
COHERENT ALGEBRAS
AND NONCOMMUTATIVE PROJECTIVE LINES

DMITRI PIONTKOVSKI

Abstract. A well-known conjecture says that every one-relator group is co-

herent. We state and partly prove an analogous statement for graded associa-
tive algebras. In particular, we show every that Gorenstein algebra A of global

dimension 2 is graded coherent.

This allows us to define a noncommutative analogue of the projective line P1

as a noncommutative scheme based on the coherent noncommutative spectrum

qgr A of such an algebra A, that is, the category of coherent A-modules modulo

the torsion ones. This category is always abelian Ext -finite hereditary with
Serre duality, like the category of coherent sheaves on P1. In this way, we

obtain a sequence P1
n (n ≥ 2) of pairwise non-isomorphic noncommutative

schemes which generalize the scheme P1 = P1
2.

1. Introduction

We consider N-graded algebras of the form A = A0 ⊕A1 ⊕ . . . over a fixed field
k. All our algebras are assumed to be connected (that is, A0 = k) and finitely
generated. All vector spaces and modules are assumed to be Z-graded, all their
elements and maps of them are homogeneous.

Recall that an algebra (respectively, a group) is called coherent if every its finitely
generated ideal (subgroup) is finitely presented, see Definition 2.1 below. A well-
known conjecture says that every one-relator group is coherent [Ba]. An analogous
statement for graded algebras seems to be true as well.

Conjecture 1.1. Every graded algebra with a single defining relation is graded
coherent.

(For the definition of coherence, see subsection 2.1 below.) We prove this con-
jecture provided that the relation is quadratic.

Theorem 1.2 (Theorem 4.1). Every graded algebra defined by a single homoge-
neous quadratic relation is graded coherent.

Note that there are non-coherent quadratic algebras with two relations, for ex-
ample, the algebras k〈x, y, z, t|tz − zy, zx〉 [Pi3, Prop. 10] or even k〈x, y, z|yz −
zy, zx〉 [Po, Example 2].

Recall [Z2] that a graded algebra A is called regular if it has finite global dimen-
sion (say, d) and satisfies the following Gorenstein property:

Ext i
A(kA, kA) ∼=

{
0, i 6= d
k[l] for some l ∈ Z, i = d.
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The most important class of regular algebras is the class of Artin-Shelter (AS) reg-
ular algebras, that is, the ones of polynomial growth. A well-known conjecture [AS]
claims that all these algebras are Noetherian.

The following conjecture is due to A. Bondal (unpublished).

Conjecture 1.3. Every regular algebra is graded coherent.

Regular algebras of global dimension 2 have been described in [Z2]. All these
algebras are one-relator. If such an algebra is generated in degree one, then it is
quadratic, but in general such algebra is only ‘generalized quadratic’ — like, for
example, the algebra k〈x, y|xy − yx = x3〉.

Theorem 1.4 (Theorem 4.3). Every regular algebra of global dimension two is
graded coherent.

Two abelian categories may naturally be associated to any graded coherent al-
gebra A, that is, the category cmodA of finitely presented (=graded coherent)
right graded A-modules and its quotient category qgr A = cmodA/ tails A by the
category tails A of finite-dimensional modules. This category qgrA plays a role of
projective spectrum for noncommutative coherent algebras [Po, BVdB], in general-
ization of the well-known construction (due to Artin and Zhang) of noncommutative
schemes in the Noetherian case [AZ]. In this approach, a noncommutative projec-
tive scheme is a triple

(qgrA,A, s),

where A is a coherent algebra, noncommutative structural sheaf A is the the image
of A in qgrA, and s is the autoequivalence of qgrA induced by the shift of grading.
Some details will be given in the subsection 2.2.

The noncommutative schemes of (Koszul) Noetherian (AS-)regular algebras of
global dimension n + 1 are usually considered as noncommutative generalizations
of Pn. However, in the case of the projective line P1, this Noetherian construction
does not give any more than the standard commutative P1 again. On the other
hand, there are other Noetherian abelian categories whose properties are close to
the ones of the category of coherent sheaves on P1 (that is, they are hereditary Ext -
finite with Serre duality) [RVdB], but the “coordinate rings” of the corresponding
noncommutative schemes are far from being connected graded, in contrast to the
coordinate ring k[x1, x2] of P1.

