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Abstract. Let K be a finite extension of Qp and let ρ̄ be a continuous,
absolutely irreducible representation of its absolute Galois group with values
in a finite field of characteristic p. We prove that the Galois representations
that become crystalline of a fixed regular weight after an abelian extension are
Zariski-dense in the generic fiber of the universal deformation ring of ρ̄. In
fact we deduce this from a similar density result for the space of trianguline
representations. This uses an embedding of eigenvarieties for unitary groups
into the spaces of trianguline representations as well as the corresponding
density claim for eigenvarieties as a global input.

1. introduction

The density of crystalline representations in the generic fiber of a local deforma-
tion ring plays an important role in the p-adic local Langlands correspondence for
GL2(Qp) and was proven by Colmez [Co] and Kisin [Ki4] for 2-dimensional represen-
tations of Gal(Q̄p/Qp). This density statement was generalized by Nakamura [Na2]
and Chenevier [Ch1] to the case of 2-dimensional representations of Gal(Q̄p/K)
for finite extensions K of Qp resp.. to the case of d-dimensional representations of
Gal(Q̄p/Qp) and finally the general case was treated in [Na3].

In this paper we prove a slightly different density result in the generic fiber of a
local deformation ring. The above density statements make heavy use of the fact
that the Hodge-Tate weights of the crystalline representations may vary arbitrarily.
Contrary to this case, we fix the Hodge-Tate weights but vary the level, or, more
precisely, we allow finite (abelian) ramification and allow the representation to be
potentially crystalline (more precisely crystabeline).

Note that this density statement is of a different nature than the density of
crystalline representations. The density of crystalline representations holds true in
the rigid generic fiber (Spf Rρ̄)

rig of the universal deformation ring Rρ̄ of a given
residual Gal(Q̄p/K)-representation ρ̄. In contrast to this result, the density of
potentially crystalline representations of fixed weight only holds true in the "naive"
generic fiber Spec(Rρ̄[1/p]), as the set of representations with fixed (generalized)
Hodge-Tate weights is Zariski-closed in the rigid generic fiber (Spf Rρ̄)

rig.

In the special case of 2-dimensional potentially Barsotti-Tate representations of
Gal(Q̄p/Qp) our result gives a positive answer to a question of Colmez [Co].

A proof of this result (for 2-dimensional representations of Gal(Q̄p/Qp)), using
the p-adic local Langlands correspondence, was announced previously by Emerton
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and Paskunas. Our approach does not make use of such a correspondence and works
in all dimensions and for arbitrary finite extensions of Qp. We were motivated by
the case of 2-dimensional potentially Barsotti-Tate representations, as for these
representations an automorphy lifting theorem is known [Ki2]. We hope to apply
our density result to patching techniques in the future.

More precisely our results are as follows. Let K be a finite extension of Qp and
let GK = Gal(Q̄p/K) denote its absolute Galois group. Fix a continuous absolutely
irreducible representation ρ̄ : GK → GLd(F) with values in a finite extension F
of Fp. As the representation is assumed to be absolutely irreducible the universal
deformation ring Rρ̄ of ρ̄ exists.

Theorem 1.1. Let p - 2d and let K be a finite extension of Qp. Let r̄ : GK →
GLd(F) be an aboslutely irreducible continuous representation which has a poten-
tially diagonalizable lift and let Rr̄ be its universal deformation ring. Assume that
r̄ 6∼= r̄(1). Let k = (ki,σ) ∈

∏
σ:K↪→Q̄p Z

d be a regular weight. Then the represen-
tations that are crystabeline of labeled Hodge-Tate weight k are Zariski-dense in
SpecRr̄[1/p].

Similarly to the proof of density of crystalline representations we use a so called
space of trianguline representations. This space should be seen as a local Galois-
theoretic counterpart of an eigenvariety of Iwahori level. Indeed it was shown in
[He2] that certain eigenvarieties embed into a space of trianguline representations
in the case K = Qp. This result is generalized to the case of an arbitrary extension
K of Qp in section 3.2 below. In fact we prove the following density result for
eigenvarieties which might be of independent interest.

Let E be an imaginary quadratic extension of a totally real field F such that
[F : Q] is even and let G be a definite unitary group over F which is quasi-split at
all finite places. Let Y be an eigenvariety for a certain set of automorphic represen-
tations of G(AF ) as in [Ch3, 3] which comes along with a Galois pseudo-character
interpolating the Galois representations attached to the automorphic representa-
tions at the classical points of Y . Given an absolutely irreducible residual represen-
tation ρ̄ : Gal(Q̄/E)→ GLd(F) there is an open and closed subspace Yρ̄ ⊂ Y where
the pseudo-character reduces to (the pseudo-character attached to) ρ̄ modulo p.
This gives rise to a map Yρ̄ → (Spf Rρ̄)

rig to the rigid generic fiber of the universal
deformation ring Rρ̄ of ρ̄.

Theorem 1.2. Fix an algebraic irreducible representationW of G(F⊗QR). Let f ∈
Rρ̄ such that f vanishes on all classical points z ∈ Yρ̄ corresponding to irreducible
automorphic representations Π with Π∞ = W . Then f vanishes in Γ(Yρ̄,OY ).

We prove Theorem 1.1 by extending Theorem 1.2 to the space of trianguline
representations X(ρ̄w0

), using a map f : Yρ̄ → X(ρ̄w0
) constructed in Theorem 3.5

below. Here ρ̄w0 is the restriction of ρ̄ to the decomposition group at some place w0

of E. The second step in the proof of Theorem 1.1 then is to realize a given residual
representation ρ̄ : GK → GLd(F) as the restriction to the decomposition group at
w0 of a Gal(Q̄/E)-representation arising from an automorphic representation of
G(AF ). This construction was already carried out in [GK] or [EG] for example.
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2. The space of trianguline representations

Let Q̄p be an algebraic closure of Qp. Let K ⊂ Q̄p be a finite extension of Qp
and let K0 denote the maximal unramified subextension of Qp in K. We fix a
compatible system εn ∈ Q̄p of pn-th roots of unity. Let Kn = K(εn) ⊂ Q̄p and
K∞ =

⋃
nKn. We will write GL = Gal(Q̄p/L) for any subfield L ⊂ Q̄p. Finally

we write Γ = ΓK = Gal(K∞/K). We define the Hodge-Tate weights of a de Rham
representation as the opposite of the gaps of the filtration on the covariant de Rham
functor, so that the Hodge-Tate weight of the cyclotomic character is +1.

