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Abstract

Let M be a closed Riemannian manifold of dimension n. Let ϕλ

be an eigenfunction of the Laplace–Beltrami operator corresponding

to an eigenvalue λ. We show that the volume of {ϕλ > 0} ∩ B is

≥ C|B|/λn, where B is any ball centered at a point on the nodal set.

We apply this result to prove that each nodal domain contains a ball

of radius ≥ C/λn. The results in this paper extend previous results

of F. Nazarov, L. Polterovich, and M. Sodin, and of the author.

1 Introduction and Main Results

Let (M, g) be a closed Riemannian manifold of dimension n. Let ∆ =
−div ◦ grad be the Laplace–Beltrami operator on M . We consider the eigen-
value equation

∆ϕλ = λϕλ . (1.1)

A λ-nodal domain on M is any connected component of the set {ϕλ 6= 0} (see
Fig. 1). In this paper we study asymptotic local geometry of nodal domains.
Let Ωλ denote a λ-nodal domain on M . Let Ci, i = 1, 2, . . . denote constants
which depend only on the Riemannian metric g. Our first result is

Theorem 1.2.
Vol({ϕλ > 0} ∩B)

Vol(B)
≥ C1

λ(n−1)/2
,

for all geodesic balls B ⊆ M such that {ϕλ = 0} ∩ 1
2
B 6= ∅. Here, 1

2
B is a

concentric ball of half the radius of B.
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Figure 1: Nodal domains on a Quarter of a Stadium, Dirichlet boundary
conditions. Courtesy of Sven Gnutzmann

One can think of Theorem 1.2 as measuring the local asymmetry of nodal
domains. Namely, it measures the volumes ratio between the positivity and
the negativity set of ϕλ in B. Our motivation to prove the local asymme-
try estimate in Theorem 1.2 comes from two sources. The first one is the
following local asymmetry estimate in dimension two:

Theorem 1.3 ([NPS05]). Let Σ be a closed Riemannian surface. Then

Vol({ϕλ > 0} ∩B)

Vol(B)
≥ C2

log λ
√

log log λ
,

for all geodesic balls B ⊆M such that {ϕλ = 0} ∩ 1
2
B 6= ∅.

The proof of Theorem 1.3 is based on one-dimensional complex analysis.
F. Nazarov, L. Polterovich and M. Sodin suggest in [NPS05] to explore local
asymmetry in higher dimensions. The idea of the proof of Theorem 1.2 is
based on a method of Carleman in [Car26]. Carleman finds a differential
inequality which involves the rate of growth of a harmonic function in a
two dimensional ball and its volume of positivity. In [NPS05], the authors
indicate how to obtain a local asymmetry estimate for harmonic functions
in dimensions n ≥ 3 based on Carleman’s method. In this paper we adapt
Carleman’s method to solutions of second order elliptic equations. As a
result we can get a local asymmetry estimate also for eigenfuncions of the
Laplace–Beltrami operator.
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Our second source of motivation comes from our work [Man05]. In that
work we gave a lower bound for the inner radius of nodal domains based on
a growth bound for eigenfunctions by H. Donnelly and C. Fefferman and the
Local Courant’s Nodal Domain Theorem:

Theorem 1.4 ([DF90, CM91]). Let M be a closed Riemannian manifold of

dimension n. Let Ωλ be a λ-nodal domain. Then

Vol(Ωλ ∩B)

Vol(B)
≥ C3

λ3n2 ,

for all geodesic balls B ⊆M such that Ωλ ∩ 1
2
B 6= ∅.

In the present paper Theorem 1.2 replaces Theorem 1.4. Namely, we
now consider the union of all components of the positivity set of ϕλ in B,
while in Theorem 1.4 only one deep (i.e. which intersects 1

2
B) component

in B is considered. We believe that the lower bound 1/λC4n is true also for
the volume of one deep component. This lets us improve our estimate on
the inner radius significantly, and make the proof of our result more self-
contained. We prove:

Theorem 1.5.
C5

λα(n)
≤ inrad(Ωλ) ≤

C6√
λ
,

where α(n) = 1
4
(n− 1) + 1

2n
.

The proof of the upper bound and of the two dimensional case is given
in [Man05]. In this paper we assume n ≥ 3.

