BOUNDS FOR THE DIMENSIONS
OF p-ADIC MULTIPLE L-VALUE SPACES

GO YAMASHITA

ABSTRACT. First, we will define p-adic multiple L-values (p-adic MLV’s), which are general-
izations of Furusho’s p-adic multiple zeta values (p-adic MZV’s) in Section 2.

Next, we prove bounds for the dimensions of p-adic MLV-spaces in Section 3, assuming results
in Section 4. The bounds come from the rank of K-groups of ring of S-integers of cyclotomic
fields, and these are p-adic analogues of Goncharov-Terasoma’s bounds for the dimensions of
(complex) MZV-spaces and Deligne-Goncharov’s bounds for the dimensions of (complex) MLV-
spaces. In the case of MLV-spaces, the gap between the dimensions and the bounds is related
to spaces of modular forms similarly as the complex case.

In Section 4, we define the crystalline realization of mixed Tate motives and show a compar-
ison isomorphism, by using p-adic Hodge theory.
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1. INTRODUCTION.

For the multiple zeta values (MZV'’s)

(kr, ..

1 . .
C(kl, RN k’d) = Z kl—ngd (: (Clalzn—ld leh__.,kd(Z))

ny<--<ng nl
ka1 > 1, kg > 2), Zagier conjectures the dimension of the space of MZV’s
Zw = <((k51,...,k3d> | dZ 1,k1+---+kd:w,k:l,...,k:d_l Z 1,]€d22>@ CR,

and Z, := Q (Here, (--- ) means the Q-vector space spanned by - --) as follows.
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Conjecture 1. (Zagier) Let D,y3 = Dy + Dy, Dy = 1, D1 = 0, Dy = 1 (that is, the

generating function )~  D,t™ is ). Then, for w > 0 we have

1—¢2—¢3
dimQ Zw = Dw.

Terasoma, Goncharov, and Deligne-Goncharov proved the upper bound:

Theorem 1.1. (Terasoma [T], Goncharov [G1], Deligne-Goncharov [DG]) For w > 0, we have
dimg Z,, < D,.
U

Deligne-Goncharov also proved an upper bound for dimensions of multiple L-value (MLV)
spaces. ([DG])

On the other hand, Furusho defined p-adic MZV’s [Ful] by using Coleman’s iterated integral
theory:

Glky, ... kg) == lim 'Lizl kd(z)

Cpoz—1 77

where Li* is the p-adic multiple polylogarithm defined by Coleman’s iterated integral, and a
is a branching parameter (For the notations lim’, see [Ful, Notation 2.12]). For k4 > 2, RHS
converges, and the limit value is independent of @ and lands in Q, ([Ful, Theorem 2.13, 2.18,
2.25]). Put

Zgj = <Cp(l{}1,...,kd)‘dz1,]{1+"'+kd:w,k’1,...,kd,1Z1,kd22>(@c@p,

and Z! := Q. Note that for k; = 1, p-adic MZV’s may converge, however, these are Q-linear
combinations of p-adic MZV’s corresponding to the same weight indices with kg > 2 (See, [Ful,
Theorem 2.22]). The following conjecture is proposed.

Conjecture 2. (Furusho-Y.) Let dn 3 = dpy1 +dy, dg = 1, dy = 0, dy = 0 (that is, the
1—t?
1—2— 3

dimg 27 = d,.

generating function » > d,t" is ). Then, for w > 0 we have

From the fact (,(2) = 0 and the motivic point of views (see, Remark 3.7, p-adic analogue
of Grothendieck’s conjecture about an element of a motivic Galois group (Conjecture 3), and
Proposition 3.12), it seems natural to conjecture as above.

Remark 1.2. The conjecture implies that dimg Z? is independent of p. On the other hand,
(»(2k + 1) # 0 is equivalent to the higher Leopoldt conjecture in the Iwasawa theory. For
a regular prime p, or a prime p satisfying (p — 1) | 2k, we have (,(2k + 1) # 0. However,
it is not known if (,(2k + 1) is zero or not in general. Thus, it is non-trivial that dimg Z2
is independent of p (See also [Ful, Example 2.19 (b)]). It seems that the above conjecture
contains the “Leopoldt conjecture for higher depth”. 0

For Conjecture 2, we will prove the following result.

Theorem 1.3. For w > 0, we have

dimg Z2, < d,,.
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We can also define p-adic multiple L-values for N-th roots of unity (i,...,(yand ky, ..., kg >
1, (kg,Cq) # (1,1) and a prime ideal p t N above p in the cyclotomoic field Q(uy),

Lyl kaiCroe o Ca) € Qi

by Coleman’s iterated integral as Furusho did for MZV’s (See, Section 2.1). Here, Q(uy), is
the completion of Q(uy) at the finite place p. Put

ZfU[N] ::<Lp(k17'"7kd;<17"')Cd) | dZ 17k1+"'+kd:wak17"')kd2 17
G = =60 =1, (ka, Ca) # (1, 1)) € Q(un)p,
and Z}[N] := Q.

This ZP[1] is equal to the above ZP. We will also prove bounds for the dimensions of p-adic
MLV’s.

Theorem 1.4. For w > 0, we have
dimg Z° [N] < d[N]..

Here, d[N],, is defined as follows:

(1) For N = 1, d[lyes = dlus + d[1], (n > 0), d{1]o = 1, d[1], = 0, d[l], = 0, that is
— 2

T p (This d[1],, is equal to the above d,).

(2) For N =2, d[2],42 = d[2]ns1 +d[2], (n > 1), d[2]o = 1, d[2]; = 1, d[2]s = 1, that is,
2

the generating function is

the generating function is

—t— 12
(3) For N >3, d[N]pss = (@ + V) d[Nlpsi1 — (v — 1)d[N], (n>0), d[N]o = 1, d[N]; =
1—
@ + v — 1, that s, the generating function is ! . Here,

2
©(N) :=#(Z/NZ)*, and v is the number of prime divisors of N.

1—<M+u)t+(u—1)t2

O

Remark 1.5. In the proof of the above bounds, we use some kinds of varieties, which are
related to the algebraic K-theory. For N > 4, the above bounds are not best possible in
general, because in the proof, we use smaller varieties in general than varieties, which give the
above bounds. The gap of dimensions is related to the space of cusp forms of weight 2 on
X1(N) if N is a prime. See also [DG, 5.27][G2]. O

First, we define the p-adic MLV’s, twisted p-adic multiple polylogarithms (twisted p-adic
MPL’s), and p-adic Drinfel’d associator for twisted p-adic MPL’s in Section 2. Next, assuming
results of Section 4, we will show bounds for dimensions of p-adic MLV-spaces in the sense of
Deligne [D1][DG], by using the motivic fundamental groupoid constructed in [DG] in Section
3.2. Lastly, we show bounds for dimensions of Furusho’s p-adic MLV-spaces, by comparing the
two p-adic MLV-spaces in the Tannakian interpretation in Section 3.3. In Section 4, we con-
struct the crystalline realization of mixed Tate motives, and prove a comparison isomorphism,
by using p-adic Hodge theory.

We fix conventions. We use the notation ~'7 for a composition of paths, which means that -
followed by 4. Similarly, we use the notation ¢’'g for a product of elements in a motivic Galois
group, which means that the action of g followed by the one of ¢'.
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2. p-ADIC MULTIPLE L-VALUES.

In this section, we define twisted p-adic multiple polylogarithms (twisted p-adic MPL), p-
adic multiple L-values (p-adic MLV), p-adic KZ-equation for twisted p-adic MPL, and p-adic
Drinfel’d associator for twisted p-adic MPL, similarly as Furusho’s definitions in [Ful]. We
discuss the fundamental properties of them.

Fix a prime ideal p in Q(un), and an embedding ¢, : Q(pn) — C,. Put S :={0,00} U un,
Un = Pgyup \ S, and Uy := Uy ®g(uy) Cp (The variety Uy is defined over Q, however, we
use U ~ over Q(uy) for the purpose of bounding dimensions in the next section).

2.1. The Twisted p-adic Multiple Polylogarithm. We use the same notations as in [Ful]:
the tube |2[C P of z € (Un)r,(F,), the algebra A(U) of rigid analytic functions on U, and

the algebra A%, of Coleman functions on Uy with a branching parameter a.
Definition 2.1. For p ¥ N, ky,..., kg > 1, and (;...,(4y € uy, we define the (one variable)

twisted p-adic multiple polylogarithm (twisted p-adic MPL) Li{y, . . . (2) € A%, attached
to a € C, by the following integrals inductively:

o dt
Lif1i¢) (2) := —log" (¢ —z:Z/—,
(e (2) g"(tp(C1) — 2) T
z 1 o
.a A ;Ll(kl ..... (kg—1)iC1yeens gd)(t)dt kg # 1,
Ll(kl ----- ka;Cyeens Cd)(z) = z 1 .
/0' le(lﬂ ..... k(d—1);C17~--,Cd,1)(t)dt kd = ]_
Here, log” is the logarithm with a branching parameter a, which means log”(p) = a. =

Remark 2.2. For |z|, < 1, it is easy to see that

Z (Cln1cn1 nz nd 1— nd)z d.

k1 kd
Ny =Ny

-a .
Ll(kl ~~~~~ ka;C1ye-5Ca) <Z> -
0<n1 < <nyg

0

-----------

A(Joo[)[log"t7"], and Lify, ke, .. gd)( )h w(Ol € A(]Lp( )[ [10g (Z—bp(é))] for C € jiy.

