other words, P(Ca) = Pc(Ca)U{0}. Furthermore, all of the complex dimensions
are simple.
Finally, exactly the same results hold for the tube zeta function 5,4 (instead of Ca).

Proof. First of all, using (4.2), applied to both 4; and Ay, we conclude that for all
te(0,1/2),

[(A1 U Ag)s| = t'7P (G1(log 1/T) 4 Go(log 1/t)) .
It thus suffices to show that the quotient T} /T5 of the quasiperiods T7 and T5 of
the function G(7) := G1(7) + G2(7) is transcendental.

From D = log, /o, m1 = log; 4, m2 and T; = logm;, i = 1,2, we deduce that z :=
Ty /T» satisfies the equation (msq)* = my. The exponent = cannot be an irrational
algebraic number, since otherwise, by the Gel’fond-Schneider theorem (Theorem
4.9), (m2)® would be transcendental. If x were rational, say, x = b/a, with a,b € N
(note that = > 0, since m; > 2), this would then imply that (m;)® = (m2)’; that

is,
ao . aos ao bB1, bBa b8

PIU P L pt = py Ly
Therefore, using the fundamental theorem of arithmetic, we would have

alar,ag,...,a) = b(f1,Pa, ..., Br).

However, this is impossible due to the assumption of linear independence over the
rationals of the above exponent vectors. Consequently, = is transcendental.

The claims about the zeta function (4,04, follow from Proposition 4.2 applied
to both A; and As. Indeed, since A; and As are subsets of two disjoint compact
intervals, then (4(s) ~ Ca,(s) + Ca,(8), and on the other hand, {4, (s) + Ca,(s) ~
(1 —mya3)~! + (1 — maa3)~!. This completes the proof of the theorem. O

Remark 4.12. Theorem 4.11 provides a construction of the set A = A; U Ay, such
that the set dimpc A := P.(Ca) of principal complex dimensions of A is equal to the
union of two (discrete) sets of complex dimensions, each of them composed of poles
in infinite vertical arithmetic progressions, but with algebraically incommensurable
oscillatory quasiperiods py = 27/T; and py = 27/T5 of Ay and As, respectively;
that is, such that p;/p2 is transcendental. These oscillatory quasiperiods of A are
equal to the oscillatory periods of A; and As, respectively.
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4.3. Transcendentally n-quasiperiodic sets and Baker’s theorem. The main
result of this subsection is stated in Theorem 4.14 below, which extends Theo-
rem 4.11 to any integer n > 2 and also provides further helpful information. In the
sequel, we shall need the following important theorem from transcendental number
theory, due to Baker [Ba, Theorem 2.1]. It represents a nontrivial extension of
Theorem 4.9, due to Gel’fond and Schneider [Gel]. Recall that an algebraic num-
ber is a complex root of a polynomial with integer coefficients and that the field of
algebraic numbers is isomorphic to the algebraic closure of Q, the field of rational
numbers.

Theorem 4.13 (Baker, [Ba, Theorem 2.1]). Letn € N withn > 2. If my,...,my,
are positive algebraic numbers such that logmy,...,logm, are linearly independent
over the rationals, then

1,logmyq,...,logm,
are linearly independent over the field of all algebraic numbers.

We now state the main result of this section, which can be considered as a fractal
set-theoretic interpretation of Baker’s theorem. It extends Theorem 4.11 even in
the case where n = 2.

Theorem 4.14. Let n € N with n > 2. Assume that A; = C(™0%) §=1,... n,
are generalized Cantor sets (in the sense of Definition 4.1) such that their box
dimensions are all equal to a fixzed number D € (0,1). Assume that there is a
disjoint family of closed unit intervals Iy, ..., I, on the real line, such that A; C I;
for each j =1,...,n. Let T; := log(1/a;) be the associated periods, and G; be the
corresponding (nonconstant) T;-periodic functions, for i =1,...,n. Let {p; : j =
1,...,k} be the union of all distinct prime factors which appear in the integers m;,
fori=1,...,n; that is, m; = p{"™* ... pp*™*, where a;; € NU{0}.
If the exponent vectors e; of the numbers m;,

(4.11) e = (i1, k), t=1,...,n,

are linearly independent over the rationals, then the numbers
1

(4.12) B,Tl,...,Tn

are linearly independent over the field of all algebraic numbers. In particular, the
set A:= A1 U---UA, CR is transcendentally n-quasiperiodic; see Definition 4.10.
Furthermore, in the notation of Definition 4.10, an associated function G is given
by G:=G1+ -+ G,.

