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Abstract. First, we will define p-adic multiple L-values (p-adic MLV’s), which are general-
izations of Furusho’s p-adic multiple zeta values (p-adic MZV’s) in Section 2.

Next, we prove bounds for the dimensions of p-adic MLV-spaces in Section 3, assuming results
in Section 4. The bounds come from the rank of K-groups of ring of S-integers of cyclotomic
fields, and these are p-adic analogues of Goncharov-Terasoma’s bounds for the dimensions of
(complex) MZV-spaces and Deligne-Goncharov’s bounds for the dimensions of (complex) MLV-
spaces. In the case of MLV-spaces, the gap between the dimensions and the bounds is related
to spaces of modular forms similarly as the complex case.

In Section 4, we define the crystalline realization of mixed Tate motives and show a compar-
ison isomorphism, by using p-adic Hodge theory.
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1. Introduction.

For the multiple zeta values (MZV’s)

ζ(k1, . . . , kd) :=
∑

n1<···<nd

1

nk1
1 · · ·nkd

d

(
= lim
C3z→1

Lik1,...,kd
(z)

)

(k1, . . . , kd−1 ≥ 1, kd ≥ 2), Zagier conjectures the dimension of the space of MZV’s

Zw := 〈ζ(k1, . . . , kd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd−1 ≥ 1, kd ≥ 2〉Q ⊂ R,

and Z0 := Q (Here, 〈· · · 〉Q means the Q-vector space spanned by · · · ) as follows.
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Conjecture 1. (Zagier) Let Dn+3 = Dn+1 + Dn, D0 = 1, D1 = 0, D2 = 1 (that is, the

generating function
∑∞

n=0 Dnt
n is

1

1− t2 − t3
). Then, for w ≥ 0 we have

dimQ Zw = Dw.

Terasoma, Goncharov, and Deligne-Goncharov proved the upper bound:

Theorem 1.1. (Terasoma [T], Goncharov [G1], Deligne-Goncharov [DG]) For w ≥ 0, we have

dimQ Zw ≤ Dw.

¤

Deligne-Goncharov also proved an upper bound for dimensions of multiple L-value (MLV)
spaces. ([DG])

On the other hand, Furusho defined p-adic MZV’s [Fu1] by using Coleman’s iterated integral
theory:

ζp(k1, . . . , kd) := lim
Cp3z→1

′Liak1,...,kd
(z).

where Lia is the p-adic multiple polylogarithm defined by Coleman’s iterated integral, and a
is a branching parameter (For the notations lim′, see [Fu1, Notation 2.12]). For kd ≥ 2, RHS
converges, and the limit value is independent of a and lands in Qp ([Fu1, Theorem 2.13, 2.18,
2.25]). Put

Zp
w := 〈ζp(k1, . . . , kd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd−1 ≥ 1, kd ≥ 2〉Q ⊂ Qp,

and Zp
0 := Q. Note that for kd = 1, p-adic MZV’s may converge, however, these are Q-linear

combinations of p-adic MZV’s corresponding to the same weight indices with kd ≥ 2 (See, [Fu1,
Theorem 2.22]). The following conjecture is proposed.

Conjecture 2. (Furusho-Y.) Let dn+3 = dn+1 + dn, d0 = 1, d1 = 0, d2 = 0 (that is, the

generating function
∑∞

n=0 dntn is
1− t2

1− t2 − t3
). Then, for w ≥ 0 we have

dimQ Zp
w = dw.

From the fact ζp(2) = 0 and the motivic point of views (see, Remark 3.7, p-adic analogue
of Grothendieck’s conjecture about an element of a motivic Galois group (Conjecture 3), and
Proposition 3.12), it seems natural to conjecture as above.

Remark 1.2. The conjecture implies that dimQ Zp
w is independent of p. On the other hand,

ζp(2k + 1) 6= 0 is equivalent to the higher Leopoldt conjecture in the Iwasawa theory. For
a regular prime p, or a prime p satisfying (p − 1) | 2k, we have ζp(2k + 1) 6= 0. However,
it is not known if ζp(2k + 1) is zero or not in general. Thus, it is non-trivial that dimQ Zp

w

is independent of p (See also [Fu1, Example 2.19 (b)]). It seems that the above conjecture
contains the “Leopoldt conjecture for higher depth”. ¤

For Conjecture 2, we will prove the following result.

Theorem 1.3. For w ≥ 0, we have

dimQ Zp
w ≤ dw.

¤
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We can also define p-adic multiple L-values for N -th roots of unity ζ1, . . . , ζd and k1, . . . , kd ≥
1, (kd, ζd) 6= (1, 1) and a prime ideal p - N above p in the cyclotomoic field Q(µN),

Lp(k1, . . . , kd; ζ1, . . . , ζd) ∈ Q(µN)p,

by Coleman’s iterated integral as Furusho did for MZV’s (See, Section 2.1). Here, Q(µN)p is
the completion of Q(µN) at the finite place p. Put

Zp
w[N ] :=〈Lp(k1, . . . , kd; ζ1, . . . , ζd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd ≥ 1,

ζN
1 = · · · = ζN

d = 1, (kd, ζd) 6= (1, 1)〉Q ⊂ Q(µN)p,

and Zp
0 [N ] := Q.

This Zp
w[1] is equal to the above Zp

w. We will also prove bounds for the dimensions of p-adic
MLV’s.

Theorem 1.4. For w ≥ 0, we have

dimQ Zp
w[N ] ≤ d[N ]w.

Here, d[N ]w is defined as follows:

(1) For N = 1, d[1]n+3 = d[1]n+1 + d[1]n (n ≥ 0), d[1]0 = 1, d[1]1 = 0, d[1]2 = 0, that is,

the generating function is
1− t2

1− t2 − t3
(This d[1]n is equal to the above dn).

(2) For N = 2, d[2]n+2 = d[2]n+1 + d[2]n (n ≥ 1), d[2]0 = 1, d[2]1 = 1, d[2]2 = 1, that is,

the generating function is
1− t2

1− t− t2
.

(3) For N ≥ 3, d[N ]n+2 =
(

ϕ(N)
2

+ ν
)

d[N ]n+1 − (ν − 1)d[N ]n (n ≥ 0), d[N ]0 = 1, d[N ]1 =

ϕ(N)
2

+ ν − 1, that is, the generating function is
1− t

1−
(

ϕ(N)
2

+ ν
)

t + (ν − 1)t2
. Here,

ϕ(N) := #(Z/NZ)×, and ν is the number of prime divisors of N .

¤

Remark 1.5. In the proof of the above bounds, we use some kinds of varieties, which are
related to the algebraic K-theory. For N > 4, the above bounds are not best possible in
general, because in the proof, we use smaller varieties in general than varieties, which give the
above bounds. The gap of dimensions is related to the space of cusp forms of weight 2 on
X1(N) if N is a prime. See also [DG, 5.27][G2]. ¤

First, we define the p-adic MLV’s, twisted p-adic multiple polylogarithms (twisted p-adic
MPL’s), and p-adic Drinfel’d associator for twisted p-adic MPL’s in Section 2. Next, assuming
results of Section 4, we will show bounds for dimensions of p-adic MLV-spaces in the sense of
Deligne [D1][DG], by using the motivic fundamental groupoid constructed in [DG] in Section
3.2. Lastly, we show bounds for dimensions of Furusho’s p-adic MLV-spaces, by comparing the
two p-adic MLV-spaces in the Tannakian interpretation in Section 3.3. In Section 4, we con-
struct the crystalline realization of mixed Tate motives, and prove a comparison isomorphism,
by using p-adic Hodge theory.

We fix conventions. We use the notation γ′γ for a composition of paths, which means that γ
followed by γ′. Similarly, we use the notation g′g for a product of elements in a motivic Galois
group, which means that the action of g followed by the one of g′.
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2. p-adic Multiple L-values.

In this section, we define twisted p-adic multiple polylogarithms (twisted p-adic MPL), p-
adic multiple L-values (p-adic MLV), p-adic KZ-equation for twisted p-adic MPL, and p-adic
Drinfel’d associator for twisted p-adic MPL, similarly as Furusho’s definitions in [Fu1]. We
discuss the fundamental properties of them.

Fix a prime ideal p in Q(µN), and an embedding ιp : Q(µN) ↪→ Cp. Put S := {0,∞} ∪ µN ,

UN := P1
Q(µN ) \ S, and UN := UN ⊗Q(µN ) Cp (The variety UN is defined over Q, however, we

use UN over Q(µN) for the purpose of bounding dimensions in the next section).

2.1. The Twisted p-adic Multiple Polylogarithm. We use the same notations as in [Fu1]:
the tube ]x[⊂ P1

Cp
of x ∈ (UN)Fp(Fp), the algebra A(U) of rigid analytic functions on U , and

the algebra Aa
Col of Coleman functions on UN with a branching parameter a.

Definition 2.1. For p - N , k1, . . . , kd ≥ 1, and ζ1 . . . , ζd ∈ µN , we define the (one variable)
twisted p-adic multiple polylogarithm (twisted p-adic MPL) Lia(k1,...,kd;ζ1,...,ζd)(z) ∈ Aa

Col attached
to a ∈ Cp by the following integrals inductively:

Lia(1;ζ1)(z) := − loga(ιp(ζ1)− z) :=

∫ z

0

dt

ιp(ζ1)− t
,

Lia(k1,...,kd;ζ1,...,ζd)(z) :=





∫ z

0

1

t
Lia(k1,...,(kd−1);ζ1,...,ζd)(t)dt kd 6= 1,

∫ z

0

1

ιp(ζd)− t
Lia(k1,...,k(d−1);ζ1,...,ζd−1)(t)dt kd = 1.

Here, loga is the logarithm with a branching parameter a, which means loga(p) = a. ¤
Remark 2.2. For |z|p < 1, it is easy to see that

Lia(k1,...,kd;ζ1,...,ζd)(z) =
∑

0<n1<···<nd

ιp(ζ
−n1
1 ζn1−n2

2 · · · ζnd−1−nd

d )znd

nk1
1 · · ·nkd

d

.