Organization of the Paper. In Section 2 we explain the principle that in
small scales compared with the wavelength 1/

√
λ an eigenfunction behaves

like a harmonic function. In Section 3 we present some results and estimates
for solutions of elliptic equations, which we frequently use. We prove these
estimates in Section 7. In Section 4 we give an estimate of the volume of
positivity for solutions of the Schrödinger equation with small potential in the
unit ball. Our estimate will be given in terms of the growth of the solution,
and its proof is based on Carleman’s method. In Section 5 we combine our
estimate from section 4 and a growth bound by Donnelly and Fefferman
in order to prove Theorem 1.2. In section 6 we prove that the asymmetry
estimate in Theorem 1.2 implies the estimate on the inner radius of a nodal
domain in Theorem 1.5.
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2 Eigenfunctions on the Wavelength Scale

In this section we explain the following principle.

Principle: On a small scale comparable to the wavelength (1/
√
λ), eigen-

functions behave like harmonic functions.

The above principle was extensively used in the works of H. Donnelly, C. Fef-
ferman and N. Nadirashvili. We start by fixing an atlas on M .

Lemma 2.1. We can find on M a finite atlas such that in each chart the

coefficients of g, g−1 are given by bounded functions in the C1-norm, and g−1

is uniformly elliptic in each coordinate chart.

In each chart we have

‖gij‖C1 ≤ K1, g = det gij ≤ K2, (2.2)

and an ellipticity bound
gij(x)ξiξj ≥ κ|ξ|2. (2.3)
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The eigenequation (1.1) expressed in local coordinates is

− 1√
g
∂i(g

ij√g∂jϕλ) = λϕλ . (2.4)

We consider equation (2.4) in balls Br = B(0, r), where r <
√

ε0/λ and
ε0 is a small positive number to be chosen later. When we rescale it to an
equation in the unit ball B1, we get

−∂i(g
ij
r

√
gr∂jϕλ,r) = ε0

√
grϕλ,r on B1. (2.5)

Here, a subindex r denotes a scaled function, fr(x) = f(rx). Since r < 1, the
bounds (2.2) and (2.3) remain true also for the rescaled metric coefficients.

Throughout this paper we let

ϕ = ϕλ,r, aij = gij
r

√
gr, q =

√
gr .

We set
Lu = −∂i(a

ij∂ju) − ε0qu. (2.6)

Equation (2.4) takes now the form

Lϕ = 0 in B1, (2.7)

with the bounds
‖aij‖C1(B1) ≤ K3, 0 ≤ q ≤ K4, (2.8)

and an ellipticity bound
aijξiξj ≥ K5|ξ|2 . (2.9)

3 Estimates for Solutions of Elliptic Equa-

tions

In this section we present some properties of solutions, subsolutions and
supersolutions of second order elliptic equations which will be useful in the
next sections. The proofs are postponed to Section 7. L is the operator given
in (2.6) in the unit ball B1.

The following theorem is a local maximum principle.

5



Theorem 3.1 ([GT83, Theorem 9.20]). Suppose Lu ≤ 0 on B1. Then

sup
B(y,r1)

u ≤ C1(r1/r2, p)

(

1

Vol(B(y, r2))

∫

B(y,r2)

(u+(x))p dx

)1/p

,

for all p > 0, whenever 0 < r1 < r2 and B(y, r2) ⊆ B1.

We will also need the weak Harnack Inequality

Theorem 3.2 ([GT83, Theorem 9.22]). Suppose Lu ≥ δ in B1, and u ≥ 0
in B(y, r2) ⊆ B(0, 1). Then ∃p > 0 such that

(

1

Vol(B(y, r1))

∫

B(y,r1)

up

)1/p

≤ C2(r1, r2) inf
B(y,r1)

u+ C3(r1, r2)δ,

where r1 < r2.

We let
L0u = −∂i(a

ij∂ju) .

Then L = L0 − ε0q. A maximum principle for L0 is

Theorem 3.3 ([GT83, Theorem 3.7]). Let u satisfy L0u ≤ δ on a ball B ⊆
B1. Then

sup
∂B

u ≥ sup
B
u− C4δ ,

where C4 depends only on the C1-bounds and the ellipticity bounds of the

coefficients aij.

We recall that we denote by ϕ a solution of the Schrödinger equation (2.7).
As a corollary of Theorem 3.3 we obtain

Corollary 3.4. We have

sup
∂B

ϕ+ ≥ 0.9 sup
B
ϕ ,

for all balls B ⊆ B1, and for all ε0 small enough.