Proposition 2.3. Fix ky,..., kg > 1, and N-th roots of unity (i,...,(q € un. Then the
convergence of(clim llLi?,Cl kaiCa Cd)(z) is independent of branches a € C,. Moreover, if it
A ki

converges in C,, the limit value is independent of branches a € C, and lands in Q(un), (For
the notation lim’, see [Ful, Notation 2.12]).

Proof. The same as [Ful, Theorem 2.13, Theorem 2.25]. O
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Definition 2.4. When the limit limg o, Lify, 4. - (2) converges, we define the corre-
sponding p-adic multiple L-value to be its limit value:

Ly(k1, - ka; G e, Ca) ::Cléiril,Li((Lk1 ,,,,, kaicroCa) (Z)
P
[l

For example, L,(1;¢) = —log®(:p(¢) — 1) (1 # ¢ € pn) is independent of a, since log”(z)
does not depend on a for |z| = 1. (Recall that we assume p { N.)

2.2. The p-adic Drinfel’d Associator for Twisted p-adic Multiple Polylogarithms.
Let Ag, = C,((A, B¢ | ¢ € pn)) be the non-commutative formal power series ring with C,
coefficients generated by variables A and B for ¢ € puy. For a word W consisting of A and
{B¢}eeun, we call the sum of all exponents of A and {B¢}ce,, the weight of W, and the sum
of all exponents of {B¢}¢c,, the depth of .

Definition 2.5. Fix a prime ideal p above p in Q(uy) and an embedding ¢, : Q(un) — C,.
The p-adic Knizhnik-Zamolodchikov equation (p-adic KZ-equation) is the differential equation

G _ (4 B Vg
dz() (z +C€ZMNZ_LP<C)>G( )

where G(z) is an analytic function in variable z € Uy with values in A{C\p. Here, G =

> ow Gw(2)W is ‘analytic’ means each of whose coefficient Gy (2) is locally p-adically ana-
lytic. 0

Proposition 2.6. Fiz a € C,. Then, there exist unique solutions G3(z), G{(z) € A“CO@AQP,
which are locally analytic on P*(C,)\ S and satisfy G&(2) = 24 (2 — 0), and G4(2) =~ (1 —2)%
(z —1). O

Here, the notations u” means >.°° L (Alog®u)". Note that it depends on a. For the

n=0 n!
notations G&(z) = 2 (2 — 0), see [Ful, Theorem 3.4].

Remark 2.7. We do not have the symmetry z — 1 — 2z on Uy. Thus, we do not have a simple
relation between G§(z) and G{(z) as in [Ful, Proposition 3.8]. On the other hand, we have
the symmetry 2 +— 27! on Uy. Thus, we have a unique locally analytic solution G% (z) with
G (2) & (z71) " Zeenn BC (2 5 o0), and have a relation

G A {Bekeeun)(2) = Gi(=A = Y Be. {Be-1}eeny) (2 7).

CELN

However, when we define a Drinfel’d associator by using G§ and G% similarly as below (Defi-
nition 2.8), there appears

. It .
lim Ll((l/ﬁ ----- ka;Ciseee Cd)<z)

Cpez—o0

in the coefficient of that Drinfel’d associator. What we want is lim@pequ'. Thus, we use the
boundary condition at z = 1. ([l

Proof. The uniqueness is easy. In [Ful], he cites Drinfel’d’s paper [Dr] for the existence of
a solution of the KZ-equation. Here, we give an alternative proof of the existence without
using the quasi-triangular quasi-Hopf algebra theory and the quasi-tensor category theory. In
fact, we put G&(z2) to be Yy, (—1)4PhMWILig (2)W. Here, for a word W, we define Lif},(2)
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inductively as following Li%n(z) := S (log® 2)", Li%y () := [y $Lify (t)dt, for W # A™ (n > 0),
Ligw(2) = /5 e —=— Lijy (t)dt, for ¢ € py. It is easy to Verlfy that Yowl(= 1)depth ILi% (2)W
satisfies the p-adic KZ equation. As for the boundary condition G¢(z2) =~ 24 (2 — 0), it is easy

to show that
S LG (W
WW AW’ AW 40
satisfies the above boundary condition.
Thus, it remains to show that Lify, 4. (2) — 0 (z — 0) for n > 0, W’ # . For L% gn,

1

LiaBCAn (Z) = \/0 leA” / C Z lt log t ndt

in [z| < 1. Since [/ tFlog"tdt = k+1 “log®z — ﬁ, we have [ t"log®tdt — 0 (z — 0).
Inductively, we have []t*(log”t)"dt — 0 (2 — 0). Thus, we showed Li} 4.(2) — 0 (2 — 0).
For general Lij, 4(z)’s, we can inductively show Lij;,, 4(2) — 0 (2 — 0) by using the following

fact for f(z) = Li{,(z): For a locally analytic function f(z) satisfying f(0) = 0, we have
Saf)dt — 0 (z—0), [ @f(t)dt — 0 (2 —0).

As for G{(z), the same argument works, by replacing Li%.(z) := £ (log” z)" by Lifn(2) =
2 (log*(1 —2))", and [ by [ . O
Definition 2.8. We define the p-adic Drinfel’d associator for twisted p-adic multiple polylog-
arithms to be @5, (A, {Bclceuy) = G§(2)7'Ga(2). Tt is in Ag, = Cp({(A,{Bc}ceun)), and

independent of a by the same argument in [Ful, Remark 3.9, Theorem 3.10]. O
By the same arguments as in [Ful], we can show the following propositions.

Proposition 2.9. limg,c. .1 'Lify, .0 )(2) converges when (kq,Ca) # (1,1). O

Proof. See, [Ful, Theorem 2.18] for the case where N = 1. O

For Win A- Ag - Be or By - Ag - Be (¢" # 1), we define Ly (W) to be limc,e. .1 'Lijy (2).

Proposition 2.10. (Ezplicit Formulae) The coefficient I,(W) of W in the p-adic Drinfel’d
associator for twisted p-adic MPL’s is the following: When W is written as B}V A® for (r,s >
0), V s ZTLAA(ép 'BC OT'BC/ 'Aép .BC (C/ 7& 1),

L(W) = (1) (1)t N L(f(Bf o By "VA*™"0 A)).

0<a<r,0<b<s

In particular, when W is in A- A¢ - Be or B~ Ag - Be (¢'# 1), (W) = (=1)3P MM L (W),

Here, f: Ag, — Ag, is the composition of Ag — Ag [(Bi-Ag, + Ag, - A), Ag /(B1- Ag, +

Aé\:p‘A) :)(Cpl—i_AAé\jpBl; ande-l—l-A-A@p'Bl ‘—>A(ép. |:|
For the definition of the shuffle product o, see [Fu0, Definition 3.2.2].

Proof. See, [Ful, Theorem 3.28] for the case where N = 1. Note we use G¢(A — «a, By —
B, {Bc}g“e;w c21)(2) = 27%(1 = 2) PGHA B} ceun)(2) for i =0, 1. O
Proposition 2.11. Suppose lime, .1 Ty, ko i1 o1y (2) converges.  Then, the limit
value is a p-adic reqularized MLV, that is, Ly(ky, ... ka1, 1;C, ..., Caon, 1) = (=1)4ePh) L (117,
In particular, Ly(ky, ..., ki—1,1;Ci, ..., i1, 1) can be written as a Q-linear combination of p-
adic MLV’s corresponding to the same weight indices with (kgq,Cq) # (1,1). O
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Proof. See, [Ful, Theorem 2.22| for the case where N = 1. O

Definition 2.12. We define the p-adic multiple L-value space of weight w ZP[N] to be the
finite dimensional Q-linear subspace of Q(uy), generated by the all p-adic MLV’s of indices of
weight w, (¥ = -+ = (¥ = 1. Put Z}[N] := Q. We define Z?[N] to be the formal direct sum
of Z?[N] for w > 0. O

Remark 2.13. By Proposition 2.11, we see that
ZE)[N] I:<Lp(k31,...,l€d;gl,...,Cd) | dZ 1,k1+---+kd:w,k1,...,kd2 1,

G == =1, (ke Ca) # (1,1
= (I,(W) | the weight of W is w)g C Q(pn)y-

OJ

Proposition 2.14. We have A(®%,) = &%, @®%,. In particular, the graded Q-vector space

Z8[N] has a Q-algebra structure, that is, Z5[N]- Zy[N] C Z},,[N] for a,b > 0. O
Proof. See, [Ful, Proposition 3.39, Theorem 2.28] for the case where N = 1. O

Proposition 2.15. (Shuffle Product Formulae) For W, W' € (A-Ag - B¢)UUe1 (B Ag, - Be),
we have

Ly(W o W') = Ly(W)Ly(W').
O

Proof. This follows from Proposition 2.10 and Proposition 2.14. See, [Ful, Corollary 3.42] for
the case where N = 1. ([l

3. BOUNDS FOR DIMENSIONS OF p-ADIC MULTIPLE L-VALUE SPACES.

In this section, we show Theorem 1.4, by the method of Deligne-Goncharov [DG], assuming
results of Section 4. First, we recall some facts about the motivic fundamental groupoids in
[DG]. Next, we show that bounds for dimensions of p-adic MLV-spaces in the sense of Deligne
[D1][DG]. Lastly, we show that p-adic MLV-spaces in the previous section is equal to p-adic
MLV-spaces in the sense of Deligne by the Tannakian interpretations.