¤
Inductively, we can easily verify that Lia(k1,...,kd;ζ1,...,ζd)(z)|]0[ ∈ A(]0[), Lia(k1,...,kd;ζ1,...,ζd)(z)|]∞[ ∈

A(]∞[)[loga t−1], and Lia(k1,...,kd;ζ1,...,ζd)(z)|]ιp(ζ)[ ∈ A(]ιp(ζ)[)[loga(z − ιp(ζ))] for ζ ∈ µN .

Proposition 2.3. Fix k1, . . . , kd ≥ 1, and N-th roots of unity ζ1, . . . , ζd ∈ µN . Then the
convergence of lim

Cp3z→1

′Lia(k1,...,kd;ζ1,...,ζd)(z) is independent of branches a ∈ Cp. Moreover, if it

converges in Cp, the limit value is independent of branches a ∈ Cp and lands in Q(µN)p (For
the notation lim′, see [Fu1, Notation 2.12]). ¤
Proof. The same as [Fu1, Theorem 2.13, Theorem 2.25]. ¤
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Definition 2.4. When the limit lim′
Cp3z→1 Lia(k1,...,kd;ζ1,...,ζd)(z) converges, we define the corre-

sponding p-adic multiple L-value to be its limit value:

Lp(k1, . . . , kd; ζ1, . . . , ζd) := lim
Cp3z→1

′Lia(k1,...,kd;ζ1,...,ζd)(z)

¤
For example, Lp(1; ζ) = − loga(ιp(ζ) − 1) (1 6= ζ ∈ µN) is independent of a, since loga(z)

does not depend on a for |z| = 1. (Recall that we assume p - N .)

2.2. The p-adic Drinfel’d Associator for Twisted p-adic Multiple Polylogarithms.
Let A∧

Cp
:= Cp〈〈A, Bζ | ζ ∈ µN〉〉 be the non-commutative formal power series ring with Cp

coefficients generated by variables A and Bζ for ζ ∈ µN . For a word W consisting of A and
{Bζ}ζ∈µN

, we call the sum of all exponents of A and {Bζ}ζ∈µN
the weight of W , and the sum

of all exponents of {Bζ}ζ∈µN
the depth of W .

Definition 2.5. Fix a prime ideal p above p in Q(µN) and an embedding ιp : Q(µN) ↪→ Cp.
The p-adic Knizhnik-Zamolodchikov equation (p-adic KZ-equation) is the differential equation

dG

dz
(z) =

(
A

z
+

∑

ζ∈µN

Bζ

z − ιp(ζ)

)
G(z),

where G(z) is an analytic function in variable z ∈ UN with values in A∧
Cp

. Here, G =∑
W GW (z)W is ‘analytic’ means each of whose coefficient GW (z) is locally p-adically ana-

lytic. ¤
Proposition 2.6. Fix a ∈ Cp. Then, there exist unique solutions Ga

0(z), Ga
1(z) ∈ Aa

Col⊗̂A∧
Cp

,

which are locally analytic on P1(Cp)\S and satisfy Ga
0(z) ≈ zA (z → 0), and Ga

1(z) ≈ (1− z)B1

(z → 1). ¤
Here, the notations uA means

∑∞
n=0

1
n!

(A loga u)n. Note that it depends on a. For the
notations Ga

0(z) ≈ zA (z → 0), see [Fu1, Theorem 3.4].

Remark 2.7. We do not have the symmetry z 7→ 1− z on UN . Thus, we do not have a simple
relation between Ga

0(z) and Ga
1(z) as in [Fu1, Proposition 3.8]. On the other hand, we have

the symmetry z 7→ z−1 on UN . Thus, we have a unique locally analytic solution Ga
∞(z) with

Ga
∞(z) ≈ (z−1)−A−Pζ∈µN

Bζ (z →∞), and have a relation

Ga
∞(A, {Bζ}ζ∈µN

)(z) = Ga
0(−A−

∑

ζ∈µN

Bζ , {Bζ−1}ζ∈µN
)(z−1).

However, when we define a Drinfel’d associator by using Ga
0 and Ga

∞ similarly as below (Defi-
nition 2.8), there appears

lim
Cp∈z→∞

′Lia(k1,...,kd;ζ1,...,ζd)(z)

in the coefficient of that Drinfel’d associator. What we want is limCp∈z→1
′. Thus, we use the

boundary condition at z = 1. ¤
Proof. The uniqueness is easy. In [Fu1], he cites Drinfel’d’s paper [Dr] for the existence of
a solution of the KZ-equation. Here, we give an alternative proof of the existence without
using the quasi-triangular quasi-Hopf algebra theory and the quasi-tensor category theory. In
fact, we put Ga

0(z) to be
∑

W (−1)depth(W )LiaW (z)W . Here, for a word W , we define LiaW (z)
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inductively as following: LiaAn(z) := 1
n!

(loga z)n, LiaAW (z) :=
∫ z

0
1
t
LiaW (t)dt, for W 6= An (n ≥ 0),

LiaBζW (z) :=
∫ z

0
1

ιp(ζ)−t
LiaW (t)dt, for ζ ∈ µN . It is easy to verify that

∑
W (−1)depth(W )LiaW (z)W

satisfies the p-adic KZ-equation. As for the boundary condition Ga
0(z) ≈ zA (z → 0), it is easy

to show that ∑

W :W 6=W ′A,W ′ 6=∅
(−1)depth(W )LiaW (z)W

satisfies the above boundary condition.
Thus, it remains to show that LiaW ′An(z) → 0 (z → 0) for n > 0, W ′ 6= ∅. For LiaBζAn ,

LiaBζAn(z) =

∫ z

0

1

ιp(ζ)− t
LiaAn(t)dt =

1

n!

∫ z

0

ζ−1

∞∑

k=0

(ζ−1t)k(loga t)ndt,

in |z| < 1. Since
∫ z

0
tk loga tdt = zk+1

k+1
loga z − zk+1

(k+1)2
, we have

∫ z

0
tk loga tdt → 0 (z → 0).

Inductively, we have
∫ z

0
tk(loga t)ndt → 0 (z → 0). Thus, we showed LiaBζAn(z) → 0 (z → 0).

For general LiaW ′A(z)’s, we can inductively show LiaW ′A(z) → 0 (z → 0) by using the following
fact for f(z) = Lia∗∗(z): For a locally analytic function f(z) satisfying f(0) = 0, we have∫ z

0
1
t
f(t)dt → 0 (z → 0),

∫ z

0
1

ιp(ζ)−t
f(t)dt → 0 (z → 0).

As for Ga
1(z), the same argument works, by replacing LiaAn(z) := 1

n!
(loga z)n by LiaBn

1
(z) :=

1
n!

(loga(1− z))n, and
∫ z

0
by

∫ z

1
. ¤

Definition 2.8. We define the p-adic Drinfel’d associator for twisted p-adic multiple polylog-
arithms to be Φp

KZ(A, {Bζ}ζ∈µN
) := Ga

1(z)−1Ga
0(z). It is in A∧

Cp
= Cp〈〈A, {Bζ}ζ∈µN

〉〉, and

independent of a by the same argument in [Fu1, Remark 3.9, Theorem 3.10]. ¤
By the same arguments as in [Fu1], we can show the following propositions.

Proposition 2.9. limCp∈z→1
′Lia(k1,...,kd;ζ1,...,ζd)(z) converges when (kd, ζd) 6= (1, 1). ¤

Proof. See, [Fu1, Theorem 2.18] for the case where N = 1. ¤
For W in A · A∧

Cp
·Bζ or Bζ′ · A∧

Cp
·Bζ (ζ ′ 6= 1), we define Lp(W ) to be limCp∈z→1

′LiaW (z).

Proposition 2.10. (Explicit Formulae) The coefficient Ip(W ) of W in the p-adic Drinfel’d
associator for twisted p-adic MPL’s is the following: When W is written as Br

1V As for (r, s ≥
0), V is in A · A∧

Cp
·Bζ or Bζ′ · A∧

Cp
·Bζ (ζ ′ 6= 1),

Ip(W ) = (−1)depth(W )(−1)a+b
∑

0≤a≤r,0≤b≤s

Lp(f(Ba
1 ◦Br−a

1 V As−b ◦ Ab)).

In particular, when W is in A ·A∧
Cp
·Bζ or Bζ′ ·A∧

Cp
·Bζ (ζ ′ 6= 1), Ip(W ) = (−1)depth(W )Lp(W ).

Here, f : A∧
Cp
→ A∧

Cp
is the composition of A∧

Cp
³ A∧

Cp
/(B1 · A∧

Cp
+ A∧

Cp
· A), A∧

Cp
/(B1 · A∧

Cp
+

A∧
Cp
· A)

∼→ Cp · 1 + A · A∧
Cp
·B1, and Cp · 1 + A · A∧

Cp
·B1 ↪→ A∧

Cp
. ¤

For the definition of the shuffle product ◦, see [Fu0, Definition 3.2.2].

Proof. See, [Fu1, Theorem 3.28] for the case where N = 1. Note we use Ga
i (A − α, B1 −

β, {Bζ}ζ∈µN ,ζ 6=1)(z) = z−α(1− z)−βGa
i (A, {Bζ}ζ∈µN

)(z) for i = 0, 1. ¤
Proposition 2.11. Suppose limCp∈z→1

′Lia(k1,...,kd−1,1;ζ1,...,ζd−1,1)(z) converges. Then, the limit

value is a p-adic regularized MLV, that is, Lp(k1, . . . , kd−1, 1; ζ1, . . . , ζd−1, 1) = (−1)depth(W )Ip(W ).
In particular, Lp(k1, . . . , kd−1, 1; ζ1, . . . , ζd−1, 1) can be written as a Q-linear combination of p-
adic MLV’s corresponding to the same weight indices with (kd, ζd) 6= (1, 1). ¤
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Proof. See, [Fu1, Theorem 2.22] for the case where N = 1. ¤

Definition 2.12. We define the p-adic multiple L-value space of weight w Zp
w[N ] to be the

finite dimensional Q-linear subspace of Q(µN)p generated by the all p-adic MLV’s of indices of
weight w, ζN

1 = · · · = ζN
d = 1. Put Zp

0 [N ] := Q. We define Zp
• [N ] to be the formal direct sum

of Zp
w[N ] for w ≥ 0. ¤

Remark 2.13. By Proposition 2.11, we see that

Zp
w[N ] :=〈Lp(k1, . . . , kd; ζ1, . . . , ζd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd ≥ 1,

ζN
1 = · · · = ζN

d = 1, (kd, ζd) 6= (1, 1)〉Q
= 〈Ip(W ) | the weight of W is w〉Q ⊂ Q(µN)p.