We choose a uniformizer $ ∈ OK and normalize the reciprocity isomorphism
recK : K× →W ab

K of local class field theory such that $ is mapped to a geometric
Frobenius automorphism. Here W ab

K is the abelization of the Weil group WK ⊂ GK
and the reciprocity map allows us to identify O×K with a subgroup of Gab

K , the
maximal abelian quotient of GK . Further we write ε : GK → Z×p for the cyclotomic
character.

Let X be a rigid analytic space and recall the definition of the sheaf of relative
Robba rings RX = RX,K for K. If the base field K is understood we will omit the
subscript K from the notation. This is the sheaf of functions that converge on the
product of X with some boundary part of the open unit disc over K0, see [He1,
2.2] or [KPX, Defintion 2.2.3] for example1. If X = SpL for a finite extension L of
Qp we will write RL = RL,K for (the global sections of) this sheaf. This sheaf of
rings is endowed with a continuous OX -linear ring homomorphism ϕ : RX → RX
and a continuous OX -linear action of the group Γ. Recall that a (ϕ,Γ)-module over
a rigid space X consists of an RX -module D that is locally on X finite free over
RX together with a ϕ-linear isomorphism Φ : D → D and a semi-linear Γ-action
commuting with Φ.

Let us write UL for the open unit disc over a p-adic field L and Ur,L ⊂ UL for the
admissible open subspace of points of absolute value ≥ r for some r ∈ pQ ∩ [0, 1).
Given such an r we write RrX for the sheaf

X ⊃ U 7−→ Γ(U × Ur,K0
,OU×Ur,K0

)

and we write R+
X for the sheaf R0

X of functions converging on the product X×UK0 .

Given a family of GK-representations V over a rigid space X, the work of Berger-
Colmez [BeCo] and Kedlaya-Liu [KL] associates to V a (ϕ,Γ)-module D†rig(V) over
RX .

1The sheaf RX is denoted by B†
X,rig in [He1]
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Given a (ϕ,Γ)-module D over X, we write H∗ϕ,Γ(D) for the cohomology of the
complex

C•ϕ,Γ(D) = [D∆ ϕ−id,γ−id // D∆ ⊕D∆
(id−γ)⊕(ϕ−id) // D∆],

where ∆ ⊂ Γ is the p-torsion subgroup of Γ and γ ∈ Γ/∆ is a topological generator.
It is known that the cohomology sheaves Hi

ϕ,Γ(D) are coherent OX -modules for
i = 0, 1, 2 see [KPX, Theorem 4.4.5].

2.1. The parameters. In this section, we recall the construction of the space
(ϕ,Γ)-modules of rank 1 over R essentially following [Co]. This is first step toward
a construction of the space of trianguline representations.

Let W = Homcont(O×K ,Gm(−)) be the weight space of K. This functor on the
category of rigid analytic spaces is representable by the generic fiber of Spf Zp[[O×K ]].
Further let T = Homcont(K

×,Gm(−)). There is a natural projection T → W given
by restriction to O×K . The choice of the uniformizer $ gives rise to a section of this
projection and identifies T with Gm × W via δ 7→ (δ($), δ|O×K ). Especially T is
representable by a rigid space.

We recall how the (ϕ,Γ)-modules of rank 1 over a rigid space X are classified by
T (X), see [KPX, Theorem 6.1.10] (and also [Na1, 1.4] for the case X = SpL in the
context of B-pairs).

Let X be a rigid space over Qp and let D be a rank 1 family of K-filtered ϕ-
modules over X. Recall that this is a coherent OX ⊗Qp K0-module that is locally
on X free of rank 1 together with an id⊗ϕ-linear automorphism Φ : D → D and a
filtration Fil• on DK = D ⊗K0 K by OX ⊗Qp K submodules that are locally on X
direct summands as OX -modules.

Assume that X is defined over the normalization Knorm of K inside Q̄p and
assume thatD is free. Then such aK-filtered ϕ-module may be described as follows.
There exists a uniquely determined a ∈ Γ(X,O×X) and uniquely determined kσ ∈ Z
for each embedding σ : K ↪→ Knorm such that D ∼= D(a; (kσ)σ) where Φ[K0:Qp] acts
on D(a; (kσ)σ) via multiplication with a⊗ id ∈ Γ(X,OX ⊗Qp K0)× and

(2.1) (griDK)⊗OX⊗QpK,id⊗σ OX ∼=

{
0 i 6= kσ

OX i = kσ

for all embeddings σ : K ↪→ Q̄p.

Given kσ ∈ Z for each embedding σ : K ↪→ Q̄p we consider the following special
K-filtered ϕ-module D((kσ)σ) over L = Knorm whose filtration is given by (2.1)
and which has a basis on which ϕ-acts via multiplication with

∏
σ σ($)kσ .