Here we introduce another noncommutative generalization of Pn, that is, the
noncommutative projective schemes corresponding to (degree-one generated) co-
herent regular algebras of dimension n + 1. We show in Proposition 5.1 that the
corresponding qgr A is an ext-finite category of cohomological dimension n, and the
algebra A (its coordinate ring) may be recovered by this category via a suitable
”representing functor”. In the case of the projective line P1, we obtain an infinite se-
quence {P1

n}n≥2 of pairwise non-isomorphic noncommutative schemes analogous to
P1 = P1

2, where the coordinate ring of each P1
n is a connected graded 2-dimensional

algebra with n generators. The corresponding categories of coherent sheaves are
Ext -finite hereditary and satisfy Serre duality and BGG-correspondence. This is
shown in the following

Proposition 1.5. Let A be a degree-one generated regular algebra of global dimen-
sion 2 with n ≥ 2 generators.
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(a) The categories cmodA and qgrA and the noncommutative scheme P1
n =

P1
n(k) constructed by A are defined (up to isomorphisms) by the ground field k and

the number n only, and do not depend on the algebra A itself. All these noncom-
mutative schemes P1

n are pairwise non-isomorphic, with P1
2
∼= P1.

(b) The category qgrA is Ext -finite hereditary with Serre duality. If n ≥ 3, then
it is not Noetherian, hence it does not belong to the classification in [RVdB].

(c) The category qgrA is derived equivalent to the category of finite B-modules
modulo projectives, where B is a commutative Artinian algebra
k[x1, . . . , xn]/(xixj , x

2
i − x2

j |i 6= j).

This paper is organized as follows. In section 2, we give a background on coherent
algebras, regular algebras of global dimension 2, and (relative) noncommutative
complete intersections. In section 3, we give the following criterion for coherence: if
an algebra B = A/I is a relative noncommutative complete intersection of A (that is,
the ideal I is generated by a strongly free set), and B is right Noetherian, then A is
graded coherent. In the next section 4, we apply the above criterion in order to prove
Theorems 1.2 and 1.4. Finally, in section 5 we consider noncommutative schemes
associated to coherent regular algebras. In particular, we prove Proposition 1.5.

Acknowledgement. I am grateful to MPIM Bonn and IHES for their hospitality
during preparation of this paper. Also, I am grateful to Alexander Polishchuk for
a helpful conversation.

2. Backgroung

2.1. Coherence. A finitely generated (f. g.) right module M is called coherent if
every its finitely generated submodule is finitely presented (that is, presented by a
finite number of generators and relations). Analogously, a graded f. g. module is
called graded coherent if every its graded f. g. submodule is finitely presented. In
fact, this notion had been introduced by Serre [S] in a more general case of coherent
sheaves.

Theorem–Definition 2.1. A (graded) algebra A is called (graded) right coherent,
if the following equivalent conditions hold:

(i) every (homogeneous) finitely generated right-sided ideal in A is finitely pre-
sented, that is, A is (graded) coherent as a right module over itself;

(ii) every finitely presented (graded) right A-module is (graded) coherent;
(iii) all finitely presented (graded) right A-modules form an abelian category.

The proof of equivalence may be found in [C] (see also [F]). For example, every
right Noetherian algebras are right coherent, as well as free associative algebras and
path algebras.

Because all our algebras and modules are graded, by the word coherent we will
mean graded right coherent algebras and modules. The idea of noncommutative
geometry based on such algebras will be explained in the next subsection.

2.2. Noncommutative schemes. Let A be a graded algebra. By Gr A (respec-
tively, cmodA) we denote the abelian category of graded (resp., coherent) A-
modules. Let Tors A (resp., tors A) be the category of torsion A-modules (resp.,
finite dimensional modules), where a module M is called torsion if for every x ∈ M
there is n > 0 such that xA≥n = 0. Note that Tors A is a Serre subcategory of
GrA; moreover, if A is coherent, then tors A is also a Serre subcategory of cmodA.
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The quotient abelian categories QgrA = Gr A/ Tors A and qgrA = cmodA/ tors A
(for coherent A) play roles of the categories of (quasi)coherent sheaves on the pro-
jective scheme associated to A. Due to classical Serre theorem [S], these categories
of modules are indeed equivalent to the respective categories of sheaves provided
that A is commutative.