3.1. The Motivic Fundamental Groupoids of Uy. Deligne-Goncharov constructed the
category MT(Z|un, {ﬁ}wlN]) of mixed Tate motives over Z[uy, {ﬁ}wlN]’ the fundamental

MT(Z[un, {i}ww])—group MUy, z) and the fundamental MT(Z[uy, {ﬁ}ww])—groupoid
P;}f‘r for Uy not only for rational base points x, y, but also for tangential base points z,y [DG,
Theorem 4.4, Proposition 5.11]. Here, w | N runs through primes w dividing N, and (, is
a w-th root of unity (Since Uy is defined over Q, m"'(Uy, z), P are also MAT(Q(uy)/Q)-
schemes. However, we do not use this fact. Here, MAT(Q(un)/Q) is the category of mixed
Artin-Tate motives for Q(uy)/Q). For 7-schemes, 7-group schemes, and 7-groupoids for a
Tannakian category 7, see [D1, §5, §6], [D2, 7.8], and [DG, 2.6].
First, we recall some facts about them. Let

G 1= m(MT (2w, (7= b)) € proMT(Zlps, (= Y]

1
1_Cw



8 GO YAMASHITA

be the fundamental MT(Z[un, {1=¢ }win])-group [D1, §6][D2, Definition 8.13]. Then, by its
action on Q(1), we have a surjection G — G, (Here, we regard G,, as an MT(Z|u, {ﬁ}ww])'

group). The kernel U of the map G — G,, is a pro-unipotent group. Then, we have an
isomorphism [DG, 2.8.2]:

1
Lie(Uab) = H Ethl\/[T(Z[uN,{ﬁ}w‘N])(Q(0)> Q(n))v ® @(n) € pro—MT(Z[,uN, {?}w\N])-

The extension group is related to the algebraic K-theory [DG, 2.1.3]:
0 n <0,
Ethl\/IT(Z[uN,{ﬁ}wlND(@(0)7 Q(n)) = Z[MNa {ﬁ}uﬂN]X Xz Q n = 1,
Kon1(Q(un)) ®z Q n > 2.

Let w be the canonical fiber functor w : MT(Z[uw, { ﬁ}ﬂ ~]) — Vectg, which sends a motive

M to @,Hom(Q(n),Gr",, (M)). Here, W, (M) is the weight filtration of M. Let G, :=
w(G) = Aut®(MT(Z[uy, {ﬁ}wll\f})v w) be the motivic Galois gruop of MT(Z[uy, {ﬁ}wle
with respect to the canonical fiber functor w (For the de Rham realization Mgg of a motive
M € MT(Q(un)), we have Myr = w(M) ®g Q(un) [DG, Proposition 2.10]). Then, the w-
realization of the exact sequence 0 — U — G — G, — 0 is split by the action of G,,, which
gives the grading by weights,
G, =G,, xU,.

Here, U, := w(U). Let 7 denote the splitting G,, — G,. The pro-unipotent group U, is
equipped with the grading {(U,),}n. Put (LieU,)®" := @, (LieU,),. Then, (LielU, )8 is a free
Lie algebra, since we have Ext? 1 }w‘N])(@(O), Q(n)) = Kop—2(Q(uy)) ®z Q = 0 DG,

MT(Zlun {1=¢;
Proposition 2.3]. Thus, the generating function of the universal envelopping algebra of (LieU,,)8"

is > 2 f(t)", where

Bt =Ly N=1,
FO)={t+ P+ = N =2,
N N N N
(#+u—1>t+#t2+%t3+---=“”T)ﬁﬂu—l)t N>3
Therefore, we have
(12
N=1
1—2 3 ’
0 1 1—1¢ B
Zf(t>n: :<1_t_t2 N =2,
n=0 1_f(t) 1—1t
N > 3.
1—(@+u>t+(u—l)t2

\

That is the generating function of d[N],’s in Section 1.

Let P! be the fundamental MT(Z[,uN,{%Cw}ww])-groupoid of Uy at (tangential) base
points x and y. We consider only tangential base points A, at z € S := {0,00} U un with
tangent vectors A in roots of unity under the identification the tangent space at x with G,.

Then, P/\/‘,; », depends only on @ and y, by the triviality of a Kummer Q(1)-torsor [DG, 5.4]. Let
PM denote P/\/‘/‘y,/\z. We have the following structures of the system of MT(Z[uy, {ﬁ}ww])‘
schemes { P}, yes [DG, 5.5, 5.7:
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[The system of groupoids in the level of motives|

(1) The Tate object Q(1),

(2)M For x,y € S, the fundamental MT(Z[juy, {ﬁ}ww])—groupoid PM,

(3)™ The composition of paths,

(4)™ For € S, a morphism of MT(Z[un, {1=¢ }u|n])-group scheme (the local monodromy
around z):

Q(1) — PM

(5)™ An equivariance under the dihedral group Z/27Z x py.

By applying a fiber functor F' to the category of K-vector spaces, we get the following structure
DG, 5.8]:
[The system of groupoids under the fiber functor F

(1) A vector space K(1) of dimension 1,
(2)F For z,y € S, a scheme P}, over K,
(3)" a system of morphisms of schemes P, x P/ — P making P,,’s a groupoid. The

2,x

F .
group schemes P, are pro-unipotent,

(4)¥ For z € S, a morphism
(additive group K(1)) — Pr,.

That is equivalent to giving K (1) — LieP/,
(5)F An Z/27 x ppn-equivariance.
In particular, we take the canonical fiber functor w as F', and we consider the following weakened
structure (forgetting the conditions at infinity) [DG, 5.8]. Note that in the realization w, the
weight filtrations split and give the grading, and that all 7¢(Uy, x)-groupoid is trivial since
H'(Uy, Oy, ) = 0. Let £ be the Lie algebra freely generated by symbols A, and {B¢}ce,,- Let
IT be the pro-unipotent group

I := limexp(L/degree > n)

n

[The (weakened) system of groupoids under the canonical fiber functor w]

(1)“ The vector space Q,

(2)“ A copy Ilo of II, and the trivial ITj o-torsor II; . The twist of Iy, by this torsor is a
new copy of II, denoted by II, 1,

(3)“ The group law of II,

(4)“ The morphism

Q—=L":11—A Q—L":1— By.
for x = 0, 1 respectively. Here, L" := lim L/(degree > n),
(5) The action py on Ilyo, which induces on the Lie algebra B +— By.

Let H, be the group scheme of automorphisms of Q and II preserving the above structure (1)“-
(5)“. The action of H, on the one dimensional vector space (1) gives a morphism H, — G,,.
Let V, be the kernel. The grading gives a splitting,

H, =G, xV,.
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Also let 7 denote the splitting G,,, — V,. The action GG, on the above structure factors through
H,,, which sends U, to V,,.

1 U, G, Gm, 1

S

1 Ve H, G,, 1.
Let ¢ denote both of G,, — H,,, and U, — V,,. The above diagram comes from MT(Z[u, {ﬁ}wlN])'

schemes (splitting does not come from MT(Z[uyy, {ﬁ}wl ~])-schemes), however we do not use
this fact (see, [DG, 5.12.1]). By the Proposition 5.9 in [DG], the map
n: Ve —1ILg (v—v(var))

is bijective. Here, vqr is the neutral element of II; , that is, yar is the canonical path from 0
to 1 in the realization of w.

3.2. The p-adic MLV-space in the Sense of Deligne. We will discuss the crystalline
realization of mixed Tate motives, and now we assume the results of Section 4 (See, Remark 4.8).
We use the word “crystalline”, not “rigid” for the purpose of fixing terminologies.

In [D1], Deligne has found the p-adic zeta values (i.e., the p-adic MZV’s of depth 1), and the
p-adic differential equation of p-adic polylogarithms in the study of crystalline aspects of the
fundamental group of Uy modulo depth > 2 [D1, 19.6]. Deligne-Goncharov proposed that the
coefficients of the image of

pp = Fy ()™ € Uu(Q(un)y)

by the map

-0 Us(@Q(uw)p) = Vo(Q(uw)p) = IHQ(un)p) € QUun)p (A {Bebeepun)

“seem” to be p-adic analogies of MZV’s [DG, 5.28]. Here, F}, is the Frobenius endomorphism
at p, and ¢ is the cardinality of the residue field at p. Note that we have the Frobenius
endomorphism on M, @ Q(pn)p = Meyys for M € MT(Z[pn, {ﬁ}wlN]) by Remark 4.8. Here,

M.,ys is the crystalline realization of M.

Definition 3.1. We define the p-adic multiple L-values in the sense of Deligne of weight w to be
the coefficients 1;’(W) of words W of wight w in n¢(,) € TH(Q(un)p) € Q(un)p((A, { B cepn))-
We define the p-adic L-value spaces in the sense of Deligne of weight w Z%P[N] to be the finite
dimensional Q-linear subspace of Q(ux), generated by the all p-adic MLV’s in the sense of
Deligne of indices of weight w. By the definition, we have ZJP[N] = Q. We define Z#P[N] to
be the formal direct sum of ZPP[N] for w > 0. O

On the othe hand, we call p-adic MLV’s defined in Section 2.1 p-adic MLV’s in the sense of
Furusho.