Let X be a rigid space defined over Knorm and let D be a K-filtered ϕ-module
over X. Associated to D there is a (ϕ,Γ)-module RX(D) of rank 1 as follows. We
write

D = D(a; (0)σ)⊗K0 D((kσ)σ)

for some kσ ∈ Z and a ∈ Γ(X,O×X) and define

RX(D(a; (0)σ)) = D(a; (0)σ)⊗OX⊗QpK0
RX ,
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where ϕ acts diagonally and Γ acts by acting on the second factor. Further

RX(D((kσ)σ)) =
∏

σ
tkσσ RX ⊂ RX

[
1
t

]
with action of ϕ and Γ inherited from RX [1/t]. Here t = log([(1, ε1, ε2, . . . )]) ∈ R+

Qp
is the usual period of the cyclotomic character and

tσ = (tσ,σ′)σ′ ∈ R+
Knorm =

∏
σ′

Γ(UKnorm ,OUKnorm )

is defined via

tσ,σ′ =

{
1 σ 6= σ′

σ(t) σ = σ′.

Finally we set

RX(D) = RX(D(a; (0)σ))⊗RX RX(D((kσ)σ)).

More generally, let δ : K× → Γ(X,O×X) be a continuous character. Then there is a
(ϕ,Γ)-module RX(δ) of rank 1 associated to δ as follows, cf. [KPX, Construction
6.1.4]. Write δ = δ1δ2 with δ1|O×K = 1 and such that δ2 extends to a character of
GK . Then we set

RX(δ) = RX(D(δ1($), (0)σ))⊗RX D†rig(δ2).

We write δ(D) for the character of K× such that RX(δ(D)) = RX(D). Further,
given kσ ∈ Z, we write δ((kσ)σ) = δ(D(kσ)) for the character z 7→

∏
σ σ(z)kσ and

δW((kσ)σ) for its restriction to O×K . Finally we write ε = δ(1, . . . , 1)|δ(1, . . . , 1)| for
the cyclotomic character (seen as a character of K× or of GK).

Lemma 2.1. Let δ ∈ T (L) for a local field L ⊃ Knorm. Then

H0
ϕ,Γ(R(δ)) 6= 0⇐⇒ δ = δ((−kσ)σ) for some (kσ)σ ∈

∏
σ:K↪→L

Z≥0,

H2
ϕ,Γ(R(δ)) 6= 0⇐⇒ δ = ε · δ((kσ)σ) for some (kσ)σ ∈

∏
σ:K↪→L

Z≥0.

Especially H1
ϕ,Γ(R(δ)) has L-dimension [K : Qp] if and only if

δ /∈
{
δ((−kσ)σ), ε · δ((kσ)σ) | (kσ) ∈

∏
σ
Z≥0

}
.

Proof. We only need to prove the first statement, as the other statements follow by
duality resp. by use of the Euler characteristic formula. The proof is the same as
the proof of [Co, Proposition 2.1]. Compare also [Na1, Proposition 2.14].

As RX ⊂ (
∏
σ t
−kσ
σ )RX for kσ ≥ 0 the one implication is obvious. For the other

implication note that

R+
L =

 k−1⊕
σ,iσ=0

(∏
σ

tiσσ
)
L

⊕ tkR+
L .

As the (ϕ,Γ)-cohomology is known to be finite dimensional over L, there are no
invariants under ϕ and Γ in tkRL(δ) for k � 0. On the other hand ϕ(

∏
σ t

iσ
σ ) =

(
∏
σ σ($)iσ )

∏
σ t

iσ
σ and hence

∏
tiσσ L contributes to the ϕ-invariants in RL(δ) if

and only if δ($) =
∏
σ σ($)iσ . �
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Notation 2.2. (i) Let us write Treg ⊂ T for the set of regular characters, i.e the
characters

δ /∈
{
δ((−kσ)σ), ε · δ((kσ)σ) | (kσ) ∈

∏
σ
Z≥0

}
(ii) Let d > 0 be an integer. We define the set of regular parameters T dreg ⊂ T d
to be the set of (δ1, . . . , δd) ∈ T d such that δi/δj ∈ Treg for i ≤ j. Note that by
construction T dreg 6= (Treg)d.

(iii) A weight δ ∈ W(Q̄p) is algebraic of weight (kσ)σ if δ = δW((kσ)σ).

(iv) We say that δ ∈ W(Q̄p) is locally algebraic of weight (kσ)σ if δ ⊗ δW((−kσ)σ)
becomes trivial after restricting to some open subgroup of O×K .

(v) An element k = (kσ,i)σ ∈
∏
σ Zd is called regular if kσ,1 < kσ,2 < · · · < kσ,d for

all σ.

(vi) Let k ∈
∏
σ Zd. We say that (δ1, . . . , δd) ∈ Wd(Q̄p) is algebraic of weight k if

δi is algebraic of weight (kσ,i)σ. An element δ = (δ1, . . . , δd) ∈ Wd is called locally
algebraic of weight k if δi is locally algebraic of weight (kσ,i)σ. The set of weight
that are locally algebraic of weight k is denoted by Wd

k,la ⊂ Wd.

2.2. The space of trianguline (ϕ,Γ)-modules. Following the idea of Chenevier
[Ch1] we construct a space of trianguline (ϕ,Γ)-modules with regular parameters.

Let d be a positive integer and consider the functor S�d that assigns to a rigid
space X the isomorphism classes of quadruples (D,Fil•(D), δ, ν), where D is a
(ϕ,Γ)-module over RX and Fil•(D) is a filtration of D by sub-RX -modules that
are stable under the action of ϕ and Γ and that are locally on X direct summands
as RX -modules. Further δ ∈ T dreg(X) and ν = (ν1, . . . , νd) is a collection of trivial-
izations

νi : Fili+1(D)/Fili(D)
∼=−→ RX(δi).

Similarly, we consider a variant of this functor parametrizing non-split extensions,
cf. [He2], that is, the functor Sns

d that assigns toX the quadruples (D,Fil•(D), δ, νd)
where D and Fil•(D) are as above and δ ∈ T dreg such that locally on X there exist
short exact sequences

0 −→ Fili(D) −→ Fili+1(D) −→ RX(δi) −→ 0

that are non split at every geometric point x ∈ X as a sequence of (ϕ,Γ)-modules.
Finally νd is a trivialization

νd : Fild+1(D)/Fild(D)
∼=−→ RX(δd).