Moreover, we have that

1
CA(S) ~ 1:21 1_ miaf’ D(CA) = D7 Dmer(CA) = —0Q,
and hence, the set dimpc A = P.(Ca) of principal complex dimensions of A consists
of simple poles and coincides with the following nonarithmetic set:

. "em .
dimpc A =D + (H fZ>n.
Besides (dimpc A) U {0}, there are no other poles of the distance zeta function 4.
That is, P(A) = P.(A) U{0}. Furthermore, all of these complex dimensions are

simple.
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Finally, exactly the same results hold for the tube zeta function CNA (instead of

Ca).

Proof. As in the proof of Theorem 4.11, using (4.2), applied to each A;, for i =
1,...,n, we see that for all ¢ > 0 small enough,

|A¢] = tl_DiGi(log %),
i=1

and for each i = 1,...,n, G; = G4(7) is T;-periodic, where T; := log 1/a;. We next
proceed in three steps:

Step 1: It is easy to check that the numbers log p; (for j = 1,...,n) are rationally

independent. Indeed, if we had Z?Zl Ajlogp; = 0 for some integers Aj;, then
H?:l p?j = 1. This implies that A\; = 0 for all j, since otherwise it would contradict
the fundamental theorem of arithmetic.

Step 2: Let us show that logmy,...,logm, are linearly independent over the ra-
tionals. Indeed, assume that fori =1,...,n, u; € Q are such that 2?21 wilogm; =
0. Then

n k
(4.13) 3" S iy log = 0.
i=1  j=1

Changing the order of summation, we have

k n
(4.14) Z (Z Mi@ij> logp; = 0.

j=1 \i=1

Since, by Step 1, the numbers logp; are rationally independent, we have that for

all j =1,k
Z,L"iaij =0;
i=1

that is, ;" p;e; = 0, where the e;’s are the exponent vectors given by (4.11).
According to the hypotheses of the theorem, the exponent vectors e; are rationally
independent, and we therefore conclude that p; = 0 for all ¢ = 1,...,n, as desired.

Step 3: Using [Ba, Theorem 2.1], that is, Theorem 4.13 above, we conclude that
1,logmyq,...,logm, are linearly independent over the field of algebraic numbers.
Since T; = % logm,;, for i = 1,...,n, it then follows that the numbers listed in
(4.12) are also linearly independent over the field of algebraic numbers. Therefore,
the function

G=Gi4 +Gpn, Gr)=GCi(r)+ -+ GCGn(7),

associated with A, is transcendentally n-quasiperiodic; that is, the set A is transcen-
dentally n-quasiperiodic. Note that here, H(7y,...,7,) := Gi(11) + -+ + Gpn(70),
in the notation of Definition 4.6.

The last claim, about the distance zeta function (4 and its complex dimensions,
now follows from Proposition 4.2 applied to each of the bounded sets A; (i =
1,...,n). This concludes the proof of the theorem. |
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Remark 4.15. In Theorem 4.14, we have constructed a class of bounded subsets
of the real line possessing an arbitrary prescribed finite number of algebraically
incommensurable quasiperiods. As will be further discussed in Section 4.4, this
result will be extended in [LapRaZul,4], where we shall construct a bounded subset
Ay of the real line which is transcendentally co-quasiperiodic set; that is, Ag contains
infinitely many algebraically incommensurable quasiperiods.

In the following proposition, by a quasiperiodic set we mean a set which has one of
the following types of quasiperiodicity: it is either n-transcendentally quasiperiodic
(see Definition 4.10), or n-algebraically quasiperiodic (see Remark 4.7), for some
n € {2,3,...} U{oc} (the case when n = oo is treated in [LapRaZul]). We
adopt a similar convention for the quasiperiodic functions G = G(7) appearing in
Definition 4.6.

Proposition 4.16. Assume that A is a quasiperiodic set in RN of a given type,
with an associated quasiperiodic function G = G(7). If m is a positive integer and
L > 0, then the subset A x [0, L]™ of RN*™ is also quasiperiodic of the same type,
with the associated quasiperiodic function equal to L™ - G. In particular, if n > 2 is
an integer and A is the n-quasiperiodic subset of R constructed in Theorem /.14,
then the subset A x [0, L™ of RY*™ is also n-quasiperiodic.