Remark 3.2. If we calculate the action of Frobenius Fp_1 on (Pro)w, we get the following
KZ-like p-adic differential equation by the same arguments as in [D1, 19.6]:

dG(t) = —qG(t) (%A—i— > %g(@%)lBCC@%O—i—(@AJr > %&) G(1).
Ceun P CeEnN P

Here, ¢(®%,) means the action of ¢ on ®Y, determined by ((A) = A and ((B) = Bec. Here, ®¥,
is the Deligne associator (See, the subsection of Tannakian interpretions, and Proposition 3.10).
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The coefficient of a word W in the solution of the above p-adic differential equation is
¢“™IP(W) in the limit ¢ — 1, that is, p-adic MLV’s in the sense of Deligne (multiplied by
q”M)). (More precisely, we have to consider the effect (1 —¢)~51 of the tangential base point
in taking the limit). The first term in RHS is multiplied by G from the left, and the second
term in RHS is multiplied by G from the right. Thus, the inductive procedure of determining
coefficients is more complicated.

In [D1, 19.6], Deligne calculated the Frobenius action on 7¢(Uy, 1) = (P 0), modulo depth
> 2, however, we get the above p-adic differential equation by the same arguments. Here we
give a sketch. We use some notations in [D1]. The above equation arises from the horizontality
of Frobenius ([D1, 19.6.2]):

F ' (e7'Ve) = GT'VG.
Here, e is the identity element. The above F,”' and G are F, and v in [D1] respectively. On
the LHS, we have [D1, 12.5, 12.12, 12.15]

dt
_1 _ _
e Ve=—a=— ( A+ E t—Lp )

CeEpN

Here, «v is the Maurer-Cartan form ([D1, 12.5.5]). On the RHS, since the connection is the one

of F* (P1o)., we have Ve = —F*a where F* means the Frobenius lift ¢ — ¢9. Combining these
and VG = dG + (Ve)G, we get

dt a B ()
_qG(7A+Zme (BC))_dG—< A+ Zt_bp >G.

Ceun CeELN
This gives the equation (For F,;'(B;), see the proof of Proposition 3.10). O
Example 1. From the p-adic differential equation in the above Remark 3.2, the coefficient of
AFIB in nu(Fy'r(p)~') in the case where N = 1 is the limit value at z = 1 of the p-adic

analytic continuation of the following analytic function on |z|, < 1 [D1, 19.6]:
ZTL
2
pin
That limit value is (1 — p~*)¢,(k). From the condition p { n in the summation, we lose the
Euler factor at p for p-adic MZV’s of depth 1 in the sense of Deligne.

Proposition 3.3. For a,b > 0, we have

ZyPINT- ZEPIN] € ZEG N,
0
Proof. The group II(Q(uy)p) is the subgroup of group-like elements in Q(uy),((A, {BC}CEHN>>7
and 1¢(¢y) is an element of TI(Q(uy ), ) by the definition. Thus, we have A(ne(,)) = nt(wp)@0t(@p).-
This implies the proposition. O

Proposition 3.4. For w > 0, we have

dimg ZPP[N] < d[N,.
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Proof. Let U, = SpecR and nu(U,) = SpecS. The algebras R = [[, R* and S =[], S™ are
graded algebras over Q. Here, the grading of R and S come from the grading of U,. Then,

ne(pp) € ne(Us)(Q(pn)p) gives a homomorphism v, : S — Q(pn)p. The coefficients of ne(gy)
of weight w are contained in 1,(S*). Thus, we have Z®P[N] C 1,(S¥). By the surjection

LU, = (U,)(CV, = IT), the dimension of S* is at most the one of the w-th graded part of
the universal envelopping algebra of (LieU,)®". That dimension is d[N],,. We are done. O

Remark 3.5. As remarked in [DG, 5.27], ¢ : LielU, — LieV,, is not injective for N > 4 in
general. Thus, the above bounds are not best possible for N > 4 in general. The kernel is
related to the space of cusp forms of weight 2 on X;(N) if N is a prime. See also [G2]. O

Remark 3.6. In the complex case [DG], dch(o) is in (Pig), ® C = II(C) < V,,(C). (Here,
dch(o) is the “droit chemin” from 0 to 1 in the Betti realization with respect to o : Q(uy) < C.)
Thus, Deligne-Goncharov relate dch(o) to the motivic Galois group U, for the purpose of
bounds for the dimensions in [DG, Proposition 5.18, 5.19, 5.20, 5.21, 5.22]. (The point is that
V., is too big, and U, is small enough.) However, in the p-adic situation, ¢, is contained a priori
in a small enough variety, i.e., we have ¢, € U,(Q(un)p) by the definition. Thus, the bounds
from K-theory of p-adic MLV’s in the sense of Deligne is almost trivial. O

We give remarks on (,(2).

Remark 3.7. By Proposition 3.4 and Example 1, we have (,(2) = 0, since dimg Zg’D[l] =
0. It is another proof of that well-known fact. To bound dimensions, Deligne-Goncharov
used +(U,) x A! in the complex case [DG, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25]. This affine line
corresponds to “72”, and we need this affine line simply because 72 is not in Q. In the p-adic
case, we do not need such an affine line, simply because the image of Fp_1 in (G,)w (ie., p) is

in Q. This gives a motivic interpretation of (,(2) = 0. O

Remark 3.8. It is well-known that (,(2m) = 0. However, it is non-trivial because we do not
know how to show directly

n

14 Z — 077
Z n?m

Cpo2z—1

(We add a double quotation in the above, since we have to take p-adic analytic continuation).
The well-known proof of (,(2m) = 0 is following (also see, [Ful, Example 2.19(a)]): By the
Coleman’s comparison [C], we have limg 5,1 Lif(z) = (1 —p~*) "' L,(k,w'™*) for k > 2. Here,
L, is the p-adic L-function of Kubota-Leopoldt, w is the Teichmiiller character. This is the
values of the p-adic L-function at positive integers. On the other hand, the p-adic L-function
interpolates the values of usual L-functions at negative integers, thus, L,(z,w'™") is constantly
zero for even k. Therefore, we have (,(2m) = 0. That proof is indirect.

Furusho informed to the author that 2-, and 3-cycle relations induce (,(2m) = 0 similarly as
in [D1, §18] (In the notations in [D1, §18], we can take v =(the unique Frobenius invariant path
from 0 to 1) (see, the next subsection,) and x = 0). These relations come from the geometry of
P!\ {0,1,00}. Thus, it seems that it comes from “the same origin” that ‘(,(2) = 0 from cycle
relations’ and ‘(,(2) = 0 from the bounds by K-theory’. Furusho also comments that we may
translate ‘(,(2m) = 0 from cycle relations’ into ‘(,(2m) = 0 from p-adic differential equation’,
i.e., we may show that (,(2k) = 0 directly from the p-adic analytic function ) -, 7;—2 O
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3.3. The Tannakian Interpretations of Two p-adic MLV’s. Besser proved that there
exists a unique Frobenius invariant path in the fundamental groupoinds of p-adic analytic
spaces [B, Corollary 3.2]. Furthermore, Besser showed the existence of Frobenius invariant
path on p-adic analytic spaces is equivalent to the Coleman’s integral theory [B, §5].

Let Yerys be the unique Frobenius invariant path in (P g)eays. To a differential form w, the
path verys associates the Colman integration fol w. Let yar € (P1)w be the canonical path from
0 to 1 under the realization w. Furusho proved the path ap = 3 Yeys € 71" (Un, 1o) is equal
to the p-adic Drinfel’d associator ®%., for p-adic MZV’s, that is, for N = 1 in [Fu2]. By the same
argument, we can verify that ap = ®%., for p-adic MLV’s. Briefly, we review the argument. For
details, see [Fu2] (See also [Ki, Proposition 4]). The coefficient of a word A*~'B. ... AM~=1B.

in ap = 'yd_é'ycrys € 17 (Un, 1o) C Q(un)p((A, {Bc}teeun)) for (kg Ca) # (1,1) is an iterated

integral
/1 dt /t dt /t dt /t dt /t dt /t dt
o 1 o t Jo t—1p(Ca) Jo t o tJo t—1p(C1)

by the characterization of 7ys with respect to Coleman’s integration theory (Here, the succesive
numbers of dt/t are kg — 1,kg_1 — 1,--+ ko — 1 and k; — 1). For words beginning from A or
ending By, the coefficients are regularized p-adic MLV’s, because the coefficients in ap are the
one in limfcpaz_,l(l — 2)7B1Gy(2) by using the tangential base point. Thus, ar is the p-adic
Drinfel’d associator @, for twisted p-adic MPL’s in Section 2.2:

ap = Y Yerys = Py = ) L(W)W.
w

On the other hand, nu(¢,) € Hoo(Q(un)y) = 7 (Un, 1o) is viawp(7ar) by the definition

n
(Recall that V,, = Il and Ilyy = II;9 : 1 +— 7qr). Briefly, p-adic MLV’s in the sense
of Furusho come from arp = ’Y(Ié%rys, and p-adic MLV’s in the sense of Deligne come from
ap = Ypep(var). That is the Tannakian interpretations of p-adic MLV’s. In [Fu2], he calls
@Y, := yar Fy ' (7ar) the Deligne associator.