Proposition 2.3. Let δ = (δ1, . . . , δd) ∈
(
Treg

)d
(X) for some rigid space X and

let D be a successive extension of the RX(δi). Then H1
ϕ,Γ(D) is a locally free

OX-module of rank d[K : Qp].

Proof. It follows from [KPX, Theorem 4.4.5] that the cohomology is a coherent
sheaf and it suffices to compute its rank at all points. We proceed by induction on
d. The rank 1 case is settled by Lemma 2.1. Consider the short exact sequence

(2.2) 0 −→ RX(δ1) −→ D −→ D′ −→ 0.
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Then, by induction hypothesis, H1
ϕ,Γ(D′) is locally free of rank (d − 1)[K : Qp]

and hence the Euler-characteristic formula [KPX, Theorem 4.4.5 (2)] implies that
H0
ϕ,Γ(D′) = H2

ϕ,Γ(D′) = 0. The claim now follows from the long exact sequence
associated to (2.2) and the fact that H1

ϕ,Γ(RX(δ1)) is locally free of rank [K : Qp]
and H2

ϕ,Γ(RX(δ1)) = 0 by Lemma 2.1. �

Theorem 2.4. (i) The functors S�d and Sns
d are representable by rigid spaces.

(ii) The map S�d → T dreg is smooth of relative dimension d(d−1)
2 [K : Qp].

(iii) The map Sns
d → T dreg is smooth and proper and

dimSns
d = 1 + [K : Qp]

(d(d+1)
2

)
Proof. The proof is the same as the proof of [Ch1, Theorem 3.3] resp. [He2, Propo-
sition 2.3]. For the convenience of the reader we give a short sketch. The case d = 1
is settled by S�1 = Sns

1 = T . Now assume that S�d−1 and Sns
d−1 are constructed with

universal objects D�
d−1 resp. Dns

d−1. Let U ⊂ T × S�d−1 resp. V ⊂ Sns
d−1 × T be the

preimage of T dreg ⊂ T ×T d−1
reg under the canonical projection. Then Proposition 2.3

implies that
E xt1RU (RU (δ1),D�

d−1) = H1
ϕ,Γ(D�

d−1(δ−1
1 ))

resp.
E xt1RV (RV (δ1),Dns

d−1) = H1
ϕ,Γ(Dns

d−1(δ−1
1 ))

are vector bundles of rank (d− 1)[K : Qp]. As the Tate-duality is a perfect pairing
[KPX, Theorem 4.4.5] we find that also

MU = E xt1RU (D�
d−1,RU (δ1))

resp.
MV = E xt1RV (Dns

d−1,RV (δ1))

are vector bundles of rank (d − 1)[K : Qp]. Now S�d = Spec
U

(Sym•M∨U ) is the
geometric vector bundle over U associated to MU while Sns

d = PV (M∨V ) is the
projective bundle associated toMV . Here Spec is the relative spectrum in the sense
of [Con, 2.2] and given a vector bundle E the projective bundle P(E) = Proj(Sym• E)
is the relative Proj in the sense of [Con, 2.3].

The universal object D�
d then is the universal extension

0 −→ R(δ1) −→ D�
d −→ D�

d−1 −→ 0

over S�d . In the non-split context consider the geometric vector bundle S̃ns
d =

Spec
V

(Sym•M∨V ) over V associated toMV . Then there is a universal extension

0 −→ R(δ1) −→ D̃ns
d −→ Dns

d−1 −→ 0

over S̃ns
d . Consider the open subspace S̃ns

d \V ⊂ S̃ns
d where the image of the zero

section 0 : V ↪→ S̃ns
d is removed. This space carries a natural action of Gm and

this action lifts to an action on the restriction of D̃ns
d to S̃ns

d \V by acting on R(δ1).
Hence D̃ns

d descends to a (ϕ,Γ)-module Dns
d over P(M∨V ) = (S̃ns

d \V )/Gm.

The computation of the dimension follows from the construction as well as the
fact that S�d is smooth over T dreg and Sns

d is smooth and proper over T dreg. �
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Let r ∈ pQ ∩ [0, 1) and consider the ring Rr = RrQp . If n � 0, then there is a
morphism Rr → Kn[[t]] where the ring Kn[[t]] is viewed as the complete local ring
at the point of Ur,K0 corresponding to (the Gal(Q̄p/K0)-orbit of) 1− εn. If Dr is a
(ϕ,Γ)-module defined over RrL for some p-adic field L and some r ∈ pQ ∩ [0, 1) and
if D = Dr ⊗RrL RL, then we define

DdR(D) = (K∞ ⊗Kn Kn((t))⊗RrQp Dr)
Γ

FiliDdR(D) = (K∞ ⊗Kn tiKn[[t]]⊗RrQp Dr)
Γ.

If L containsKnorm, thenDdR(D) splits up into a productDdR(D) =
∏
σDdR,σ(D)

and FiliDdR(D) =
∏
σ FiliσDdR(D) splits up into filtrations FiliσDdR(D) of the

DdR,σ(D).
As usual we can extend the notions of being crystalline or de Rham to (ϕ,Γ)-
modules.

Definition 2.5. Let L be a finite extension of Qp and let D be a (ϕ,Γ)-module of
rank d over RL = RL,K . Assume that D = Dr⊗RrLRL for some (ϕ,Γ)-module Dr

defined over RrL and some r < 1.
(i) The (ϕ,Γ)-module D is called de Rham if DdR(D) is a free L⊗Qp K-module of
rank d.
(ii) The module D is called crystalline if Dcris(D) = D[1/t]Γ is free of rank d over
L⊗Qp K0.
(iii) The module D is called crystabeline if D ⊗RL,K RL,K′ is crystalline for some
abelian extension K ′ of K.

The following proposition is the generalization of [BeCh, Proposition 2.3.4] to
our context and its proof is essentially the same as in the case K = Qp.