The image A of AA in QgrA (or in qgrA) plays the role of the structure sheaf,
and the the degree shift s : M 7→ M [1] plays a role of polarization. Thus, a
noncommutative scheme is a triple

X = (C,A, s),

where C is a suitable k-linear abelian category, A is an object, and s is an autoe-
quivalence of C. For C = Qgr A with an arbitrary connected graded algebra A,
this definition is due to Verevkin [V] (a general scheme). For C = qgrA (coherent
scheme), this definition is due to Artin and Zhang [AZ] in the case of noetherian A
(noetherian scheme) and to Bondal and Van den Bergh [BVdB] and Polishchuk [Po]
in a more general setting of coherent algebra A.

According to [AZ], a morphism f : X → X ′ of two schemes X = (C,A, s) and
X ′ = (C′,A′, s′) is a k-linear functor f : C → C′ such that f(A) is isomorphic to A′
and there is an isomorphism of functors fs ∼= s′f . A map of schemes is defined as
an isomorphism class of morphisms. Such a morphism f (or a respective map) is
called an isomorphism if it is an equivalence of categories f : C ∼= C′.

Given such a triple X = (C,A, s), we can apply an analogue of the Serre functor
to define a connected graded algebra A := Γ≥0(X) =

⊕
i≥0 Hom(A, si(A)) with

the multiplication a · b := sj(a) ◦ b for a : A → si(A), b : A → sj(A). In some cases,
this algebra A is coherent and the scheme X itself is isomorphic to the scheme
(qgrA,A, s). This happens if the autoequivalence s is ample [AZ], that is, the
shifts of A form an ample sequence in C [Po].

If two general schemes X and Y are isomorphic, then the algebra Γ≥0(Y ) is iso-
morphic to a Zhang twist of Γ≥0(X); on the other hand, if a coherent algebra B is a
Zhang twist of an algebra A, then the coherent (and general) schemes of these alge-
bras are isomorphic [Z1, Th. 1.4]. Here an algebra B is called a Zhang twist of A if
there are k-linear bijections τi : Ai → Bi, i ≥ 0 such that τm+n(yz) = τm(y)τm+n(z)
for homogeneous y ∈ y ∈ An, z ∈ A [Z1, Prop. 2.8]. For example, the projective
scheme of the quantum polynomial algebra k〈x, y|xy = qyx〉 is isomorphic to P1

for every q 6= 0.
Let A be a graded algebra, let M,N ∈ GrA be two modules, and let M and N

be their images in Qgr A. Let Hom(M,N ) :=
⊕

i∈Z Hom(M, siN ), and let Ext
and Ext be the derived functors of Hom and Hom. Because the obvious functor
qgrA → QgrA is fully faithful for a coherent algebra A, the functors Ext and Ext
on the category qgrA are restrictions of the respective functors on QgrA.

Following [V, AZ], we also define the cohomologies of objects of Qgr A as
H i(M) = Ext i(A,M) and Hi(M) = Ext i(A,M) = lim

n→∞
Ext i

A(A≥n,M). Ac-

cording to [BVdB, Lemma 4.1.6], we have Hi(M) ∼= lim
n→∞

Ext i
A(A≥n,M) and

H i(M) ∼= lim
n→∞

Ext i
A(A≥n,M)0.

2.3. Regular algebras of global dimension 2. Let us recall some results of [Z2].
Let V be a vector space. A rank of an element b ∈ T (V ) is defined as the minimal
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number r of elements l1, . . . , lr ∈ V such that b = l1a1 + · · · + lrar for some
a1, . . . , ar ∈ T (V ).

Theorem 2.2 ([Z2]). A graded algebra A is regular of global dimension 2 if and
only if it is isomorphic to the algebra k〈x1, . . . , xn〉/(b), where rank b = n > 1, or,
equivalently, the following conditions hold:

1. n ≥ 2;
2. 1 ≤ deg x1 ≤ · · · ≤ deg xn with deg b = deg xi + deg xn+1−i for all i;
3. for some graded automorphism σ of the free algebra k〈x1, . . . , xn〉 we have

b =
∑n

i=1 xiσ(xn+1−i).
In this case, the algebra A is Noetherian if and only if n = 2.

In particular, ir follows that a regular two-dimensional algebra is Koszul if and
only if it is degree-one generated.

