Intermittency in the Hodgkin-Huxley model
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Abstract. We show that action potentials in the Hodgkin-Huxley neuron model
result from a type I intermittency phenomenon that occurs in the proximity of a saddle-
node bifurcation of limit cycles. For the Hodgkin-Huxley spatially extended model,
describing propagation of action potential along axons, we show the existence of type
I intermittency and a new type of chaotic intermittency, as well as space propagating
regular and chaotic diffusion waves. Chaotic intermittency occurs in the transition
from a turbulent regime to the resting regime of the transmembrane potential and is
characterised by the existence of a sequence of action potential spikes occurring at
irregular time intervals.
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1. Introduction

As nucleic acids are intrinsically negatively charged molecules, inside the cell, the zero
charge balance is compensated by a non-zero concentration of positively charged ions.
The transport of ions from the interior to the exterior of a cell and vice versa is done
by ion channels and pumps. These channels and pumps are transmembrane proteins
localised along the cellular membrane, [Keener and Sneyd, 1998].

Transmembrane channels and pumps are specific to the type of ion (Na™, K+, Ca™™,
etc.) and, at equilibrium, a potential difference V' from the inside to the outside of the
cell is kept. Inside the cell, the potential is lower when compared with the potential
outside the cell. The exchange of ions from the interior to the exterior of the cell is due
to two competing effects. One effect is related with the differences of concentrations in
the two regions. The other effect is due to the electrostatic forces between charged ions.

The Hodgkin-Huxley (HH) neuron excitation model, [Hodgkin and Huxley, 1952],
describes the potential drop across cell membranes due to the exchange of ions. This
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model has been introduced to describe patch clamp experiments on the giant axon of
the squid Loligo, [Hodgkin and Huxley, 1952b] and [Hodgkin and Huxley, 1952]. The
equations of the HH model are
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In this model, V' is the transmembrane potential drop measured in mV, 7 is a
transmembrane current, measured in pA/cm? and time is measured in ms. The current
1 is a transmembrane current that is applied to the cell. For example, it can be an
injected current in a patch clamp experiment, or the signal transmitted from other
neurons through synapses.

Ion channels open and close as a function of the potential difference between the
inside and outside of cells. The gating variables n, m and h describe the opening and
closing of the channel gates, are specific to the ion type and are dimensionless. The
functional form of n, m and h in equations (1) has been proposed and calibrated in
[Hodgkin and Huxley, 1952]. For a review of specific gating mechanisms associated to
the choices made in equation (1), we refer to [Keener and Sneyd, 1998].

In equations (1), the ionic conductances across the cellular membrane are gy,
and gy, and g1, is a constant measuring “leak” conductance. C), is the membrane
capacitance and D is a constant inversely proportional to the resistance (€2), measured
along the axon of nerve cells. This model has been calibrated for the squid giant
axon at the temperature T = 6.3 °C, [Hodgkin and Huxley, 1952], and the values
of the constants are C,, = 1 pF/cm? gN, = 120 mS/cm® gg = 36 mS/cm?
and gy, = 0.3 mS/cm?, where S=Q~! (siemens) is the unit of conductance. The
Nernst equilibrium potentials, relating the difference in the concentrations of ions
between the inside and the outside of cells with the transmembrane potential drop,
are Vﬁa = —115mV, VI%V =12 mV and Vﬁv = —10.613 mV. This choice of parameters
is rescaled in such a way that at rest (i = 0), the steady state of the the transmembrane
potential is V*(0) = 0 mV.
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For D = 0, the HH equations describe the potential drop across the walls of a
globular cell and the ionic gradients inside the cell are negligible. Hodgkin and Huxley
have shown that the transmembrane diffusion coefficient is D = a/(2R,), where a is the
radius of the axon (considered as a cylinder) and Rs is the specific resistivity along the
interior of the axon. For the case of the squid giant axon, a = 238 um, Ry = 35.4 2 cm
and D = 3.4 x 10~* S, [Hodgkin and Huxley, 1952].

The electrophysiological state of any cell can be described by a HH type model,
provided its electric state is controlled by the opening and closing of voltage sensitive
channels.

The success of the HH model in describing the dynamics of certain types of neurons
relies on its ability to reproduce some experimental facts of patch-clamp experiments,
including action potentials and threshold effects. To describe the electrophysiological
state of a simple (globular) neuron or cell, we assume D = 0 in equations (1). In
this case, the electrophysiological steady state of the cell or neuron is described by the
vector quantity x*(i) = (V*(i),n*(i), m*(z), h*(i)), where i is considered as an external
parameter. If i = 0, for the (reference) parameter values described above, the steady
state is stable and it is the unique limit set of the HH equations (1).