Proposition 2.6. Let L be a finite extension of Qp containing Knorm and let D be
a (ϕ,Γ)-module of rank d over RL that is a successive extension of rank 1 objects
RL(δi). Assume that (δ1|O×K , . . . , δd|O×K ) is locally algebraic of weight −k = (−kσ,i)
for some regular weight k. Then D is de Rham with labeled Hodge-Tate weights
−k.

Proof. Write R =
⋃
n(L⊗QpKn[[t]]) for the moment. We proceed by induction on d.

The case d = 1 easily follows form the fact that we may twist by characters δ such
that δ|O×K = 1 and the fact that the claim is true for characters of Gab

K = Ẑ × O×K
by the definition of locally algebraic weights.

For simplicity we only treat the case p 6= 2. In this case the group Γ is pro-cyclic.
In the case p = 2 one concludes similarly after taking invariants under the 2-power
torsion subgroup ∆ of Γ.

Let γ ∈ Γ be a topological generator and let Γ0 = 〈γ〉 ⊂ Γ. We will prove by
induction on 1 ≤ j ≤ d that for r big enough, (

∏
σ t

kσ,jR ⊗RrQp Filj(D)r)
Γ0 6= 0.

Suppose we have the result for j ≤ d− 1 and consider the short exact sequence

0→
∏

σ
Filkσ,dσ DdR(Fild−1(D))→

∏
σ

Filkσσ DdR(D)→
∏

σ
Filkσσ RL(δd)

→ H1
(
Γ0,Fild−1(D)r ⊗RrQp

(∏
σ
t
kσ,d
σ

)
R
)
.
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Hence it suffices to show that

H1
(
Γ0,Fild−1(D)r ⊗RrQp

(∏
σ
t
kσ,d
σ

)
R
)

= 0.

To do so we are reduced to compute the first cohomology of (
∏
σ t

kσ
σ )R ⊗L δi for

i ≤ d−1 which vanishes as
∏
σ t

kσ,dR⊗δj '
∏
σ t

kσ,d−kσ,jR⊗δ with δ a finite order
character, kσ,d − kσ,j > 0 for all σ and

H1
(

Γ0,
(∏

σ
tiσσ
)
R
)

=
(∏

σ
tiσσ
)
R
/

(γ − 1)
(∏

σ
tiσσ
)
R = 0

if iσ > 0 for all embeddings σ. It follows that D has to be de Rham. �

Let ω�
d : S�d → Wd resp. ωd : Sns

d → Wd denote the projection to the weight
space.

Corollary 2.7. (i) Let w ∈ Wd
reg,alg be a regular algebraic weight. Then there is a

non-empty Zariski-open subset Zcris(w) ⊂ ω−1
d (w) such that all points of Zcris(w)

are crystalline (ϕ,Γ)-modules.
(ii) Let k ∈

∏
σ Zd be regular and let w ∈ Wd

k,la be a locally algebraic weight. Then
there is a non-empty Zariski-open subset Zpcris(w) ⊂ ω−1

d (w) such that all points
of Zpcris(w) are crystabeline.

Proof. The proof is identical to the one of [Ch1, Theorem 3.14].
(i) As w = (w1, . . . , wd) ∈ Wd is algebraic we may write R(δi) = R(D(δi)) for any
character δi ∈ T restricting to wi on O×K . We write D(δi) = D(ai, (kσ)σ) with
ai = δi(σ)

∏
σ σ($)−kσ and let

Zcris(w) =
{

(D,Fil•(D), δ, νd) ∈ ω−1
d (w) | aiaj 6= p±[K0:Qp] for i < j

}
.

Let D be a (ϕ,Γ)-module associated to some point in Zcris(w) then D is de Rham
by Proposition 2.6 above and hence potentially semi-stable. As D is a successive
extension of crystalline (ϕ,Γ)-modules it has to be semi-stable and we have to
assure that the monodromy acts trivial. However the monodromy operator maps
the Φf -eigenspace with eigenvalue λ to the Φf -eigenspace with eigenvalue pfλ,
where f = [K0 : Qp]. As the possible eigenvalues of Φf are given by the ai the
monodromy has to be trivial.

(ii) Let w = (w1, . . . , wn) and let K ′ be the abelian extension of K corresponding
to
⋂

kerwi ⊂ O×K ↪→ Gab
K . Then the same argument as above yields a Zariski-open

subset Zpcris(w) ⊂ ω−1
d (w) whose points are (ϕ,Γ)-modules that become crystalline

over K ′. �

Remark 2.8. In the case d = 2 the second claim of the corollary above especially ap-
plies to the weight k = ((0, 1)σ) that is to potentially Barsotti-Tate representations.
If d > 2 a corresponding statement for potentially Barsotti-Tate representations can
not hold true any longer. There are no regular weights for potentially Barsotti-Tate
representations in this case and the dimension of the flag variety parametrizing the
Hodge-filtrations for non-regular weights will be strictly smaller than the dimension
of the space of extensions of (ϕ,Γ)-modules.

Lemma 2.9. Let L ⊂ Q̄p be a finite extension of the Galois closure Knorm of
K inside Q̄p and let V be a crystalline representation of GK on a d-dimensional
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L-vector space with labeled Hodge-Tate weights −k = (−kσ,i) such that k is regu-
lar. Let D = Dcris(V ) and assume that the [K0 : Qp]-th power of the crystalline
Frobenius Φcris on WD(D) = D ⊗L⊗QpK0 Q̄p is semi-simple. Let λ1, . . . , λd be an
ordering of its eigenvalues and assume that for all σ one has

(2.3)

[K:Qp]
[K0:Qp]val(λ1) < kσ,2 +

∑
σ′ 6=σ

kσ′,1

[K:Qp]
[K0:Qp]val(λ1 . . . λi) < kσ,i+1 +

∑
σ′ 6=σ

kσ′,i +
∑

σ′

∑i−1

j=1
kσ′,j .

