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Abstract. We show that action potentials in the Hodgkin-Huxley neuron model

result from a type I intermittency phenomenon that occurs in the proximity of a saddle-

node bifurcation of limit cycles. For the Hodgkin-Huxley spatially extended model,

describing propagation of action potential along axons, we show the existence of type

I intermittency and a new type of chaotic intermittency, as well as space propagating

regular and chaotic diffusion waves. Chaotic intermittency occurs in the transition

from a turbulent regime to the resting regime of the transmembrane potential and is

characterised by the existence of a sequence of action potential spikes occurring at

irregular time intervals.
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1. Introduction

As nucleic acids are intrinsically negatively charged molecules, inside the cell, the zero

charge balance is compensated by a non-zero concentration of positively charged ions.

The transport of ions from the interior to the exterior of a cell and vice versa is done

by ion channels and pumps. These channels and pumps are transmembrane proteins

localised along the cellular membrane, [Keener and Sneyd, 1998].

Transmembrane channels and pumps are specific to the type of ion (Na+, K+, Ca++,

etc.) and, at equilibrium, a potential difference V from the inside to the outside of the

cell is kept. Inside the cell, the potential is lower when compared with the potential

outside the cell. The exchange of ions from the interior to the exterior of the cell is due

to two competing effects. One effect is related with the differences of concentrations in

the two regions. The other effect is due to the electrostatic forces between charged ions.

The Hodgkin-Huxley (HH) neuron excitation model, [Hodgkin and Huxley, 1952],

describes the potential drop across cell membranes due to the exchange of ions. This
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model has been introduced to describe patch clamp experiments on the giant axon of

the squid Loligo, [Hodgkin and Huxley, 1952b] and [Hodgkin and Huxley, 1952]. The

equations of the HH model are

Cm
∂V

∂t
= D̃

∂2V

∂x2
− gNam

3h(V − V N

Na)

−gKn
4(V − V N

K)− gL(V − V N

L ) + i
∂n

∂t
= αn(V )(1− n)− βn(V )n = Gn(V, n)

∂m

∂t
= αm(V )(1−m)− βm(V )m = Gm(V,m)

∂h

∂t
= αh(V )(1− h)− βh(V )h = Gh(V, h),

(1)

where

αn = 0.01φ
V + 10

e(V+10)/10 − 1
, βn = 0.125φeV/80,

αm = 0.1φ
V + 25

e(V+25)/10 − 1
, βm = 4φeV/18,

αh = 0.07φeV/20, βh = φ
1

e(V+30)/10 − 1
,

φ = 3(T−6.3)/19.

(2)

In this model, V is the transmembrane potential drop measured in mV, i is a

transmembrane current, measured in µA/cm2 and time is measured in ms. The current

i is a transmembrane current that is applied to the cell. For example, it can be an

injected current in a patch clamp experiment, or the signal transmitted from other

neurons through synapses.

Ion channels open and close as a function of the potential difference between the

inside and outside of cells. The gating variables n, m and h describe the opening and

closing of the channel gates, are specific to the ion type and are dimensionless. The

functional form of n, m and h in equations (1) has been proposed and calibrated in

[Hodgkin and Huxley, 1952]. For a review of specific gating mechanisms associated to

the choices made in equation (1), we refer to [Keener and Sneyd, 1998].

In equations (1), the ionic conductances across the cellular membrane are gNa
and gK, and gL is a constant measuring “leak” conductance. Cm is the membrane

capacitance and D̃ is a constant inversely proportional to the resistance (Ω), measured

along the axon of nerve cells. This model has been calibrated for the squid giant

axon at the temperature T = 6.3 ◦C, [Hodgkin and Huxley, 1952], and the values

of the constants are Cm = 1 µF/cm2, gNa = 120 mS/cm2, gK = 36 mS/cm2

and gL = 0.3 mS/cm2, where S=Ω−1 (siemens) is the unit of conductance. The

Nernst equilibrium potentials, relating the difference in the concentrations of ions

between the inside and the outside of cells with the transmembrane potential drop,

are V N

Na = −115 mV, V N

K = 12 mV and V N

L = −10.613 mV. This choice of parameters

is rescaled in such a way that at rest (i = 0), the steady state of the the transmembrane

potential is V ∗(0) = 0 mV.
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For D̃ = 0, the HH equations describe the potential drop across the walls of a

globular cell and the ionic gradients inside the cell are negligible. Hodgkin and Huxley

have shown that the transmembrane diffusion coefficient is D̃ = a/(2R2), where a is the

radius of the axon (considered as a cylinder) and R2 is the specific resistivity along the

interior of the axon. For the case of the squid giant axon, a = 238 µm, R2 = 35.4 Ω cm

and D̃ = 3.4× 10−4 S, [Hodgkin and Huxley, 1952].

