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Abstract

We study the generalized matrix model which corresponds to the n-point toric Virasoro conformal

block. This describes four-dimensional N = 2 SU(2)n gauge theory with circular quiver diagram by

the AGT relation. We first verify that it is obtained from the perturbative calculation of the Liouville

correlation function. We derive the Seiberg-Witten curve for N = 2 gauge theory as a spectral curve of

the generalized matrix model.
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1 Introduction

Recently, an interesting conjecture has been proposed in [1] that there are two equivalent ways for

describing two M5-branes wrapped on a Riemann surface. One of the ways is a four-dimensional N = 2

superconformal SU(2) quiver gauge theory, which is constructed depending on the number of genus and

punctures of the Riemann surface [2, 3]. The other is the Liouville theory defined on that Riemann

surface. The proposal, which is often called AGT conjecture [1], is that the Nekrasov partition function

[4] of such quiver gauge theory can be reproduced by the n-point conformal block of the Virasoro algebra,

where n is the number of punctures. This conjecture has been generalized to the higher rank gauge group

[5, 6, 7, 8], non-conformal case [9, 10, 11], and to the case in the presence with the surface and loop

operators [12]–[23]. ( See also [24, 25] for the M-theory considerations.) A proof has been given in [26]

and [27] for SU(2) gauge theory with adjoint and (Nf = 0, 1, 2) fundamental hypermultiplets by using

the recursion relation [28, 29, 30, 31].

It was discussed in [32] that the AGT conjecture for the case on a sphere can be understood through a

matrix model. The matrix model expression of the conformal block on a sphere is given by reinterpreting

the Dotsenko-Fateev integral representation of it as the (beta-deformed) matrix integral [33, 34] with a

logarithmic potential. When the central charge c = 1 + 6Q2 (Q = b + 1/b) equals one, or equivalently,

b = i, the conformal block is represented by the usual matrix model. The matrix model technique,

in particular large N limit, is very powerful to show that the gauge theory result can be reproduced
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[35, 36, 37, 38]. (See also [39] for 1/N correction.) It has been discussed that direct integral calculation

leads to the instanton (q-)expansion of the Nekrasov partition function (and the corresponding expansion

of the conformal block) [40, 41, 42, 43, 44, 45, 46].

While the understanding of the AGT conjecture for a sphere through the matrix model has been

developed, a counterpart for a Riemann surface with higher genus is not yet fully understood. In this

paper, we study the following integral:

Z =
∫ N∏

i=1

dzi

∏
i<j

θ∗(zi − zj)−2b2 exp

− b

gs

N∑
j=1

(
n∑

k=1

2mk log θ∗(zj − wk) + 4πiazj

) , (1.1)

where the function θ∗(z) is defined in terms of the Jacobi theta function θ1(z|τ) and the Dedekind eta

function η(τ) as θ∗(z) ≡ q−1/12θ1(z|τ)/η(τ) with the fixed modulus q = e2πiτ of the torus. This integral

corresponds to n-point toric conformal block as discussed in [32] ‡. Although this integral cannot be

written in terms of a usual matrix integral, it can be seen as a “generalized matrix model”, whose

“eigenvalues” zi live on the torus. Rigorously speaking, the integral is defined on the cover of the torus

because the integrand itself is not completely doubly periodic. However, the positions of cuts, at which

the eigenvalues are placed, are indeed doubly periodic. When we regard the integral variables zi as the

eigenvalues, the product of theta functions
∏

i<j θ∗(zi − zj)−2b2 can be regarded as a counterpart of the

Vandermonde determinant. This form is expected from the propagator of the two-dimensional free theory

on a torus. The parameters mk are the momenta of the vertex operators while wk are their insertion

points. The parameter a and the filling fractions are identified as the internal momenta in the conformal

block. The parameters in the integral are related as

n∑
k=1

mk + bgsN = 0 (1.2)

due to the momentum conservation law.