Then there is a triangulation 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D†rig(V ) such that
Di/Di−1

∼= D(δi) with δi : K× → L× given by

δi|O×K : z 7−→
∏

σ
σ(z)−kσ,i

δi($) = λi
∏

σ
σ($)kσ,i .

Proof. Let Di ⊂ D†rig(V ) be the filtration induced by a filtration 0 = D′0 ⊂ D′1 ⊂
· · · ⊂ D′d = D = Dcris(V ) by Φcris-stable subspaces such that the restriction of
Φ

[K0:Qp]
cris to WD(Di) has eigenvalues λ1, . . . , λi. Then Di is stable under ϕ and Γ

and we need to compute the graded pieces. One easily sees that the graded pieces
are as claimed if the filtration D′• is in general position with all the Hodge filtrations
Fil•σ which is to say(
D′i⊗K0⊗L,σ⊗id Q̄p

)
⊕
(

Filkσ,i+1 DK⊗K⊗L,σ⊗id Q̄p
)

= D⊗K0⊗L,σ⊗id Q̄p = WD(D).

However, one easily sees that this is assured by weak admissibility and condition
(2.3). �

2.3. Construction of Galois-representations. Let ρ̄ : GK → GLd(F) be an
absolutely irreducible continuous representation. Write Rρ̄ for the universal defor-
mation ring of ρ̄ and Xρ̄ for the generic fiber of Spf Rρ̄ in the sense of Berthelot.

Let X be a rigid space and let T : GK → Γ(X,OX) be a continuous pseudo-
character of dimension d. We say that T has residual type ρ̄ if for all x ∈ X the
semi-simple representation ρx : GK → GLd(OQ̄p) with tr ρx = (T ⊗ k(x))⊗k(x) Q̄p
(which is uniquely determined up to conjugation) reduces to (the isomorphism class
of) ρ̄ modulo the maximal ideal of OQ̄p .

Then the rigid space Xρ̄ represents the functor that assigns to a rigid space X
the pseudo-characters T : GK → Γ(X,OX) of dimension d and residual type ρ̄.

By [He1, Theorem 5.2] there exists a natural rigid space Sns,adm
d which is étale2

over Sns
d and a vector bundle V on Sns,adm

d together with a continuous representation
ρ : GK → GL(V) such that D†rig(V) is the restriction of the universal trianguline
(ϕ,Γ)-module. Let us write S(ρ̄) ⊂ Sns,adm

d for the open and closed subspace where
the pseudo-character trρ has residual type ρ̄. Then we obtain a canonical map

πρ̄ : S(ρ̄) −→ Xρ̄ × T dreg.

Theorem 2.10. The map πρ̄ is finite and injective.

2In the set up of adic spaces the spaces Sns,admd is an open subspace of Snsd .
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Proof. The proof is the same as the proof of [He2, Theorem 3.1]. �

Let Xreg(ρ̄) = Im(πρ̄) ⊂ Xρ̄ × T dreg which is a Zariski-closed subset and let X(ρ̄)

denote the Zariski-closure of Xreg(ρ̄) in Xρ̄ × T d. The space X(ρ̄) is called the
finite slope space in the following. The next proposition verifies [He2, Conjecture
3.15 (i)].

Proposition 2.11. The inclusion Xreg(ρ̄) ↪→ X(ρ̄) is an open immersion. Further
the Galois representations ρ ∈ X(ρ̄) are trianguline.

Proof. Let us write M = |Xreg(ρ̄)| for the underlying point set of Xreg(ρ̄) and
let x = (ρ, δ1, . . . , δd) ∈ M . Then D†rig(ρ) is strictly trianguline with ordered
parameters δ1, . . . , δd in the sense of [KPX, Definition 6.1.13]. Let X1 = Xreg(ρ̄)
denote the Zariski-closure of M in Xρ̄ × T dreg and X2 = X(ρ̄) denote its closure in
Xρ̄ × T d. Further we write ρun for the pullback of the universal GK-representation
on Xρ̄ to X2 and δ1, . . . , δd for the pullback of the universal characters of K× on
T d to X2. By [KPX, Corollary 6.2.9], there exists a proper birational morphism
p : X ′2 → X2 such that there is a (unique) increasing filtration Fili onD†rig(p∗ρun) by
(ϕ,Γ)-submodules which is a strictly trianguline filtration with ordered parameters
p∗δ1, . . . , p

∗δd over a Zariski-open and dense subset U ⊂ X ′2 containing p−1(M). As
the formation of X ′2 commutes with flat base change we are reduced to show that
U ∩ (X ′2 ×T d T dreg) maps to X1. However this is obvious as X1 by construction is
exactly the set of all trianguline representations which are strictly trianguline with
ordered parameters (δ1, . . . , δd) ∈ T dreg.

The last claim follows from [KPX, Theorem 6.2.12]. �

3. Application of eigenvarieties

In this section, we recall some facts on eigenvarieties attached to definite unitary
groups and prove a density statement about them which will be used in the proof
of the main theorem.

3.1. The eigenvarieties. The eigenvarieties that we are going to use are studied
in Chenevier’s paper [Ch3]. The result that we need is the analogue of the results
in [He2], where the corresponding eigenvarieties were studied in [BeCh]. We recall
the set up of Chenevier’s paper.

Notation 3.1.
(i) We choose a totally real field F such that [F : Q] is even and let E be a

CM quadratic extension of F . We write c for the complex conjugation of
E over F and assume that there is a place v0 of F dividing p unramified in
E, such that v0 = w0w

c
0 splits in E and such that Fv0

= Ew0
∼= K. We fix

such an isomorphism and view the uniformizer $ of K a an uniformizer of
Fv0 .