The electrophysiological state of any cell can be described by a HH type model,

provided its electric state is controlled by the opening and closing of voltage sensitive

channels.

The success of the HH model in describing the dynamics of certain types of neurons

relies on its ability to reproduce some experimental facts of patch-clamp experiments,

including action potentials and threshold effects. To describe the electrophysiological

state of a simple (globular) neuron or cell, we assume D̃ = 0 in equations (1). In

this case, the electrophysiological steady state of the cell or neuron is described by the

vector quantity x∗(i) = (V ∗(i), n∗(i),m∗(i), h∗(i)), where i is considered as an external

parameter. If i = 0, for the (reference) parameter values described above, the steady

state is stable and it is the unique limit set of the HH equations (1).

As the position of the steady state x∗(i) changes with i, due to the stability of the

steady state x∗(i) in the vicinity of i = 0, small variations in the parameter i for a short

period of time produce the same dynamic effects as changes in the initial conditions.

This simple fact about solutions of the HH equations for D̃ = 0 and i = 0 implies that

the electrophysiological state of the cell is characterised by x∗(0). However, the solutions

of the HH equations show a transient phenomenon called action potential. The main

facts about the action potential and the associated threshold effect are the following:

1) Consider a cell or neuron at the steady state x∗(0). Imposing a current to the cell

during some short time t1, there exists a time interval ∆ttr and a threshold value Itr
such that, if i(t) ≥ Itr, for ∆ttr ≤ t ≤ m∆ttr, with finite real m > 1, and i(t) = 0

otherwise, the system develops a spike in its voltage response V (t) — the action

potential. Then the voltage attenuates in time and the system returns to the stable

steady state x∗(0). If i(t) < Itr, for ∆ttr ≤ t ≤ m∆ttr, the voltage response V (t)

attenuates in time to the stable steady state x∗(0) and the action potential does

not develop.

2) Perturbing the HH equations (1) with a sequence of current rectangular pulses above

threshold Itr, and if the temporal differences between pulses are above some time

interval ∆tr, then the solutions of the HH equations develop the same number

of pulses as in the current exciting signal. We call ∆tr the refractory interval.

If we perturb continuously the HH model with a current made of a sequence of

rectangular pulses above threshold, and the temporal distance between pulses is

below the refractory interval ∆tr, then the number of pulses in the voltage response

is smaller than the number of pulses of the exciting signal.

In figure 1, we show the voltage response in a globular neuron (D̃ = 0) to a
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long current perturbation and to a square wave type perturbation. These two solutions

illustrate the properties of the transient behaviour as explained in the two cases described

above. For the numerical simulations of equations (1), with the steady state x∗(0) as

initial condition, the threshold parameters are Itr ' 2.25 µA/cm2, ∆ttr ' 1.5 ms and

the refractory period is ∆tr ' 17.5 ms.
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Figure 1. a) Voltage response of the HH equations (1) as a function of time, for

the stimulation signal i(t) = 5 > Itr, for t ∈ [0, 50], and i(t) = 0 otherwise —

threshold property 1). In b), we perturbed the cell with a square wave, with a time

difference between spikes ∆t = 17.5 ms — property 2) . For the parameter values

of the simulations, Itr = 2.25 µA/cm2, ∆ttr ' 1.5 ms and the refractory interval is

∆tr ' 17.5 ms.

For the parameter region of the simulations in figure 1, the HH equations have a

unique stable steady state (stable node) in the four dimensional phase space. These

simple facts are well known and discussed in the literature, [Rinzel and Miller, 1980],

[Izhikevich, 2007] and [Ermentrout and Terman, 2010], among others.

One of the main goals of this paper is to explain the origin of the threshold

effect and the appearance of action potential spikes in the HH model equations and

to characterise it dynamically. In the next section, we summarise the main dynamical

properties of the solutions of the diffusion free (D̃ = 0) HH equations (1). It is shown

that, for the parameter values described above and bifurcation parameter i, the HH

equations (1) have a codimension 2 Bautin bifurcation scenario. Upon variation of the

bifurcation parameter i, this bifurcation scenario has a subcritical and a supercritical

Hopf bifurcation and a global saddle-node bifurcation of limit cycles. In section 3, we

extend the concept of type I intermittency associated to saddle-node bifurcations of

fixed points to intermittency of saddle-node bifurcation of limit cycles. We derive the

scaling properties of this new type of intermittency. We show that action potentials,

as observed in the HH equation, are originated by this new type I intermittency. In

section 4, we analyse the spatially extended HH model (D̃ > 0) and show that a new type

I intermittency appears, responsible for the propagation of the action potentials along

the axon. In the presence of diffusion, sustained oscillations develop, as well as chaotic
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or turbulent action potential propagation. For high values of transmembrane currents,

turbulent action potentials disappear and the convergence to a stable steady state occurs

mixed with intermittent action potential chaotic spikes. We call chaotic intermittency

to this new kind of intermittency of the HH extended model. Intermittency effects in

neuronal systems have been reported by several authors, [Rae-Grant and Kim, 1994]

and [Velazquez et al., 1999]. Finally, in section 5, we summarise the main conclusions

of this paper.