Remark 3.9. In both of complex and p-adic cases, the iterated integrals appear in the theory
of MZV’s. However, the iterated integrals come from different origins in the complex case and
the p-adic case.

In the complex case, the iterated integrals appear in the comparison map between the Betti
fundamental group 7 ®g C tensored by C of P!\ {0,1,00} and the de Rham fundamental
group ™ @ C tensored by C of P!\ {0,1,00}. The difference between the Q-structure 77
and the Q-structure m{® under the comparison 7} ®g C = 1i® ®@q C is expressed by iterated
integrals.

In the p-adic case, iterated integrals do not appear in the comparison map between the de
Rham fundamental group m® @¢ Q, tensored by @, and the crystalline fundamental group
717", Furthermore, there is no Q-structure on 77"”°. For p-adic MZV’s in the sense of Deligne,
iterated integrals appear in the difference between the Q-structure 7% and the Q-structure
Fy N (m®) in Pyg™ under the comparison Py* = Pilff ®¢ Q, = 7{® ®¢ Q,. For p-adic MZV’s

in the sense of Furusho, they appear in the difference between Q-structure 7{® and the Q-

structure ar{® in 7" under the comparison 7" = 7% @4 Q,. Here, a is a unique element

in 77" such that yag - a € P{y" is invariant under the Frobenius (Thus, a is equal to ap).
From this, it seems difficult to find a “motivic Drinfel’d associator”, which is an origin of

both complex and p-adic MZV’s, and a motivic element, which is an origin of linear relations
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of both complex and p-adic MZV’s. Note also that roughly speaking, the complex Drinfel’d
associator is the differenc between Betti and de Rham realizations ([DG, 5.19]), and the p-adic
Drinfel’d associator is the Frobenius element at p. ([l

Example 2. (1) (Kummer torsor) Let K(z), be the fundamental groupoid from 1 to x on
Gy, with respect to the realization w. Deligne calculated in [D1, 2.10] the action of F;™!
on K(z), C K(2)eys:

F ' (var) = Yar + log®z' 7.

Here, y4gr is the canonical de Rham path from 1 to z, and + means the right action of
117 (G, 1) = Q1) erys = Qp(1) on K () erys. From this, we have

F, ™ (var + log® ) = yar + log* 2" + plog® = = yar + log” 2.

Thus, var + log” x is Frobenius invariant, that is, the unique crystalline path vy from
1 to z.

(2) (Polylogarithm torsor) Let P x((), be the k-th polylogarithm torsor with respect to
the realization w for ¢ € px (see, [D1, Definition 16.18]). The polylogarithm torsors
are not fundamental groupoids, but quotients of fundamental groupoids. However, we
use the terminology “Z(k)-torsor of Z(k)-paths from 0 to ¢” in [D1, 13.15]. Here, we
consider as Q(k),-torsor not as Z(k),-torsor, and we do not multiply ﬁ on the

integral structure unlike as [D1]. Deligne calculated in [D1, 19.6, 19.7] the action of
prl on Pl,k(C)w C Pl,k(C)crys:

' (ar) = yar + P (1 — p *)N*'Lig(€)

(That is, F, '7(p) " (yar) = yar + (1 —p ) N*"'Lig(¢)). Here, + means the right action
of Q(k)erys = Qp(k) on Py ;(¢)erys- From this, we have

F7 N (yar — NFILI(C)) = yar + (1 — p F)N*'Lif(¢) — p"N*'Lig(¢)
= yar — N*'Li ().

Thus, yar — N*7'Li}(¢) is Frobenius invariant, that is, the unique crystalline path Yepys
from 0 to C.

(3) In the case where N = 1, the coefficient of A*'B in &}, is —(,(k) and the one of
AMIB in qu(F M (p) ™) ds (1 — p*)Gp(k), from the above example.

(4) (Furusho) The coefficient of A*"'BA*"'B in F,'7(p)~" in the case where N =1 is

(paﬂb 1) glat)— (5 1) Glag )

e (2-1) (11 )ota- g0
*bZ( - )( ai“)@(aﬂ)@(b—s)

s=0

for b > 1.

The following proposition combined with Proposition 3.4 gives a proof of Theorem 1.4. The
author learned the following proposition from Furusho’s caluculation Example 2(4).
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Proposition 3.10. For w > 0, we have
Z5[N] = ZEPIN].
O

Proof. The effect of 7(g) is the multiplication by ¢* on p-adic MLV’s of weight w in the sense
of Deligne. Thus, Z%P[N] is not changed when we replace F;' € Gu,(Q(un),) by ¢p =
Folr(q) ™ € Gu(Q(un)y) in ap = Yipep(var). Let JP(W) be the coefficient of a word W

in @, := 4z Fy ' (yar). We have
ZEP[N] = (J,(W) | the weight of W is w)g C Q(un),
(We recall that the coefficient of a word W in ap is I,(W)). We have
ar = YarYerys = Yan Ly (var) - (B ' (ar) Ty (Yerys) = O F, (o)

= (Z J,P(W)W) (Z 1p<W>F;1<W>>

(By a theorem of Besser [B, Theorem 3.1], we see that ap and ap determine each other from
the above formula).
We compute the action Fp_1 on a word W. Let y4gr, ¢ be the canonical path from 0 to ¢ under

the realization w, that is, Yar,1 = Yar, Yare = ((Var,1). Here, ((yar,1) is the action of ¢ € uy
on IT. Then, Be = (yarc) A - Yarc. Thus, we have F;'(A) = gA and

Y (Be) = (Fy ' (are)) ™ qAF,  (are) = ¢¢(@F) ' BeC(D)

=4q (Z JE(C*(W))W> B (Z J,?(C‘l(W))W> :

Here, the action of ¢ € puy on words is given by ((A) = A, and ((B¢) = B¢e. From the above
formula about ap, we have

ap = OLF, ap) = (Z Jf(W)W) (Z Ip(W)Fp_l(W)>

) (Z & <W>W> ST ke ) Ak
w

W=AFd B ..-AF1 B¢ Ako
: (Z Ty (G 1<W>>W) By, (Z J£<<;1<W>>W>
W W
' (Z Jf(Cfl(W))W> By (Z J,?(Cfl(W))W> Aol

There, by using Proposition 2.14 and Proposition 3.3, for a word W of weight w we have
(1—¢") L, (W) — J2(W) € > VAR Avrd

w=w'+w" w' <w,w"” <w

By induction, we have Z? = ZPP. O
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Finally, we remark on some conjectures. The following conjecture is a p-adic analogue of
Grothendieck’s conjecture [DG, 5.20], which says that a, € G, (C) is Q-Zariski dense (weakly,

= a,7(2m/—1)"! € U,(C) is Q-Zariski dense). Here, a, is the “difference” between the
Bettl realization with respect to o and the de Rham realization (For elements a, and a?, see
[DG, Proposition 2.12] and [D1, 8.10 Proposition]).

Conjecture 3. The element ¢, € U,(Q(un)y) is Q-Zariski dense. That means that if a
subvariety X of U, over Q satisfies ¢, € X(Q(un)y), then X = U,,.

Remark 3.11. We have the Chebotarev density theorem for usual Galois groups. So, the
author expects that there may be “Chebotarev density like” theorem for the Frobenius element
in the motivic Galois group varying the prime number p. It will be interesting to study for this
“Chebotarev density like” theorem varying p, adele valued points of the motivic Galois group,
and possible relations among “Chebotarev density like” theorem varying p, Grothendieck’s con-
jecture about the motivic element, and the above p-adic analogue of Grothendieck’s conjecture
about the Frobenius element. 0

The following conjecture in the case N =1 (i.e. p-adic MZV’s) is proposed by Furusho (non
published).

Conjecture 4. All linear relations among p-adic MLV’s are linear combinations of linear rela-
tions among p-adic MLV’s with same weights.

The following proposition is obvious (cf. [DG, 5.27]).

Proposition 3.12. We consider the following statements:

(1) The inequality in Theorem 1.4 is an equality (For N = 1, this is Conjecture 2).

(2) The map ¢ : U, — V,, is injective.
(3) Conjecture 3.
(4) Congecture 4.
Then, (1) is equivalent to the combination of (2) and (3), and implies (4). O

Remark 3.13. The statement (2) is true for N = 2,3,4. For N > 4, the statement (2) is false
in general. The kernel is related to the space of cusp forms of weight 2 on X;(N) if N is a
prime. See, [DG, 5.27][G2]. O

4. CRYSTALLINE REALIZATION OF MIXED TATE MOTIVES.

In this section, we consider the construction of the crystalline realization of mixed Tate
motives, and Berthelot-Ogus isomorphism for the de Rham and crystalline realizations of mixed
Tate motives.

4.1. Crystalline Realization. Let k& be a number field, v be a finite place of k, and G}, be
the absolute Galois group of k. First, we define the crystalline inertia group at v. Let p be
a prime divided by v. Let Rep, (Gy), and Rep“yS Y(Gy) be the category of finite dimensional

representations of Gy over Q,, and the subcategory of crystaline representations of G at v.