2.4. (Relative) noncommutative complete intersections. In the next defini-
tion, we unite several statements from [A]. For discussions on strongly free sets as a
noncommutative analogue of regular sequences and related topics, see also [Pi2, U].
Recall that a relative complete intersection, from an algebraic point of view, is a
quotient of some graded or local commutative ring by an ideal generated by a reg-
ular sequence. Here we introduce relative noncommutative complete intersection
(RNCI) as a quotient of a graded algebra by an ideal generated by a strongly free
set. It is analogous to the term ‘noncommutative complete intersection’, that is,
RNCI of a free algebra [A, G, EG].

Theorem–Definition 2.3 ([A]). Suppose that a set X of homogeneous elements
in a graded algebra A minimally generates a two-sided ideal I. Let B = A/I be
a quotient algebra. The set X is called strongly free, if the following equivalent
conditions hold:

(i) there are isomorphisms of graded vector spaces

TorA
i (k, k) ' TorB

i (k, k) for all i ≥ 3 and

TorA
1 (k, k)⊕ TorB

2 (k, k) ' TorB
1 (k, k)⊕ TorA

2 (k, k)⊕ kX;
(ii) there is an isomorphism of graded vector spaces

B〈X〉 ' A,

where B〈X〉 = B ∗ k〈X〉 is a free product of B and a free algebra on X;
(iii) the Shafarevich complex Sh (X, A) is acyclic in positive degrees;
In this situation, we refer to the algebra B = A/I as relative noncommutative

complete intersection (RNCI) of the algebra A.

In particular, it follows that if B = A/I and there are isomorphisms TorA
i (k, k) '

TorB
i (k, k) for all i ≥ 2, then B is an RNCI of A.

3. A criterion for coherence

Lemma 3.1. Let X be a strongly free set in a graded algebra A and let I be an
ideal generated by X. Then I is free as right (and left) A-module.

More precisely, let B = A/I, and let B′ be any pre-image of B in A with the
natural isomorphism of vector spaces B′ ∼= B. Then I as a free right A-module is
minimally generated by the vector space B′X.
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Proof. Obviously, I = B′XA. We have to show that the natural epimorphism
γ : B′X ⊗k A → B′XA is an isomorphism. Following [A], there is an isomorphism
of graded vector spaces α : B〈X〉 → A such that α(B) = B′, α(BXB〈X〉) = I
(this follows also from the property (ii) of Theorem 2.3). The right B〈X〉-module
in the last equality is free, so, we get the desired isomorphisms of graded vector
spaces B′XA = I ∼= BXB〈X〉 = B′X ⊗ B〈X〉 ∼= B′X ⊗k A. Therefore, the map
γ is an isomorphism of graded vector spaces, hence it is also an isomorphism of
modules. �

The next statement is similar to [Po, Prop. 3.3].

Proposition 3.2. Let B = A/I, where the algebra B is right Noetherian and the
ideal I is free as a left A-module. Then the algebra A is right graded coherent.

Proof. Let J be a proper finitely generated homogeneous right-sided ideal in A. We
have to show that J is finitely presented, that is, dim k TorA

2 (A/J, k) < ∞.
Consider a standard spectral sequence E2

p,q = TorB
p (TorA

q (A/J,B), k) =⇒
Tor∗(A/J, k). Let Nq = TorA

q (A/J,B). Because the left module AB has projective
dimension at most one (since it admits a free resolution 0 → I → A), we have
Nq = 0 for q > 1, hence E2

p,q = 0 for q > 1. The right B-module N0 = A/J ⊗A B
is obviously finitely generated. Moreover, the short exact sequence

0 → J → A → A/J → 0

gives, after tensoring by B, an exact sequence

0 → N1 → J ⊗
A

B → A ⊗
A

B → N0 → 0.

Since N1 is a submodule of a finitely generated B-module J ⊗
A

B, it is finitely

generated as well. Therefore, we have dim kE2
p,q = dim k TorB

p (Nq, k) < ∞ for all
p, q. Thus, dim k TorA

2 (A/J, k) ≤ dim kE2
2,0 + dim kE2

1,1 < ∞. �

Corollary 3.3. Let B be an RNCI of a graded algebra A. If the algebra B is right
Noetherian, then the algebra A is right graded coherent.

4. One-relator quadratic algebras

Theorem 4.1. Every algebra defined by a single homogeneous quadratic relation
is graded coherent.