2. A summary of the bifurcations of the diffusion free HH equation

For the diffusion free HH equations (1), the basic properties of its solutions are well

known and the basic phase space structure is also well known. In this analysis, all

the parameters of equations (1) are kept fixed and the current i is considered as

the unique free parameter of the model. The basic analysis includes the numerical

simulations of the time responses, topology of orbits in the 4 dimensional phase space,

bifurcation analysis of fixed points and the possible existence of chaotic behaviour

in a restricted parameter region of the model. The basic bifurcation analysis of

fixed points as a function of i, including the existence of two Hopf bifurcations of

fixed points, one subcritical and another supercritical, has been exhaustively analysed

in [Hassard, 1978] and [Rinzel and Miller, 1980]. The existence of chaotic behaviour

has been explored in [Guckenheimer and Oliva, 2002] in a very narrow region of the

parameter i. A period doubling effect on the period of limit cycles has been reported

in [Hassard, 1978] and [Rinzel and Miller, 1980], however this effect is not a period

doubling codimension 1 bifurcation. For a review, recent references are [Izhikevich, 2007]

and [Ermentrout and Terman, 2010]. The majority of authors have done the numerical

analysis of the HH equations (1) with the bifurcation analysis software AUTO,

[Doedel et al., 1991], and XPPAUT, [Ermentrout, 2002].

The bifurcation diagram depicted in figure 2 summarises the main characteristics

of the asymptotic solutions of the diffusion free HH equations (D̃ = 0).

The HH equations (1) have a unique fixed point with coordinates x∗(i) =

(V ∗(i), n∗(i),m∗(i), h∗(i)), whose position in phase space depends on i (the other

parameters in (1) are kept fixed). The fixed point x∗(i) has two Hopf bifurcations, one

subcritical for i = I1, and another supercritical for i = I2. For i > I2 and 0 ≤ i < I1,

the fixed point x∗(i) is stable. For the parameter values in equations (1), I1 = 9.77 and

I2 = 154.52. The local bifurcation analysis shows that for i < I1 and I1 − i sufficiently

small, the HH equations have at least two limit cycles, one stable and another unstable,

[Hassard, 1978] and [Rinzel and Miller, 1980]. The unstable limit cycle is created at I1,

for decreasing values of i, and the stable one is created at I2, also for decreasing values

of i. These two limit cycles collide at i = I0 < I1 and, for i < I0 they do not exist.

At i = I0 = 6.26, the HH equation has a saddle-node limit cycle bifurcation (SNLC),

[Kuznetsov, 2004]. In this analysis, we have considered the fixed reference temperature

T = 6.3 ◦C. However, for temperature T below 28.8 ◦C, the overall behaviour of the
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bifurcation diagram is the same as the one in figure 2.
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Figure 2. a) Bifurcation diagram for the diffusion free HH equations (1) as a function

of the transmembrane current parameter i. In the bifurcation diagram, we represent

the stability of the coordinate V ∗(i) of the fixed point x∗(i) and the maximum values

of the V (i)-coordinate of the limit cycles (LC) associated with the Hopf bifurcations.

Dotted lines correspond to unstable states and continuous lines to stable ones. The

SNLC bifurcation occurs for i = I0 = 6.26, the subcritical Hopf bifurcation for

i = I1 = 9.77 and the supercritical Hopf bifurcation for i = I2 = 154.52. b)

Enlargement of the region in the neighbourhood of the “knee” that occurs in the

interval [I3, I4] = [7.84, 7.92]. The bifurcation diagrams have been calculated with the

software packages AUTO and XPPAUT.

The fixed point x∗(i) is unstable for i in the interior of the interval [I1, I2] and

stable outside. Away from the bifurcation points, the fixed point x∗(i) is hyperbolic.

The overall behaviour of the bifurcation diagram in figure 2a) can be understood as a

codimension 2 Bautin or generalised Hopf bifurcation, [Kuznetsov, 2004]. We assume

that the “knee” (figure 2b) and [Rinzel and Miller, 1980]) of the bifurcation diagram

that occurs in the interval [I3, I4] = [7.84, 7.92] does not affect the overall behaviour of

the solutions of the HH equations. For T above 7.72 ◦C, the parameters in equations (1)

change and the dotted limit cycle curve in figure 2b) loses its one-to-many feature. The

chaotic behaviour conjectured in [Guckenheimer and Oliva, 2002] occurs in the interval

[I3, I4], figure 2b).