As the position of the steady state 2*(i) changes with ¢, due to the stability of the
steady state z*(¢) in the vicinity of ¢ = 0, small variations in the parameter ¢ for a short
period of time produce the same dynamic effects as changes in the initial conditions.
This simple fact about solutions of the HH equations for D = 0 and ¢ = 0 implies that
the electrophysiological state of the cell is characterised by x*(0). However, the solutions
of the HH equations show a transient phenomenon called action potential. The main
facts about the action potential and the associated threshold effect are the following:

1) Consider a cell or neuron at the steady state x*(0). Imposing a current to the cell
during some short time ¢, there exists a time interval At;, and a threshold value I,
such that, if i(t) > I, for Aty <t < mAt,,., with finite real m > 1, and i(¢) = 0
otherwise, the system develops a spike in its voltage response V'(t) — the action
potential. Then the voltage attenuates in time and the system returns to the stable
steady state x*(0). If i(t) < I, for At <t < mAt,., the voltage response V (¥)
attenuates in time to the stable steady state 2*(0) and the action potential does
not develop.

2) Perturbing the HH equations (1) with a sequence of current rectangular pulses above
threshold I;., and if the temporal differences between pulses are above some time
interval At,, then the solutions of the HH equations develop the same number
of pulses as in the current exciting signal. We call At, the refractory interval.
If we perturb continuously the HH model with a current made of a sequence of
rectangular pulses above threshold, and the temporal distance between pulses is
below the refractory interval At,, then the number of pulses in the voltage response
is smaller than the number of pulses of the exciting signal.

In figure 1, we show the voltage response in a globular neuron (D = 0) to a
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long current perturbation and to a square wave type perturbation. These two solutions
illustrate the properties of the transient behaviour as explained in the two cases described
above. For the numerical simulations of equations (1), with the steady state z*(0) as
initial condition, the threshold parameters are I, ~ 2.25 uA/ cm?, At, ~ 1.5 ms and
the refractory period is At, ~ 17.5 ms.
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Figure 1. a) Voltage response of the HH equations (1) as a function of time, for
the stimulation signal i(t) = 5 > I, for ¢ € [0,50], and i(¢t) = 0 otherwise —
threshold property 1). In b), we perturbed the cell with a square wave, with a time
difference between spikes At = 17.5 ms — property 2) . For the parameter values
of the simulations, I;, = 2.25 pA/cm?, Aty ~ 1.5 ms and the refractory interval is
At, ~ 17.5 ms.

For the parameter region of the simulations in figure 1, the HH equations have a
unique stable steady state (stable node) in the four dimensional phase space. These
simple facts are well known and discussed in the literature, [Rinzel and Miller, 1980],
[Izhikevich, 2007] and [Ermentrout and Terman, 2010], among others.

One of the main goals of this paper is to explain the origin of the threshold
effect and the appearance of action potential spikes in the HH model equations and
to characterise it dynamically. In the next section, we summarise the main dynamical
properties of the solutions of the diffusion free (D = 0) HH equations (1). Tt is shown
that, for the parameter values described above and bifurcation parameter 7, the HH
equations (1) have a codimension 2 Bautin bifurcation scenario. Upon variation of the
bifurcation parameter i, this bifurcation scenario has a subcritical and a supercritical
Hopf bifurcation and a global saddle-node bifurcation of limit cycles. In section 3, we
extend the concept of type I intermittency associated to saddle-node bifurcations of
fixed points to intermittency of saddle-node bifurcation of limit cycles. We derive the
scaling properties of this new type of intermittency. We show that action potentials,
as observed in the HH equation, are originated by this new type I intermittency. In
section 4, we analyse the spatially extended HH model ([? > 0) and show that a new type
I intermittency appears, responsible for the propagation of the action potentials along
the axon. In the presence of diffusion, sustained oscillations develop, as well as chaotic
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or turbulent action potential propagation. For high values of transmembrane currents,
turbulent action potentials disappear and the convergence to a stable steady state occurs
mixed with intermittent action potential chaotic spikes. We call chaotic intermittency
to this new kind of intermittency of the HH extended model. Intermittency effects in
neuronal systems have been reported by several authors, [Rae-Grant and Kim, 1994]
and [Velazquez et al., 1999]. Finally, in section 5, we summarise the main conclusions
of this paper.