Proof. Let us first prove the claim for m = 1. By assumption, we have that
(4.15) |As|v =tV "P(G(1/t) + 0(1)) ast— 0t

where G = G(7) is a quasiperiodic function; see Equation (4.8). Much as in Equa-
tion (3.35), we can write

(4.16) (A [0, L)t|n41 = [Aeln - L+ [Ar| v

=tV PH(L - G(1/8) + o(1)) + |Arl w41
as t — 0. Since, obviously, |A¢|n+1 < |A¢|n - ¢, we have that

| Aelv1 < VHTP(G(1/1) + o(1) = tNTDTPHD (G (1/1) + 0(1))

(.17) = tWNHD=P+) . O(1)  ast— 0F.
Therefore,
(4.18) (A [0, L])i|ng1 = tNVFI=PHI(L . G(1/8) + o(1) + O(1))

= tWNHD=(P+D (1. G(1/t) + 0o(1)) ast — 0.

Hence, by Definition 4.10, the set A x [0, L] is quasiperiodic, with the associated
quasiperiodic function L-G. This completes the proof of the proposition for m = 1.
The general case is easily obtained by induction on m. ([l

4.4. Future applications and extensions: co-quasiperiodic sets, hyperfrac-
tals, and the notion of fractality. The results of Section 4 and their various
generalizations (and, especially, the construction of n-quasiperiodic sets carried out
in Section 4.3 above, once it has been extended to the case where n = co) will play
a key role in the later applications of the higher-dimensional theory of complex
dimensions developed in the present paper and in [LapRaZuk?]. This will be so,
in particular, in relation to the construction of (transcendentally) co-quasiperiodic,
mazimally hyperfractal sets (for which the associated fractal zeta functions have
a natural boundary along the critical line {Res = dimpA}) and, in fact, have a
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singularity at every point of that line). (See [LapRaZu2-3], along with [LapRaZul,
Section 4.6].) Such sets are as “fractal” as possible since, in some sense, they have
a continuum of nonreal “complex dimensions” (interpreted here as singularities of
the fractal zeta functions attached to A), in striking contrast with the more usual
case where the fractal zeta functions can be meromorphically extended to an open
connected neighborhood of the critical line {Re s = dimp A} and therefore have at
most countably nonreal complex dimensions.

Recall that following [Lap-vFr3, Sections 12.1 and 13.4] (naturally extended to
higher dimensions within the framework of our new theory), a bounded subset A
of RY is said to be “fractal” if its associated fractal zeta function (here, (4 or
C~ 4) has a nonreal complex dimension or else, if it has a natural boundary along a
suitable curve (a screen S, in the sense of [Lap-vFr1-3] and of Section 2.4 above);
that is, the tube zeta function (4 (or, equivalently, the distance zeta function (4 if
dimpA < N) cannot be meromorphically extended beyond S.

We close these comments by noting that throughout Section 4, we have worked
with bounded subsets of the real line, R. However, using the results of Section 3.4
(especially, Theorem 3.15), one can easily obtain corresponding constructions of
transcendentally oo-quasiperiodic compact sets A in RY (for any N > 1), with
dimpA € (N—1, N). (See also Proposition 4.16 at the end of Section 4.3.) Likewise,
using Theorem 3.15, one can construct co-quasiperiodic maximally hyperfractal
compact subsets A of RV (for any N > 1) such that dimpA € (N—1, N). (Actually,
by considering the Cartesian product of the original subset of R by [0,1]™, with
0 <m < N —1, one may assume that dimgA € (m, N); the same comment can be
made about all of the results obtained in Section 4.) Such a construction can also
be extended to the more general setting of relative fractal drums (in the sense of
[LapRaZu3)); see [LapRaZul-7].

Finally, these results can also be applied in a key manner in order to establish the
optimality of certain inequalities associated with the meromorphic continuations of
the spectral zeta functions of (relative) fractal drums (see [LapRaZul, Section 4.3]
and [LapRaZu6, Section 6]).