However, for i < I0, the HH equations may develop an action potential. In this

case, the equations have only one stable fixed point and asymptotically in time all the

solutions converge to the steady rest state of the cell/neuron.

3. Type I intermittency in the HH equations

If a cell or neuron is perturbed with some constant transmembrane current i < I0, where

I0 is the parameter value of the SNLC bifurcation, and there is no diffusion (D̃ = 0), the

asymptotic time solutions of the HH equations converge to the stable fixed point x∗(i),

for any initial condition away from it. In this parameter region(i < I0), if the initial

condition is away from the fixed point, let us say x0 = (V0, n0,m0, h0) 6= x∗(i), then the

response of the system has two possible outcomes. If x0 is close enough to x∗(i), then the
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asymptotic solutions of the HH equations converge to x∗(i), without ever doing a long

excursion through phase space regions away from the fixed point. On the contrary, if x0
is sufficiently displaced form x∗(i) in the (V, n,m, h) four-dimensional phase space, the

solution of the HH equations does a large excursion in phase space, resembling, during

some time, an almost periodic orbit — action potential response. These two regions in

phase space are separated by a boundary or threshold.

As the parameter i approaches I0 and x0 is sufficiently displaced from x∗(i), the

larger are the number of transient spikes that appear in the potential V . For the same

i < I0, it is possible to produce zero, one, or more spikes, depending on how far x0 is from

x∗(i). There is, however, an upper limit for which, no matter how much we continue to

displace x0 from x∗(i), no more spikes are produced. Thus, there is a maximum number

of obtainable spikes for each i < I0. Depending on the value of x0, the number of spikes

generated must be either equal to or below this maximum. In figure 3, we show this

transient behaviour of the solutions of equations (1), for several values of x0 and fixed

i < I0.
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Figure 3. Membrane action potential response of the HH equations (1), for i = 6.20 <

I0 and initial conditions x0 = (V ∗(0) + ∆V0, n
∗(0),m∗(0), h∗(0)). a) ∆V0 = 1.6, b)

∆V0 = 1.7, c) ∆V0 = 1.9, and d) ∆V0 = 5.5. The SNLC bifurcation occurs at

i = I0 = 6.26.

As shown in figure 3, the solutions of the HH equations are action potential type

responses and, as we shall see now, they are the result of a type I intermittency

phenomenon, [Pomeau and Manneville, 1980], [Guckenheimer and Holmes, 2002] and

[Dias de Deus et al., 1984], near the codimension 2 SNLC bifurcation. For these
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parameter values, the unique attractor in the 4-dimensional phase space is the fixed

point x∗(i).

To show that the transient time behaviour shown in figure 3 corresponds to type

I intermittency, we analyse the behaviour of the solutions of the HH equations near

the SNLC bifurcation at i = I0 (figure 2). At i = I0 and near the fixed point x∗(I0),

the HH equations have a two dimensional center manifold and a two dimensional stable

manifold. By the reduction principle, [Kuznetsov, 2004], near the SNLC bifurcation,

the asymptotic time solutions of the HH equations are topologically equivalent to the

asymptotic time solutions of the normal form for this bifurcation. In fact, the bifurcation

diagram in figure 2 is similar to the bifurcation diagram of the codimension 2 Bautin

bifurcation, eventually along a parameterised path on a 2-dimensional parameter space,

[Kuznetsov, 2004].

With this simple fact, in Appendix A, we show that the intermittency

characteristic of the SNLC codimension 2 bifurcation has the same scaling behaviour

in the bifurcation parameter as the type I intermittency observed in interval maps,

[Pomeau and Manneville, 1980] and [Guckenheimer and Holmes, 2002]. To be more

specific, with ε = I0−i, the permanence time of the orbits of the HH equations (1) in the

vicinity of the limit cycle that appears at the SNLC bifurcation (ε = 0) is tper = c/
√
ε,

where c is a constant. Denoting by P the period of the shadow limit cycle responsible

for the spiky action potential response and by N the number of action potential spikes

generated before the system goes to the rest steady state, we have NP = tper, implying

that

lnN = C − 1

2
ln ε, (3)

where C is a constant (Appendix A).

The first test showing that the action potential solutions of the HH equations are

associated with type I intermittency is to verify that the maximum number of action

potencial spikes developed in the solution of the HH equations obeys the scaling relation

(3).

A second test of type I intermittency is to show that, close to the SNLC bifurcation,

the maximum amplitude of each action potential spike, as a function of the maximum

amplitude of the previous one, has a parabolic profile. This graph will be called the

next amplitude map, [Pomeau and Manneville, 1980].