Definition 4.1. (crystalline inertia group) The inclusion Repcry”(Gk) — RepQ (Gy) induces

the map of Tannaka dual groups with respect to the forgetful fiber functor. We define a
crystalline inertia group ISV(C Gy, := @‘g(RepQ (Gk))) at v to be its kernel. O
<P
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Here, Gy, is the (algebraic group over Q,)-closure of Gi. The group I$™® is a pro-algebraic
group over Q,. Note that by the definition, the action of G} on M, is crystalline at v if and
only if the action of IS on M, is trivial.

We recall Bloch-Kato’s group H}. Let Oy be the localization at v of the ring of integers of
k, and k, be the completion of k with respect to v. For a finite dimensional representation V'
of Gy, over Qy, they defined BK, §3]

F[l ker(l:} l(kva V) H 1(k3r7 V)) v )f 67
f(kv’v) = 1 1
ker(H(ky, V) — H'(ky, Bays ® V) v | L.

Here, k" is the maximal unramified extension of k,, and B is the Fontaine’s p-adic period
ring (See, [Fol]). For a prime ¢ not divided by v, the monodromy action Q,(m) — Qu(m + n)
of I, = Z(1) is trivial for n > 2 (Here, I, is the usual inertia at v). Thus, we have

Oé)) ® @g n — 1,
H'(ky, Q¢(n)) n>2.

In the crystalline case, conversely from the calculations

) - O(Xv) ®Q, n=1,
(4.1) H (ko Qp(n) = {Hl(k:v,Qp(n)) n>2,

(See, [BK, Example 3.9]), we will get monodromy informaions of I$™* on mixed Tate motives.
We recall that the fact Hj(k,,Q,(n)) = H'(ky, Qy(n)) for n > 2, v | p follows from

dim@p H} (Ko, Qp(n)) = dime DdR(Qp(n))/FﬂODdR(Qp(n)) + dime H0<kv> Qp(n))
= [ky 1 Q) + 0 = —x(Qy(n)) = dimg, H' (ky, Qy(n))

(See, [BK, Corollary 3.8.4, Example 3.9]). Here, Dgg is the Fontaine’s functor ([Fo2]), and x (V)
is the Euler characteristic of V. Thus, it holds without assuming that £, is unramified over Q,.
Let H}(k,V) be the inverse image of Hf(k,, V) via the restriction map H'(k,V) — H'(k,, V).

Theorem 4.2. (¢f. [DG, Proposition 1.8]) Let k be a number field, and v be a finite place of
k. Take a mized Tate motive M in MT(k). Then, the following statements are equivalent.

(1) The motive M is unramified at v, that is, M € MT(O(,)).

(2) For a prime ¢ not divided by v, the (-adic realization M, of M is an unramified repre-
sentation at v.

(3) For all prime ¢ not divided by v, the (-adic realization M, of M is an unramified repre-
sentation at v.

(4) For the prime p divided by v, the p-adic realization M, of M is a crystalline represen-
tation at v.

Hy(ky, Qe(n)) = {

O

Proof. The equivalence of (1), (2), and (3) is proved in [DG, Proposition 1.8]. We show that
(1) is equivalent to (4). The proof is a crystalline analogue of [DG, Proposition 1.8]. The
Kummer torsor K (a) for a € k* ® Q is crystalline at v, if and only if a € O(Xv) ® Q (See, the
isomorphism (4.1) H}(ky, Qy(1)) 2 O, ® Q).

Since Kummer torsors generate Extlle(,C) (Q(0),Q(1)), it suffices to show that the following
statement: For a mixed Tate motive M € MT(k), the action of Ig™® on M, is trivial if the
action of I$Y® on W_o, My, /W _o(n49) M), is trivial for each n € Z. Assume that the action of
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IS on W_oy My, /W _o(49)M,, is trivial for each n € Z. We show that the action of 5™ on
W oM,/ W sy M), is tr1v1al by the induction on r. For r = 2, it is the hypothesm For
r > 2, the induction hypothesis assure that the action of IV is trivial on W_y,/ W_s(nsr—1)
and W_g(n+1 /W _o(m+ry. Thus, the action of o € I3 is of the form 1 +v(o), where v(o) is the
composite:

W—Qn/WfQ(n+r) - Gr‘j/z GI’ —2(n4r—1) — W—Qn/W 2(n+r)-
We have (0103) = p(01) + p(og). This p is compatible with the action of Gy ,. It suffices to
show that the map u(o) : Gr'%,, — GI‘% (n+r—1y 18 trivial. This follows from
Homg, , (1;™*, Hom(Q,(0), Q,(r — 1))
= EXt%{ep (I57%) (QP( )7 @p(r - 1))kap/15ry5

= EXtRep (Gr.p) (Qm Qu(r — 1))/EXtRep (Gk,p/lsrys)<@pa Qy(r—1))
= EXt@Qp(Gk)(@p,@p( - ))/EXt%rgsw(ck)(@pan(T —1))
= H'(k,Qy(r —1))/H(k,Qy(r — 1)) = 0.

The second isomorphism follows from the fact that EXt%{epcrys,v(Gk) = 0, and the action of IJ™*
4@17

on Q,(r — 1) is trivial, and the last equality follows from the isomorphism (4.1). (We have
Ext@(gys,v(ck) = 0 from the elemental theory of the category of filtered ¢-modules. In fact,
P

RHom is calculated by a complex, which is concentrated only in degree 0 and 1.) 0

Remark 4.3. If we have a full sub-Tannakian category MT(O(,))%°°? of MT(k) satisfying

Oé,)®@a n=1,

1 ~
EXtMT(O(U))gOOd (Q(0)7 Q(l)) - {Ethl\/[T(k) (Q(O%Q(n)), n> 2,

and
EXtﬁT(o(v))good(Q(U), Q(n)) =0 for any n,

then by introducing the “motivic inertia group” at v
IM = ker{ Awt® (wnir () — Aut®(WMT(O(U))good>},

we can prove the similar result for MT(O,))8°°Y, that is, M is in MT(Oy,) if and only if M is
in MT(O(,)2°°? by the “motivic analogue” of the above proof.

In a naive way, we cannot define “M ®o, k(v)” the reduction at v of an object M in
MT(O)), since MT(O(,) is not defined by a “geometrical way”. So, the author hopes that
this remark will be useful to construct “the reduction at v” of object in MT(O(,). If we
“geometrically” construct a full sub-Tannakian category MT(O(,)&°°¢ of MT (k) satisfying the
above conditions, then we can get a good definition of “the reduction at v”. Here, the word
“geometrically” means that returning the definition of Voevodsky’s category DM (k). See also
the proof of Theorem 4.6. O

Definition 4.4. For a mixed Tate motive M € MT(O,) unramified at v, we define the
crystalline realization My, to be Deys(M,). Here Dey is the Fontaine’s functor (Beys ®q,
—)C and M, is the p-adic realization of M. 0
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Note that M), is a crystalline representaion of Gy, by Theorem 4.2, so we have dimy, , Merys. =
dimg, M, = dimg M,,. Here, kg, is the fraction field of the ring of Witt vectors with coefficients
in the residue field k(v) of O,. Note also that the pair (Meyswv, Merysw @k, kv) gives an
admissible filtered p-module in the sense of Fontaine ([Fol], [Fo2]). The crystalline realization is
functorial, and defines a fiber functor MT(O(,)) — Vecty, ,, which factors through the category

of admissible filtered ¢-modules MFZS,U ().

Remark 4.5. By using the fact that HY (k,, Q,(1)) = H*(k,, Q,(1)) and introducing “semistable
inertia group” at v, we can show that M, is a semistable representation of Gy, for any mixed
Tate motive M in MT(k), similarly as the proof of Theorem 4.2. Thus, we can define the crys-
talline realization (or semistable realization) Mcys, (0r Myt ,) to be Dy (M),) = (By ®q, M) G
for all M € MT(k), and get a functor MT(k) — MF3? (¢, N) to the category of admissible

U

filtered (y, N)-modules. O

4.2. Comparison Isomorphism. In this subsection, we prove a “Berthelot-Ogus like” com-
parison isomorphism between the crystalline realization and the de Rham realization. We
defined the crystalline realization by using Fontaine’s functor, so we need another “geometri-
cal” construction of the crystalline realization to compare it with the de Rham realization (it
is not obvious that the other construction is functorial).

For preparing the following theorem, we briefly recall that Voevodsky’s category DM (k) (see,
[V]), Levine’s category MT(k) (see, [L]), and Deligne-Goncharov’s category MT(Oy,)) (see,
[DG]). Let k be a field. First, let SmCor(k) be the additive category whose objects are smooth
separated scheme over k, and morphisms Hom(X,Y') are free abelian group generated by re-
duced irreducible closed subschemes Z of X x Y, which are finite over X and dominate a con-
nected component of X. Then, Voevodsky’s tensor triangulated category DM (k) is constructed
from the category of bounded complexes K°(SmCor(k)) of SmCor(k) by localizing the thick
subcategory generated by [X x A'] — [X] (homotopy invariance), and [UNV] — [U]®[V] — [X]
for X = U UV (Mayer-Vietoris), adding images of direct factors of idempotents, and inverting
formally Z(1).