APPENDIX A: EQUIVALENCE RELATION AND EXTENDED DIRICHLET-TYPE
INTEGRALS

One problem with the notion of “equivalence” provided in Definition 2.22 of
Section 2.4 is that, strictly speaking, it is not an equivalence relation because,
a priori, f and g do not belong to the same class of functions. (Indeed, f is a
Dirichlet-type integral, abbreviated DTT in the sequel, while g is merely assumed
to be meromorphic; in particular, the abscissa of convergence of g need not be well
defined.) The situation is very analogous, in spirit, to the evaluation of the “leading
part” (g = g(s), in the present case) of a function (f = f(s), here) in the theory of
asymptotic expansions. In that situation, the “leading part” g belongs to a scale
of typical functions (describing the possible asymptotic behaviors of the function f
in the given asymptotic limit).

In our present situation, just as in the theory of asymptotic expansions, formally,
the relation ~ is both reflexive and (when it makes sense) transitive. Of course, it
is also symmetric when it acts on the same class of functions (for example, DTIs).

However, it is also possible to modify both the definition of ~ and the class of
functions on which it acts so that it becomes a true equivalence relation on a single
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space of functions, namely, the class of extended DTIs. The latter class of (tamed)
extended DTIs contains the class of (tamed) DTIs (hence, all of the functions f we
wanted to work with in Definition 2.22) and it also contains (essentially) all of the
functions g occurring in practice (when applying Definition 2.22).

By definition, given r € (0,1), a DTI of base r is a function of the form

(A1) 9(s) = Copu(r™),
where f(s) := (g e () is a (standard) DTT defined by
(A2) o) = [ olo)duta).

(See also Definition 2.12.) It is then easy to check (using the analogous result
for ordinary DTIs) that if ¢ is tamed (i.e., if f is tamed), then the abscissa of
convergence D(g) of g and the half-plane of convergence II(g) := {Res > D(g)}
are not well defined. Indeed, note that

R,cs(

r cos((log r) Im s)+1 sin((log 7) Im s)
b

pla)" = o)
so that the open set V' of complex numbers s for which go(:c)’"s is Lebesgue integrable
on E (typically) consists of countably many connected components, and, hence,
does not have the form of a half-plane. The indicated open set V' is analyzed in
[LapRaZul, Appendix A, Section A.4].

Definition A.1. An extended Dirichlet-type integral (an extended DTI or EDTI,
in short) h = h(s) is either of the form

(A.3) h(s) := p(5)Ce.p.u(s)
or of the form
(A.4) h(s) :== p(s)Ce,p,u(r™°), for some r € (0,1),

where p = p(s) is a nowhere vanishing entire function and (g 4, = Crp.u(s) is
a DTI. More generally, p can be a holomorphic function which does not have any
zeros in the given domain U C C under consideration, where U contains the closed
half-plane {Re s > D((g,op)}-

If the extended DTT is of the form (A.3), it is said to be of type I, and if it is of
the form (A.4), it is said to be of type II (or of type II,. if one wants to keep track
of the underlying base r). Note that EDTIs of type I include all ordinary DTIs as
a special case (by taking p = 1).

Let us denote by f(s) := (g, u(s) the (standard) DTT and by g(s) := (g,e,u(r~*)
the DTI of base r occurring in (A.4). Then, by definition (and in accordance with
Definition A.1), if h is of the form (A.3), its abscissa of convergence D(h) is given by
D(h) := D(f), while if h is of the form (A.4), then D(h) = +o0, that is, II(h) = 0.

If the DTI f(s) := (g, is tamed, then the extended DTI h from Definition
A1 (either in (A.3) or in (A.4)) is said to be tamed.

Finally, given any tamed extended DTI of type I, h = h(s) (as in the first part
of Definition A.1), we call

(A.5) II(h) := {Res > D(h)}

the half-plane of convergence of h (which is maximal, in an obvious sense), and
(assuming that D(h) € R) we call {Res = D(h)} the critical line of h. (The
tameness condition enables us to show that this half-plane exists and is indeed,
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maximal.) Using a classic theorem about the holomorphicity of integrals depending
on a parameter, one can show that h is holomorphic on II(h). Hence, Dy (h) <
D(h).

Here, much as in Definition 2.12, D(h) and Dy (h) denote, respectively, the
abscissa of (absolute) convergence and the abscissa of holomorphic continuation
of h. Furthermore, if h is given by (A.3) above, we set D(h) = D((g,p,u) and
Dhol(h) = Dhol(gE,ap,u); where D(§E7¢7/L) and Dhol(CE,w,;L) are defined in Definition
2.12.