¤

Proposition 2.14. We have ∆(Φp
KZ) = Φp

KZ⊗̂Φp
KZ. In particular, the graded Q-vector space

Zp
• [N ] has a Q-algebra structure, that is, Zp

a [N ] · Zp
b [N ] ⊂ Zp

a+b[N ] for a, b ≥ 0. ¤

Proof. See, [Fu1, Proposition 3.39, Theorem 2.28] for the case where N = 1. ¤

Proposition 2.15. (Shuffle Product Formulae) For W,W ′ ∈ (A·A∧
Cp
·Bζ)∪∪ζ′ 6=1(Bζ′ ·A∧

Cp
·Bζ),

we have

Lp(W ◦W ′) = Lp(W )Lp(W
′).

¤

Proof. This follows from Proposition 2.10 and Proposition 2.14. See, [Fu1, Corollary 3.42] for
the case where N = 1. ¤

3. Bounds for Dimensions of p-adic Multiple L-value spaces.

In this section, we show Theorem 1.4, by the method of Deligne-Goncharov [DG], assuming
results of Section 4. First, we recall some facts about the motivic fundamental groupoids in
[DG]. Next, we show that bounds for dimensions of p-adic MLV-spaces in the sense of Deligne
[D1][DG]. Lastly, we show that p-adic MLV-spaces in the previous section is equal to p-adic
MLV-spaces in the sense of Deligne by the Tannakian interpretations.

3.1. The Motivic Fundamental Groupoids of UN . Deligne-Goncharov constructed the
category MT(Z[µN , { 1

1−ζw
}w|N ]) of mixed Tate motives over Z[µN , { 1

1−ζw
}w|N ], the fundamental

MT(Z[µN , { 1
1−ζw

}w|N ])-group πM1 (UN , x) and the fundamental MT(Z[µN , { 1
1−ζw

}w|N ])-groupoid

PM
y,x for UN not only for rational base points x, y, but also for tangential base points x, y [DG,

Theorem 4.4, Proposition 5.11]. Here, w | N runs through primes w dividing N , and ζw is
a w-th root of unity (Since UN is defined over Q, πM1 (UN , x), PM

y,x are also MAT(Q(µN)/Q)-
schemes. However, we do not use this fact. Here, MAT(Q(µN)/Q) is the category of mixed
Artin-Tate motives for Q(µN)/Q). For T -schemes, T -group schemes, and T -groupoids for a
Tannakian category T , see [D1, §5, §6], [D2, 7.8], and [DG, 2.6].

First, we recall some facts about them. Let

G := π1(MT(Z[µN , { 1

1− ζw

}w|N ])) ∈ pro-MT(Z[µN , { 1

1− ζw

}w|N ])
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be the fundamental MT(Z[µN , { 1
1−ζw

}w|N ])-group [D1, §6][D2, Definition 8.13]. Then, by its

action onQ(1), we have a surjection G ³ Gm (Here, we regardGm as an MT(Z[µN , { 1
1−ζw

}w|N ])-

group). The kernel U of the map G → Gm is a pro-unipotent group. Then, we have an
isomorphism [DG, 2.8.2]:

Lie(Uab) ∼=
∏
n

Ext1
MT(Z[µN ,{ 1

1−ζw
}w|N ])

(Q(0),Q(n))∨ ⊗Q(n) ∈ pro-MT(Z[µN , { 1

1− ζw

}w|N ]).

The extension group is related to the algebraic K-theory [DG, 2.1.3]:

Ext1
MT(Z[µN ,{ 1

1−ζw
}w|N ])

(Q(0),Q(n)) =





0 n ≤ 0,

Z[µN , { 1
1−ζw

}w|N ]× ⊗Z Q n = 1,

K2n−1(Q(µN))⊗Z Q n ≥ 2.

Let ω be the canonical fiber functor ω : MT(Z[µN , { 1
1−ζw

}w|N ]) → VectQ, which sends a motive

M to ⊕nHom(Q(n), GrW
−2n(M)). Here, Wm(M) is the weight filtration of M . Let Gω :=

ω(G) = Aut⊗(MT(Z[µN , { 1
1−ζw

}w|N ]), ω) be the motivic Galois gruop of MT(Z[µN , { 1
1−ζw

}w|N ])

with respect to the canonical fiber functor ω (For the de Rham realization MdR of a motive
M ∈ MT(Q(µN)), we have MdR = ω(M) ⊗Q Q(µN) [DG, Proposition 2.10]). Then, the ω-
realization of the exact sequence 0 → U → G → Gm → 0 is split by the action of Gm, which
gives the grading by weights,

Gω = Gm n Uω.

Here, Uω := ω(U). Let τ denote the splitting Gm → Gω. The pro-unipotent group Uω is
equipped with the grading {(Uω)n}n. Put (LieUω)gr := ⊕n(LieUω)n. Then, (LieUω)gr is a free
Lie algebra, since we have Ext2

MT(Z[µN ,{ 1
1−ζw

}w|N ])
(Q(0),Q(n)) = K2n−2(Q(µN)) ⊗Z Q = 0 [DG,

Proposition 2.3]. Thus, the generating function of the universal envelopping algebra of (LieUω)gr

is
∑∞

n=0 f(t)n, where

f(t) =





t3 + t5 + t7 + · · · = t3

1−t2
N = 1,

t + t3 + t5 + · · · = t
1−t2

N = 2,(
ϕ(N)

2
+ ν − 1

)
t + ϕ(N)

2
t2 + ϕ(N)

2
t3 + · · · = ϕ(N)

2
t

1−t
+ (ν − 1)t N ≥ 3.

Therefore, we have

∞∑
n=0

f(t)n =
1

1− f(t)
=





1− t2

1− t2 − t3
N = 1,

1− t2

1− t− t2
N = 2,

1− t

1−
(

ϕ(N)
2

+ ν
)

t + (ν − 1)t2
N ≥ 3.

That is the generating function of d[N ]n’s in Section 1.
Let PM

y,x be the fundamental MT(Z[µN , { 1
1−ζw

}w|N ])-groupoid of UN at (tangential) base

points x and y. We consider only tangential base points λx at x ∈ S := {0,∞} ∪ µN with
tangent vectors λ in roots of unity under the identification the tangent space at x with Ga.
Then, PM

λ′y,λx
depends only on x and y, by the triviality of a Kummer Q(1)-torsor [DG, 5.4]. Let

PM
y,x denote PM

λ′y,λx
. We have the following structures of the system of MT(Z[µN , { 1

1−ζw
}w|N ])-

schemes {PM
y,x}x,y∈S [DG, 5.5, 5.7]:
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[The system of groupoids in the level of motives]

(1)M The Tate object Q(1),
(2)M For x, y ∈ S, the fundamental MT(Z[µN , { 1

1−ζw
}w|N ])-groupoid PM

y,x,

(3)M The composition of paths,
(4)M For x ∈ S, a morphism of MT(Z[µN , { 1

1−ζw
}w|N ])-group scheme (the local monodromy

around x):

Q(1) → PM
x,x,

(5)M An equivariance under the dihedral group Z/2Z n µN .

By applying a fiber functor F to the category of K-vector spaces, we get the following structure
[DG, 5.8]:

[The system of groupoids under the fiber functor F ]

(1)F A vector space K(1) of dimension 1,
(2)F For x, y ∈ S, a scheme P F

y,x over K,

(3)F a system of morphisms of schemes P F
z,y × P F

y,x → P F
z,x making P F

y,x’s a groupoid. The

group schemes P F
x,x are pro-unipotent,

(4)F For x ∈ S, a morphism

(additive group K(1)) → P F
x,x.

That is equivalent to giving K(1) → LieP F
x,x,

(5)F An Z/2Z n µN -equivariance.

In particular, we take the canonical fiber functor ω as F , and we consider the following weakened
structure (forgetting the conditions at infinity) [DG, 5.8]. Note that in the realization ω, the
weight filtrations split and give the grading, and that all πω

1 (UN , x)-groupoid is trivial since
H1(UN ,OUN

) = 0. Let L be the Lie algebra freely generated by symbols A, and {Bζ}ζ∈µN
. Let

Π be the pro-unipotent group

Π := lim←−
n

exp(L/degree ≥ n)

[The (weakened) system of groupoids under the canonical fiber functor ω]

(1)ω The vector space Q,
(2)ω A copy Π0,0 of Π, and the trivial Π0,0-torsor Π1,0. The twist of Π0,0 by this torsor is a

new copy of Π, denoted by Π1,1,
(3)ω The group law of Π,
(4)ω The morphism

Q→ L∧ : 1 7→ A, Q→ L∧ : 1 7→ B1.

for x = 0, 1 respectively. Here, L∧ := lim←−n
L/(degree ≥ n),

(5)ω The action µN on Π0,0, which induces on the Lie algebra Bζ 7→ Bσζ .

Let Hω be the group scheme of automorphisms of Q and Π preserving the above structure (1)ω-
(5)ω. The action of Hω on the one dimensional vector space (1)ω gives a morphism Hω ³ Gm.
Let Vω be the kernel. The grading gives a splitting,

Hω = Gm n Vω.
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Also let τ denote the splitting Gm → Vω. The action Gω on the above structure factors through
Hω, which sends Uω to Vω.

1 // Uω
//

²²

Gω
//

²²

Gm
//

=

²²

1

1 // Vω
// Hω

// Gm
// 1.

