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Abstract

Let M be a closed Riemannian manifold of dimension n. Let )
be an eigenfunction of the Laplace—Beltrami operator corresponding
to an eigenvalue \. We show that the volume of {py > 0} N B is
> C|B|/A", where B is any ball centered at a point on the nodal set.
We apply this result to prove that each nodal domain contains a ball
of radius > C/A". The results in this paper extend previous results
of F. Nagzarov, L. Polterovich, and M. Sodin, and of the author.

1 Introduction and Main Results

Let (M,g) be a closed Riemannian manifold of dimension n. Let A =
—div o grad be the Laplace—Beltrami operator on M. We consider the eigen-
value equation

Apyr = Ay . (1.1)

A A\-nodal domain on M is any connected component of the set {¢) # 0} (see
Fig. 1). In this paper we study asymptotic local geometry of nodal domains.
Let 2, denote a A-nodal domain on M. Let C;, 1 = 1,2, ... denote constants
which depend only on the Riemannian metric g. Our first result is

Theorem 1.2.

Vol({¢x > 0} N B) S Ch
Vol(B) = oD/

for all geodesic balls B C M such that {¢x = 0} N %B # 0. Here, ;B is a
concentric ball of half the radius of B.



Figure 1: Nodal domains on a Quarter of a Stadium, Dirichlet boundary
conditions. Courtesy of Sven Gnutzmann

One can think of Theorem 1.2 as measuring the local asymmetry of nodal
domains. Namely, it measures the volumes ratio between the positivity and
the negativity set of ¢, in B. Our motivation to prove the local asymme-
try estimate in Theorem 1.2 comes from two sources. The first one is the
following local asymmetry estimate in dimension two:

Theorem 1.3 ([NPS05]). Let ¥ be a closed Riemannian surface. Then

VOI({(,DA > 0} N B) > Cs
Vol(B) ~ log A\/loglog A’

for all geodesic balls B C M such that {¢p\ =0} N %B # (.

The proof of Theorem 1.3 is based on one-dimensional complex analysis.
F. Nazarov, L. Polterovich and M. Sodin suggest in [NPS05| to explore local
asymmetry in higher dimensions. The idea of the proof of Theorem 1.2 is
based on a method of Carleman in [Car26]. Carleman finds a differential
inequality which involves the rate of growth of a harmonic function in a
two dimensional ball and its volume of positivity. In [NPS05], the authors
indicate how to obtain a local asymmetry estimate for harmonic functions
in dimensions n > 3 based on Carleman’s method. In this paper we adapt
Carleman’s method to solutions of second order elliptic equations. As a
result we can get a local asymmetry estimate also for eigenfuncions of the
Laplace—Beltrami operator.



Our second source of motivation comes from our work [Man05]. In that
work we gave a lower bound for the inner radius of nodal domains based on
a growth bound for eigenfunctions by H. Donnelly and C. Fefferman and the
Local Courant’s Nodal Domain Theorem:

Theorem 1.4 ([DF90, CM91)). Let M be a closed Riemannian manifold of
dimension n. Let Q0 be a A-nodal domain. Then

VOI(Q)\ N B) > Cg
Vol(B) = A3

for all geodesic balls B C M such that 2, N %B =+ .

In the present paper Theorem 1.2 replaces Theorem 1.4. Namely, we
now consider the union of all components of the positivity set of ) in B,
while in Theorem 1.4 only one deep (i.e. which intersects %B) component
in B is considered. We believe that the lower bound 1/\%" is true also for
the volume of one deep component. This lets us improve our estimate on
the inner radius significantly, and make the proof of our result more self-
contained. We prove:

Theorem 1.5.
Cs

ﬁa

%
o <inrad(2y) <
where a(n) = $(n — 1) + 5.

The proof of the upper bound and of the two dimensional case is given
in [Man05]. In this paper we assume n > 3.

Organization of the Paper. In Section 2 we explain the principle that in
small scales compared with the wavelength 1/ VA an eigenfunction behaves
like a harmonic function. In Section 3 we present some results and estimates
for solutions of elliptic equations, which we frequently use. We prove these
estimates in Section 7. In Section 4 we give an estimate of the volume of
positivity for solutions of the Schrédinger equation with small potential in the
unit ball. Our estimate will be given in terms of the growth of the solution,
and its proof is based on Carleman’s method. In Section 5 we combine our
estimate from section 4 and a growth bound by Donnelly and Fefferman
in order to prove Theorem 1.2. In section 6 we prove that the asymmetry
estimate in Theorem 1.2 implies the estimate on the inner radius of a nodal
domain in Theorem 1.5.
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2 Eigenfunctions on the Wavelength Scale

In this section we explain the following principle.

Principle: On a small scale comparable to the wavelength (1/v/)), eigen-
functions behave like harmonic functions.