The AGT conjecture indicates that the n-point conformal block on a torus is related with N = 2

superconformal SU(2)n gauge theory with circular quiver diagram. The parameters mk are identified

with the masses of the bifundamental hypermultiplets and the internal momenta of the conformal block

correspond to the Coulomb moduli parameters. We see that such relation can be partially understood
‡In [41], a slightly different integral was studied. Instead of introducing a factor 4πiazj as in (1.1), N1 integrals over A-

cycle and N2 integrals over B-cycle are introduced in order to reproduce the expected number of free parameters. However,
it was also discussed in [41] that their results do not completely reproduce the conformal block although it is very close.
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Figure 1: Brane configuration of the SU(2)4 gauge theory with circular quiver. The D4-branes are
suspended between the NS5-branes.

through the integral (1.1) in the large N limit: On one hand, we show that the integral is derived from

the perturbative calculation of the correlation function of the Liouville theory. On the other hand, we

confirm that the spectral curve of the integral can be identified with the Seiberg-Witten curve of the

quiver gauge theory.

The organization of this paper is as follows. In section 2, we review the M-theory construction of

the four-dimensional superconformal SU(2)n gauge theory and see the M-theory curve which describes

the low energy effective theory of the gauge theory. In section 3, we see that the integral representation

(1.1) is derived from the Liouville n-point correlation function on a torus by perturbative calculation.

We then discuss that the proposed integral (1.1) corresponds to the toric conformal block. In section 4,

we consider the large N spectral curve of the integral and identify it with the curve obtained in section

2. We conclude with discussions in section 5.

2 M-theory curve of SU(2) quiver gauge theory

In this paper, we consider N = 2 superconformal SU(2)n gauge theory with circular quiver. This type

of quiver gauge theory can be constructed as a worldvolume theory of D4-branes suspended between

NS5-branes in type IIA string theory [2], as depicted in figure 1. The D4-branes occupy the x0,1,2,3 and

x6 directions and the NS5-branes occupy x0,1,2,3 and x4,5. The x4,5 coordinates are combined into the

complex one v = x4 +ix5. The difference of the v-coordinates of D4-branes in neighboring intervals of the

NS5-branes is identified with the mass parameter of the bifundamental hypermultiplet. The x6 direction

is compactified and is periodic.

The curve which describes the low energy effective theory of this quiver gauge theory can be obtained
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by the M-theory up-lift by adding periodic x10 direction and considering the hypersurface in v, z =

x6 + ix10 space. Since both the x6 and x10 directions are compactified, these represent a torus E. We

denote this torus by Weierstrass form

y2 = 4x3 − g2x − g3. (2.1)

The curve in X = C × E where v ∈ C is identified with the Seiberg-Witten curve. For the SU(2)n case,

the form of it is F (x, y, v) = 0 with

F (x, y, v) = v2 − f1(x, y)v + f2(x, y). (2.2)

The positions of n NS5-branes are translated in M-theory to the points in the torus E in which f1 and f2

have simple poles [2]. The residues of f1 are interpreted as the mass parameters mk of the bifundamentals.

(When we discuss poles or residues, we use the local coordinate z = x6 + ix10.)

Note that the above consideration corresponds to the case where the total sum of the hypermultiplet

masses vanishes:

n∑
k=1

mk = 0. (2.3)

In order to include the most generic case with non-zero sum of the masses, we have to consider non-trivial

bundle Xm → E such that x6 → x6 + 2πR, v → v + m, rather than the trivial bundle X. By this choice,

the constraints on f1 and f2 are as follows: let pk ∈ E (k = 1, . . . , n) be the positions of the singularities

coming from the NS5-branes. Then, f1 and f2 have order 1 and 2 poles at, say p1, and have simple poles

at p2, . . . , pn. (Note that the sum of the residues of f1 should vanish and therefore the residue at p1 of

f1 is −
∑n

k=2 mk.) Furthermore, the double pole of f2 at z1 disappears when we use a good coordinate

ṽ = v + m
2

y
x .

However, as pointed out in [3], the problem can be simplified by eliminating the linear term in v and

writing the curve as follows

v2 = φ2, (2.4)

where we have shifted as v → v + f1
2 and therefore φ2 = f2

1
4 − f2. It follows from the above constraints

that φ2 has double poles at p1, p2, . . . , pn and the coefficients are simply the mass parameters m2
k. The
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Coulomb branch parameters are included in less singular terms: we can introduce n − 1 parameters ck

by adding the functions which have simple poles at pk because the sum of the ck should vanish. We are

also free to add the constant term in φ2. These correspond to n Coulomb moduli parameters. Indeed,

the most singular part of φ2 can be represented by Weierstrass elliptic function ℘(z) and the less singular

part is by elliptic ζ function: ℘ = − d
dz ζ. Therefore, the curve is v2 = φ2 with

φ2 =
n∑

k=1

m2
k℘(z − zk) +

n∑
k=1

ckζ(z − zk) + A, (2.5)

where zk are the values of the local coordinate z = x6 + ix10 at the points pk. This curve can be seen as

a double cover of the torus with n punctures whose positions are z = zk. The Seiberg-Witten one form

is represented by vdz.