Proof. Let b ∈ V ⊗ V be a quadratic element in the free algebra T (V ), where
dim V = n, and let A be a quotient algebra of T (V ) by an ideal id (b) generated
by b. If n = 1, then the algebra A is finite-dimensional, hence Artinian, hence
Noetherian, hence coherent. If n = 2, then either A is Noetherian or b has the form
b = xy, where x, y ∈ V [AS, p. 172]. In the last case, A is coherent by [Pi1, Th. 2].

Consider the case n ≥ 3. If rank b = 1, then b = xy is a monomial on generators,
and the algebra A is coherent, again by [Pi1, Th. 2]. So, we can assume that
rank b ≥ 2.

Lemma 4.2. Let V be an n-dimensional vector space with n ≥ 2, and let b ∈
V ⊗ V . Given an (n− 2)-dimensional subspace W ⊂ V , let b′ be the image of b in
(V/W ) ⊗ (V/W ). Then either b = xy for some x, y ∈ V or there exists W such
that rank b′ = 2.
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Proof of Lemma 4.2. By the induction on n, we can assume that for every x ∈ V
such that the image b′′ of b in (V/kx)⊗ (V/kx) has rank ≤ 1. Let {x1 = x, . . . , xn}
be a basis of V .

If, for some x, we have b′′ = 0, then b = αx2 + xl1 + l2x with li ∈
k{x2, . . . , xn}, α ∈ k. If rank b ≥ 2, then l1 6= 0 and l2 6= 0. Now, if l2 6= βl1
for β ∈ k, then the image b = αx2 +xl1 + l1x has rank 2 — a contradiction. Hence,
l2 = βl1 for some 0 6= β ∈ k, hence b = αx2 + xl1 + βl1x has rank two.

So, we can assume that rank b′′ = 1 for every x. Then b′′ = uv for some nonzero
u, v ∈ k{x2, . . . , xn}, hence b = uv + αx2 + xl1 + l2x with li ∈ k{x2, . . . , xn}, α ∈ k.
We can assume that either (1) u = x2, v = x3 or (2) u = v = x2.

Suppose that l1 6= 0 and l2 6= 0. The image of b under the factorization by l1
has unit rank, hence l2 = βu for some β ∈ k; analogously, l1 = γv with γ ∈ k.
In the case (1), let W = k{x2 − x3, x4, . . . , xn}; in the case (2), let us put W =
k{x3, . . . , xn}. In both cases, the image b′ of b in (V/W ) ⊗ (V/W ) has the same
rank as b.

Now, it remains to consider the case l2 = 0 (the case l1 = 0 is analogous). Then
b = uv + x(αx + l1). If α = 0 and l1 = 0, then rank b = 1, and there is nothing
to prove. In the case (1), the image of b under the factorization by (x2 − x3) must
have rank one, hence α = 0, l1 = λv for some λ ∈ k, and rank b = 1. In the case
(2), because either l1 = 0 or the the image of b under the factorization by l1 has
unit rank, we have l1 = λx2 for some λ ∈ k. Then b depends on the variables x1

and x2 only, hence we may put W = k{x3, . . . , xn}. �

Recall that rank b ≥ 2. Let x1, . . . , xn be a basis of V such that W = k{xi|i =
3 . . . n} be as in this Lemma. Then the image b′ of b in (V/W ) ⊗ (V/W ) =
k{x1, x2}⊗2 has rank 2. By Theorem 2.2, the algebra B = A/id (x3, . . . , xn) =
k〈x1, x2|b′ = 0〉 is Noetherian. Now, the set X = {x3, . . . , xn} is strongly free
in the algebra A, because A/id (X) = B, while TorB

1 (k, k) ⊕ kX ∼= TorA
1 (k, k),

TorB
2 (k, k) ∼= TorA

2 (k, k) ∼= kb, and TorB
i (k, k) = TorA

i (k, k) = 0 for all i ≥ 3. Thus,
it follows from Corollary 3.3 that the algebra A is coherent. �

Theorem 4.3. Let A be a regular algebra of global dimension 2. Then A is graded
coherent.