Let ι denote both of Gω → Hω, and Uω → Vω. The above diagram comes from MT(Z[µN , { 1
1−ζw

}w|N ])-

schemes (splitting does not come from MT(Z[µN , { 1
1−ζw

}w|N ])-schemes), however we do not use

this fact (see, [DG, 5.12.1]). By the Proposition 5.9 in [DG], the map

η : Vω → Π1,0 (v 7→ v(γdR))

is bijective. Here, γdR is the neutral element of Π1,0, that is, γdR is the canonical path from 0
to 1 in the realization of ω.

3.2. The p-adic MLV-space in the Sense of Deligne. We will discuss the crystalline
realization of mixed Tate motives, and now we assume the results of Section 4 (See, Remark 4.8).
We use the word “crystalline”, not “rigid” for the purpose of fixing terminologies.

In [D1], Deligne has found the p-adic zeta values (i.e., the p-adic MZV’s of depth 1), and the
p-adic differential equation of p-adic polylogarithms in the study of crystalline aspects of the
fundamental group of UN modulo depth ≥ 2 [D1, 19.6]. Deligne-Goncharov proposed that the
coefficients of the image of

ϕp := F−1
p τ(q)−1 ∈ Uω(Q(µN)p)

by the map

η · ι : Uω(Q(µN)p) → Vω(Q(µN)p)
∼→ Π(Q(µN)p) ⊂ Q(µN)p〈〈A, {Bζ}ζ∈µN

〉〉
“seem” to be p-adic analogies of MZV’s [DG, 5.28]. Here, Fp is the Frobenius endomorphism
at p, and q is the cardinality of the residue field at p. Note that we have the Frobenius
endomorphism on Mω⊗Q(µN)p

∼= Mcrys for M ∈ MT(Z[µN , { 1
1−ζw

}w|N ]) by Remark 4.8. Here,

Mcrys is the crystalline realization of M .

Definition 3.1. We define the p-adic multiple L-values in the sense of Deligne of weight w to be
the coefficients ID

p (W ) of words W of wight w in ηι(ϕp) ∈ Π(Q(µN)p) ⊂ Q(µN)p〈〈A, {Bζ}ζ∈µN
〉〉.

We define the p-adic L-value spaces in the sense of Deligne of weight w Zp,D
w [N ] to be the finite

dimensional Q-linear subspace of Q(µN)p generated by the all p-adic MLV’s in the sense of

Deligne of indices of weight w. By the definition, we have Zp,D
0 [N ] = Q. We define Zp,D

• [N ] to
be the formal direct sum of Zp,D

w [N ] for w ≥ 0. ¤
On the othe hand, we call p-adic MLV’s defined in Section 2.1 p-adic MLV’s in the sense of

Furusho.

Remark 3.2. If we calculate the action of Frobenius F−1
p on (P1,0)ω, we get the following

KZ-like p-adic differential equation by the same arguments as in [D1, 19.6]:

dG(t) = −qG(t)

(
dt

t
A +

∑

ζ∈µN

dt

t− ιp(ζ)
ζ(Φp

D)−1Bζζ(Φp
D)

)
+

(
d(tq)

tq
A +

∑

ζ∈µN

d(tq)

tq − ιp(ζ)
Bζ

)
G(t).

Here, ζ(Φp
D) means the action of ζ on Φp

D determined by ζ(A) = A and ζ(Bζ′) = Bζζ′ . Here, Φp
D

is the Deligne associator (See, the subsection of Tannakian interpretions, and Proposition 3.10).
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The coefficient of a word W in the solution of the above p-adic differential equation is
qw(W )ID

p (W ) in the limit t → 1, that is, p-adic MLV’s in the sense of Deligne (multiplied by

qw(W )). (More precisely, we have to consider the effect (1 − t)−B1 of the tangential base point
in taking the limit). The first term in RHS is multiplied by G from the left, and the second
term in RHS is multiplied by G from the right. Thus, the inductive procedure of determining
coefficients is more complicated.

In [D1, 19.6], Deligne calculated the Frobenius action on πω
1 (UN , 10) = (P1,0)ω modulo depth

≥ 2, however, we get the above p-adic differential equation by the same arguments. Here we
give a sketch. We use some notations in [D1]. The above equation arises from the horizontality
of Frobenius ([D1, 19.6.2]):

F−1
p (e−1∇e) = G−1∇G.

Here, e is the identity element. The above F−1
p and G are F∗ and v in [D1] respectively. On

the LHS, we have [D1, 12.5, 12.12, 12.15]

e−1∇e = −α = −
(

dt

t
A +

∑

ζ∈µN

dt

t− ιp(ζ)
Bζ

)
.

Here, α is the Maurer-Cartan form ([D1, 12.5.5]). On the RHS, since the connection is the one
of F̃ ∗(P1,0)ω, we have ∇e = −F̃ ∗α, where F̃ ∗ means the Frobenius lift t 7→ tq. Combining these
and ∇G = dG + (∇e)G, we get

−qG

(
dt

t
A +

∑

ζ∈µN

dt

t− ιp(ζ)
F−1

p (Bζ)

)
= dG−

(
d(tq)

tq
A +

∑

ζ∈µN

d(tq)

tq − ιp(ζ)
Bζ

)
G.

This gives the equation (For F−1
p (Bζ), see the proof of Proposition 3.10). ¤

Example 1. From the p-adic differential equation in the above Remark 3.2, the coefficient of
Ak−1B in ηι(F−1

p τ(p)−1) in the case where N = 1 is the limit value at z = 1 of the p-adic
analytic continuation of the following analytic function on |z|p < 1 [D1, 19.6]:

∑

p-n

zn

nk
.

That limit value is (1 − p−k)ζp(k). From the condition p - n in the summation, we lose the
Euler factor at p for p-adic MZV’s of depth 1 in the sense of Deligne.

Proposition 3.3. For a, b ≥ 0, we have

Zp,D
a [N ] · Zp,D

b [N ] ⊂ Zp,D
a+b[N ].

¤

Proof. The group Π(Q(µN)p) is the subgroup of group-like elements in Q(µN)p〈〈A, {Bζ}ζ∈µN
〉〉,

and ηι(ϕp) is an element of Π(Q(µN)p) by the definition. Thus, we have ∆(ηι(ϕp)) = ηι(ϕp)⊗̂ηι(ϕp).
This implies the proposition. ¤

Proposition 3.4. For w ≥ 0, we have

dimQ Zp,D
w [N ] ≤ d[N ]w.

¤



12 GO YAMASHITA

Proof. Let Uω = SpecR and ηι(Uω) = SpecS. The algebras R =
∏

n Rn and S =
∏

n Sn are
graded algebras over Q. Here, the grading of R and S come from the grading of Uω. Then,
ηι(ϕp) ∈ ηι(Uω)(Q(µN)p) gives a homomorphism ψp : S → Q(µN)p. The coefficients of ηι(ϕp)
of weight w are contained in ψp(S

w). Thus, we have Zp,D
w [N ] ⊂ ψp(S

w). By the surjection

ι : Uω ³ ι(Uω)(⊂ Vω

η∼= Π), the dimension of Sw is at most the one of the w-th graded part of
the universal envelopping algebra of (LieUω)gr. That dimension is d[N ]w. We are done. ¤

Remark 3.5. As remarked in [DG, 5.27], ι : LieUω → LieVω is not injective for N > 4 in
general. Thus, the above bounds are not best possible for N > 4 in general. The kernel is
related to the space of cusp forms of weight 2 on X1(N) if N is a prime. See also [G2]. ¤

Remark 3.6. In the complex case [DG], dch(σ) is in (P1,0)ω ⊗ C = Π(C)
∼← Vω(C). (Here,

dch(σ) is the “droit chemin” from 0 to 1 in the Betti realization with respect to σ : Q(µN) ↪→ C.)
Thus, Deligne-Goncharov relate dch(σ) to the motivic Galois group Uω for the purpose of
bounds for the dimensions in [DG, Proposition 5.18, 5.19, 5.20, 5.21, 5.22]. (The point is that
Vω is too big, and Uω is small enough.) However, in the p-adic situation, ϕp is contained a priori
in a small enough variety, i.e., we have ϕp ∈ Uω(Q(µN)p) by the definition. Thus, the bounds
from K-theory of p-adic MLV’s in the sense of Deligne is almost trivial. ¤

We give remarks on ζp(2).

Remark 3.7. By Proposition 3.4 and Example 1, we have ζp(2) = 0, since dimQ Zp,D
2 [1] =

0. It is another proof of that well-known fact. To bound dimensions, Deligne-Goncharov
used ι(Uω) × A1 in the complex case [DG, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25]. This affine line
corresponds to “π2”, and we need this affine line simply because π2 is not in Q. In the p-adic
case, we do not need such an affine line, simply because the image of F−1

p in (Gm)ω (i.e., p) is
in Q. This gives a motivic interpretation of ζp(2) = 0. ¤

Remark 3.8. It is well-known that ζp(2m) = 0. However, it is non-trivial because we do not
know how to show directly

“
∑

Cp3z→1

zn

n2m
= 0”

(We add a double quotation in the above, since we have to take p-adic analytic continuation).
The well-known proof of ζp(2m) = 0 is following (also see, [Fu1, Example 2.19(a)]): By the
Coleman’s comparison [C], we have limCp3z→1 Liak(z) = (1− p−k)−1Lp(k, ω1−k) for k ≥ 2. Here,
Lp is the p-adic L-function of Kubota-Leopoldt, ω is the Teichmüller character. This is the
values of the p-adic L-function at positive integers. On the other hand, the p-adic L-function
interpolates the values of usual L-functions at negative integers, thus, Lp(z, ω

1−k) is constantly
zero for even k. Therefore, we have ζp(2m) = 0. That proof is indirect.