Moreover, if h = h(s) admits a meromorphic continuation to an open connected
set U containing the closed half-plane {Res > D(h)}, we denote (much as was
done in Definition 2.18 for the special case of DTIs) by P.(h) the set of principal
complex dimensions of h; that is, the set of poles of h (in U) located on the critical
line {Res = D(h)} of h:

(A.6) Pe(h):={w €U :wis a pole of h and Rew = D(h)}.

Clearly, P.(h) does not depend on the choice of the domain U satisfying the above
condition.

We define similarly P(h) = P(h,U), the set of (visible) complex dimensions of
h, relative to U:

(A.7) P(h) :=={w € U :wis a pole of h}.

Clearly, since h is of type I (i.e., is given as in (A.3)), then P.(h) = P.(f) and
P(h) = P(f), where f(s) := (gpu(s).

We can now modify as follows the definition of the “equivalence relation” pro-
vided in Definition 2.22 of Section 2.4.

Definition A.2. Let hy and hy be arbitrary tamed, extended DTIs of type I (as
in Definition A.1) such that D(hy) = D(hs) =: D, with D € R. Assume that each
of hy and hs admits a (necessarily unique) meromorphic continuation to an open
connected neighborhood U of the closed half-plane {Re s > D}. Then the functions
h1 and ho are said to be equivalent, and we write hy ~ hg, if the sets of poles of
hi and hg on their common vertical line {Res = D} (and the corresponding poles
have the same multiplicities): P.(h1) = Pc(h2) (where the equality holds between
multisets).

We conclude this appendix by providing a class of tamed extended DTIs which
can be used to determine the “leading behavior” of most of the fractal zeta functions
used in the present theory.

Theorem A.3. Let P € Clz]| be a polynomial with complex coefficients. Then
f(s) :==1/P(s) is a tamed DTI of type I
More specifically, if deg P =n > 1, then

1

(A-8) f(s):= P(s) = Crp,u(9),
where E := [1,+00)", o(x) = (x1---2,)"" for allz € E, and
(A.9) p(dzy, ... dz,) = thflﬁ anﬂ’

X In
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so that its total variation measure |u| (in the sense of local measures) is given by

d d
|,u|(d.1‘17 cee ,dﬂ?n) = cx?ealﬂ » _Igeanﬂ’
I Ty
where ¢ 1= %P(n)(o) and ay,...,a, are the zeros of P = P(s) (counted according

to their multiplicities, so that P(s) = ¢, _1(s — am)).
Moreover, D(f) = D(Cg,p,u) < max{Reay,...,Reay}.

Remark 4.17. If, in Theorem A.3, we assume that deg P = 0, i.e., if P is constant,
say P = 1, then clearly, f(s) = 1/P(s) = 1 = (g,4u(s), where E := [1,400),
o(t) :== 1 for all z € F, and p = 6; (the Dirac measure concentrated at 1). In
particular, f is also tamed in this case.

Theorem A.3 is a consequence of the following two facts:

(1) If fo(s) :==1/(s—a), where a € C is arbitrary, then f is a tamed DTI of type
I, given by

1
Al = =
(A10) F(8) = = o g 9)
where E := [1,+00), p,(z) := 27! for all z € E, and
(A.11) o (dx) := a:“d?x;

so that |ug|(dz) := 2z8¢%dx/z. Furthermore, D(f,) = Rea. Note that f, :=
CE,pu,p. 15 obviously tamed because ¢, (z) < 1 for all z > 1. An entirely analogous
comment can be made about f = (g, , in the theorem.

(#4) The tensor product of two tamed DTIs is tamed. More specifically, if the
DTIs (g,p,, and (g, 5 are tamed, then their tensor product is given by the following
tamed DTT:

(A.12) h(s) := (CE#P,P« ® CFﬂﬁ,n)(S) = CExF,w®w,u®n<s>v

where the tensor product ¢ ® ¢ is defined by (p @ V) (z,y) := ¢(x) ¥ (y) for (x,y) €
E x F and the tensor product p ® 7 is the product measure of p and n (see, e.g.,
[Coh]). It is easy to check that the DTI h is tamed because (since (g ., and Cry .y
are tamed), we have 0 < ¢(z) < C(p) |u|-a.e. on F and 0 < ¢(z) < C(¢) |n|-a.e.
on F, so that 0 < (¢ @ ¥)(z,y) < C(p) C(¥) |(p @ n)|-a.e. on E x F.