2. A summary of the bifurcations of the diffusion free HH equation

For the diffusion free HH equations (1), the basic properties of its solutions are well
known and the basic phase space structure is also well known. In this analysis, all
the parameters of equations (1) are kept fixed and the current i is considered as
the unique free parameter of the model. The basic analysis includes the numerical
simulations of the time responses, topology of orbits in the 4 dimensional phase space,
bifurcation analysis of fixed points and the possible existence of chaotic behaviour
in a restricted parameter region of the model. The basic bifurcation analysis of
fixed points as a function of ¢, including the existence of two Hopf bifurcations of
fixed points, one subcritical and another supercritical, has been exhaustively analysed
in [Hassard, 1978] and [Rinzel and Miller, 1980]. The existence of chaotic behaviour
has been explored in [Guckenheimer and Oliva, 2002] in a very narrow region of the
parameter i. A period doubling effect on the period of limit cycles has been reported
in [Hassard, 1978] and [Rinzel and Miller, 1980], however this effect is not a period
doubling codimension 1 bifurcation. For a review, recent references are [Izhikevich, 2007]
and [Ermentrout and Terman, 2010]. The majority of authors have done the numerical
analysis of the HH equations (1) with the bifurcation analysis software AUTO,
[Doedel et al., 1991], and XPPAUT, [Ermentrout, 2002].

The bifurcation diagram depicted in figure 2 summarises the main characteristics
of the asymptotic solutions of the diffusion free HH equations (D = 0).
The HH equations (1) have a unique fixed point with coordinates z*(i) =
(V*(2),n*(i),m*(i), h*(i)), whose position in phase space depends on ¢ (the other
parameters in (1) are kept fixed). The fixed point z*(i) has two Hopf bifurcations, one
subcritical for ¢ = I, and another supercritical for ¢ = I5. For ¢ > I, and 0 <1 < I,
the fixed point z*(¢) is stable. For the parameter values in equations (1), [; = 9.77 and
I, = 154.52. The local bifurcation analysis shows that for ¢ < Iy and I; — 7 sufficiently
small, the HH equations have at least two limit cycles, one stable and another unstable,
[Hassard, 1978] and [Rinzel and Miller, 1980]. The unstable limit cycle is created at Iy,
for decreasing values of i, and the stable one is created at I, also for decreasing values
of 7. These two limit cycles collide at « = Iy < [; and, for ¢ < [ they do not exist.
At i = Iy = 6.26, the HH equation has a saddle-node limit cycle bifurcation (SNLC),
[Kuznetsov, 2004]. In this analysis, we have considered the fixed reference temperature
T = 6.3 °C. However, for temperature T below 28.8 °C, the overall behaviour of the
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bifurcation diagram is the same as the one in figure 2.
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Figure 2. a) Bifurcation diagram for the diffusion free HH equations (1) as a function
of the transmembrane current parameter ¢. In the bifurcation diagram, we represent
the stability of the coordinate V*(i) of the fixed point x*(i) and the maximum values
of the V' (i)-coordinate of the limit cycles (LC) associated with the Hopf bifurcations.
Dotted lines correspond to unstable states and continuous lines to stable ones. The
SNLC bifurcation occurs for i = Iy = 6.26, the subcritical Hopf bifurcation for
i = I = 9.77 and the supercritical Hopf bifurcation for i = I = 154.52. b)
Enlargement of the region in the neighbourhood of the “knee” that occurs in the
interval [Is, I;] = [7.84,7.92]. The bifurcation diagrams have been calculated with the
software packages AUTO and XPPAUT.

The fixed point x*(i) is unstable for ¢ in the interior of the interval [I;, 1] and
stable outside. Away from the bifurcation points, the fixed point xz*(¢) is hyperbolic.
The overall behaviour of the bifurcation diagram in figure 2a) can be understood as a
codimension 2 Bautin or generalised Hopf bifurcation, [Kuznetsov, 2004]. We assume
that the “knee” (figure 2b) and [Rinzel and Miller, 1980]) of the bifurcation diagram
that occurs in the interval [I3, [4] = [7.84,7.92] does not affect the overall behaviour of
the solutions of the HH equations. For T" above 7.72 °C, the parameters in equations (1)
change and the dotted limit cycle curve in figure 2b) loses its one-to-many feature. The
chaotic behaviour conjectured in [Guckenheimer and Oliva, 2002] occurs in the interval
(I3, I,], figure 2b).

However, for ¢ < Iy, the HH equations may develop an action potential. In this
case, the equations have only one stable fixed point and asymptotically in time all the
solutions converge to the steady rest state of the cell /neuron.