Furusho informed to the author that 2-, and 3-cycle relations induce ζp(2m) = 0 similarly as
in [D1, §18] (In the notations in [D1, §18], we can take γ =(the unique Frobenius invariant path
from 0 to 1) (see, the next subsection,) and x = 0). These relations come from the geometry of
P1 \ {0, 1,∞}. Thus, it seems that it comes from “the same origin” that ‘ζp(2) = 0 from cycle
relations’ and ‘ζp(2) = 0 from the bounds by K-theory’. Furusho also comments that we may
translate ‘ζp(2m) = 0 from cycle relations’ into ‘ζp(2m) = 0 from p-adic differential equation’,
i.e., we may show that ζp(2k) = 0 directly from the p-adic analytic function

∑
n≥1

zn

n2m . ¤
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3.3. The Tannakian Interpretations of Two p-adic MLV’s. Besser proved that there
exists a unique Frobenius invariant path in the fundamental groupoinds of p-adic analytic
spaces [B, Corollary 3.2]. Furthermore, Besser showed the existence of Frobenius invariant
path on p-adic analytic spaces is equivalent to the Coleman’s integral theory [B, §5].

Let γcrys be the unique Frobenius invariant path in (P1,0)crys. To a differential form ω, the

path γcrys associates the Colman integration
∫ 1

0
ω. Let γdR ∈ (P1,0)ω be the canonical path from

0 to 1 under the realization ω. Furusho proved the path αF := γ−1
dRγcrys ∈ πcrys

1 (UN , 10) is equal
to the p-adic Drinfel’d associator Φp

KZ for p-adic MZV’s, that is, for N = 1 in [Fu2]. By the same
argument, we can verify that αF = Φp

KZ for p-adic MLV’s. Briefly, we review the argument. For
details, see [Fu2] (See also [Ki, Proposition 4]). The coefficient of a word Akd−1Bζd

· · ·Ak1−1Bζ1

in αF = γ−1
dRγcrys ∈ πcrys

1 (UN , 10) ⊂ Q(µN)p〈〈A, {Bζ}ζ∈µN
〉〉 for (kd, ζd) 6= (1, 1) is an iterated

integral ∫ 1

0

dt

t
· · ·

∫ t

0

dt

t

∫ t

0

dt

t− ιp(ζd)

∫ t

0

dt

t
· · ·

∫ t

0

dt

t

∫ t

0

dt

t− ιp(ζ1)

by the characterization of γcrys with respect to Coleman’s integration theory (Here, the succesive
numbers of dt/t are kd − 1, kd−1 − 1, · · · , k2 − 1 and k1 − 1). For words beginning from A or
ending B1, the coefficients are regularized p-adic MLV’s, because the coefficients in αF are the
one in lim′

Cp3z→1(1 − z)−B1G0(z) by using the tangential base point. Thus, αF is the p-adic

Drinfel’d associator Φp
KZ for twisted p-adic MPL’s in Section 2.2:

αF := γ−1
dRγcrys = Φp

KZ =
∑
W

Ip(W )W.

On the other hand, ηι(ϕp) ∈ Π0,0(Q(µN)p) = πcrys
1 (UN , 10) is γ−1

dRϕp(γdR) by the definition

(Recall that Vω

η∼= Π1,0 and Π0,0
∼= Π1,0 : 1 7→ γdR). Briefly, p-adic MLV’s in the sense

of Furusho come from αF = γ−1
dRγcrys, and p-adic MLV’s in the sense of Deligne come from

αD := γ−1
dRϕp(γdR). That is the Tannakian interpretations of p-adic MLV’s. In [Fu2], he calls

Φp
D := γ−1

dRF−1
p (γdR) the Deligne associator.

Remark 3.9. In both of complex and p-adic cases, the iterated integrals appear in the theory
of MZV’s. However, the iterated integrals come from different origins in the complex case and
the p-adic case.

In the complex case, the iterated integrals appear in the comparison map between the Betti
fundamental group πB

1 ⊗Q C tensored by C of P1 \ {0, 1,∞} and the de Rham fundamental
group πdR

1 ⊗Q C tensored by C of P1 \ {0, 1,∞}. The difference between the Q-structure πB
1

and the Q-structure πdR
1 under the comparison πB

1 ⊗Q C ∼= πdR
1 ⊗Q C is expressed by iterated

integrals.
In the p-adic case, iterated integrals do not appear in the comparison map between the de

Rham fundamental group πdR
1 ⊗Q Qp tensored by Qp and the crystalline fundamental group

πcrys
1 . Furthermore, there is no Q-structure on πcrys

1 . For p-adic MZV’s in the sense of Deligne,
iterated integrals appear in the difference between the Q-structure πdR

1 and the Q-structure
F−1

p (πdR
1 ) in P crys

1,0 under the comparison P crys
1,0

∼= P dR
1,0 ⊗Q Qp = πdR

1 ⊗Q Qp. For p-adic MZV’s

in the sense of Furusho, they appear in the difference between Q-structure πdR
1 and the Q-

structure απdR
1 in πcrys

1 under the comparison πcrys
1

∼= πdR
1 ⊗Q Qp. Here, α is a unique element

in πcrys
1 such that γdR · α ∈ P crys

1,0 is invariant under the Frobenius (Thus, α is equal to αF ).
From this, it seems difficult to find a “motivic Drinfel’d associator”, which is an origin of

both complex and p-adic MZV’s, and a motivic element, which is an origin of linear relations
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of both complex and p-adic MZV’s. Note also that roughly speaking, the complex Drinfel’d
associator is the differenc between Betti and de Rham realizations ([DG, 5.19]), and the p-adic
Drinfel’d associator is the Frobenius element at p. ¤
Example 2. (1) (Kummer torsor) Let K(x)ω be the fundamental groupoid from 1 to x on

Gm with respect to the realization ω. Deligne calculated in [D1, 2.10] the action of F−1
p

on K(x)ω ⊂ K(x)crys:

F−1
p (γdR) = γdR + loga x1−p.

Here, γdR is the canonical de Rham path from 1 to x, and + means the right action of
πcrys

1 (Gm, 1) = Q(1)crys = Qp(1) on K(x)crys. From this, we have

F−1
p (γdR + loga x) = γdR + loga x1−p + p loga x = γdR + loga x.

Thus, γdR + loga x is Frobenius invariant, that is, the unique crystalline path γcrys from
1 to x.

(2) (Polylogarithm torsor) Let P1,k(ζ)ω be the k-th polylogarithm torsor with respect to
the realization ω for ζ ∈ µN (see, [D1, Definition 16.18]). The polylogarithm torsors
are not fundamental groupoids, but quotients of fundamental groupoids. However, we
use the terminology “Z(k)-torsor of Z(k)-paths from 0 to ζ” in [D1, 13.15]. Here, we
consider as Q(k)ω-torsor not as Z(k)ω-torsor, and we do not multiply 1

(k−1)!
on the

integral structure unlike as [D1]. Deligne calculated in [D1, 19.6, 19.7] the action of
F−1

p on P1,k(ζ)ω ⊂ P1,k(ζ)crys:

F−1
p (γdR) = γdR + pk(1− p−k)Nk−1Liak(ζ)

(That is, F−1
p τ(p)−1(γdR) = γdR +(1−p−k)Nk−1Liak(ζ)). Here, + means the right action

of Q(k)crys = Qp(k) on P1,k(ζ)crys. From this, we have

F−1
p (γdR −Nk−1Liak(ζ)) = γdR + pk(1− p−k)Nk−1Liak(ζ)− pkNk−1Liak(ζ)

= γdR −Nk−1Liak(ζ).

Thus, γdR−Nk−1Liak(ζ) is Frobenius invariant, that is, the unique crystalline path γcrys

from 0 to ζ.
(3) In the case where N = 1, the coefficient of Ak−1B in Φp

KZ is −ζp(k) and the one of
Ak−1B in ηι(F−1

p τ(p)−1) is (1− p−k)ζp(k), from the above example.

(4) (Furusho) The coefficient of Ab−1BAa−1B in F−1
p τ(p)−1 in the case where N = 1 is

(
1

pa+b
− 1

)
ζp(a, b)−

(
1

pa
− 1

)
ζp(a)ζp(b)

+
a−1∑
r=0

(−1)r

(
1

pb+r
− 1

) (
b− 1 + r

b− 1

)
ζp(a− r)ζp(b + r)

+ (−1)a+1

b−1∑
s=0

(
1

pa+s
− 1

)(
a− 1 + s

a− 1

)
ζp(a + s)ζp(b− s),

for b > 1.

The following proposition combined with Proposition 3.4 gives a proof of Theorem 1.4. The
author learned the following proposition from Furusho’s caluculation Example 2(4).
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Proposition 3.10. For w ≥ 0, we have

Zp
w[N ] = Zp,D

w [N ].

¤
Proof. The effect of τ(q) is the multiplication by qw on p-adic MLV’s of weight w in the sense
of Deligne. Thus, Zp,D

w [N ] is not changed when we replace F−1
p ∈ Gω(Q(µN)p) by ϕp =

F−1
p τ(q)−1 ∈ Gω(Q(µN)p) in αD = γ−1

dRϕp(γdR). Let JD
p (W ) be the coefficient of a word W

in Φp
D := γ−1

dRF−1
p (γdR). We have

Zp,D
w [N ] = 〈JD

p (W ) | the weight of W is w〉Q ⊂ Q(µN)p

(We recall that the coefficient of a word W in αF is Ip(W )). We have

αF = γ−1
dRγcrys = γ−1

dRF−1
p (γdR) · (F−1

p (γdR))−1F−1
p (γcrys) = Φp

DF−1
p (αF )

=

(∑
W

JD
p (W )W

)(∑
W

Ip(W )F−1
p (W )

)

(By a theorem of Besser [B, Theorem 3.1], we see that αF and αD determine each other from
the above formula).

We compute the action F−1
p on a word W . Let γdR,ζ be the canonical path from 0 to ζ under

the realization ω, that is, γdR,1 = γdR, γdR,ζ = ζ(γdR,1). Here, ζ(γdR,1) is the action of ζ ∈ µN

on Π. Then, Bζ = (γdR,ζ)
−1A · γdR,ζ . Thus, we have F−1

p (A) = qA and

F−1
p (Bζ) = (F−1

p (γdR,ζ))
−1qAF−1

p (γdR,ζ) = qζ(Φp
D)−1Bζζ(Φp

D)

= q

(∑
W

JD
p (ζ−1(W ))W

)−1

Bζ

(∑
W

JD
p (ζ−1(W ))W

)
.