(ii) We fix an algebraic closure Q̄ of Q and embeddings ι∞ : Q̄ ↪→ C and
ιp : Q̄ ↪→ Q̄p. Let I∞ = Hom(F,C) = Hom(F,R) denote the set of infinite
places of F . Given a place v of F dividing p the set I(v) = Hom(Fv, Q̄p) is
identified with a subset I∞(v) ⊂ I∞ via our choice of embeddings ι∞ and
ιp.
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(iii) Let d ≥ 1 be an integer and let us write G for the unique unitary group
in d variables defined over F which splits over E, is quasi-split at all finite
places and compact at all infinite places. The existence of such a group can
be deduced from the considerations of section 2 of [Cl].

(iv) As v0 splits in E, there exists an isomorphism G(Fv0
) ∼= GLd(K) that we

fix for the following. We write Sp for the set of places v of F dividing p
and S′p = Sp\{v0}3.

(v) Let T denote the diagonal torus in GLd(K) and denote by T 0 its maximal
compact subgroup. Further we fix the Borel B ⊂ GLd(K) of upper triangu-
lar matrices in order to have a notion of dominant weights. Let L ⊂ Q̄p be
a subfield containing σ(Fv0

) for all σ ∈ I(v0). We define the weight space
for the automorphic representations to be

Waut = Homcont(T
0,Gm(−)),

as rigid space over L. Especially we have a canonical identification Waut ∼=
Wd
L.

(vi) Fix a finite set S of finite places of F containing Sp and all places such that
G(Fv) ramifies and fix a compact open subgroup H =

∏
vHv ⊂ G(AF,f )

such that Hv is maximal hyperspecial for all v /∈ S and such that Hv0

is GLd(OK). Write S′ = S\{v0}. We define H ′ =
∏
vH
′
v such that

H ′v = Hv is v 6= v0 and H ′v0
is the Iwahori-subgroup I of GLd(OK) of

matrices whose reduction modulo $K are upper triangular. Further let
Hun = OL[G(ASF,f )//HS ] denote the spherical Hecke-algebra outside of S.
Furthermore, we ask that H is small enough, ie for g ∈ G(AF,f ),

G(F ) ∩ gHg−1 = 1.

(vii) For each place v ∈ S′ we fix an idempotent element ev in the Hecke-algebra
OL[G(Fv)//Hv] and write e = (⊗v∈S′ev)⊗1Hun for the resulting idempotent
element of the Hecke algebra OL[G(Av0

F,f )//Hv0 ].
(viii) For 1 ≤ i ≤ d, let ti = diag(1, . . . , 1, $, 1 . . . , 1) ∈ T , where the uni-

formizer is at the i-th diagonal entry. Let T− ⊂ T denote the set of
diag(x1, . . . , xd) ∈ T such that val(x1) ≥ · · · ≥ val(xd). We regard Z[T/T 0]
as a subring of the Iwahori-Hecke algebra of G(Fv0

) with coefficients in
Z[1/p] by means of t 7→ 1Hv0 tHv0

. This subalgebra is generated by the
Hecke-operators 1Hv0 tHv0 for t ∈ T− and their inverses. Finally let H =

Hun ⊗Z Z[T/T 0], which is a subalgebra of OL[G(AF,f )//H ′].

Let W∞ be an irreducible algebraic representation of
∏
v∈S′p,w∈I∞(v)G(Fw) and

let A = A(W∞, S, e) denote the set of all irreducible automorphic representations
Π of G(AF ) such that

⊗
v∈S′p,w∈I∞(v) Πw is isomorphic to W∞ and e(Πf )H

′
v0 6= 0.

Further define the set of classical points to be

(3.1) Z =

{
(Π, χ)

∣∣∣∣ Π ∈ A, χ : T/T 0 → Q̄×p continuous

such that Πv0
is a sub-object of Ind

GLd(K)
B χ

}
where the parabolic induction is normalized.

3Let just remark that here Sp is not exactly the same as in [Ch3]
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Associated to these data there is an eigenvariety, that is a reduced rigid analytic
space Y (W∞, S, e) over L together with a morphism

κ : Y (W∞, S, e) −→Waut

and
ψ = ψun ⊗ ψv0

: H −→ Γ(Y (W∞, S, e),OY (W∞,S,e))

a morphism of algebras such that Y (W∞, S, e) contains a set Z as a Zariski-dense
accumulation4 subset. These data are due to the property that there is a bijection
between Z and Z sending a point z ∈ Z on the pair (Πz, χz) ∈ Z according to the
following rule.

The evaluation ψun(z) : Hun → k(z) is the character of the spherical Hecke-
algebra associated to the representation ΠS

z . For w ∈ I∞(v0), let κΠz,w denote
the algebraic character of Tv0

obtained from Πz,w following the rule of [Ch3, §1.4].
Then, κ(z) =

∏
w∈I∞(v0) κΠz,w . Let κ$(z) be the unique charater T/T 0 → Q̄×p

such that κ$(z)(t) = κ(z)(t) when t is a diagonal matrix whose entries are powers
of $K . Finally the component ψv0 of the morphism ψ is given by

ψv0
(z)|T−v0 : 1Hv0 tHv0 7−→ χz(t) · δ−1/2

Bv
(t)|det(t)|

d−1
2 κ$(z)(t),

where δBv is the modulus character.

In what follows, we fix the data (W∞, S, e) and write simply Y for Y (W∞, S, e).

In [Ch3, §2], Chenevier constructs a space of overconvergent p-adic automor-
phic forms. More precisely, if V is an open affinoid of Waut, one defines a cer-
tain rV ≥ 1, and constructs for each r ≥ rV an O(V )-Banach space denoted
eS(V, r) with a continuous action of H such that the operators Uv0

corresponding
to diag($d−1

K , $d−2
K , . . . , 1) ∈ Z[T/T 0] ⊂ H acts as a compact operator. We say

that a charater of H is Uv0-finite if the image of Uv0 is non zero. Then we have
the following interpretation of points of Y , which is a consequence of Buzzard’s
construction of eigenvarieties [Bu, §5].