3. Type I intermittency in the HH equations

If a cell or neuron is perturbed with some constant transmembrane current i« < I, where
Iy is the parameter value of the SNLC bifurcation, and there is no diffusion (D = 0), the
asymptotic time solutions of the HH equations converge to the stable fixed point x*(7),
for any initial condition away from it. In this parameter region(i < Iy), if the initial
condition is away from the fixed point, let us say xo = (Vo, ng, mo, ho) # x*(), then the

response of the system has two possible outcomes. If xq is close enough to z*(7), then the
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asymptotic solutions of the HH equations converge to z*(i), without ever doing a long
excursion through phase space regions away from the fixed point. On the contrary, if z
is sufficiently displaced form z*(7) in the (V,n,m, h) four-dimensional phase space, the
solution of the HH equations does a large excursion in phase space, resembling, during
some time, an almost periodic orbit — action potential response. These two regions in
phase space are separated by a boundary or threshold.

As the parameter i approaches Iy and x¢ is sufficiently displaced from x*(i), the
larger are the number of transient spikes that appear in the potential V. For the same
1 < Iy, it is possible to produce zero, one, or more spikes, depending on how far x, is from
x*(i). There is, however, an upper limit for which, no matter how much we continue to
displace z from z*(i), no more spikes are produced. Thus, there is a maximum number
of obtainable spikes for each ¢ < Iy. Depending on the value of xy, the number of spikes
generated must be either equal to or below this maximum. In figure 3, we show this
transient behaviour of the solutions of equations (1), for several values of xy and fixed
1< 1.

120 120
a) b)
100 100
80 80
S S
E 60 E 60
> 40 > 40
20 20
of 0
-20 -20
0 20 40 60 80 100 0 20 40 60 80 100
t (ms) t (ms)
120 120
c) d)
100 100
80 80
S S
E 60 E 60
> 40 > 40
20 20
0 0
-20 -20
0 20 40 60 80 100 0 20 40 60 80 100
t (ms) t(ms)

Figure 3. Membrane action potential response of the HH equations (1), for i = 6.20 <
Iy and initial conditions xy = (V*(0) + AVy,n*(0),m*(0),h*(0)). a) AVy = 1.6, b)
AVh = 1.7, ¢) AVp = 1.9, and d) AVy = 5.5. The SNLC bifurcation occurs at
i = I, = 6.26.

As shown in figure 3, the solutions of the HH equations are action potential type
responses and, as we shall see now, they are the result of a type I intermittency
phenomenon, [Pomeau and Manneville, 1980], [Guckenheimer and Holmes, 2002] and
[Dias de Deus et al., 1984], near the codimension 2 SNLC bifurcation. For these
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parameter values, the unique attractor in the 4-dimensional phase space is the fixed
point z*(1).

To show that the transient time behaviour shown in figure 3 corresponds to type
I intermittency, we analyse the behaviour of the solutions of the HH equations near
the SNLC bifurcation at ¢ = [y (figure 2). At ¢ = I, and near the fixed point z*(1),
the HH equations have a two dimensional center manifold and a two dimensional stable
manifold. By the reduction principle, [Kuznetsov, 2004], near the SNLC bifurcation,
the asymptotic time solutions of the HH equations are topologically equivalent to the
asymptotic time solutions of the normal form for this bifurcation. In fact, the bifurcation
diagram in figure 2 is similar to the bifurcation diagram of the codimension 2 Bautin
bifurcation, eventually along a parameterised path on a 2-dimensional parameter space,
[Kuznetsov, 2004].

With this simple fact, in Appendix A, we show that the intermittency
characteristic of the SNLC codimension 2 bifurcation has the same scaling behaviour
in the bifurcation parameter as the type I intermittency observed in interval maps,
[Pomeau and Manneville, 1980] and [Guckenheimer and Holmes, 2002]. To be more
specific, with € = Iy—1i, the permanence time of the orbits of the HH equations (1) in the
vicinity of the limit cycle that appears at the SNLC bifurcation (¢ = 0) iS t,er = ¢/v/z,
where c is a constant. Denoting by P the period of the shadow limit cycle responsible
for the spiky action potential response and by N the number of action potential spikes
generated before the system goes to the rest steady state, we have NP = t,.,, implying
that ]

lnN:C—éln&t, (3)

where C' is a constant (Appendix A).

The first test showing that the action potential solutions of the HH equations are
associated with type I intermittency is to verify that the maximum number of action
potencial spikes developed in the solution of the HH equations obeys the scaling relation
(3).