3 From Liouville theory to generalized matrix model

In [1], it has been proposed that the n-point conformal block on a torus can be identified with the Nekrasov

partition function of N = 2 quiver gauge theory discussed in the previous section. This relation for a

torus was further studied in [49, 26]. The identification of the parameters of the two is as follows: the

momenta of the vertex operators, the internal momenta and the complex structure moduli correspond,

respectively, to the mass parameters of the hypermultiplets, the Coulomb moduli and the gauge coupling

constants in the gauge theory. The Liouville correlation function can be obtained by integrating the

contribution from the three-point function and the conformal block over the internal momenta. In this

section, we explain how the integral representation (1.1) appears from the full correlation function, based

on the discussion of [50, 32].

The n-point function of the Liouville theory on a torus is formally given by the following path integral

A ≡

〈
n∏

k=1

e2mkφ(wk,w̄k)

〉
Liouville on T 2

=
∫

Dφ(z, z̄)e−S[φ]
n∏

k=1

e2mkφ(wk,w̄k), (3.1)

where the Liouville action is given by

S[φ] =
∫

d2z
1
4π

∂aφ∂aφ + µe2bφ, (3.2)

under the flat background metric. We choose the insertion points wk such that they satisfy
n∑

k=1

mkwk = 0, (3.3)
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which does not break generality due to the translational invariance of the torus.

We divide the Liouville field into the zero mode and the fluctuation φ(z, z̄) = φ0 + φ̃(z, z̄). By

integrating over φ0, we obtain

A =
µ

Pn
k=1

mk
b

2b
Γ

(
n∑

k=1

mk

b

)∫
Dφ̃(z, z̄)e−S0[φ̃]

(∫
d2z e2bφ̃(z,z̄)

)−
P

k

mk
b

n∏
k=1

e2mkφ̃(wk,w̄k), (3.4)

where S0 is the free scalar field action. When

N ≡ −
n∑

k=1

mk

b
∈ Z≥0, (3.5)

the correlator diverges due to the factor Γ(−N). Up to this divergent factor, the n-point correlation

function A is given by a perturbation from the free theory

A =
µ−N

2b
Γ (−N)

∫
T 2

N∏
i=1

d2zi

〈
N∏

i=1

: e2bφ(zi,z̄i) :
n∏

k=1

: e2mkφ(wk,w̄k) :

〉
free on T 2

. (3.6)

The condition (3.5) ensures the momentum conservation in the free theory.

The `-point function of the free theory on a torus is given by〈∏̀
i=1

: eikiφ(zi,z̄i) :

〉
free on T 2

= iCX
T 2(τ)(2π)δ(

∑
i

ki)
∏
i<j

∣∣∣∣η(τ)−3θ1 (zij |τ) exp
[
−π(Imzij)2

τ2

]∣∣∣∣kikj

,

(3.7)

where zij ≡ zi − zj , τ is the modulus of the torus, τ2 is its imaginary part, and CX
T 2 = (4π2τ2)−

1
2 |η(τ)|−2.

It factorizes into holomorphic and anti-holomorphic parts by introducing an additional integral as [51]〈∏̀
i=1

: eikiφ(zi,z̄i) :

〉
free on T 2

= 2i|η(τ)|−2δ(
∑

i

ki)
∫ ∞

−∞
da

∣∣∣∣∣∣
∏

i<j

(
θ1 (zij |τ)

η(τ)3

) kikj
2

 qa2
exp

−2πi
∑̀
j=1

kjzja

∣∣∣∣∣∣
2

, (3.8)

where q = exp(2πiτ). This goes back to (3.7) by explicitly carrying out the Gaussian integral over a. This

expression is more suitable for associating the Liouville n-point function to the holomorphic generalized

matrix model.