Proof. According to Zhang’s Theorem 2.2, the algebra A has the form A =
k〈x1, . . . , xn〉/(b), where n ≥ 2, 1 ≤ deg x1 ≤ · · · ≤ deg xn with deg b =
deg xi + deg xn+1−i for all i, and for some graded authomorphism σ of the free
algebra k〈x1, . . . , xn〉 we have b =

∑n
i=1 xiσ(xn−i). If deg x1 = · · · = deg xn, then

b ∈ k{x1, . . . , xn}⊗2, hence A is coherent by Theorem 4.1.
So, we can assume that deg x1 = · · · = deg xp < · · · < deg xn−p+1 = · · · =

deg xn. Because the definition of regular rings is left-right symmetric, it follows that
there is another graded automorphism τ of the free algebra k〈x1, . . . , xn〉 such that
b =

∑n
i=1 τ(xn−i)xi. Let b̃ =

∑n
i=n−p+1(xiσ(xn−i) + τ(xn−i)xi). Obviously, the

element b− b̃ does not depend on the variables xn−p+1, . . . , xn, hence rank (b− b̃) ≤
n − p (where rank is defined as the minimal number r of elements l1, . . . , lr ∈
k{x1, . . . , xn} such that b− b̃ = l1a1 + . . . lrar for some a1, . . . , ar ∈ k〈x1, . . . , xn〉).
Now, we are interested in rank b̃.
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Consider the case rank b̃ ≤ 1. Then rank b ≤ rank (b − b̃) + rank b̃ ≤ n − p + 1.
Since rank b = n by Theorem 2.2, we have p = 1. Then b̃b = xnσ(x1) + τ(x1)xn =
αxnx1 + βx1xn for some nonzero α, β ∈ k. Thus, rank b̃ = 2 — a contradiction.

So, rank b̃ ≥ 2. Note that b̃ ∈ V ⊗ V , where V = k{x1, . . . , xp, xn−p+1, . . . , xn}.
According to Lemma 4.2, there is a (2p − 2)-dimensional subset W in V (say,
W = k{x2, . . . , xp, xn−p+1, . . . , xn−1}) such that the rank of the image b′ of b̃
in (V/W ) ⊗ (V/W ) is 2. It follows from Theorem 2.2 that the algebra B =
k〈x1, xn|b′〉 = A/id (x2, . . . , xn−1) is Noetherian and has global dimension 2. By
the same arguments as in the proof of Theorem 4.1, the set X = {x2, . . . , xn−1} is
strongly free in A. In the view of Corollary 3.3, we conclude that the algebra A is
coherent. �

5. Non-noetherian P1

A module M over an algebra R is said to satisfy condition χ if dim kExt i(k,M) <
∞ for all i ≥ 0, see [AZ]. A coherent algebra A said to satisfy χ if every finitely
presented A-module M satisfy χ.

The following proposition is analogous to [AZ, Th. 8.1]. The proof is more or
less analogous too.

Proposition 5.1. Let A be a graded coherent regular algebra of global dimension
d ≥ 0. Then

(1) A satisfies the condition χ;
(2) the algebra A may be recovered from its noncommutative scheme projA :=

(qgrA,A, s) as
A ∼= Γ≥0(projA);

(3) the category qgrA is Ext -finite and has cohomological dimension d− 1.

Notice that the condition (2) here means that s is ample [AZ], that is, that the
shifts of A form an ample sequence in qgrA [Po].

Proof. Using the induction on the projective dimension p of a coherent module M ,
we will show that dim kExt i(k,M) < ∞ for all i ≥ 0. If p = 0, then M is a
finitely generated free A-module, so, all Ext i(k,M) are bounded by the Gorenstein
condition. If p > 0, then there is a short exact sequence (presentation)

(5.1) 0 → N → F → M → 0

with projective module P , where gl. dim N < p. By the induction assumption, the
condition χ holds for P and N ; by the exact triangle of Ext s, it holds for M as
well.

(2). Let M be an image of some M ∈ cmod A in qgrA. For every n > 0, the
short exact sequence 0 → A≥n → A → A/A≥n → 0 gives an exact sequence

0 → Hom
A

(A/A≥n, A) → A → Hom
A

(A≥n, A) → Ext 1
A(A/A≥n, A) → 0.

Because A is regular, the left and right terms are zero. Hence A ∼= HomA(A≥n, A) ∼=
lim

n→∞
HomA(A≥n, A) = H0(A).