In figure 4a), we show the number of spikes of the action potential generated by the

HH equation, in the left vicinity of the SNLC bifurcation, as a function of ε = I0 − i.
For ε ∈ [0.00030, 0.07532], the slope of the fit is s = −0.505, in agreement with the

estimate (3). In figure 4b), we calculate the next amplitude map, where we observe the

typical parabolic profile associated with type I intermittency.

The main conclusion of this analysis is that the diffusion free (D̃ = 0) HH

equations (1) exhibit type I intermittency in the left vicinity of the SNLC bifurcation.

This intermittency phenomenon is responsible for the action potential spiky signals. The

threshold is associated with a boundary in phase space that separates the two possible
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Figure 4. SNLC intermittency for the HH model. a) Logarithm of the number of

spikes N of the action potential in the left vicinity of the SNLC bifurcation, as a

function of the logarithm of ε = I0 − i. The slope of the fitted line is s = −0.505,

in agreement with (3). b) Next amplitude map for the HH model, for the parameter

value i = 6.259, or ε = 0.001. VN is the maximum value of the action potential spike

number N . At the SNLC bifurcation, ε = 0, the parabolic profile shown touches the

dotted line VN+1 = VN .

types of transient solutions. Our numerical analysis shows that for i ∈ [0, I0) and if

the electrophysiological state of the cell is sufficiently far from the steady state, the

HH model always shows an intermittent response, with one or several action potential

spikes.

4. Oscillatory and turbulent solutions of the HH equations

The HH equations (1) with spatial term, D̃ > 0, describe the axonal propagation of the

potential function, as well as the opening and closing of ion channels. We consider a

1-dimensional domain of length L representing the axon. In the interior of the spatial

domain, there is no membrane current excitation, but at the boundary x = 0 the

neuron is excited with some (transmembrane) current i(t). Under these conditions, the

HH equations (1) are rewritten in the form

∂V

∂t
= D

∂2V

∂x2
+ F (V, ~n) with x ∈ (0, L]

∂~n

∂t
= G(V, ~n)

∂V

∂t
= D

∂2V

∂x2
+ F (V, ~n) +

1

Cm
i(t) with x = 0,

(4)

where i(t) is zero on the first two equations (the excitation signal i(t) only exists for

x = 0), x is measured in cm and t in ms. The last three equations in (1) have been

collapsed into a single equation in (4). The vector functions F and G are defined by

comparison between equations (4) and (1) and D = D̃/Cm. We further consider that the

transmembrane potential and the gate variables obey Neumann or zero flux boundary
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conditions
∂V

∂x

∣∣∣∣
x=0,L

= 0 and
∂~n

∂x

∣∣∣∣
x=0,L

= 0. (5)

In Appendix A, it is shown that the diffusion term in (4) does not change the

stability of the steady state x∗(0), and the linear analysis leads to the conclusion that

the homogeneous steady state of the extended HH equation is stable. However, away

from the steady state, the situation can be different.

As the local dynamics of the HH model has intermittent solutions, we analyse

numerically how intermittency and diffusion affect the propagation of the action

potential along the axon.

To simulate numerically the reaction-diffusion equations (4) we have used

a benchmarked numerical method, [Dilão and Sainhas, 1998], obeying the discrete

conservation law ∆x =
√

6D∆t, where ∆x and ∆t are space and time discretisation

steps. This relation between space and time steps minimizes the integration error.

For numerical analysis purposes, we have chosen the axon length L = 50 cm, with

the spatial region divided into M = 400 small intervals of length ∆x, where L = M∆x.

AsD = ∆x2/(6∆t) = L2/(6M2∆t), we change ∆t in the interval [0.003, 0.033] ms, which

corresponds to variations in the diffusion coefficient in the interval [0.23, 2.34] cm2/ms.

The value suggested by Hodgkin and Huxley, [Hodgkin and Huxley, 1952], is D̃ =

3.4× 10−4 S, giving D = 0.34 cm2/ms, which is within the range of our numerical

analysis.

To analyse the solutions of the extended HH equations (4), we have imposed a

constant signal i(t) = i0, for every t ≥ 0, at x = 0 The initial condition along the

axon was set to x∗(0) = (V ∗(0), n∗(0),m∗(0), h∗(0)). According to the parameters

described above, we have varied the diffusion coefficient in the realistic range D ∈
[0.23,2.34] cm2/ms. In this range of the diffusion coefficient, D/∆x2 ∈ [5, 50] ms−1.
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Figure 5. Spatial solutions of the HH equations (4), for D/∆x2 = 20 ms−1 at

time t = 100 ms, for two different values of the transmembrane current. In a),

i0 = 50 µA/cm2 and the transmembrane potential converges to the steady state x∗(0)

along the axon. In b), i0 = 100 µA/cm2 and the transmembrane potential develops a

propagating periodic action potential.
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Figure 6. Bifurcation diagram of the HH extended model (4), as a function of the

transmembrane current i0 at the axon boundary and of the diffusion coefficient D/∆x2.