Here, we introduce

θ∗(z) ≡ q−1/12 θ1(z|τ)
η(τ)

= 2 sin(πz)
∞∏

m=1

(1 − e2πizqm)(1 − e−2πizqm) (3.9)
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where q = exp(2πiτ) is fixed, for later convenience. Using the explicit expression (3.8) for (3.6), we find

that the n-point function A of the Liouville theory reduces to the following integral

A = C(τ, mk, b)
∏

1≤k<l≤n

|θ∗(wkl)|−4mkml

∫ i∞

−i∞
da |q|−2a2

∫
T 2

N∏
i=1

d2zi∣∣∣∣∣∣exp

−2b

N∑
i=1

n∑
k=1

mk log θ∗ (zi − wk) − 2b2
∑

1≤i<j≤N

log θ∗(zij) − 4πiba

N∑
i=1

zi

∣∣∣∣∣∣
2

,(3.10)

where wij ≡ wi − wj , and we have introduced the factor in front of the z integral as

C(τ, mk, b) ≡ µ−NΓ(−N)
b

δ(0)|η(τ)|−2|q−1/24η(τ)|−4
P

k mk
2−4b2N . (3.11)

The discussion above is valid even for finite N . However, it is not straightforward to factorize the

integrals over the torus into holomorphic and anti-holomorphic integrals for generic N . In order to

proceed to the next step, we evaluate the integral (3.10) in the large N limit. From the momentum

conservation (3.5), we see that mk = O(N) as b = O(1). Although the integral variable a runs all the

range of imaginary number, dependence on a of the exponent appears when a = O(N). We see that

all the three terms in the exponent in (3.10) are all O(N2). In the large N limit, the integral (3.10) is

evaluated at the critical points of the exponent of the integrand. The conditions for the criticality of the

exponent are given by

n∑
k=1

mk
θ′∗(zi − wk)
θ∗(zi − wk)

+ b
∑
j 6=i

θ′∗(zij)
θ∗(zij)

+ 2πia = 0 (3.12)

where θ′∗(z) ≡ ∂zθ∗(z). The conditions obtained from the z̄i-derivatives are just the complex conjugate

of (3.12). It is remarkable that the conditions for criticality are separated into holomorphic and anti-

holomorphic equations, which indicates that the integrals over the torus in (3.10) can be factorized into

holomorphic and anti-holomorphic integrals in the large N limit.

If we do not have the second term in (3.12), we have n possible critical points for each variable zi,

assuming that the parameters mk are generic. We expect that the n critical points are “diffused” to form

line segments due to the second term, similarly to the case of the usual large N matrix model. Then, the

solutions of (3.12) are labelled by the filling fraction νk = bgsNk, in which Nk out of N variables zi take

the value on the k-th line segment. Here, we have introduced the parameter gs, where gsN is finite in

the large N limit, for later convenience.
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We define the contributions from the solution labelled by {νk} to the holomorphic integral as

Z(q, wk,mk, a, νk) ≡
∫ N∏

i=1

dzi

∏
1≤i<j≤N

|θ∗(zij)|−2b2

exp

(
− b

gs

N∑
i=1

(
n∑

k=1

2mk log θ∗(zi − wk) + 4πiazi

))
, (3.13)

where we have rescaled the parameters as mk → mk/gs and a → a/gs. The paths of the integrals are

defined such that only the solution of (3.12) labelled by the fixed filling fractions {νk} contributes to

the integrals. By regarding the factor
∏

1≤i<j≤N |θ∗(zij)|−2b2 as the generalization of the Vandermonde

determinant, we see that the holomorphic integral (3.13) is “the generalized matrix model” with the

action

W (z) =
n∑

k=1

2mk log θ∗(z − wk) + 4πiaz. (3.14)

The integral in (3.10) is then obtained by integrating (3.13) and its complex conjugate over the filling

fractions. Thus, in the large N limit, the n-point function A of the Liouville theory can be written as

A =
∫ i∞

−i∞
da

∫
dν1 · · · dνn−1∣∣∣∣∣∣

(
q−1/24η(τ)

)−2
P

k mk
2/g2

s

 ∏
1≤k<l≤n

θ∗(wkl)−2mkml/g2
s

 q−a2/g2
s Z(q, wk,mk, a, νk)

∣∣∣∣∣∣
2

,(3.15)

where we have used that C(τ,mk, b) is approximated as
∣∣q−1/24η(τ)

∣∣−4
P

k mk
2/g2

s .