The above principle was extensively used in the works of H. Donnelly, C. Fef-
ferman and N. Nadirashvili. We start by fixing an atlas on M.

Lemma 2.1. We can find on M a finite atlas such that in each chart the
coefficients of g, g~' are given by bounded functions in the C*-norm, and g+
1s uniformly elliptic in each coordinate chart.

O]
In each chart we have
197 [|cr < K1, g = detg;; < Ko, (2.2)
and an ellipticity bound B
97 (2)&&; > r|E%. (2.3)
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The eigenequation (1.1) expressed in local coordinates is
1
V9

We consider equation (2.4) in balls B, = B(0,r), where r < \/eo/\ and

€o is a small positive number to be chosen later. When we rescale it to an
equation in the unit ball By, we get

—0i(97\/9:0507r) = €07/ Gripar ON Bi. (2.5)

Here, a subindex r denotes a scaled function, f,.(x) = f(rz). Since r < 1, the
bounds (2.2) and (2.3) remain true also for the rescaled metric coefficients.
Throughout this paper we let

9i(97\/90;2) = Apa - (2.4)

© = Pxr, aij = g? 9r, q= \/E .

We set B
Lu = —0,(a” 0ju) — eoqu. (2.6)

Equation (2.4) takes now the form

Ly =0 in By, (2.7)
with the bounds B
la”lcr iz < K3,0 < g < Ky, (2.8)
and an ellipticity bound 3
a’&&; > KslE]? (2.9)

3 Estimates for Solutions of Elliptic Equa-
tions

In this section we present some properties of solutions, subsolutions and
supersolutions of second order elliptic equations which will be useful in the
next sections. The proofs are postponed to Section 7. L is the operator given
in (2.6) in the unit ball Bj.

The following theorem is a local maximum principle.



Theorem 3.1 ([GT83, Theorem 9.20]). Suppose Lu < 0 on By. Then

1 1/p
sup u < Ci(r1/r2,p) <—/ (ut(z))P d:z:) ,
Bly) ' Vol(B(y,72)) Js(ym)

for all p > 0, whenever 0 < ry < ry and B(y,ry) C By.
We will also need the weak Harnack Inequality

Theorem 3.2 ([GT83, Theorem 9.22]). Suppose Lu > § in By, and u > 0
in B(y,rm2) € B(0,1). Then 3p > 0 such that

1 1/p
Nl R ) P < Cy(r1, inf w4+ Cs(rq,72)d,
(Vol(B(y,rl))/B(wl)u > < Cy(ry T2>B%?Iyl,r1)u 3(71,72)

where 1 < ry.

We let -
Lou = —82‘(CLZ]8]'U) .
Then L = Ly — €pq. A maximum principle for L is

Theorem 3.3 ([GT83, Theorem 3.7]). Let u satisfy Lou < 6 on a ball B C
By. Then

supu > supu — Cy0
OB B

where Cy depends only on the Cl-bounds and the ellipticity bounds of the
coefficients a.

We recall that we denote by ¢ a solution of the Schrédinger equation (2.7).
As a corollary of Theorem 3.3 we obtain

Corollary 3.4. We have
suppt > 0.9supp ,
OB B

for all balls B C By, and for all eg small enough.

We have also a Mean Value Property
Theorem 3.5. Suppose ¢(0) = 0. Then

supp~ < C5(ry,72) sup ™,

1 BT«Z

where ry < ry < 1.



4 Positivity Volume for Solutions of
Schrodinger’s Equation

We recall that ¢ is a solution of the Schrdodinger equation (2.7) in the unit
ball By, under the conditions (2.8)—(2.9). We estimate the positivity volume
of ¢ in terms of its growth.

Let 0 < r < 1. Denote by G (¢) the growth exponent of :

SUP|z<1 p(z)

+ =1
B (p) == log Do 2(@)

Set (B) = 14 B;7. We prove

Theorem 4.1. Suppose p(0) =0 and &¢ is small enough. Then

Cl (7”) .
(B

We start by considering the case ¢(0) # 0.

Vol({¢ > 0}) >

Proposition 4.2. Let |xzo| < 1. Suppose p(z) > 0 and p(x) < yp(xo) for
all z € B = B(xg,7) C B(0,1). Then

Vol({¢ > 0} N B) < Coy
Vol(B) =4y

Proof of Proposition 4.2. We apply to ¢ Theorem 3.1.

Cg CB
o(rg) < sup ¢ < / ot (x) do = / o(x) dor <
° B(zo,r/2) Vol(B) Jp (@) Vol(B) Bn{p>0}

Csvy / Vol({y > 0} N B)
< dx = C! :
S TOUB) Jyryey 70 4= gy P )
(4.3)
Dividing by ¢(z) gives us the result. O

We now treat the case p(0) = 0.