Here, the action of ζ ∈ µN on words is given by ζ(A) = A, and ζ(Bζ′) = Bζζ′ . From the above
formula about αF , we have

αF = Φp
DF−1

p (αF ) =

(∑
W

JD
p (W )W

)(∑
W

Ip(W )F−1
p (W )

)

=

(∑
W

JD
p (W )W

)
 ∑

W=AkdBζd
···Ak1Bζ1

Ak0

qk0+···+kd+dIp(W )Akd

·
(∑

W

JD
p (ζ−1

d (W ))W

)−1

Bζd

(∑
W

JD
p (ζ−1

d (W ))W

)
· · ·

·
(∑

W

JD
p (ζ−1

1 (W ))W

)−1

Bζ1

(∑
W

JD
p (ζ−1

1 (W ))W

)
Ak0


 ,

There, by using Proposition 2.14 and Proposition 3.3, for a word W of weight w we have

(1− qw)Ip(W )− JD
p (W ) ∈

∑

w=w′+w′′:w′<w,w′′<w

Zp
w′ · Zp,D

w′′ .

By induction, we have Zp
w = Zp,D

w . ¤



16 GO YAMASHITA

Finally, we remark on some conjectures. The following conjecture is a p-adic analogue of
Grothendieck’s conjecture [DG, 5.20], which says that aσ ∈ Gω(C) is Q-Zariski dense (weakly,
a0

σ := aστ(2π
√−1)−1 ∈ Uω(C) is Q-Zariski dense). Here, aσ is the “difference” between the

Betti realization with respect to σ and the de Rham realization (For elements aσ and a0
σ, see

[DG, Proposition 2.12] and [D1, 8.10 Proposition]).

Conjecture 3. The element ϕp ∈ Uω(Q(µN)p) is Q-Zariski dense. That means that if a
subvariety X of Uω over Q satisfies ϕp ∈ X(Q(µN)p), then X = Uω.

Remark 3.11. We have the Chebotarev density theorem for usual Galois groups. So, the
author expects that there may be “Chebotarev density like” theorem for the Frobenius element
in the motivic Galois group varying the prime number p. It will be interesting to study for this
“Chebotarev density like” theorem varying p, adèle valued points of the motivic Galois group,
and possible relations among “Chebotarev density like” theorem varying p, Grothendieck’s con-
jecture about the motivic element, and the above p-adic analogue of Grothendieck’s conjecture
about the Frobenius element. ¤

The following conjecture in the case N = 1 (i.e. p-adic MZV’s) is proposed by Furusho (non
published).

Conjecture 4. All linear relations among p-adic MLV’s are linear combinations of linear rela-
tions among p-adic MLV’s with same weights.

The following proposition is obvious (cf. [DG, 5.27]).

Proposition 3.12. We consider the following statements:

(1) The inequality in Theorem 1.4 is an equality (For N = 1, this is Conjecture 2).
(2) The map ι : Uω → Vω is injective.
(3) Conjecture 3.
(4) Conjecture 4.

Then, (1) is equivalent to the combination of (2) and (3), and implies (4). ¤

Remark 3.13. The statement (2) is true for N = 2, 3, 4. For N > 4, the statement (2) is false
in general. The kernel is related to the space of cusp forms of weight 2 on X1(N) if N is a
prime. See, [DG, 5.27][G2]. ¤

4. Crystalline Realization of Mixed Tate Motives.

In this section, we consider the construction of the crystalline realization of mixed Tate
motives, and Berthelot-Ogus isomorphism for the de Rham and crystalline realizations of mixed
Tate motives.

4.1. Crystalline Realization. Let k be a number field, v be a finite place of k, and Gk be
the absolute Galois group of k. First, we define the crystalline inertia group at v. Let p be
a prime divided by v. Let RepQp

(Gk), and Repcrys,v

Qp
(Gk) be the category of finite dimensional

representations of Gk over Qp, and the subcategory of crystaline representations of Gk at v.

Definition 4.1. (crystalline inertia group) The inclusion Repcrys,v

Qp
(Gk) ↪→ RepQp

(Gk) induces

the map of Tannaka dual groups with respect to the forgetful fiber functor. We define a
crystalline inertia group Icrys

v (⊂ Gk,p := Aut⊗(RepQp
(Gk))) at v to be its kernel. ¤
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Here, Gk,p is the (algebraic group over Qp)-closure of Gk. The group Icrys
v is a pro-algebraic

group over Qp. Note that by the definition, the action of Gk on Mp is crystalline at v if and
only if the action of Icrys

v on Mp is trivial.
We recall Bloch-Kato’s group H1

f . Let O(v) be the localization at v of the ring of integers of
k, and kv be the completion of k with respect to v. For a finite dimensional representation V
of Gkv over Q`, they defined [BK, §3]

H1
f (kv, V ) :=

{
ker(H1(kv, V ) → H1(kur

v , V )) v - `,
ker(H1(kv, V ) → H1(kv, Bcrys ⊗ V )) v | `.

Here, kur
v is the maximal unramified extension of kv, and Bcrys is the Fontaine’s p-adic period

ring (See, [Fo1]). For a prime ` not divided by v, the monodromy action Q`(m) → Q`(m + n)
of Iv ³ Z`(1) is trivial for n ≥ 2 (Here, Iv is the usual inertia at v). Thus, we have

H1
f (kv,Q`(n)) =

{
O×

(v) ⊗Q` n = 1,

H1(kv,Q`(n)) n ≥ 2.

In the crystalline case, conversely from the calculations

H1
f (kv,Qp(n)) =

{
O×

(v) ⊗Qp n = 1,

H1(kv,Qp(n)) n ≥ 2,
(4.1)

(See, [BK, Example 3.9]), we will get monodromy informaions of Icrys
v on mixed Tate motives.

We recall that the fact H1
f (kv,Qp(n)) = H1(kv,Qp(n)) for n ≥ 2, v | p follows from

dimQp H1
f (kv,Qp(n)) = dimQp DdR(Qp(n))/Fil0DdR(Qp(n)) + dimQp H0(kv,Qp(n))

= [kv : Qp] + 0 = −χ(Qp(n)) = dimQp H1(kv,Qp(n))

(See, [BK, Corollary 3.8.4, Example 3.9]). Here, DdR is the Fontaine’s functor ([Fo2]), and χ(V )
is the Euler characteristic of V . Thus, it holds without assuming that kv is unramified over Qp.
Let H1

f (k, V ) be the inverse image of H1
f (kv, V ) via the restriction map H1(k, V ) → H1(kv, V ).

Theorem 4.2. (cf. [DG, Proposition 1.8]) Let k be a number field, and v be a finite place of
k. Take a mixed Tate motive M in MT(k). Then, the following statements are equivalent.

(1) The motive M is unramified at v, that is, M ∈ MT(O(v)).
(2) For a prime ` not divided by v, the `-adic realization M` of M is an unramified repre-

sentation at v.
(3) For all prime ` not divided by v, the `-adic realization M` of M is an unramified repre-

sentation at v.
(4) For the prime p divided by v, the p-adic realization Mp of M is a crystalline represen-

tation at v.

¤
Proof. The equivalence of (1), (2), and (3) is proved in [DG, Proposition 1.8]. We show that
(1) is equivalent to (4). The proof is a crystalline analogue of [DG, Proposition 1.8]. The
Kummer torsor K(a) for a ∈ k× ⊗ Q is crystalline at v, if and only if a ∈ O×

(v) ⊗ Q (See, the

isomorphism (4.1) H1
f (kv,Qp(1)) ∼= O×

(v) ⊗Qp).

Since Kummer torsors generate Ext1
MT(k)(Q(0),Q(1)), it suffices to show that the following

statement: For a mixed Tate motive M ∈ MT(k), the action of Icrys
v on Mp is trivial if the

action of Icrys
v on W−2nMp/W−2(n+2)Mp is trivial for each n ∈ Z. Assume that the action of
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Icrys
v on W−2nMp/W−2(n+2)Mp is trivial for each n ∈ Z. We show that the action of Icrys

v on
W−2nMp/W−2(n+r)Mp is trivial by the induction on r. For r = 2, it is the hypothesis. For
r > 2, the induction hypothesis assure that the action of Icrys

v is trivial on W−2n/W−2(n+r−1)

and W−2(n+1)/W−2(n+r). Thus, the action of σ ∈ Icrys
v is of the form 1 + ν(σ), where ν(σ) is the

composite:

W−2n/W−2(n+r) ³ GrW
−2n

µ(σ)−→ GrW
−2(n+r−1) ↪→ W−2n/W−2(n+r).

We have µ(σ1σ2) = µ(σ1) + µ(σ2). This µ is compatible with the action of Gk,p. It suffices to
show that the map µ(σ) : GrW

−2n → GrW
−2(n+r−1) is trivial. This follows from

HomGk,p
(Icrys

v , Hom(Qp(0),Qp(r − 1)))

∼= Ext1
RepQp

(Icrys
v )(Qp(0),Qp(r − 1))Gk,p/Icrys

v

∼= Ext1
RepQp

(Gk,p)(Qp,Qp(r − 1))/Ext1
RepQp

(Gk,p/Icrys
v )(Qp,Qp(r − 1))

∼= Ext1
RepQp

(Gk)(Qp,Qp(r − 1))/Ext1
Repcrys,v

Qp
(Gk)(Qp,Qp(r − 1))

∼= H1(k,Qp(r − 1))/H1
f (k,Qp(r − 1)) = 0.