The total n parameters, a and the independent filling fractions ν1, · · · , νn−1, can be identified with

the n internal momenta α1, · · · , αn in the conformal block B(q, wk,mk, αk) [32]. Under this identification,

we see from (3.15) that Z(q, wk,mk, a, νk) corresponds to the conformal block as well as the holomorphic

contribution from the three point functions.

In the next section, we relate the generalized matrix model (3.13) with the N = 2 quiver gauge theory

in the previous section. Before going into it, let us see the remaining parts in (3.15) here. As discussed

in [1], the gauge coupling constants qi = exp(2πiτi) (i = 1, · · · , n) of the SU(2)n quiver gauge theory is

related to the modulus q = exp(2πiτ) of the torus and the insertion points wi of the n-point function of

the Liouville theory as

q1 = e2πi(w1−w2), q2 = e2πi(w2−w3), · · · , qn−1 = e2πi(wn−1−wn), q1q2 · · · qn = q. (3.16)
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Using (3.9) and the definition for the Dedekind eta function q−1/24η(τ) =
∏∞

m=1(1 − qm), the factor in

front of Z(q, wk,mk, a, νk) in (3.15) is rewritten in terms of qi as(
q−1/24η(τ)

)−2
P

k mk
2/g2

s ∏
1≤k<l≤n

θ∗(wkl)−2mkml/g2
s

=
∏
k<l

(
i(qk · · · ql−1)−mkml/g2

s

) n∏
i=1

∞∏
k=0

(1 − qiqi+1 · · · qi+k)−2mimi+k+1/g2
s (3.17)

where the subscripts of mi and qi are considered modulo n. This factor explains the overall U(1) factor

Z−1
U(1) =

n∏
i=1

∞∏
k=0

(1 − qiqi+1 · · · qi+k)−2mimi+k+1/g2
s ,

discussed in [1] in the large N limit. Furthermore, the factor q−a2/g2
s in (3.15) corresponds to the tree

level contribution to the prepotential.

In this section, we have derived the generalized matrix model from the Liouville correlation function

by explicitly carrying out the perturbative calculation. In [32], it was discussed that the action (3.14) of

the generalized matrix model is expected also from the geometrical argument of topological string theory

in the context of the AGT conjecture.

4 Spectral curve of the generalized matrix model

In this section, we derive the spectral curve of the generalized matrix model, which is introduced in the

previous section:

exp
(
− 1

g2
s

F
)

=
∫ N∏

i=1

dλi exp

− b

gs

N∑
i=1

W (λi) +
∑
i<j

log (θ∗(λi − λj))
−2b2

 , (4.1)

where W (λ) is given by (3.14). As stated previously, the paths of the integrals are determined such that

they realize the given filling fractions. For generic parameters, the action W (λ) has n critical points.

In order to make the discussion as generic as possible, we will calculate it with a generic action with n

critical points and, at the final stage, substitute its specific form (3.14). We will see that the Seiberg

Witten curve (2.4) with (2.5) appears as the spectral curve of this generalized large N matrix model.

In the large N limit, the problem of the integration in (4.1) reduces to calculation of the critical point

of its exponent. The prepotential is given by

− 1
g2

s

F = − b

gs

∑
i

W (λi) −
∑
i 6=j

b2 log θ∗(λi − λj), (4.2)
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where each eigenvalue satisfies the condition of criticality

0 =
1
gs

W ′(λi) + 2b
∑
j(6=i)

θ′∗(λi − λj)
θ∗(λi − λj)

. (4.3)

It is natural to assume that the eigenvalues are distributed around the critical points of W (λ) but

in the form of line segment, similarly to the usual matrix model. We denote these line segments as Ck

where k = 1, · · ·n. We do not assume that Ck are on a real axis. However, we assume that Ck do not

include the singular points w`, at which the action W (λ) diverges. Suppose that Nk eigenvalues are on

the line segment Ck, where Nk satisfies
∑n

k=1 Nk = N .