A second test of type I intermittency is to show that, close to the SNLC bifurcation,
the maximum amplitude of each action potential spike, as a function of the maximum
amplitude of the previous one, has a parabolic profile. This graph will be called the
next amplitude map, [Pomeau and Manneville, 1980].

In figure 4a), we show the number of spikes of the action potential generated by the
HH equation, in the left vicinity of the SNLC bifurcation, as a function of ¢ = Iy — 1.
For ¢ € [0.00030,0.07532], the slope of the fit is s = —0.505, in agreement with the
estimate (3). In figure 4b), we calculate the next amplitude map, where we observe the
typical parabolic profile associated with type I intermittency.

The main conclusion of this analysis is that the diffusion free (D = 0) HH
equations (1) exhibit type I intermittency in the left vicinity of the SNLC bifurcation.
This intermittency phenomenon is responsible for the action potential spiky signals. The
threshold is associated with a boundary in phase space that separates the two possible
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Figure 4. SNLC intermittency for the HH model. a) Logarithm of the number of
spikes N of the action potential in the left vicinity of the SNLC bifurcation, as a
function of the logarithm of ¢ = Iy — i. The slope of the fitted line is s = —0.505,
in agreement with (3). b) Next amplitude map for the HH model, for the parameter
value i = 6.259, or ¢ = 0.001. V}y is the maximum value of the action potential spike
number N. At the SNLC bifurcation, ¢ = 0, the parabolic profile shown touches the
dotted line V1 = V.

types of transient solutions. Our numerical analysis shows that for i € [0, ) and if
the electrophysiological state of the cell is sufficiently far from the steady state, the
HH model always shows an intermittent response, with one or several action potential
spikes.

4. Oscillatory and turbulent solutions of the HH equations

The HH equations (1) with spatial term, D > 0, describe the axonal propagation of the
potential function, as well as the opening and closing of ion channels. We consider a
1-dimensional domain of length L representing the axon. In the interior of the spatial
domain, there is no membrane current excitation, but at the boundary x = 0 the
neuron is excited with some (transmembrane) current i(¢). Under these conditions, the
HH equations (1) are rewritten in the form

oV 0?V . :

5 = DW + F(V,n) with =z € (0,7]

on

- — n 4
- aw) “
ov O*V S 1 :

o = DW + F(V,7n) + C—mz(t) with 2z =0,

where i(t) is zero on the first two equations (the excitation signal i(¢) only exists for
x = 0), x is measured in cm and ¢ in ms. The last three equations in (1) have been
collapsed into a single equation in (4). The vector functions F' and G are defined by
comparison between equations (4) and (1) and D = D/C,,. We further consider that the
transmembrane potential and the gate variables obey Neumann or zero flux boundary
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conditions

ov on

=0 and =0. (5)

8x z=0,L 3x z=0,L

In Appendix A, it is shown that the diffusion term in (4) does not change the
stability of the steady state x*(0), and the linear analysis leads to the conclusion that
the homogeneous steady state of the extended HH equation is stable. However, away
from the steady state, the situation can be different.

As the local dynamics of the HH model has intermittent solutions, we analyse
numerically how intermittency and diffusion affect the propagation of the action
potential along the axon.

To simulate numerically the reaction-diffusion equations (4) we have used
a benchmarked numerical method, [Dilao and Sainhas, 1998], obeying the discrete
conservation law Azr = V6DAt, where Az and At are space and time discretisation
steps. This relation between space and time steps minimizes the integration error.

For numerical analysis purposes, we have chosen the axon length L = 50 cm, with
the spatial region divided into M = 400 small intervals of length Az, where L = M Ax.
As D = Az?/(6At) = L? /(6 M?At), we change At in the interval [0.003, 0.033] ms, which
corresponds to variations in the diffusion coefficient in the interval [0.23,2.34] cm?/ms.
The value suggested by Hodgkin and Huxley, [Hodgkin and Huxley, 1952], is D =
3.4x 107 S, giving D = 0.34 cm?/ms, which is within the range of our numerical
analysis.

To analyse the solutions of the extended HH equations (4), we have imposed a
constant signal i(t) = ig, for every ¢ > 0, at x = 0 The initial condition along the
axon was set to z*(0) = (V*(0),n*(0),m*(0),~*(0)). According to the parameters
described above, we have varied the diffusion coefficient in the realistic range D &
0.23,2.34] ¢cm?/ms. In this range of the diffusion coefficient, D/Az? € [5,50] ms™'.
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Figure 5. Spatial solutions of the HH equations (4), for D/Az? = 20 ms™! at
time ¢ = 100 ms, for two different values of the transmembrane current. In a),
ip = 50 pA/cm? and the transmembrane potential converges to the steady state z*(0)
along the axon. In b), ig = 100 gA/cm? and the transmembrane potential develops a
propagating periodic action potential.