Furthermore, D(h) < max{D((g.4 ), D(Cryn)}

Statement (i) above follows from a direct computation, while statement (i%) is
proved by an application of the Fubini—Tonelli theorem (for iterated integrals with
respect to positive measures) combined with the inequality (between local positive
measures) |u®n| < |pu|®|n|, followed by an application of the classic Fubini theorem
(for iterated integrals with respect to possibly signed or complex measures).

Corollary A.4. The meromorphic function (on all of C) given by

p(s)
A3 h ==
( ) 2(8) P(T,S) )
where r € (0,1), P € Clz] is an arbitrary polynomial with complex coefficients and
p is a nowhere vanishing entire function, is a tamed extended DTI of type II.
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More specifically, ha(s) = p(s)CE,p,u(17°), where E, ¢ and p are given in The-
orem A.3 above.

As was alluded to earlier, in practice, when we apply the (modified) definition
of the equivalence relation (see Definition A.2 above),

(A.14) hy ~ hs

the meromorphic function h; is a fractal zeta function (an ordinary DTT of type 1),
as well as the function he (which gives the “leading behavior” of hy, to mimick
the terminology of the theory of asymptotic expansions). Hence, the importance of
Theorem A.3 in the theory developed in the present paper as well as in its sequels
[LapRaZu2-3], the survey article [LapRaZu6], and the monograph [LapRaZul].
(See, however, Definition A.6 below and the comments surrounding it.)

We refer the interested reader to [LapRaZul, Appendix A] for more details about
the topics discussed in the present appendix, along with detailed proofs of the main
results.

Remark A.5. The two definitions of the notion of equivalence ~ provided in Def-
inition 2.22 and Definition A.2 are compatible in the sense that if, in Definition
2.22, we assume that f (denoted by h; in Definition A.2) is a DTI (as is the case
in Definition 2.22), the meromorphic function g is an extended DTI, then f ~ ¢ in
the sense of Definition A.2. Note that the functions f and g of Definition 2.22 are
denoted by h; and hg in Definition A.2. (In particular, D(g) and P.(g) are well
defined, D(f) = D(g) and P.(f) = P.(g).) The converse statement clearly holds
as well.

Finally, it is possible, even likely, that in future applications of the current theory
of fractal zeta functions developed in this paper and in [LapRaZul-7], we will need
to deal with functions g which are no longer extended DTIs (of type I), but are
meromorphic functions of a suitable kind. In that case, we propose to use the
following definition, which is a suitable modification of Definition 2.22 and seems
well suited to various applications. Strictly speaking, it no longer gives rise to an
equivalence relation (since f and g belong to different classes of functions) but in
this new sense, the statement f e g captures appropriately the idea that “f is
asymptotic to ¢g”.

Definition A.6. Let f be a tamed EDTI and let g be a meromorphic function,
both defined and meromorphic on an open and connected subset U of C containing
the closed right half-plane {Res > D(f)}. Then, the function f is said to be
asymptotically equivalent to g, and we write f "X g, if D(f) = Dna(g) (and
this common value is a real number), and the poles of f and g located on the
convergence critical line {Res > D(f)} of f (which, by assumption, is also the
holomorphy critical line of g) coincide (and have the same multiplicities).

More succinctly, and with the obvious notation (compare with Equation (2.34)
in Definition 2.22 above), we have

(A.15) F%g &5 D(f) = Dua(g) (€ R) and Pe(f) = Penor(9)-
More specifically, we let
Penol(g) :={w € U : w is a pole of g and Rew = Dy1(g9)}.



Furthermore, much as in Definition 2.22, D(f) and Dy,1(g) are viewed as multisets
in Equation (A.15).

Remark A.7. Observe that even if g is assumed to be a tamed EDTI, Definition
A.6 may differ from its counterpart used in the rest of this appendix (Definition
A.2) or, in particular, in Definition 2.22. Indeed, there are examples of tamed DTIs
g for which Dyoi(g) < D(g). Therefore, strictly speaking, Definition A.6 does not
extend Definition 2.22 (or Definition A.2). However, it is stated in the same spirit
and seems to often be what is needed, in practice.
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