Here, we introduce the density of eigenvalues ρ(λ) which has non-zero value only on the line segment

Ck. Outside of these regions, we define that ρ(λ) = 0. The density of eigenvalues is normalized as∫
Ck

dλρ(λ) = bgsNk ≡ νk. Using the variables introduced above, the prepotential and the condition for

criticality are written as

F =
∫

P

k Ck

dλρ(λ)W (λ) +
∫

P

k Ck

dλ′
∫

P

k Ck

dλρ(λ)ρ(λ′) log θ∗(λ − λ′), (4.4)

0 = W (λ)′ + 2
∫

P

k Ck

dλ′ρ(λ′)
θ′∗(λ − λ′)
θ∗(λ − λ′)

, (4.5)

respectively.

In order to solve this, we define the resolvent as

R(z) ≡
∫

P

k Ck

dλ ρ(λ)
θ′∗(z − λ)
θ∗(z − λ)

. (4.6)

Since the behavior of the theta function around the zeros is θ∗(ε) ∼ Cε + O(ε3), θ′∗(ε) ∼ C + O(ε2)

for small ε, the structure of the singularity is similar to that of the usual matrix model if we focus on

the fundamental region of the torus. The resolvent has cuts at the line segments Ck. Also, the filling

fractions are obtained by integrating the resolvent along the cuts as

νk =
1

2πi

∮
Ck

dzR(z). (4.7)

The significant difference from the usual hermitian matrix model is that the resolvent has pseudo

periodicity due to the theta function. Using the identity

d

dz
log θ∗(z + m + nτ, τ) = −2πin +

d

dz
log θ∗(z, τ), (4.8)
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which holds for arbitrary integer m and n, the pseudo periodicity of the resolvent is shown to be given as

R(z + m + nτ) = R(z) − 2πinbgsN. (4.9)

We see that the resolvent is completely periodic for the A-cycle, which is parallel to the real axis, but

some constant is added for the B-cycle. This pseudo periodicity gives great restriction on the possible

form of the resolvent below.

On the line segments Ck, the resolvent is expected to behave as

R(z + iεeiϕ(z)) + R(z − iεeiϕ(z)) = 2
∫

P

k Ck

dλ′ρ(λ′)
θ′∗(z − λ′)
θ∗(z − λ′)

= −W ′(z), (4.10)

R(z + iεeiϕ(z)) − R(z − iεeiϕ(z)) =
∮

Ck

dλ′ρ(λ′)
θ′∗(z − λ′)
θ∗(z − λ′)

= −2πiρ(z), (4.11)

where we take real number ε infinitely small and ϕ(z) is properly defined such that z + iεeiϕ(z) or

z − iεeiϕ(z) does not go across the cuts Ck when z moves along Ck. The integral in (4.10) is principal

integration, which is given as an average of integral along the path over the singularity and that below

the singularity. The resolvent should be determined such that (4.10) and (4.11) are satisfied for z ∈ Ck,

together with the periodicity (4.9).

A candidate of the solution for (4.10) is

R0(z) = −1
2
W ′(z). (4.12)

However, it does not reproduce the correct structure of singularity expressed in (4.11). We need singular

contributions:

R(z) = R0(z) + R(z)sing, (4.13)

where (4.10) and (4.11) impose

R(z + iεeiϕ(z))sing + R(z − iεeiϕ(z))sing = 0. (4.14)

R(z + iεeiϕ(z))sing − R(z − iεeiϕ(z))sing = −2πiρ(z). (4.15)

The above discussion is valid for generic action W (z). In the following, we use the concrete form

(3.14) to determine the resolvent R(z). Since R0(z) is given by

R0(z) = −
n∑

k=1

mk
d

dz
log θ∗(z − wk) − 2πia, (4.16)
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we see that its pseudo periodicity is given by

R0(z + m + nτ) = R0(z) − 2πinbgsN, (4.17)

where we used the identity (4.8) and the momentum conservation (3.5). (Note that the parameters mk

and a have been rescaled.) Remarkably, the pseudo periodicity (4.17) for R0(z) exactly agrees with that

of the resolvent R(z) in (4.9). Therefore, we find that R(z)sing is exactly doubly periodic.