Proof of Theorem 4.1. Let m = |[(3;)]|. Decompose the annulus r < |z| < 1
into m annuli 7, < |x| < 741, where rp =7+ (1 —r)k/m for k =0,...m.
Define ()
su x
B, = log Plal<ris ¥
SUP|z|<ry, o(r)
Let S = {k: fr < 267 /m}. Observe that >, 5y = ;. Therefore, |S| >
m/2. Let S’ be a maximal subset of S such that for all ki, ks € S we have
|7k, — Tyl > 2(1 — r)/m. Notice that |S’| > m/4.
Fix k € S'. By Corollary 3.4, we can find z( such that |zo| = r; and

¢(z9) > 0.9 sup () .

|z| <7

. (0<k<m-—1).

Consider the ball B = B(xg, (1 — r)/m). For all x € B we have p(z) <
0.9¢2% /™ p(z4). Hence, from Proposition 4.2 we know that

Vol({¢ > 0} N B)

> Che 20 m > Cue? > s
VOI(B) = 046 = 046 =~ 05

If we run over all k& € S’, we obtain the following estimate
Vol({p > 0}) > mVol({¢ > 0} N B)/4 > C5Vol(B)m/4 >

1 C6<1 — T)n
06 — )" /m" e B
> Co(1—1)"/ > -

[]

Remark. In the above proof if we avoid the use of the Maximum Principle,
we get a lower bound of C(r)/(8,7)™.

Different Variants of the Growth Exponent. We now replace 3 in
Theorem 4.1 by a more conventional growth constant:

SUP|z|<1 ()]

P [2(@)] (44

Or(p) =

We let (3,) =1+ 3,.
Proposition 4.5. Suppose p(0) =0. Let 0 <ry <ry < 1. Then

Z(@) < 07(T17T2)ﬁr2 (QD) :



Proof. The proposition amounts to proving

sup |¢| < Cs(ry,ra)sup g . (4.6)

1 B?"Q

We may assume supp,_ |¢| = supp, ¢ . But then, inequality (4.6) is just
Theorem 3.5. L

An immediate consequence of Proposition 4.5 and Theorem 4.1 is

Theorem 4.7. Suppose ©(0) = 0. Then

o Cg(?“)
Vol({y > 0}) > G

for 0 <r <1 and ey small enough.

5 Local Asymmetry of Nodal Domains

We take the positivity volume estimate in Section 4, and a growth estimate
by Donnelly and Fefferman in order to prove Theorem 1.2.

Proof of Theorem 1.2. First, we consider balls B C M in scales small com-
pared with the wavelength 1/v/), i.e. balls whose radius 7 < /g0/X. We can
assume that B is the Euclidean ball B(0,r). Let xo be such that oy (z¢) =0
and |zo| < /2. We consider the eigenfunction ¢, on the ball B = B(z,7/2).
We apply Theorem 4.7 with the function ¢(x) = @, (rz/2) which is defined
on the unit ball B;. We learn that

Vol({¢x >0} N B) - Vol({py > 0~} N B) _ Vol({¢ > 0} N By)

Vol(B) = 27Vol(B) ~ 2Vol(By)

4
>
B <51/2(<P)>n_1

Next, we recall the growth estimate for eigenfunctions by Donnelly and
Fefferman:

Theorem 5.2 ([DF88)). B1/2(x; B) < Cov/A, where Byo(x; B) is by defi-
nition 31 /2(¢).

(5.1)



Together with (5.1) we get

Vol({¢x >0} N B) - Cs
Vol(B) = N2

We now consider large balls B. Let r > y/eg/A. We know that the inner

radius of nodal domains is < Cy/v/A (see e.g. [Man05]). From this fact it
follows

(5.3)

Lemma 5.4. We can find a maximal set of disjoint balls B; = Bj(x;,ro)
contained in B, such that ro < \/€o/\, oa(z;) =0, and Vol(U;B;)/Vol(B) >
Cs.

The balls B; are small. Hence, by (5.3) -
Vol({¢y > 0} N B;) > CsVol(B;) /N"1/2
Summing over all balls B; gives us
Vol({¢y > 0} N B) > C;Vol(U; B;) /A™V/2 > CxVol(B) /A—D/2
as desired. O

6 Local Asymmetry implies Inner Radius Es-
timate
In this section we prove that a local asymmetry of a domain 2 C M implies

a lower bound on its first eigenvalue. Then, we apply this result to a nodal
domain in order to establish Theorem 1.5.

Definition 6.1. Let Q2 C M be a domain. We say that Q satisfies (ASym-a)

if
Vol(B\ Q) N
Vol(B) —
for all balls B C M such that (3B \ ) # 0.

We prove

Theorem 6.2. Let M be of dimensionn > 3. If Q C M satisfies (ASym-a),
then

&I—Q/n

> _
M) = G inrad(§2)?
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Remark. In dimension two, one can prove that if each connected com-
ponent of the complement has area > «, then A\ (Q) > Cy/y/a. The full

argument is given in [Man05].