Let k be a number field. Then, the vanishing conjecture of Beilinson-Soulé holds for k.
From the vanishing conjecture of Beilinson-Soulé, Levine constructed the Tannakian category
of mixed Tate motives MT(k) from DMT(k) by taking a heart with respect to a t-structure.
Here, DMT(k) is the sub-tensor triangulated category of DM(k)q generated by Q(n)’s.

For a finite place v of £, let O(,) denote the localization of k at v. Deligne-Goncharov defined
the full subcategory MT(O,)) of mixed Tate motives unramified at v in MT(k), whose objects
are mixed Tate motives M in MT(k) such that for each subquotient E of M, which is an
extension of Q(n) by Q(n + 1), the extension class of E in

Exthera (Q(n), Q(n + 1)) < Extlirgy (Q(0),Q(1)) = k* @ Q
is in O(Xv) ®Q(C k* ® Q).

Theorem 4.6. (Berthelot-Ogus isomorphism) For any mized Tate motive M in MT(Oy,y), we
have a canonical isomorphism

k’v ®k0,v Mcrys,v = kv ®k MdR'
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Remark 4.7. (Hyodo-Kato isomorphism) After choosing a uniformizer 7 of k,, we can prove
a canonical isomorphism

kv ®k0,v Mcrys,v = kv ®k MdR

O

for any mixed Tate motive M in MT(k) by the same way (cf. Remark 4.5).

~

Remark 4.8. From the functorial isomorphism M,y ®k, , kv = Mar @1k, we have G, gk,
Gerys @ko., k. Here, G := m(MT(O,))) € pro-MT(Oy,) is the fundamental MT(O,))-group
(See, [D1, §6][D2, Definition 8.13]). Thus, we can consider the Frobenius element F; ' € G, (k)
if ko, = k, (For example, in the case where k is Q(uy) and v is a prime ideal not dividing
(V). O

Proof. For any finite extension &’ of k and a prime ideal w over v, we define an additive category
SmCor(O(y)) as follows. The objects are pairs of a proper smooth scheme X" over O, and a
horizontal simple normal crossing divisor D of X, which is also normal crossing to the special
fiber of X. The set of morphisms Hom((X, D), (Y, E)) is the free abelian group generated by
horizontal smooth irreducible closed subschemes Z of X x )}, which are finite over X', dominate
a connected component of X', and are transversal to X x EUD x ).

By using de Jong’s alterations, there exists a finite extension k' of k, a bounded complex
(X*,D*) in K*(SmCor(O(y)), an idempotent f in K°*(SmCor(Oy,))), and an integer n € Z such
that f(X*®@k\D*®k)(n) represents M ®j k' in MT (k). We call such a triple {(X*,D*), f,n}
a good reduction model of M at v' over k/. We can define the log-crystalline cohomology
Hevysw(M) := Hepys(M /W (k(w))) @ ko, for this triple {(X'*, D), f,n}. Note that the homo-
topy invariance holds for the log-crystalline cohomology. Choose a uniformizer 7’ of k/,. By
the semistable conjecture for open varieties proved in [Y1] (or [Fa]), we have a canonical iso-
morphism Meyysw = Herysw(M). Note that the compatiblity of the comparison isomorphism
for algebraic correspondences is proved in [Y1], [Y2]. By using Hyodo-Kato isomorphism for
open varieties in [Y1], we have an isomorphism &, ®, ., Herysw(M) = k), @) Mar. Now, M, is
crystalline at v by Thoerem 4.2. So, we have Meysw = kow ®ry, Merys. Therefore, we have
an isomorphism k;, ®g, , Merysw = k), @ Mar. In general, for any element 7 € Gal(k,,/k,), we
have an isomorphism k" ®p,, Meryso = k7 @p Mar by using the triple {(X*7,D*7), f7,n}.
Thus, we have an isomorphism k, ®p, , Merys,w = ky @1 Mgr by the descent. Since M, is crys-
talline at v, this isomorphism does not depend on the choice of n’, and we can show that this
isomorphism does not depend on the choice of good reduction models by using the standard
product argument. O

4.3. Some Remarks. The crystalline realization to the category of ¢-modules (not to the
category of admissible filtered ¢-modules) is split, because we have Extll\/[T(O(U))(Q(O), Q(n)) =0

for n <0 and Ethl\/[odkov(cp)(kom(O)’ kop(n)) = 0 for n > 0.

So, we can expect that the crystalline realization MT(O,)) — Vecty,, factors through
MT(k(v)). Note that the weight filtration of mixed Tate motives over a finite field is split
by Quillen’s calculations of K-groups of finite fields ([Q]). Thus, they are sums of Q(n)’s.

The weight filtration is motivic, and both of the de Rham realization and the crystalline
realization are split. However, the splittings do not coincide, that is, the splitting of the
crystalline realization does not coincide to the splitting of the de Rham realization via the
Berthelot-Ogus isomorphism of Theorem 4.6. The iterated integrals and p-adic MLV’s appear
in the difference of these splittings. See also Remark 3.9.
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Remark 4.9. We have Ethl\/[odkoyv(ap)(kO,v(O%kO,U(O)) = Q, # 0, and this gap corresponds to

the “near critical strip case” of Beilinson’s conjecture and Bloch-Kato’s Tamagawa number
conjecture, that is, we need not only regulator maps, but also Chow groups to formulate these
conjectures near the critical strip case (that is, the case where the weight of motive is 0 or —2).
In this case, this corresponds to the “dual” of the fact that the image of the Dirichlet regulator
is not a lattice of R™*"2 but a lattice of a hyperplane of R™*"2, The author does not know a
direct proof of the fact that the non-trivial extension in Extll\/bdkO U(eo)(koﬂf(o)’ ko»(0)) = Q, does

not occur in the crystalline realization. U

Example 3. (Kummer torsor) Let K be a finite extension of Q,, Ky be the fraction field of
the ring of Witt vectors with coefficient in the residue field of K. Let z € 1 + 7O. Let

0— Qy(1) = V(2), — Q,(0) = 0

be the extension of p-adic realization corresponding to z. Fix ey a generator of Q,(1) corre-
sponding {(,},, and e; the generator of Q,(0) corresponding 1. Then, the action of Galois
group is the following:

{960 = x(9)eo,

ger =e1 +1.(9)eo

Here,  is the p-adic cyclotomic character, and v, is characterized by g(z1/?") = (2= 17",
Then, V(2)erys = (Beys ®q, V (2),)9% has the following basis:

t_l X eq =: Zo,
ep —t " loglz] ® eg =

Here, ¢ := log[(],log[z] € Berys. Thus, the Frobenius action is the following:

The filtration after K®j, is the following:

Fi1‘1V(z) =V (2)ar = (z0, 71) K,
Fil'V (2)qr = (x1+(10g2)$0>K>
Fil'V(2)qr =
).

(In Bggr, we have t~!log £ o< Fil°Bgr). Thus, we have splittings:
V(2)arys = (To) o @ (#1) 1, = Ko(1) ® Ko(0),

V(2)ar = (xo)x ® (z1 + (log 2)zo)xk = K(1) & K(0).

These splittings do not coincide in general.
We will recover the calculation ¢~1(0) = log 27 in [D1, 2.9, 2.10]. In this case, we assume
K = K. By the above calculation, the Kummer torsor K(z)4r is

K(z)ar = — (21 + (log 2)z0) + Kxy
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(For the purpose of making satisfy V(u) = du — % in [D1, 2.10], we use the above sign
convention). Then, we have

¢71(0) = ¢~ (—(21 + (log 2)z0) + 0) = (21 + p(log 2)zo)

= —(z1 + (log 2)z0) + (1 — p)(log 2)zg = — (1 + (log 2)x0) + (log z' 7)xg
— log 2'77.

This coincides the calculation in [D1, 2.10]. Here, < is the identification via K(z)qr = —(z1 +
(log z)xo) + Kzo = K.

Next, we define polylogarithm extensions. In the following, we consider the case where k is
a cyclotimic field Q(pun) for N > 1. For ( € uy, let Us € pro-MT(Q(un)) be the kernel of
(P {0, 1oo}, ¢) — mM (G, ¢). We define Log, to be the abelianization of Us Tate-twisted
by (—1). We define Pol, with Tate twist (1) to be the push-out in the following diagram (see
also, [D1, §16)):

0 UJ W{\A(Pl\{071700}7<)*>7T1AA(GWL7<)*>0
0 —— Loge(1) Polc(1) Q(1) — 0.

For n > 1, we also define Pol,, ¢ to be the push-out under Log, = II,,50Q(n) — Q(n) (see also,
D1, §16]):

0 Eogg ,POZC E—— @(0)
0 — Q(n) —= Pol,,  — Q(
The extension class [Pol, (| lives in Extll\AT(Q(MN))(@(O),Q(n)) >~ Ko, 1(Q(un))g. Let p% be

the group of primitive N-th roots of unity. Recall that Huber-Wildeshaus constructed motivic
polylogarithm classes pol; € [],55 Kon-1(Q(un))q (not extensions of motives) in [HW].

— =0
0) —=0.