On one hand, we find that the resolvent R(z) has no singularity except for the cuts in the regions Ck

from the definition (4.6). On the other hand, we see from the explicit form (4.16) that R0(z) has simple

poles at z = wk + m + nτ and their residues are −mk. Therefore, R(z)sing must have both the cuts in

the regions Ck and simple poles with residues mk at z = wk + m + nτ .

From (4.14), we see that R(z)sing discontinuously change the sign when across the cut. Thus, R(z)2sing

has no such discontinuity and all the cuts disappear. Since R(z)2sing has double poles at z = wk +m+nτ ,

the Laurent expansion of R(z)2sing at z = wk has not only (z − wk)−2 terms but also (z − wk)−1 terms

due to contact terms. We denote the coefficients of such terms as ck. Such doubly periodic function

is uniquely determined, up to adding a constant, as a linear combination of the Weierstrass ζ function,

which has one simple pole in the fundamental region, and of the Weierstrass ℘ function, which has one

double pole in the fundamental region. This uniqueness is followed from the Liouville theorem, which

ensures that a function holomorphic on the whole complex plane is only the constant function. In other

words, we cannot add non-trivial function to the doubly periodic function without changing its structure

of singularity.

From the discussion above, we have derived that R(z)sing
2 must be of the form(

R(z) +
1
2
W ′(z)

)2

= R(z)sing
2 =

n∑
k=1

m2
k℘(z − wk) +

n∑
k=1

ckζ(z − wk) − C. (4.18)

where the coefficients ck satisfy the condition

n∑
k=1

ck = 0 (4.19)

so that (4.18) is doubly periodic. This is the spectral curve of the generalized matrix model. This spectral

curve (4.18) coincides with the form of the Seiberg-Witten curve (2.4) with (2.5).
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4.1 One-point function

In the following, we concentrate on the case of one-point function and determine the constant in the

spectral curve under the approximation that |a| is large enough. The spectral curve (4.18) for n = 1

reduces to

R(z)sing
2 = m2℘(z) − C, (4.20)

where we used the condition (4.19). From (4.15), the density of eigenvalue is written as

ρ(λ) = (±)
1
πi

√
m2℘(λ) − C, (4.21)

where the sign should be determined so that −iρ(λ)dλ is positive real on the integral path C1.

The equation of motion (4.5) for n = 1 reduces to

m
θ′∗(λ)
θ∗(λ)

+ 2πia +
∫

C1

dλ′ρ(λ′)
θ′∗(λ − λ′)
θ∗(λ − λ′)

= 0. (4.22)

Now, suppose that ia � 1. In order that the eigenvalues satisfy the equation of motion, at least either

the first or the third term of (4.22) must be large enough to compensate the second term. The first term

becomes large if an eigenvalue is placed close to the singularity λ = 0. The third term becomes large if

the distribution ρ(λ′) takes large value around the pole λ′ = λ of the integrand. Since ρ(λ′) is constrained

by the normalization condition ∫
C1

dλ′ρ(λ′) = bgsN, (4.23)

ρ(λ′) must take large value only around the region close to λ′ = λ and rapidly decrease as it goes apart

in this case. However, since ρ(λ′) is given by (4.21), this occurs only if λ is close to the singularity λ = 0.

Thus, in any case, every eigenvalue λ must be distributed very close to the singularity λ = 0. In other

words, the cut C1 of the resolvent is placed very close to the singularity z = 0 and its length is very short.

When λ ∼ 0, the eigenvalue density (4.21) can be approximated as

ρ ∼ (±)
m

πi

√
1
λ2

− c2, (4.24)

where we put C ≡ m2c2 for future convenience. Therefore, in this approximation, the endpoints a1, b1

of the cut C1 (ρ(a1) = ρ(b1) = 0) are

a1, b1 ∼ ±1
c
. (4.25)
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Figure 2: Path C1 Figure 3: Path C ′
1

Also, the equation of motion (4.22) can be approximated as

m

λ
+ 2πia +

∫
C1

dλ′ ρ(λ′)
λ − λ′ = 0. (4.26)

Since the solution of the classical equation of motion is given by

λ =
im

2πa
, (4.27)

it is expected that the cut C1 is placed around this point. Taking account the symmetry, most natural

possibility is that the endpoints a1, b1 = ±1/c are on the real axis and the path C1 goes beyond the origin

as in figure 2.