Proof. We may assume that a > 0. Let 1) be the first Dirichlet eigenfunction

on 2. Notice that v is not constant.

Let us fix a finite atlas {U;, k;} on M as in Section 2. Here k; : U; — R™,
are the coordinate maps. The metric on each chart U; is comparable to the

Euclidean metric on the unit ball.

We divide k;(U;) into small non-overlapping small cubes @);; of size h to

be chosen later. Define the local Rayleigh Quotient by

fﬁ;l(Qij) ’va d(VOl)
Sz (@ 1912 d(vol)

Ry; (¢) =
Claim 6.4.
for some i, 5, where K is the number of charts in the atlas.

Proof of Claim. Assume the contrary

/ (Vap|? d(vol) > K\ () / |92 d(vol) .
’%_l(Qij) Hi_l(Qz'j)

We sum up inequalities (6.6) over all cubes Q;;.

/\w\? d(vol) > %Z/ ” \w\? d(vol)

> A (Q Z/ |¢|2 (vol) > Ay ( /|¢\2 (vol) .

Hence, we obtain the following contradiction

Jo, IV9]? d(vol)
Jo [¥]? d(vol)

11

(6.3)

(6.5)

(6.6)



We now make a particular choice of h. Set €2; = QN U;, and let r; be the
Euclidean inner radius of x;(£2;). Let h = 8 max; ;. We note that

h < Csinrad(€2), (6.8)

where C3 depends only on g and the atlas chosen.
Take ) = @Q;; from Claim 6.4. Let %Q be a concentric cube with parallel
edges of size h/2. Since r; < h/4

1
5@ \ ri(S%) # 0 . (6.9)
So, the asymmetry assumption on 2 tells us that
Vol(@ \ x:(2:))
> ) 1
VOl(Q) = 0404 (6 O)

Observe that the function ¢ o x; ! vanishes on the set Q \ #;(£2;). We now
apply to ¥ o k; ! the following Poincaré type inequality due to Maz'ya.

Theorem 6.11 ([Maz85, §10.1.2]). Let Q@ C R™ be a closed cube whose edge
1s of length a. Then,

Csa™
2 _ Lsa™ 2
/Q’“‘ S ana(F2Q) /““' dw

for all uw € C=(Q) and where F = {u = 0}.
We also recall
Theorem 6.12 ([Maz85, §2.2.3]). cap,(F,2Q) > CsVol(F)=2/" forn > 3.

From inequality (6.10), Theorem 6.11, Theorem 6.12 and the fact that the
metric g is comparable to the Euclidean metric on each chart, we immediately
obtain

/ [9]? d(vol) < 07(a)h2/ V| d(vol), (6.13)
ki (Q) ri(Q)

where Cr(a) = Cg/a'=2/". Combining inequalities (6.5) and (6.13) we arrive
at \1(Q) > Co/(Cr(a)h?). To conclude, we recall inequality (6.8). O

Application to the Inner Radius of Nodal Domains:

Proof of Theorem 1.5. We notice that A\;(€2,) = A. This is true since ¢, is
a Dirichlet eigenfunction for 2, with constant sign. Now, Theorem 1.5 is a
consequence of Theorem 1.2 and Theorem 6.2. O]
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7 Proofs of Elliptic Estimates

In this section we give the proofs of the elliptic estimates from Section 3.
We begin by the proof of the maximum principle.

Proof of Corollary 3.4. If supg ¢ < 0 the theorem is trivial. Otherwise, de-
fine w = ¢/ supg . Then Low = goqw < goqsuppw < g9q < £0Kjy.
Hence, by Theorem 3.3 we know

supw > supw — C1 K49 > 1 — Caeg.
oB B

Hence, for all £y small enough we have supyz w > 0.9, from which we conclude
supgg ¢ > 0.9supp . [

We give now the proof of the Mean Value Property:

Proof of Theorem 3.5. Let M = supp,_ ™. Observe that L+ M) = Lo+
LM = —egqM. Hence,

By Theorem 3.2 we have for some p > 0,
gl
vol(B(r+15)2) JB

By Theorem 3.1 we know that

1/p
(p+ M)p> <
(r1+r2)/2

S Cg(?"l,rg)< mf @ + M) S 03(7'1,7"2>M . (71)

(r1+r2)/2

1/p
1
sup(¢ + M) < Cy(ra/r1,p) —/ (¢ + M)P . (7.2)
B, Vol(By4ra)/2) JB, 40y )2

Combining (7.1) and (7.2) we obtain
sup(p + M) < Cs(ry,ro)M . (7.3)

1

Recalling the definition of M we get,

sup g’ < C5(ry,72) sup o™ .

Br, By,

13
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