We have also a Mean Value Property

Theorem 3.5. Suppose ϕ(0) = 0. Then

sup
Br1

ϕ− ≤ C5(r1, r2) sup
Br2

ϕ+ ,

where r1 < r2 ≤ 1.
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4 Positivity Volume for Solutions of

Schrödinger’s Equation

We recall that ϕ is a solution of the Schrödinger equation (2.7) in the unit
ball B1, under the conditions (2.8)–(2.9). We estimate the positivity volume
of ϕ in terms of its growth.

Let 0 < r < 1. Denote by β+
r (ϕ) the growth exponent of ϕ:

β+
r (ϕ) := log

∣

∣

∣

∣

∣

sup|x|≤1 ϕ(x)

sup|x|≤r ϕ(x)

∣

∣

∣

∣

∣

.

Set 〈β+
r 〉 = 1 + β+

r . We prove

Theorem 4.1. Suppose ϕ(0) = 0 and ε0 is small enough. Then

Vol({ϕ > 0}) ≥ C1(r)

〈β+
r 〉n−1 .

We start by considering the case ϕ(0) 6= 0.

Proposition 4.2. Let |x0| < 1. Suppose ϕ(x0) > 0 and ϕ(x) ≤ γϕ(x0) for

all x ∈ B = B(x0, r) ⊆ B(0, 1). Then

Vol({ϕ > 0} ∩B)

Vol(B)
≥ C2

γ
.

Proof of Proposition 4.2. We apply to ϕ Theorem 3.1.

ϕ(x0) ≤ sup
B(x0,r/2)

ϕ ≤ C3

Vol(B)

∫

B

ϕ+(x) dx =
C3

Vol(B)

∫

B∩{ϕ>0}

ϕ(x) dx ≤

≤ C3γ

Vol(B)

∫

B∩{ϕ>0}

ϕ(x0) dx = C3γ
Vol({ϕ > 0} ∩B)

Vol(B)
ϕ(x0) .

(4.3)

Dividing by ϕ(x0) gives us the result.

We now treat the case ϕ(0) = 0.
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Proof of Theorem 4.1. Let m = b〈β+
r 〉c. Decompose the annulus r < |x| < 1

into m annuli rk < |x| < rk+1, where rk = r + (1 − r)k/m for k = 0, . . .m.
Define

βk = log
sup|x|≤rk+1

ϕ(x)

sup|x|≤rk
ϕ(x)

, (0 ≤ k ≤ m− 1).

Let S = {k : βk ≤ 2β+
r /m}. Observe that

∑

k βk = β+
r . Therefore, |S| ≥

m/2. Let S ′ be a maximal subset of S such that for all k1, k2 ∈ S ′ we have
|rk1 − rk2 | ≥ 2(1 − r)/m. Notice that |S ′| ≥ m/4.

Fix k ∈ S ′. By Corollary 3.4, we can find x0 such that |x0| = rk and

ϕ(x0) ≥ 0.9 sup
|x|≤rk

ϕ(x) .

Consider the ball B = B(x0, (1 − r)/m). For all x ∈ B we have ϕ(x) ≤
0.9e2β+

r /mϕ(x0). Hence, from Proposition 4.2 we know that

Vol({ϕ > 0} ∩B)

Vol(B)
≥ C4e

−2β+
r /m ≥ C4e

−2 ≥ C5 .

If we run over all k ∈ S ′, we obtain the following estimate

Vol({ϕ > 0}) ≥ mVol({ϕ > 0} ∩B)/4 ≥ C5Vol(B)m/4 ≥

≥ C6(1 − r)n/mn−1 ≥ C6(1 − r)n

〈β+
r 〉n−1 .

Remark. In the above proof if we avoid the use of the Maximum Principle,
we get a lower bound of C(r)/(β+

r )n.

Different Variants of the Growth Exponent. We now replace β+
r in

Theorem 4.1 by a more conventional growth constant:

βr(ϕ) := log
sup|x|≤1 |ϕ(x)|
sup|x|≤r |ϕ(x)| . (4.4)

We let 〈βr〉 = 1 + βr.

Proposition 4.5. Suppose ϕ(0) = 0. Let 0 < r1 < r2 < 1. Then

β+
r1

(ϕ) ≤ C7(r1, r2)βr2(ϕ) .
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Proof. The proposition amounts to proving

sup
Br1

|ϕ| ≤ C8(r1, r2) sup
Br2

ϕ . (4.6)

We may assume supBr1
|ϕ| = supBr1

ϕ−. But then, inequality (4.6) is just
Theorem 3.5.

An immediate consequence of Proposition 4.5 and Theorem 4.1 is

Theorem 4.7. Suppose ϕ(0) = 0. Then

Vol({ϕ > 0}) ≥ C9(r)

〈βr〉n−1 ,

for 0 < r < 1 and ε0 small enough.