For later calculation, we analytically continue the eigenvalue density ρ(λ), which has non-zero value

only on the cut, to the whole complex plane and we denote it as ρ̃(z). However, if we define ρ̃(z) by the

function in (4.24) under the usual convention that the function f(z) =
√

z has cut on the negative real

axis, it changes the sign accross the imaginary axis. Since the original eigenvalue function ρ(λ) does not

have such discontinuity on C1, we rewrite (4.24) and define ρ̃(z) as

ρ̃(z) ≡ m

πiz

√
1 − (cz)2, (4.28)

so that it is smooth on the path C1. The sign was determined so that −iρ̃(z) is positive at z ∼ im/a.

At this stage, let us check the normalization condition (4.23). By using the analytically continued

function (4.28), we can change the path of the integral from C1 to C ′
1 as in figure 3 because there are no

cuts or singularity between the path C1 and C ′
1. Then, we can explicitly calculate the integral as∫

C1

dλρ(λ) =
∫ ε

−1/c

dzρ̃(z) +
∫

z=εeiθ,θ:π→0

dzρ̃(z) +
∫ 1/c

ε

dzρ̃(z)
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=
∫ 1/c

0

dz[ρ̃(z) + ρ̃(−z)] − 1
2
× 2πi Resz=0 ρ̃(z)

= −m. (4.29)

Thus, taking account the momentum conservation bgsN + m = 0, we find that the normalization (4.23)

is satisfied for arbitrary c and imposes no constraints.

We now use the equation of motion (4.26) at λ = 1/c, which is the endpoint of the cut C1.

cm + 2πia +
∫

C1

dλ′ ρ(λ′)
1/c − λ′ = 0. (4.30)

By changing the path of the integral similarly to the previous calculation and by using (4.28), we find

that the integral in the equations of motion can be explicitly calculated to give∫
C1

dλ′ ρ(λ′)
1/c − λ′ = −(1 + i)mc. (4.31)

Thus, we have determined the coefficient c as

c =
2πa

m
, (4.32)

which indicates C = (2πa)2. Thus, the spectral curve (4.20) is

R(z)2sing = m2℘(z) − (2πa)2. (4.33)

In the limit |a| � |m|, it is straightforward to check that∫
β

R(z)sing = 2πim,

∫
γ

R(z)sing = 2πia, (4.34)

where β is the small cycle around the origin while γ is the A-cycle of the torus. These are the expected

property, which the Seiberg-Witten curve should satisfy. Thus, we have shown that the spectral curve

of the generalized matrix model coincides with the Seiberg-Witten curve including the constant term in

this limit.

5 Conclusion and discussion

In this paper, we have studied the generalized matrix model, which is a Dotsenko-Fateev type integral

representation of the toric conformal block. This generalized matrix model is shown to be naturally

derived from the perturbative calculation of the n-point function of the Liouville theory on the torus.
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We have shown that the Seiberg-Witten curve of the corresponding gauge theory is derived from

the generalized matrix model as a spectral curve. We have confirmed that the constants of the spectral

curve of the generalized matrix model with n = 1 agrees with those of the Seiberg-Witten curve for

N = 2∗ theory in a large internal momentum limit. Our results suggest that the AGT relation between

the Liouville theory on a torus and the four dimensional N = 2 quiver gauge theory can be understood

through the generalized matrix model.

One of the future directions is to determine the undetermined constants in the spectral curve in more

generically. Then, we go on to the next step to calculate the prepotential and compare the results with

the conformal block or with the Nekrasov partition function.

Other direction is to consider a finite N correction. We have seen the large N limit has played an

essential role to derive the generalized matrix model from the Liouville n-point function. Thus, such an

extension seems to be quite non-trivial. In a sphere case, it is known that the matrix expression for the

conformal block is valid even for finite N [39] – [46]. So, it would be quite interesting to study whether

such an expression is possible also for the torus case. In particular, the derivation of the loop equation

would strongly help to calculate finite N partition function [52, 53, 54].

The generalized matrix model which we have considered in this paper can be seen as an elliptic

extension of the Selberg integral. The properties of this have been studied in [55, 56]. It would be

interesting to study the generalized matrix model from this direction.
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