Proposition 4.10. Let n be an integer greater than or equal to 2, and ¢ be an N-th root of
unity. Then, the n-th component of Huber-Wildeshaus™ motivic polylogarithm class pol, (see,

[HW, Definition 9.4]) is equal to (—1)" "' -2+ [Pol,, | under the identification

Kop1(Q(pn))g = Ethle(@(uN))(Q(o), Q(n)).
In particular, the extension classes {[Polnc]}ecyo generate Kon—1(Q(un))o- O

Proof. 1t is sufficient to show the equality after taking the Hodge realization. This follows from
D1, §3, §16, §19] and [HW, Theorem 9.5, Corolary 9.6]. Note that we consider as Q(n),-torsor
1

not as Z(n),-torsor, and we do not multiply oy on the integral structure unlike as [D1] (See

also Example (2, 2)). O

Fix a place v 1 N of Q(uy). Put K := Q(un),. Let p be the prime devied by v. Note
that K is unramified over Q,. Let o denote the Frobenius endomorphism on K. For a mixed
Tate motive [0 — Q(n) — M — Q(0) — 0] € ExtIIWT(O(U))(@(O),@(n)), the pair Mgy, =
(Merys,ws Mar ®@quy) IS) defines a extension of filtered p-modules:

0 — K(n) — My, — K(0) — 0.
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Here, K (7) is the Tate object in the category of filtered p-modules over K. Thus, we have a
map

Ko (0o = Extlyro,, (@(0), Q(n)) — Bxtly, (K(0), K (n)
B

Hg, (K, K(n)).
See, [B] for the last isomorphism. We call r,, the n-th syntomic requlator map. Recall that
is a finite dimensional QQ,-vector space, not a K-vector space

Hslyn
We fix an isomorphism H, (K, K (n)) =
Hl

K as Q,-vector spaces for n > 1 as follows
sy (8 K (n)) = coker(K (n )crys
(

a,(1— ;

T (K (n) g /FICK (n)ag) © K (1)erys)
~ coker(K 7" | g K)

[(a,b)]—b—(1—p~"0)(a)

o K.

In general, note that for a filtered go—module D and for

[(z,y)] € coker(D —(a (1 op)(

) (D/Fil'D) & D) = Extyr (K(0), D),
the corresponding extension E of K(0) by D is the following: £ = D & Ke

Fil'E = Fil'D + (z + eg)x  for i <0,
Fil'E = Fil'D

for i > 0,

{ng(a) =yp(a) forae D,

vr(eg) = ey +y.
Proposition 4.11. The syntomic regulator map

T KI(O(U)) = Q - Hslyn(K7K(1)) =K
is given by z +— —(1 — 1

)log z. Forn > 2, the syntomic requlator map

Tn : Kanl(QQuN)) Hslyn(K7 K(”)) =K
sends [Pol,,¢] to —N™"1(1 — #)LIZ(C)

Note that Coleman’s p-adic polylogarithm (1

O
not depend on the chice of a

_o)Lig (€) is often written by ¢

P(¢), and does
Remark 4.12. If we use an identification

a(a.(l—p="0)(a [(a,b)]—~a—(1—p~ ") "1 (b)
coker(K (@(zp o)) K& K) =

= K
(note that 1 — p~™0 is a bijection on K for n > 1), then the above formula changes as the
following: the map

1 K1 (Ow))g = ®Q — Hslyn(K,K(l)) ~2 K
is given by z — log z. For n > 2, the map

rn K1 (Qun))o = Hep (K, K (n)) =2 K
sends [Pol, ¢] to N*1Li%(().
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Proof. The first assertion follows from Example (3). The second assertion follows from the
following structure of (Poly,¢)syn = ((Poly.¢)eryss (Poln¢)ar): (Poly.)erys = (To, T1) K

p(ro) = 1%9307

p(r1) = 21 — N1 — p~")Liy (C),
Fﬂin(’POln’OdR = <$0, $1>K7
Fil"(Polnyc)dR = (r1)k for —n <i <0,
Fll1 (POln,C)dR = 0.

This structure follows from Example (2). O

Remark 4.13. We have an isomorphism

Here,

Bcrys ®QP (Py/};l)p = Bcrys ®Ko (P%/Vxl)crys-
PM is a fundamental groupoid of P!\ {0,000} U py. This induces an isomorphism

Y,
Bcrys ®Qp (POlc)p = Bcrys ®K0 (POlc)crys-

Thus, we have the following commutative diagram for n > 2:

lfzn1(<@(Mﬁ{2%@\\\\j:jjl(f(7(Qp(WJ) [7)0ln£li\\\\:ifi7)03ng)p]
H, (K, K(n)) [(Pol ¢ )syn]-

Here, K denotes Q,(un), ¢ is in uy, and p does not divide N. The horizontal map sends the
extension class [Pol, ] to the one [(Pol,¢),|, and the oblique map sends the extension class
[Pol,.¢] to the one [(Poly, ¢ )syn]- O

REFERENCES

Besser, A. Coleman integration using the Tannakian formalism. Math. Ann. 322 (2002), no. 1, 19-48.
Bannai, K. Syntomic cohomology as a p-adic absolute Hodge cohomology. Math. Zeit. 242/3 (2002) 443
480.

Bloch, S.; Kato, K. L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol.
1, 333-400.

Coleman, R. F. Dilogarithms, requlators and p-adic L-functions. Invent. Math. 69 (1982), no. 2, 171-208.
Deligne, P. Le groupe fondamental de la droite projective moins trois points. Galois groups over Q (Berke-
ley, CA, 1987), 79-297, Math. Sci. Res. Inst. Publ., 16,

Deligne, P. Catégories tannakiennes. The Grothendieck Festschrift, Vol. II, Progr. Math., 87(1990)
Birkhauser Boston, Boston, MA, 111-195.

Deligne, P., Goncharov, B. Groupes fondamentaux motiviques Tate mizrte. Ann. Sci. Ecole Norm. Sup. (4)
38 (2005), no. 1, 1-56.

de Jong, A. J. Smoothness, semistability and alterations. Inst. Hautes Etudes Sci. Publ. Math. No. 83
(1996), 51-93.

Drinfel’d, V. G. On quasitriangular quasi-Hopf algebras and a group closely connected woth Gal(Q/Q).
Leningrad Math. J. 2(1991), no. 4, 829-860.

Faltings, G. F'-isocrystals on open varieties: results and conjectures. The Grothendieck Festschrift, Vol.
11, Birkhéuser Boston, Boston, MA, (1990), 219-248.

Fontaine, J. -M. Le corps des périodes p-adiques. Periodes p-adiques (Bures-sur-Yvette, 1988). Astérisque
223 (1994), 59-111.

Fontaine, J.-M. Repreésentations p-adiques semi-stables. Periodes p-adiques (Bures-sur-Yvette, 1988).
Asterisque No. 223 (1994), 113-184



[Fu0]
[Ful]

[Fu2]
[G1]
[G2]

[HK]

BOUNDS FOR THE DIMENSIONS OF p-ADIC MLV-SPACES 25

Furusho, H. The multiple zeta values and Grothendieck-Teichudiller groups. RIMS-1357 preprint.
Furusho, H. p-adic multiple zeta values. I. p-adic multiple polylogarithms and the p-dic KZ equation.
Invent. Math. 155(2004) , no. 2, 253-286.

Furusho, H. p-adic multiple zeta values. I1. various realizations of motivic fundamental groups of projectuve
line minus three points. in preparation.

Goncharov, B. Multiple (-Values, Galois Groupes, and Geometry of Modular Varieties. preprint
AG/0005069

Goncharov, B. The dihedral Lie algebras and Galois symmetries of w1 (P! — {0,00} U un). Duke. Math.
J. 110, (2001), 397-487.

Hyodo, O.; Kato, K. Semi-stable reduction and crystalline cohomology with logarithmic poles. Periodes
p-adiques (Bures-sur-Yvette, 1988). Astérisque 223, (1994), 221-268.

Huber, A.; Wildeshaus, J. classical motivic polylogarithm according to Beilinson and Deligne. Doc. Math.
J. 3, (1998), 27-133.

Kato, K. Logarithmic structures of Fontaine-Illusie. Algebraic analysis,geometry,and number theory.
Johns Hopkins University Press, Baltimore (1989) , 191-224

Kim, M. The motivic fundamental group of P\ {0,1,00} and the theorem of Siegel. Invent. Math. 161
(2005), no. 3, 629-656.

Levine, M. Tate motives and the vanishing conjectures for algebraic K-theory. Algebraic K-theory and
algebraic topology (Lake Louis, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. 407, Kluwer (1993)
167-188.

Quillen, D. On the cohomology and K -theory of the general linear groups over a finite field. Ann. Math.
96 No. 3 (1972) 552-586

Terasoma, T. Mized Tate motives and multiple zeta values. Invent. Math. 149(2002) 339-369.
Voevodsky, V. Triangulated categories of motives over a field. Cycles, trasfers and motivic homology
theories. Ann. of Math. Studies 143, Princeton University Press (2000) 188-238.

Yamashita, G. p-adic étale cohomology and crystalline cohomology for open varieties with semistable
reduction—I. submitted.

Yamashita, G. p-adic étale cohomology and crystalline cohomology for open wvarieties with semistable
reduction—II. submitted.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOkKYO, KomMaBA, TOKvO, 153-8914,
JAPAN

E-mail address: gokun®@ms.u-tokyo.ac. jp