Intermittency in the Hodgkin-Huzxley model 11
S0F

N w B
o o o

D/AX? (ms™)

RN
o

0 100 200 300 400 500
io (UAJcm?)

Figure 6. Bifurcation diagram of the HH extended model (4), as a function of the
transmembrane current iy at the axon boundary and of the diffusion coefficient D/Az2.
We show two different types of intermittency, oscillations and spatial chaos (dark grey
and dotted lines).

In figure 5, we show that we can have sustained oscillations as a result of the
intermittency effect of the diffusion free HH equations for ¢ = 0. If the input
transmembrane current at the axon boundary is low, for example 7o = 50 uA /cm?; the
resulting transmembrane potential along the axon converges to the steady state xz*(0),
in agreement with the stability analysis in Appendix A. If the input transmembrane
current at the axon boundary is above some threshold, stable oscillations develop.

Further numerical simulations have shown that, for a certain range of the parameter
ip, the extended HH system (4) has spatial intermittency and periodic oscillations.
In figure 6, we depict in the (ig, D/Az?) parameter space, the regions where both
phenomena are observed. This result shows that the extended HH system has some
attractor set other than the homogeneous fixed point z*(0).

In figure 6, the black lines /7 and I} delimit the regions where equations (4) show
solutions with intermittency from regions with oscillatory and chaotic solutions. For
parameters in the intermittency regions, the solutions of equations (4) show a finite
number of spikes along the spatial domain before going to the stable steady state. The
light grey region marks the solutions that are oscillatory and propagate through the
spatial region (figure 5b)). Between the light dashed lines I5 and I the time interval
between successive spikes is irregular — dark grey region. The light dashed line I}
precedes the final line IZ only by a couple of decimal places and marks the beginning
of a chaotic region, characterised by the chaotic behaviour of the time interval between
successive action potential spikes (figure 7c¢)). The chaotic region ends giving rise to
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what we call chaotic intermittency. Type I intermittency and chaotic intermittency will
be analysed in more detail in the next subsections.

In figure 7, we make a detailed bifurcation analysis along a cross section of the
bifurcation diagram in figure 6, for the diffusion coefficient D/Az? = 20 ms™! and
spanning the whole region [/, IZ]. In this figure, the period of oscillations as a function
of the transmembrane current iy is plotted. Figure 7a) shows the whole region, while
figures 7b) and 7c) are different zoom ins of the bifurcation diagram. As shown, regular
oscillations occur in the regions [I}, I5] and [I], I}] and there are complex bifurcations
or chaotic regions in the intervals [/, I5] and [I}, IZ]. In the regions, [I;, 5] and [/}, I7],
the time intervals are irregular and show a bifurcation pattern characteristic of chaotic
maps of the interval (figure 7c)).
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Figure 7. a) Period (and time intervals) of the oscillatory solutions of the HH
extended model (4), as a function of the current i, for the diffusion coefficient
D/Az* = 20 ms™!. In the regions [I3,13] (b) and [I},IZ] (c), the solutions of the
HH extended model show chaos.

We have calculated the velocity of propagation of the action potentials for different
values of the diffusion coefficient. The numerical values are shown in figure 8.
These results are of the same order of magnitude of the experimental velocity v =
21.2 m/s measured by Hodgkin and Huxley in the giant axon of the squid Loligo,
[Hodgkin and Huxley, 1952].
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Figure 8. Wave velocity of the action potential for five different diffusion coefficients
of the HH equations (4), in the parameter region [I7, IZ].

4.1. Type I spatial intermittency

In the region iy < I7 of figure 6, the HH model with diffusion has type I intermittency
solutions. To characterise this intermittency, we have tested the parameter scaling and
the next amplitude map as in section 3. In the intermittency regime, we have counted
the number of action potential spikes that propagate along the domain [0, L], and have
calculated the next amplitude maps. In figure 9 we show the analogous of figure 4, now
for the spatial HH equations, with ¢ = I{ — iy in the domain ¢ € [0.001,0.231]. The
numerically determined slope of the scaling relation (3) is s

—0.506, in agreement
with the theoretical prediction s = —0.5. The next amplitude map has been calculated
for iy = 56.010 < I} = 56.012 and D/Az* = 20 cm™!, showing a parabolic profile,
characteristic of type I intermittency.