The second isomorphism follows from the fact that Ext2
Repcrys,v

Qp
(Gk) = 0, and the action of Icrys

v

on Qp(r − 1) is trivial, and the last equality follows from the isomorphism (4.1). (We have
Ext2

Repcrys,v
Qp

(Gk) = 0 from the elemental theory of the category of filtered ϕ-modules. In fact,

RHom is calculated by a complex, which is concentrated only in degree 0 and 1.) ¤

Remark 4.3. If we have a full sub-Tannakian category MT(O(v))
good of MT(k) satisfying

Ext1
MT(O(v))

good(Q(0),Q(1)) ∼=
{

O×
(v) ⊗Q, n = 1,

Ext1
MT(k)(Q(0),Q(n)), n ≥ 2,

and

Ext2
MT(O(v))

good(Q(0),Q(n)) = 0 for any n,

then by introducing the “motivic inertia group” at v

IMv := ker{Aut⊗(ωMT(k)) → Aut⊗(ωMT(O(v))
good)},

we can prove the similar result for MT(O(v))
good, that is, M is in MT(O(v)) if and only if M is

in MT(O(v))
good by the “motivic analogue” of the above proof.

In a naive way, we cannot define “M ⊗O(v)
k(v)” the reduction at v of an object M in

MT(O(v)), since MT(O(v)) is not defined by a “geometrical way”. So, the author hopes that
this remark will be useful to construct “the reduction at v” of object in MT(O(v)). If we
“geometrically” construct a full sub-Tannakian category MT(O(v))

good of MT(k) satisfying the
above conditions, then we can get a good definition of “the reduction at v”. Here, the word
“geometrically” means that returning the definition of Voevodsky’s category DM(k). See also
the proof of Theorem 4.6. ¤

Definition 4.4. For a mixed Tate motive M ∈ MT(O(v)) unramified at v, we define the
crystalline realization Mcrys,v to be Dcrys(Mp). Here Dcrys is the Fontaine’s functor (Bcrys ⊗Qp

−)Gkv , and Mp is the p-adic realization of M . ¤
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Note that Mp is a crystalline representaion of Gkv by Theorem 4.2, so we have dimk0,v Mcrys,v =
dimQp Mp = dimQMω. Here, k0,v is the fraction field of the ring of Witt vectors with coefficients
in the residue field k(v) of O(v). Note also that the pair (Mcrys,v,Mcrys,v ⊗k0.v kv) gives an
admissible filtered ϕ-module in the sense of Fontaine ([Fo1], [Fo2]). The crystalline realization is
functorial, and defines a fiber functor MT(O(v)) → Vectk0,v , which factors through the category

of admissible filtered ϕ-modules MFad
k0,v

(ϕ).

Remark 4.5. By using the fact that H1
st(kv,Qp(1)) = H1(kv,Qp(1)) and introducing “semistable

inertia group” at v, we can show that Mp is a semistable representation of Gkv for any mixed
Tate motive M in MT(k), similarly as the proof of Theorem 4.2. Thus, we can define the crys-
talline realization (or semistable realization) Mcrys,v (or Mst,v) to be Dst(Mp) = (Bst⊗Qp Mp)

Gkv

for all M ∈ MT(k), and get a functor MT(k) → MFad
k0,v

(ϕ,N) to the category of admissible

filtered (ϕ,N)-modules. ¤

4.2. Comparison Isomorphism. In this subsection, we prove a “Berthelot-Ogus like” com-
parison isomorphism between the crystalline realization and the de Rham realization. We
defined the crystalline realization by using Fontaine’s functor, so we need another “geometri-
cal” construction of the crystalline realization to compare it with the de Rham realization (it
is not obvious that the other construction is functorial).

For preparing the following theorem, we briefly recall that Voevodsky’s category DM(k) (see,
[V]), Levine’s category MT(k) (see, [L]), and Deligne-Goncharov’s category MT(O(v)) (see,
[DG]). Let k be a field. First, let SmCor(k) be the additive category whose objects are smooth
separated scheme over k, and morphisms Hom(X, Y ) are free abelian group generated by re-
duced irreducible closed subschemes Z of X × Y , which are finite over X and dominate a con-
nected component of X. Then, Voevodsky’s tensor triangulated category DM(k) is constructed
from the category of bounded complexes Kb(SmCor(k)) of SmCor(k) by localizing the thick
subcategory generated by [X×A1] → [X] (homotopy invariance), and [U∩V ] → [U ]⊕[V ] → [X]
for X = U ∪ V (Mayer-Vietoris), adding images of direct factors of idempotents, and inverting
formally Z(1).

Let k be a number field. Then, the vanishing conjecture of Beilinson-Soulé holds for k.
From the vanishing conjecture of Beilinson-Soulé, Levine constructed the Tannakian category
of mixed Tate motives MT(k) from DMT(k) by taking a heart with respect to a t-structure.
Here, DMT(k) is the sub-tensor triangulated category of DM(k)Q generated by Q(n)’s.

For a finite place v of k, let O(v) denote the localization of k at v. Deligne-Goncharov defined
the full subcategory MT(O(v)) of mixed Tate motives unramified at v in MT(k), whose objects
are mixed Tate motives M in MT(k) such that for each subquotient E of M , which is an
extension of Q(n) by Q(n + 1), the extension class of E in

Ext1
MT(k)(Q(n),Q(n + 1))

∼=←− Ext1
MT(k)(Q(0),Q(1)) ∼= k× ⊗Q

is in O×
(v) ⊗Q(⊂ k× ⊗Q).

Theorem 4.6. (Berthelot-Ogus isomorphism) For any mixed Tate motive M in MT(O(v)), we
have a canonical isomorphism

kv ⊗k0,v Mcrys,v
∼= kv ⊗k MdR.

¤
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Remark 4.7. (Hyodo-Kato isomorphism) After choosing a uniformizer π of kv, we can prove
a canonical isomorphism

kv ⊗k0,v Mcrys,v
∼= kv ⊗k MdR

for any mixed Tate motive M in MT(k) by the same way (cf. Remark 4.5). ¤

Remark 4.8. From the functorial isomorphism Mcrys,v⊗k0,v kv
∼= MdR⊗kkv, we have Gω⊗Qkv

∼=
Gcrys ⊗k0,v kv. Here, G := π1(MT(O(v))) ∈ pro-MT(O(v)) is the fundamental MT(O(v))-group
(See, [D1, §6][D2, Definition 8.13]). Thus, we can consider the Frobenius element F−1

p ∈ Gω(kv)
if k0,v = kv (For example, in the case where k is Q(µN) and v is a prime ideal not dividing
(N)). ¤

Proof. For any finite extension k′ of k and a prime ideal w over v, we define an additive category
SmCor(O(w)) as follows. The objects are pairs of a proper smooth scheme X over O(w) and a
horizontal simple normal crossing divisor D of X , which is also normal crossing to the special
fiber of X . The set of morphisms Hom((X ,D), (Y , E)) is the free abelian group generated by
horizontal smooth irreducible closed subschemes Z of X ×Y , which are finite over X , dominate
a connected component of X , and are transversal to X × E ∪ D × Y .

By using de Jong’s alterations, there exists a finite extension k′ of k, a bounded complex
(X •,D•) in Kb(SmCor(O(w))), an idempotent f in Kb(SmCor(O(w))), and an integer n ∈ Z such
that f(X •⊗k \D•⊗k)(n) represents M ⊗k k′ in MT(k′). We call such a triple {(X •,D•), f, n}
a good reduction model of M at v′ over k′. We can define the log-crystalline cohomology
Hcrys,w(M) := Hcrys(M/W (k(w))) ⊗ k0,w for this triple {(X •,D•), f, n}. Note that the homo-
topy invariance holds for the log-crystalline cohomology. Choose a uniformizer π′ of k′w. By
the semistable conjecture for open varieties proved in [Y1] (or [Fa]), we have a canonical iso-
morphism Mcrys,w

∼= Hcrys,w(M). Note that the compatiblity of the comparison isomorphism
for algebraic correspondences is proved in [Y1], [Y2]. By using Hyodo-Kato isomorphism for
open varieties in [Y1], we have an isomorphism k′w ⊗k0,w Hcrys,w(M) ∼= k′w ⊗k MdR. Now, Mp is
crystalline at v by Thoerem 4.2. So, we have Mcrys,w

∼= k0,w ⊗k0,v Mcrys,v. Therefore, we have
an isomorphism k′w ⊗k0,v Mcrys,v

∼= k′w ⊗k MdR. In general, for any element τ ∈ Gal(k′w/kv), we
have an isomorphism k′,τw ⊗k0,v Mcrys,v

∼= k′,τw ⊗k MdR by using the triple {(X •,τ ,D•,τ ), f τ , n}.
Thus, we have an isomorphism kv ⊗k0,v Mcrys,v

∼= kv ⊗k MdR by the descent. Since Mp is crys-
talline at v, this isomorphism does not depend on the choice of π′, and we can show that this
isomorphism does not depend on the choice of good reduction models by using the standard
product argument. ¤

4.3. Some Remarks. The crystalline realization to the category of ϕ-modules (not to the
category of admissible filtered ϕ-modules) is split, because we have Ext1

MT(O(v))
(Q(0),Q(n)) = 0

for n ≤ 0 and Ext1
Modk0,v

(ϕ)(k0,v(0), k0,v(n)) = 0 for n > 0.

So, we can expect that the crystalline realization MT(O(v)) → Vectk0,v factors through
MT(k(v)). Note that the weight filtration of mixed Tate motives over a finite field is split
by Quillen’s calculations of K-groups of finite fields ([Q]). Thus, they are sums of Q(n)’s.

The weight filtration is motivic, and both of the de Rham realization and the crystalline
realization are split. However, the splittings do not coincide, that is, the splitting of the
crystalline realization does not coincide to the splitting of the de Rham realization via the
Berthelot-Ogus isomorphism of Theorem 4.6. The iterated integrals and p-adic MLV’s appear
in the difference of these splittings. See also Remark 3.9.
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Remark 4.9. We have Ext1
Modk0,v

(ϕ)(k0,v(0), k0,v(0)) ∼= Qp 6= 0, and this gap corresponds to

the “near critical strip case” of Beilinson’s conjecture and Bloch-Kato’s Tamagawa number
conjecture, that is, we need not only regulator maps, but also Chow groups to formulate these
conjectures near the critical strip case (that is, the case where the weight of motive is 0 or −2).
In this case, this corresponds to the “dual” of the fact that the image of the Dirichlet regulator
is not a lattice of Rr1+r2 , but a lattice of a hyperplane of Rr1+r2 . The author does not know a
direct proof of the fact that the non-trivial extension in Ext1

Modk0,v
(ϕ)(k0,v(0), k0,v(0)) = Qp does

not occur in the crystalline realization. ¤

Example 3. (Kummer torsor) Let K be a finite extension of Qp, K0 be the fraction field of
the ring of Witt vectors with coefficient in the residue field of K. Let z ∈ 1 + πOK . Let

0 → Qp(1) → V (z)p → Qp(0) → 0

be the extension of p-adic realization corresponding to z. Fix e0 a generator of Qp(1) corre-
sponding {ζn}n, and e1 the generator of Qp(0) corresponding 1. Then, the action of Galois
group is the following: {

ge0 = χ(g)e0,

ge1 = e1 + ψz(g)e0.