We show two different types of intermittency, oscillations and spatial chaos (dark grey

and dotted lines).

In figure 5, we show that we can have sustained oscillations as a result of the

intermittency effect of the diffusion free HH equations for i = 0. If the input

transmembrane current at the axon boundary is low, for example i0 = 50 µA/cm2, the

resulting transmembrane potential along the axon converges to the steady state x∗(0),

in agreement with the stability analysis in Appendix A. If the input transmembrane

current at the axon boundary is above some threshold, stable oscillations develop.

Further numerical simulations have shown that, for a certain range of the parameter

i0, the extended HH system (4) has spatial intermittency and periodic oscillations.

In figure 6, we depict in the (i0, D/∆x
2) parameter space, the regions where both

phenomena are observed. This result shows that the extended HH system has some

attractor set other than the homogeneous fixed point x∗(0).

In figure 6, the black lines I∗1 and I∗5 delimit the regions where equations (4) show

solutions with intermittency from regions with oscillatory and chaotic solutions. For

parameters in the intermittency regions, the solutions of equations (4) show a finite

number of spikes along the spatial domain before going to the stable steady state. The

light grey region marks the solutions that are oscillatory and propagate through the

spatial region (figure 5b)). Between the light dashed lines I∗2 and I∗3 the time interval

between successive spikes is irregular — dark grey region. The light dashed line I∗4
precedes the final line I∗5 only by a couple of decimal places and marks the beginning

of a chaotic region, characterised by the chaotic behaviour of the time interval between

successive action potential spikes (figure 7c)). The chaotic region ends giving rise to
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what we call chaotic intermittency. Type I intermittency and chaotic intermittency will

be analysed in more detail in the next subsections.

In figure 7, we make a detailed bifurcation analysis along a cross section of the

bifurcation diagram in figure 6, for the diffusion coefficient D/∆x2 = 20 ms−1 and

spanning the whole region [I∗1 , I
∗
5 ]. In this figure, the period of oscillations as a function

of the transmembrane current i0 is plotted. Figure 7a) shows the whole region, while

figures 7b) and 7c) are different zoom ins of the bifurcation diagram. As shown, regular

oscillations occur in the regions [I∗1 , I
∗
2 ] and [I∗3 , I

∗
4 ] and there are complex bifurcations

or chaotic regions in the intervals [I∗2 , I
∗
3 ] and [I∗4 , I

∗
5 ]. In the regions, [I∗2 , I

∗
3 ] and [I∗4 , I

∗
5 ],

the time intervals are irregular and show a bifurcation pattern characteristic of chaotic

maps of the interval (figure 7c)).
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Figure 7. a) Period (and time intervals) of the oscillatory solutions of the HH

extended model (4), as a function of the current i0, for the diffusion coefficient

D/∆x2 = 20 ms−1. In the regions [I∗2 , I
∗
3 ] (b) and [I∗4 , I

∗
5 ] (c), the solutions of the

HH extended model show chaos.

We have calculated the velocity of propagation of the action potentials for different

values of the diffusion coefficient. The numerical values are shown in figure 8.

These results are of the same order of magnitude of the experimental velocity v =

21.2 m/s measured by Hodgkin and Huxley in the giant axon of the squid Loligo,

[Hodgkin and Huxley, 1952].
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Figure 8. Wave velocity of the action potential for five different diffusion coefficients

of the HH equations (4), in the parameter region [I∗1 , I
∗
5 ].

4.1. Type I spatial intermittency

In the region i0 < I∗1 of figure 6, the HH model with diffusion has type I intermittency

solutions. To characterise this intermittency, we have tested the parameter scaling and

the next amplitude map as in section 3. In the intermittency regime, we have counted

the number of action potential spikes that propagate along the domain [0, L], and have

calculated the next amplitude maps. In figure 9 we show the analogous of figure 4, now

for the spatial HH equations, with ε = I∗1 − i0 in the domain ε ∈ [0.001, 0.231]. The

numerically determined slope of the scaling relation (3) is s = −0.506, in agreement

with the theoretical prediction s = −0.5. The next amplitude map has been calculated

for i0 = 56.010 < I∗1 = 56.012 and D/∆x2 = 20 cm−1, showing a parabolic profile,

characteristic of type I intermittency.
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Figure 9. Type I intermittency for the HH extended model (4), with D/∆x2 =