103.6f
103.5}
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Figure 9. Type I intermittency for the HH extended model (4), with D/Axz?
20 cm~!. a) Logarithm of the number of spikes N of the action potential in the left
vicinity of I} = 56.012. The slope of the fitted dotted line is s = —0.506, in good
agreement with (3). b) Next amplitude map for the parameter value ig = 56.010 or
e = 0.002. Vy(z = L/2) is the maximum value of the action potential spike number
N, measured at the middle of the spatial domain [0, L]. The dotted line is the graph
of the equation V1 = V.
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4.2. Chaotic intermittency

Chaotic intermittency of the HH extended model appears for ¢y > IZ. In this case,
the solutions of the HH extended model converge to the stable steady state x*(0), but
the transient solution has a finite sequence of action potential spikes with variable time
intervals between spikes. This intermittent behaviour in the transient process and the
number of spikes depends on the initial condition and on the distance to I, without
showing any scaling relations. In figure 10, we show the logarithm of the number of
spikes as a function of the bifurcation parameter € = iy — I, and the next amplitude
map for the parameters iy = 339.369, with diffusion coefficient D/Az? = 20 cm™!.
From figure 10a), we conclude that the intermittent behaviour has no apparent scaling
and is different from other types of intermittency. On the other hand, the number of
spikes as a function of the distance € to the bifurcation point seems to behave randomly,
without any scaling behaviour. Also, the next amplitude map shown in figure 10b) is
not characteristic of any type of known intermittency phenomenon.
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Figure 10. Chaotic intermittency for the HH extended model (4), with D/Ax? =
20 cm~!. a) Logarithm of the number of spikes N of the action potential in the right
vicinity of IF, for € = iy — I} € [0.001,0.140]. The dotted line has slope s = —0.5. b)
Next amplitude map for the parameter value igp = 339.369 or € = 0.010. Vy(z = L/2)
is the maximum value of the action potential spike number N, measured at the middle
of the spatial domain [0, L]. Chaotic intermittency does not show any scaling behaviour
on the number of spikes as a function of €. The dotted line is the graph of the equation

VN+1 = VN

5. Discussion

We have found the geometric and dynamical origins of the action potential type
response of the Hodgkin-Huxley neuron model. This peculiar response is due to
type I intermittency occurring in the vicinity of a saddle-node bifurcation of limit
cycles. In this regime, neurons have a stable steady state but for large amplitudes of
excitation they develop the action potential type of response, shadowing the existence
of a stable limit cycle that appears at different parameter values. These conclusions
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were obtained under zero diffusion, implying that our results remain true for any cell
with an electrophysiological state controlled by voltage sensitive channels.

We have extended our analysis to neurons with long axons. In this case, the diffusion
coefficient of the HH model is positive and the solutions of the HH model equations show
a more complex behaviour. For this case, we have assumed that neuron excitation
is done at one boundary of the spatial domain through a transmembrane current.
We have shown that, above some transmembrane current threshold, action potentials
spikes develop, showing type I intermittency characterised by a finite number of action
potential spikes propagating along the axon. Increasing the values of the transmembrane
current at the boundary of the axon, periodic propagating stable diffusion waves along
the axon appear. In the parameter range of oscillations, we may have turbulent
oscillations or chaos. These chaotic oscillations appear on the irregular time interval
between successive action potential spikes and have a bifurcation diagram similar to the
ones found in interval maps (figure 7c)). For the parameter values where oscillatory
or chaotic solutions exist, the steady state of the HH equations remains stable and is
reached for small values of transmembrane currents at the axon boundary.

As far as we know, this is the first time that intermittency phenomena, chaotic or
type I, are reported in an electrophysiological model of a cell. However, it is a common
phenomenon found in electroencephalogram, [Rae-Grant and Kim, 1994], and epilepsia,
[Velazquez et al., 1999].

Our analyses have been done for the original and calibrated HH model equations
(1) and (4), with realistic diffusion coefficients. This implies that all the phenomena
described here are predictions that can be explored in patch clump experiments on giant
axons. All the simulations are in agreement with HH observations, including the velocity
of propagation of action potentials measured along the Loligo giant axon.
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Appendix

Intermittency near a SNLC' bifurcation

The normal form of the Bautin bifurcation in polar coordinates is ([Kuznetsov, 2004])
ro= (Bt Bar® —rt) = f(r)
L )

where (37 and 5 are real parameters. A simple analysis shows that, if 55 > 0 and 3; < 0,
there is a saddle node bifurcation in the radial variable r, which corresponds to a SNLC
bifurcation in the cartesian coordinates. The codimension 2 SLNC bifurcation occurs
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for 8y = B = —f33/4 and a limit cycle is created with radial coordinate r* = \/f35/2.
We take now the new parameter ¢ defined by

B = —iﬁ% —¢. (7)

For B > 0, the system of equations (6) has a SNLC bifurcation for ¢ = 0. If
e > 0, the system of equations (6) has no limit cycles and, if € < 0, the system of
equations (6) has two limit cycles with radial coordinates rg = /(B2 + v/—¢)/2 and
ru = V(B2 — v/—¢)/2, where the subscripts “s” and “u” stand for stable and unstable,
respectively.