(3). Notice that Hi(A) = lim
n→∞

Ext i+1
A (A≥n, A) for i ≥ 1, hence Hi(A) = 0 for

i 6= 0, d− 1 and Hd−1(A) = A∗[l] for some l ∈ Z. It follows that cd(qgrA) ≥ d− 1
and that the cohomologies H i(A) are finite-dimensional.
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Moreover, Hi(M) = lim
n→∞

Ext i
A(A≥n,M) = 0 for all i ≥ d. If pdM = 0,

then M =
⊕

i A[li] is a finitely generated free module, hence Ext i(A[l],M) is
finite-dimensional for every i ≥ 0, l ∈ Z. By the induction on pdM , it follows
from the Ext (A[l],−) triangle for the exact sequence (5.1) that the vector spaces
Ext i(A[l],M) are finite-dimensional for all i, l,M .

Let M′ be an image in qgrA of another coherent A-module M ′. If M ′ =⊕t
i=0 A[li] is a free module, we can apply the functor Ext i(−,M) to the short exact

sequence 0 →
⊕t−1

i=0 A[li] → M′ → A[l] → 0. The derived exact triangle shows
that the vector space Ext i(M′,M) is finite-dimensional for every i and vanishes
for i ≥ d. For non-free modules M ′, we proceed by induction on pdM ′. Applying
the same functor to the short exact sequence 0 → N → F → M ′ → 0 analogous
to (5.1), we deduce that the vector spaces Ext i(M′,M) are finite-dimensional for
all i and vanish for i ≥ d as well. It follows that the cohomological dimension of
qgrA is d− 1 and that the category qgrA is Ext -finite. �

Proof of Proposition 1.5. According to [Z1, Th. 1.4] (see also the subsection 2.2
above), the coherent scheme of A is independent (up to isomorphism) on the choice
of the automorphism σ in Theorem 2.2. On the other hand, if the regular algebras
A and A′ of global dimension two have different numbers of generators (say, m and
n), then they are not twists of each other because τ1 : A1 → A′1 cannot be an
isomorphism of vector space. This proves (a).

Let us give also a direct proof of the last statement. Let be A and A′ the images
of A and A′ in respective qgr, and let s and s′ be the shifts if grading in these qgr.
Assume that the schemes P1

n and P1
m with the underlying algebras A and A′ are

isomorphic. By definition [AZ], this means that there is an equivalence of categories
F : qgrA → qgrA′ such that F (A) ∼= A′ and s′F ∼= Fs. Then F maps the exact
sequence

0 → s2A → sAn → A→ 0

to an exact sequence
0 → s′2A′ → s′A′n → A′ → 0.

Taking the Euler characteristics for the second exact sequence, we deduce that
the following equality of formal power series holds for some polynomial p(z) ∈
Z[z] (because a pre-image of this sequence in cmodA′ must be exact up to finite-
dimensional modules):

A′(z)(1− nz + z2) = p(z),

where A′(z) :=
∑

i≥0(dim A′i)z
i = (1−mz + z2)−1. It follows that m = n.

(b) The Serre duality for qgrA follows from [MV].The hereditarity (that is, that
qgrA has cohomological dimension ≤ 1) and Ext -finiteness follows from Proposi-
tion 5.1.

If n ≥ 3, then A is not Noetherian by Theorem 2.2. Let us show that the image
A of A in qgrA is not Noetherian as well. In the view of (a), we may assume that
b = x1x2 + x2x3 + · · ·+ xnx1. Then b forms a Groebner basis of the ideal id (b) ⊂
k〈x1, . . . , xn〉 w. r. t. an arbitrary deg-lex order, therefore, there is a linear basis of
A consisting of the monomials on the variables x1, . . . , xn which do not contain a
subword x1x2. Now, it is easy to see that the monomials x1x3, x

2
1x3, . . . , x

t
1x3 form

a right Groebner basis of the right-sided ideal It ⊂ A generated by them. It follows
that every quotient module It/It−1 is infinite-dimensional (because it contains a
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sequence of linearly independent monomials xt
1x

s
3, s ≥ 1), hence the image in A of

the chain I1 ⊂ I2 ⊂ . . . is strictly ascending. This proves (b).
The statement (a) allows us to choose any particular b of rank n; let us choose

b = x2
1 + · · · + x2

n. Then we have B = A! — a Koszul dual algebra. Now, the
claim (c) follows from the Koszul duality and a noncommutative analogue of the
Bernstein-Gelfand-Gelfand correspondence, see [MVS, Prop. 4.1 and Cor. 4.5]. �
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