5 Local Asymmetry of Nodal Domains

We take the positivity volume estimate in Section 4, and a growth estimate
by Donnelly and Fefferman in order to prove Theorem 1.2.

Proof of Theorem 1.2. First, we consider balls B ⊆ M in scales small com-
pared with the wavelength 1/

√
λ, i.e. balls whose radius r ≤

√

ε0/λ. We can
assume that B is the Euclidean ball B(0, r). Let x0 be such that ϕλ(x0) = 0
and |x0| < r/2. We consider the eigenfunction ϕλ on the ball B̃ = B(x0, r/2).
We apply Theorem 4.7 with the function ϕ(x) = ϕλ(rx/2) which is defined
on the unit ball B1. We learn that

Vol({ϕλ > 0} ∩B)

Vol(B)
≥ Vol({ϕλ > 0} ∩ B̃)

2nVol(B̃)
=

Vol({ϕ > 0} ∩B1)

2nVol(B1)

≥ C1

〈β1/2(ϕ)〉n−1 .

(5.1)

Next, we recall the growth estimate for eigenfunctions by Donnelly and
Fefferman:

Theorem 5.2 ([DF88]). β1/2(ϕλ; B̃) ≤ C2

√
λ, where β1/2(ϕλ; B̃) is by defi-

nition β1/2(ϕ).
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Together with (5.1) we get

Vol({ϕλ > 0} ∩B)

Vol(B)
≥ C3

λ(n−1)/2
. (5.3)

We now consider large balls B. Let r >
√

ε0/λ. We know that the inner

radius of nodal domains is < C4/
√
λ (see e.g. [Man05]). From this fact it

follows

Lemma 5.4. We can find a maximal set of disjoint balls Bi = Bi(xi, r0)
contained in B, such that r0 <

√

ε0/λ, ϕλ(xi) = 0, and Vol(∪iBi)/Vol(B) ≥
C5.

The balls Bi are small. Hence, by (5.3)

Vol({ϕλ > 0} ∩Bi) ≥ C6Vol(Bi)/λ
(n−1)/2 .

Summing over all balls Bi gives us

Vol({ϕλ > 0} ∩B) ≥ C7Vol(∪iBi)/λ
(n−1)/2 ≥ C8Vol(B)/λ(n−1)/2 ,

as desired.

6 Local Asymmetry implies Inner Radius Es-

timate

In this section we prove that a local asymmetry of a domain Ω ⊆M implies
a lower bound on its first eigenvalue. Then, we apply this result to a nodal
domain in order to establish Theorem 1.5.

Definition 6.1. Let Ω ⊆M be a domain. We say that Ω satisfies (ASym-α)
if

Vol(B \ Ω)

Vol(B)
≥ α.

for all balls B ⊆M such that (1
2
B \ Ω) 6= ∅.

We prove

Theorem 6.2. Let M be of dimension n ≥ 3. If Ω ⊆M satisfies (ASym-α),
then

λ1(Ω) ≥ C1
α1−2/n

inrad(Ω)2
.
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Remark. In dimension two, one can prove that if each connected com-
ponent of the complement has area ≥ α, then λ1(Ω) ≥ C2/

√
α. The full

argument is given in [Man05].

Proof. We may assume that α > 0. Let ψ be the first Dirichlet eigenfunction
on Ω. Notice that ψ is not constant.

Let us fix a finite atlas {Ui, κi} on M as in Section 2. Here κi : Ui → R
n,

are the coordinate maps. The metric on each chart Ui is comparable to the
Euclidean metric on the unit ball.

We divide κi(Ui) into small non-overlapping small cubes Qij of size h to
be chosen later. Define the local Rayleigh Quotient by

Rij(ψ) =

∫

κ−1
i (Qij)

|∇ψ|2 d(vol)
∫

κ−1
i (Qij)

|ψ|2 d(vol)
. (6.3)

Claim 6.4.

Rij(ψ) ≤ Kλ1(Ω) , (6.5)

for some i, j, where K is the number of charts in the atlas.

Proof of Claim. Assume the contrary

∫

κ−1
i (Qij)

|∇ψ|2 d(vol) > Kλ1(Ω)

∫

κ−1
i (Qij)

|ψ|2 d(vol) . (6.6)

We sum up inequalities (6.6) over all cubes Qij.