20 cm−1. a) Logarithm of the number of spikes N of the action potential in the left

vicinity of I∗1 = 56.012. The slope of the fitted dotted line is s = −0.506, in good

agreement with (3). b) Next amplitude map for the parameter value i0 = 56.010 or

ε = 0.002. VN (x = L/2) is the maximum value of the action potential spike number

N , measured at the middle of the spatial domain [0, L]. The dotted line is the graph

of the equation VN+1 = VN .
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4.2. Chaotic intermittency

Chaotic intermittency of the HH extended model appears for i0 > I∗5 . In this case,

the solutions of the HH extended model converge to the stable steady state x∗(0), but

the transient solution has a finite sequence of action potential spikes with variable time

intervals between spikes. This intermittent behaviour in the transient process and the

number of spikes depends on the initial condition and on the distance to I∗5 , without

showing any scaling relations. In figure 10, we show the logarithm of the number of

spikes as a function of the bifurcation parameter ε = i0 − I∗5 , and the next amplitude

map for the parameters i0 = 339.369, with diffusion coefficient D/∆x2 = 20 cm−1.

From figure 10a), we conclude that the intermittent behaviour has no apparent scaling

and is different from other types of intermittency. On the other hand, the number of

spikes as a function of the distance ε to the bifurcation point seems to behave randomly,

without any scaling behaviour. Also, the next amplitude map shown in figure 10b) is

not characteristic of any type of known intermittency phenomenon.
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Figure 10. Chaotic intermittency for the HH extended model (4), with D/∆x2 =

20 cm−1. a) Logarithm of the number of spikes N of the action potential in the right

vicinity of I∗5 , for ε = i0 − I∗5 ∈ [0.001, 0.140]. The dotted line has slope s = −0.5. b)

Next amplitude map for the parameter value i0 = 339.369 or ε = 0.010. VN (x = L/2)

is the maximum value of the action potential spike number N , measured at the middle

of the spatial domain [0, L]. Chaotic intermittency does not show any scaling behaviour

on the number of spikes as a function of ε. The dotted line is the graph of the equation

VN+1 = VN .

5. Discussion

We have found the geometric and dynamical origins of the action potential type

response of the Hodgkin-Huxley neuron model. This peculiar response is due to

type I intermittency occurring in the vicinity of a saddle-node bifurcation of limit

cycles. In this regime, neurons have a stable steady state but for large amplitudes of

excitation they develop the action potential type of response, shadowing the existence

of a stable limit cycle that appears at different parameter values. These conclusions
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were obtained under zero diffusion, implying that our results remain true for any cell

with an electrophysiological state controlled by voltage sensitive channels.

We have extended our analysis to neurons with long axons. In this case, the diffusion

coefficient of the HH model is positive and the solutions of the HH model equations show

a more complex behaviour. For this case, we have assumed that neuron excitation

is done at one boundary of the spatial domain through a transmembrane current.

We have shown that, above some transmembrane current threshold, action potentials

spikes develop, showing type I intermittency characterised by a finite number of action

potential spikes propagating along the axon. Increasing the values of the transmembrane

current at the boundary of the axon, periodic propagating stable diffusion waves along

the axon appear. In the parameter range of oscillations, we may have turbulent

oscillations or chaos. These chaotic oscillations appear on the irregular time interval

between successive action potential spikes and have a bifurcation diagram similar to the

ones found in interval maps (figure 7c)). For the parameter values where oscillatory

or chaotic solutions exist, the steady state of the HH equations remains stable and is

reached for small values of transmembrane currents at the axon boundary.

As far as we know, this is the first time that intermittency phenomena, chaotic or

type I, are reported in an electrophysiological model of a cell. However, it is a common

phenomenon found in electroencephalogram, [Rae-Grant and Kim, 1994], and epilepsia,

[Velazquez et al., 1999].

Our analyses have been done for the original and calibrated HH model equations

(1) and (4), with realistic diffusion coefficients. This implies that all the phenomena

described here are predictions that can be explored in patch clump experiments on giant

axons. All the simulations are in agreement with HH observations, including the velocity

of propagation of action potentials measured along the Loligo giant axon.
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Appendix

Intermittency near a SNLC bifurcation

The normal form of the Bautin bifurcation in polar coordinates is ([Kuznetsov, 2004]){
ṙ = r(β1 + β2r

2 − r4) = f(r)

φ̇ = 1,
(6)

where β1 and β2 are real parameters. A simple analysis shows that, if β2 > 0 and β1 < 0,

there is a saddle node bifurcation in the radial variable r, which corresponds to a SNLC

bifurcation in the cartesian coordinates. The codimension 2 SLNC bifurcation occurs
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for β1 = β∗
1 = −β2

2/4 and a limit cycle is created with radial coordinate r∗ =
√
β2/2.