Here, χ is the p-adic cyclotomic character, and ψz is characterized by g(z1/pn
) = ζ

ψz(g)
n z1/pn

.
Then, V (z)crys

∼= (Bcrys ⊗Qp V (z)p)
GK has the following basis:

{
t−1 ⊗ e0 =: x0,

e1 − t−1 log[z]⊗ e0 =: x1.

Here, t := log[ζ], log[z] ∈ Bcrys. Thus, the Frobenius action is the following:

{
φ(x0) = 1

p
x0,

φ(x1) = x1.

The filtration after K⊗K0 is the following:




Fil−1V (z)dR = V (z)dR = 〈x0, x1〉K ,

Fil0V (z)dR = 〈x1 + (log z)x0〉K ,

Fil1V (z)dR = 0

(In BdR, we have t−1 log z
[z]
∈ Fil0BdR). Thus, we have splittings:

V (z)crys = 〈x0〉K0 ⊕ 〈x1〉K0 = K0(1)⊕K0(0),

V (z)dR = 〈x0〉K ⊕ 〈x1 + (log z)x0〉K = K(1)⊕K(0).

These splittings do not coincide in general.
We will recover the calculation φ−1(0) = log z1−p in [D1, 2.9, 2.10]. In this case, we assume

K = K0. By the above calculation, the Kummer torsor K(z)dR is

K(z)dR = −(x1 + (log z)x0) + Kx0
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(For the purpose of making satisfy ∇(u) = du − dz
z

in [D1, 2.10], we use the above sign
convention). Then, we have

φ−1(0) ↔ φ−1(−(x1 + (log z)x0) + 0) = −(x1 + p(log z)x0)

= −(x1 + (log z)x0) + (1− p)(log z)x0 = −(x1 + (log z)x0) + (log z1−p)x0

↔ log z1−p.

This coincides the calculation in [D1, 2.10]. Here, ↔ is the identification via K(z)dR = −(x1 +
(log z)x0) + Kx0

∼= K.

Next, we define polylogarithm extensions. In the following, we consider the case where k is
a cyclotimic field Q(µN) for N ≥ 1. For ζ ∈ µN , let Uζ ∈ pro-MT(Q(µN)) be the kernel of
πM1 (P1 \ {0, 1∞}, ζ) → πM1 (Gm, ζ). We define Logζ to be the abelianization of Uζ Tate-twisted
by (−1). We define Polζ with Tate twist (1) to be the push-out in the following diagram (see
also, [D1, §16]):

0 // Uζ
//

²²²²

πM1 (P1 \ {0, 1,∞}, ζ) //

²²²²

πM1 (Gm, ζ) //

=

²²

0

0 // Logζ(1) // Polζ(1) // Q(1) // 0.

For n ≥ 1, we also define Poln,ζ to be the push-out under Logζ = Πn≥0Q(n) → Q(n) (see also,
[D1, §16]):

0 // Logζ
//

²²²²

Polζ //

²²²²

Q(0) //

=

²²

0

0 // Q(n) // Poln,ζ
// Q(0) // 0.

The extension class [Poln,ζ ] lives in Ext1
MT(Q(µN ))(Q(0),Q(n)) ∼= K2n−1(Q(µN))Q. Let µ0

N be
the group of primitive N -th roots of unity. Recall that Huber-Wildeshaus constructed motivic
polylogarithm classes polζ ∈

∏
n≥2 K2n−1(Q(µN))Q (not extensions of motives) in [HW].

Proposition 4.10. Let n be an integer greater than or equal to 2, and ζ be an N-th root of
unity. Then, the n-th component of Huber-Wildeshaus’ motivic polylogarithm class polζ (see,

[HW, Definition 9.4]) is equal to (−1)n−1 n!
Nn−1 [Poln,ζ ] under the identification

K2n−1(Q(µN))Q ∼= Ext1
MT(Q(µN ))(Q(0),Q(n)).

In particular, the extension classes {[Poln,ζ ]}ζ∈µ0
N

generate K2n−1(Q(µN))Q. ¤

Proof. It is sufficient to show the equality after taking the Hodge realization. This follows from
[D1, §3, §16, §19] and [HW, Theorem 9.5, Corolary 9.6]. Note that we consider as Q(n)ω-torsor
not as Z(n)ω-torsor, and we do not multiply 1

(n−1)!
on the integral structure unlike as [D1] (See

also Example (2, 2)). ¤
Fix a place v - N of Q(µN). Put K := Q(µN)v. Let p be the prime devied by v. Note

that K is unramified over Qp. Let σ denote the Frobenius endomorphism on K. For a mixed
Tate motive [0 → Q(n) → M → Q(0) → 0] ∈ Ext1

MT(O(v))
(Q(0),Q(n)), the pair Msyn :=

(Mcrys,v,MdR ⊗Q(µN ) K) defines a extension of filtered ϕ-modules:

0 → K(n) → Msyn → K(0) → 0.
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Here, K(i) is the Tate object in the category of filtered ϕ-modules over K. Thus, we have a
map

rn : K2n−1(O(v))Q ∼= Ext1
MT(O(v))

(Q(0),Q(n)) → Ext1

MFf
K

(K(0), K(n)) ∼= H1
syn(K, K(n)).

See, [B] for the last isomorphism. We call rn the n-th syntomic regulator map. Recall that H1
syn

is a finite dimensional Qp-vector space, not a K-vector space.
We fix an isomorphism H1

syn(K,K(n)) ∼= K as Qp-vector spaces for n ≥ 1 as follows.

H1
syn(K, K(n)) ∼= coker(K(n)crys

a7→(ā,(1−ϕ)(a))−→ (K(n)dR/Fil0K(n)dR)⊕K(n)crys)

∼= coker(K
a 7→(a,(1−p−nσ)(a))−→ K ⊕K)

[(a,b)]7→b−(1−p−nσ)(a)∼= K.

In general, note that for a filtered ϕ-module D and for

[(x, y)] ∈ coker(D
a 7→(ā,(1−ϕD)(a))−→ (D/Fil0D)⊕D) ∼= Ext1

MFf
K

(K(0), D),

the corresponding extension E of K(0) by D is the following: E = D ⊕Ke0{
FiliE = FiliD + 〈x + e0〉K for i ≤ 0,

FiliE = FiliD for i > 0,

{
ϕE(a) = ϕD(a) for a ∈ D,

ϕE(e0) = e0 + y.

Proposition 4.11. The syntomic regulator map

r1 : K1(O(v))Q ∼= O×
(v) ⊗Q→ H1

syn(K,K(1)) ∼= K

is given by z 7→ −(1− 1
p
) log z. For n ≥ 2, the syntomic regulator map

rn : K2n−1(Q(µN))Q → H1
syn(K,K(n)) ∼= K

sends [Poln,ζ ] to −Nn−1(1− 1
pn )Lian(ζ). ¤

Note that Coleman’s p-adic polylogarithm (1− 1
pn )Lian(ζ) is often written by `

(p)
n (ζ), and does

not depend on the chice of a.

Remark 4.12. If we use an identification

coker(K
a 7→(a,(1−p−nσ)(a))−→ K ⊕K)

[(a,b)] 7→a−(1−p−nσ)−1(b)∼= K

(note that 1 − p−nσ is a bijection on K for n ≥ 1), then the above formula changes as the
following: the map

r1 : K1(O(v))Q ∼= O×
(v) ⊗Q→ H1

syn(K,K(1)) ∼= K

is given by z 7→ log z. For n ≥ 2, the map

rn : K2n−1(Q(µN))Q → H1
syn(K,K(n)) ∼= K

sends [Poln,ζ ] to Nn−1Lian(ζ). ¤
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Proof. The first assertion follows from Example (3). The second assertion follows from the
following structure of (Poln,ζ)syn = ((Poln,ζ)crys, (Poln,ζ)dR): (Poln,ζ)crys = 〈x0, x1〉K{

ϕ(x0) = 1
pn x0,

ϕ(x1) = x1 −Nn−1(1− p−n)Lian(ζ),




Fil−n(Poln,ζ)dR = 〈x0, x1〉K ,

Fili(Poln,ζ)dR = 〈x1〉K for − n < i ≤ 0,

Fil1(Poln,ζ)dR = 0.

This structure follows from Example (2). ¤
Remark 4.13. We have an isomorphism

Bcrys ⊗Qp (PM
y,x)p

∼= Bcrys ⊗K0 (PM
y,x)crys.

Here, PM
y,x is a fundamental groupoid of P1 \ {0,∞} ∪ µN . This induces an isomorphism

Bcrys ⊗Qp (Polζ)p
∼= Bcrys ⊗K0 (Polζ)crys.

Thus, we have the following commutative diagram for n ≥ 2:

K2n−1(Q(µN))Q //

((RRRRRRRRRRRRR
H1(K,Qp(n))

∼=
²²

[Poln,ζ ]
Â //

°

&&MMMMMMMMMMM
[(Poln,ζ)p]_

²²
H1

syn(K,K(n)) [(Poln,ζ)syn].

Here, K denotes Qp(µN), ζ is in µN , and p does not divide N . The horizontal map sends the
extension class [Poln,ζ ] to the one [(Poln,ζ)p], and the oblique map sends the extension class
[Poln,ζ ] to the one [(Poln,ζ)syn]. ¤
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