Along any line Sy = constant with Gy > 0, for ¢ < 0, the asymptotic solutions of

equation (6) with initial condition 7y > 7, converge to a stable limit cycle. For e > 0
but close to zero, the graph of y = f(r) has a local maximum near r,,,, = +//52/2
which is very close to the line y = 0. For initial conditions o > r, and by the
continuity of the solutions of the differential equation in order to €, the radial solution
of equation (6) will be near r = r,,,, for a long interval of time. This interval of
time goes to infinity, as ¢ — 0. So, during this period of time, the solution of the
differential equation will resemble the solution along a limit cycle that does not exist.
This is the phenomenon of type I intermittency, [Pomeau and Manneville, 1980] and
[Guckenheimer and Holmes, 2002].

As a function of €, we estimate the time of permanence of the solution of equation (6)
near the point 7,4, = \/f2/2, the radius of the limit cycle at bifurcation. As this analysis
is local, we take u = 7 — 74, and, by (7), the first equation in (6) is rewritten as

i = =& (rmar + 1) — V28,0 + O(w’) = g(u) + O(u?). (8)

In this new coordinate, the SNLC bifurcation occurs for ¢ = 0 and the limit cycle has
u-radial coordinate u = r — ry0. = 0.

For an initial condition u(0) = d > 0, the time of permanence of the solutions of
equation (8) in the interval [—d, d] is

» m \/_ —452 — arctan ——452 —|, .

In the limit ¢ — 0, arctan(.) — 7/2 and the previous expression becomes

:/d du 2 5+2\/_u53/2 (9)

™
Bav/E

Thus, we have proved that in the left vicinity of a codimension 2 SNLC bifurcation, the

t =

(10)

orbits follow a trajectory ressembling a limit cycle oscillation during a time that goes
to infinity as the bifurcation is approached.
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Stability of the steady state of the HH equations

Here, we analyse the stability of the homogeneous stable state z*(0)

17

(V*(0),n*(0),m*(0),h*(0)) of the first and third equations in (4), with the boundary

conditions (5).

Due to the zero flux boundary conditions (5), the solutions of the first and third

equations in (4) can be written in the form

V(z,t)
n(x,t)
m(z,t)
h(z,t)

V*(0) + > hsq ax(t) cos2mka /L
n*(0) + Zk; bi(t) cos 2mkx /L

m*(0) 4+ 3o, cr(t) cos 2mka /L
m*(0) 4+ 32~ di(t) cos 2mkz /L,

(11)

where ay(t), b(t), cx(t) and di(t) are time dependent unknown functions of time, and
Vi(x,t),n(z,t),m(x,t), h(z,t) € L*([0, L]), for every t > 0. As usual, ax(t), bp(t), cx(t)
and dy(t) are the k-eigenmode solutions of the extended HH equations. To analyse the
stability of 2*(0), following [Dilao, 2005], we introduce (11) into the first equation in (4)
and, up to first order in the phase space variables we obtain

OF _ par’k?  9F  OF  OF
ov

L2 on om oh
Ok 9Gn 0Gn 0 T
bk ov on bk
. = , (12)
Ck IGm 0 IGm 0 Ck
7 1°1% om
dp dp
oG, oG,
ov 0 0 Oh

for every k > 1 and the matrix is evaluated at z*(0). If, for every k > 1, the real parts of
the eigenvalues of the jacobian matrix in equation (12) are negative, the homogeneous
spatial solution (V' (z,t),7(x,t)) = 2*(0) of the first and third equations in (4) is stable.
Due to the complex form of the vector field components, the jacobian matrix is difficult
to calculate. So, we have analysed numerically the real part of its eigenvalues, for a
large range of the index k. For values of the eigenmode number k, up to & = 2000,
and for D € [1079,10], all the eigenvalues of the matrix in (12) have negative real parts,
implying that the homogeneous steady state of the extended HH equation is stable.
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