We take now the new parameter ε defined by

β1 = −1

4
β2
2 − ε. (7)

For β2 > 0, the system of equations (6) has a SNLC bifurcation for ε = 0. If

ε > 0, the system of equations (6) has no limit cycles and, if ε < 0, the system of

equations (6) has two limit cycles with radial coordinates rs =
√

(β2 +
√
−ε)/2 and

ru =
√

(β2 −
√
−ε)/2, where the subscripts “s” and “u” stand for stable and unstable,

respectively.

Along any line β2 = constant with β2 > 0, for ε < 0, the asymptotic solutions of

equation (6) with initial condition r0 > rs converge to a stable limit cycle. For ε > 0

but close to zero, the graph of y = f(r) has a local maximum near rmax =
√
β2/2

which is very close to the line y = 0. For initial conditions r0 > rs and by the

continuity of the solutions of the differential equation in order to ε, the radial solution

of equation (6) will be near r = rmax for a long interval of time. This interval of

time goes to infinity, as ε → 0. So, during this period of time, the solution of the

differential equation will resemble the solution along a limit cycle that does not exist.

This is the phenomenon of type I intermittency, [Pomeau and Manneville, 1980] and

[Guckenheimer and Holmes, 2002].

As a function of ε, we estimate the time of permanence of the solution of equation (6)

near the point rmax =
√
β2/2, the radius of the limit cycle at bifurcation. As this analysis

is local, we take u = r − rmax and, by (7), the first equation in (6) is rewritten as

u̇ = −ε(rmax + u)−
√

2β
3/2
2 u2 +O(u3) = g(u) +O(u3). (8)

In this new coordinate, the SNLC bifurcation occurs for ε = 0 and the limit cycle has

u-radial coordinate u = r − rmax = 0.

For an initial condition u(0) = d > 0, the time of permanence of the solutions of

equation (8) in the interval [−d, d] is

t =

∫ d

−d

du

g(u)
=

2√
ε

1√
4β2

2 − ε
arctan

ε+ 2
√

2uβ
3/2
2√

ε
√

4β2
2 − ε

∣∣∣∣∣
d

−d

. (9)

In the limit ε→ 0, arctan(.)→ π/2 and the previous expression becomes

t =
π

β2
√
ε
. (10)

Thus, we have proved that in the left vicinity of a codimension 2 SNLC bifurcation, the

orbits follow a trajectory ressembling a limit cycle oscillation during a time that goes

to infinity as the bifurcation is approached.
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Stability of the steady state of the HH equations

Here, we analyse the stability of the homogeneous stable state x∗(0) =

(V ∗(0), n∗(0),m∗(0), h∗(0)) of the first and third equations in (4), with the boundary

conditions (5).

Due to the zero flux boundary conditions (5), the solutions of the first and third

equations in (4) can be written in the form

V (x, t) = V ∗(0) +
∑

k≥1 ak(t) cos 2πkx/L

n(x, t) = n∗(0) +
∑

k≥1 bk(t) cos 2πkx/L

m(x, t) = m∗(0) +
∑

k≥1 ck(t) cos 2πkx/L

h(x, t) = m∗(0) +
∑

k≥1 dk(t) cos 2πkx/L,

(11)

where ak(t), bk(t), ck(t) and dk(t) are time dependent unknown functions of time, and

V (x, t), n(x, t),m(x, t), h(x, t) ∈ L2([0, L]), for every t ≥ 0. As usual, ak(t), bk(t), ck(t)

and dk(t) are the k-eigenmode solutions of the extended HH equations. To analyse the

stability of x∗(0), following [Dilão, 2005], we introduce (11) into the first equation in (4)

and, up to first order in the phase space variables we obtain


ȧk
ḃk
ċk
ḋk

 =



∂F
∂V
−D 4π2k2

L2
∂F
∂n

∂F
∂m

∂F
∂h

∂Gn

∂V
∂Gn

∂n
0 0

∂Gm

∂V
0 ∂Gm

∂m
0

∂Gh

∂V
0 0 ∂Gh

∂h




ak
bk
ck
dk

 , (12)

for every k ≥ 1 and the matrix is evaluated at x∗(0). If, for every k > 1, the real parts of

the eigenvalues of the jacobian matrix in equation (12) are negative, the homogeneous

spatial solution (V (x, t), ~n(x, t)) = x∗(0) of the first and third equations in (4) is stable.

Due to the complex form of the vector field components, the jacobian matrix is difficult

to calculate. So, we have analysed numerically the real part of its eigenvalues, for a

large range of the index k. For values of the eigenmode number k, up to k = 2 000,

and for D ∈ [10−6, 10], all the eigenvalues of the matrix in (12) have negative real parts,

implying that the homogeneous steady state of the extended HH equation is stable.
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