∫

Ω

|∇ψ|2 d(vol) ≥ 1

K

∑

i,j

∫

κ−1
i (Qij)

|∇ψ|2 d(vol)

> λ1(Ω)
∑

i,j

∫

κ−1
i (Qij)

|ψ|2 d(vol) ≥ λ1(Ω)

∫

Ω

|ψ|2 d(vol) .

(6.7)

Hence, we obtain the following contradiction

λ1(Ω) =

∫

Ω
|∇ψ|2 d(vol)
∫

Ω
|ψ|2 d(vol)

> λ1(Ω) .
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We now make a particular choice of h. Set Ωi = Ω∩Ui, and let ri be the
Euclidean inner radius of κi(Ωi). Let h = 8 maxi ri. We note that

h < C3inrad(Ω), (6.8)

where C3 depends only on g and the atlas chosen.
Take Q = Qij from Claim 6.4. Let 1

2
Q be a concentric cube with parallel

edges of size h/2. Since ri < h/4

1

2
Q \ κi(Ωi) 6= ∅ . (6.9)

So, the asymmetry assumption on Ω tells us that

Vol(Q \ κi(Ωi))

Vol(Q)
≥ C4α . (6.10)

Observe that the function ψ ◦κ−1
i vanishes on the set Q\κi(Ωi). We now

apply to ψ ◦ κ−1
i the following Poincaré type inequality due to Maz’ya.

Theorem 6.11 ([Maz85, §10.1.2]). Let Q ⊂ R
n be a closed cube whose edge

is of length a. Then,
∫

Q

|u|2 dx ≤ C5a
n

cap2(F, 2Q)

∫

Q

|∇u|2 dx

for all u ∈ C∞(Q) and where F = {u = 0}.
We also recall

Theorem 6.12 ([Maz85, §2.2.3]). cap2(F, 2Q) ≥ C6Vol(F )(n−2)/n for n ≥ 3.

From inequality (6.10), Theorem 6.11, Theorem 6.12 and the fact that the
metric g is comparable to the Euclidean metric on each chart, we immediately
obtain

∫

κi(Q)

|ψ|2 d(vol) ≤ C7(α)h2

∫

κi(Q)

|∇ψ|2 d(vol), (6.13)

where C7(α) = C8/α
1−2/n. Combining inequalities (6.5) and (6.13) we arrive

at λ1(Ω) ≥ C9/(C7(α)h2). To conclude, we recall inequality (6.8).

Application to the Inner Radius of Nodal Domains:

Proof of Theorem 1.5. We notice that λ1(Ωλ) = λ. This is true since ϕλ is
a Dirichlet eigenfunction for Ωλ with constant sign. Now, Theorem 1.5 is a
consequence of Theorem 1.2 and Theorem 6.2.
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7 Proofs of Elliptic Estimates

In this section we give the proofs of the elliptic estimates from Section 3.
We begin by the proof of the maximum principle.

Proof of Corollary 3.4. If supB ϕ ≤ 0 the theorem is trivial. Otherwise, de-
fine w = ϕ/ supB ϕ. Then L0w = ε0qw ≤ ε0q supB w ≤ ε0q ≤ ε0K4.

Hence, by Theorem 3.3 we know

sup
∂B

w ≥ sup
B
w − C1K4ε0 ≥ 1 − C2ε0.

Hence, for all ε0 small enough we have sup∂B w ≥ 0.9, from which we conclude
sup∂B ϕ ≥ 0.9 supB ϕ.

We give now the proof of the Mean Value Property:

Proof of Theorem 3.5. Let M = supBr2
ϕ−. Observe that L(ϕ+M) = Lϕ+

LM = −ε0qM . Hence,

−ε0K4M ≤ L(ϕ+M) ≤ 0 .

By Theorem 3.2 we have for some p > 0,

(

1

vol(B(r1+r2)/2)

∫

B(r1+r2)/2

(ϕ+M)p

)1/p

≤

≤ C3(r1, r2)( inf
B(r1+r2)/2

ϕ+M) ≤ C3(r1, r2)M . (7.1)

By Theorem 3.1 we know that

sup
Br1

(ϕ+M) ≤ C4(r2/r1, p)

(

1

vol(B(r1+r2)/2)

∫

B(r1+r2)/2

(ϕ+M)p

)1/p

. (7.2)

Combining (7.1) and (7.2) we obtain

sup
Br1

(ϕ+M) ≤ C5(r1, r2)M . (7.3)

Recalling the definition of M we get,

sup
Br1

ϕ+ ≤ C5(r1, r2) sup
Br2

ϕ− .
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