Proposition 3.2. Let t ∈ W(Q̄p). Then there is a natural bijection between Q̄p-
points of Y mapping to t and Q̄p-valued Uv0-finite system of eigenvalues of H on
lim−→V,r

eS(V, r)⊗O(V ) k(t).

3.2. The map to the finite slope space. In the above section we have recalled
the construction of an eigenvariety Y → Waut. As above we write Z ⊂ Y for
the set of classical points (3.1). Let (Π, χ) ∈ Z and let π =

⊗′
v BC(Πv) be the

representation of GLd(AE) defined by local base change for GLd. Then by [Ch3,
Theorem 3.2, 3.3] there are Galois-representations ρΠ : GE → GLn(Q̄p) attached to
the automorphic representations Π ∈ Z such that the Weil-Deligne representation
attached to ρΠ|Gv equals the Langlands parameter of πv| · |(1−d)/2, where Gv ⊂ GE
is the decomposition group at v for v not dividing p.

Let B ⊂ G = ResK/Qp GLd denote the Weil restriction of the Borel subgroup of
upper triangular matrices and let T ⊂ B denote the Weil restriction of the diagonal
torus. Using the canonical isomorphism GQ̄p

∼=
∏
σ GLd,Q̄p an algebraic weight n

4Recall that a subset A ⊂ Y of a rigid space accumulates at a point x ∈ Y if A ∩ U is
Zariski-dense in U for every connected affinoid neighborhood U of x in Y .
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of (GQ̄p ,TQ̄p) that is dominant with respect to BQ̄p can be identified with a tuple
(nσ,1, . . . , nσ,d)σ∈I(v0) ∈

∏
σ∈I(v0) Zd such that nσ,1 ≥ · · · ≥ nσ,d for all σ. Note

that this algebraic weight is already canonically defined over the reflex field En of
the weight n, i.e. over the subfield of Q̄p defined by

Gal(Q̄p/En) = {ψ ∈ Gal(Q̄p/Qp) | nσ,i = nψ◦σ,i for allembeddings σ}

and hence especially over our fixed field L. Especially n defines an L-valued point
of Wd.

Let z = (Π, χ) ∈ Z and for σ ∈ I(v0) let nσ,1 ≥ · · · ≥ nσ,d denote the highest
weight of Πv(σ), where v(σ) = ι∞ι

−1
p σ ∈ I∞(v0). We say that z is regular (with

respect to v0) if nσ,1 > · · · > nσ,d for all σ ∈ I(v0) and if
λi
λj

/∈ {1, p±[K0:Qp]},

where we set
λi = ψv0(tv0,i)

∏
σ
σ($)−nσ,i .

We further say that z = (Π, χ) is uncritical if in addition condition (2.3) holds with
λ′i = λd+1−i and kσ,i = nσ,d+1−i + i− 1. We write Zreg ⊂ Z for the set of regular
points and Zun ⊂ Z for the set of uncritical regular points.

Lemma 3.3. The subsets Zreg and Zun are Zariski-dense in the eigenvariety Y
and accumulate at all classical points z ∈ Z.

Proof. The proof is the same as the usual proof of density of classical points. Let
us denote by Y0 ⊂ Wd × Gm the Fredholm hypersurface cut out by the Fredholm
determinant of Uv0

= diag($d−1, . . . , $, 1). Let z ∈ Z ⊂ Y be a classical point
and let U ⊂ Y be a connected affinoid neighborhood. After shrinking U we may
assume that there is an affinoid open subset V ⊂ Wd such that U → V is finite
and torsion free. As U is quasi-compact, there exist C1, . . . , Cd such that

Ci ≥ valx(ψv0(tv0,1 . . . tv0,i)(x)) + 1

for all x ∈ U , where valx is the valuation on k(x) normalized by valx(p) = 1. Let
us write A ⊂ V for the set of dominant algebraic weights nσ,1 ≥ · · · ≥ nσ,d such
that Ci < nσ,i − nσ,i+1 + 1 for all i and σ : K ↪→ Q̄p and
(3.2)

[K:Qp]
[K0:Qp] · C1 −

∑
σ′
nσ′,1 <nσ,d−1 + 1 +

∑
σ′ 6=σ

nσ′,d for all embeddings σ

[K:Qp]
[K0:Qp]Ci −

i∑
j=1

∑
σ′
nσ′,j <nσ,d−i +

∑
σ′ 6=σ

nσ′,d+1−i +
∑

σ′

i−1∑
j=1

nσ′,d+1−j

+ 1 + 1
2 [K : Qp](i− 1)(i+ 2) for all σ, i.

Then one easily sees that A accumulates at the point κ(z). It follows from [Ch3,
Theorem 1.6 (vi)] that the points z′ ∈ U such that κ(z′) ∈ A are classical, whereas
(3.2) assures that these points lie in Zun, as

[K:Qp]
[K0:Qp]val(λ1) <

[K:Qp]
[K0:Qp]

(
C1 −

∑
σ
nσ,ivalx(σ($))

)
=

[K:Qp]
[K0:Qp]C1 −

∑
σ
nσ,1

and
kσ,2 +

∑
σ 6=σ′

kσ′,1 = nσ,d−1 + 1 +
∑

σ 6=σ′
n,σ′,d
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for all σ and similarly for the second required inequation. The claim now follows
from this as the map U → V is finite and torsion free. �

Let us fix an identification of the decomposition group Gw0
of GE at w0 with the

local Galois group GK .

Proposition 3.4. Let Π = Πz for some z ∈ Zreg. For an infinite place v ∈ I
let nv,1 ≥ · · · ≥ nv,d denote the highest weight of Πv. Then the representation
ρΠ|GK is crystalline with Hodge-Tate weights kσ,i = nv(σ),d+1−i + i − 1, where
v(σ) = ι∞ι

−1
p σ. Moreover the Frobenius Φcris,Π that is the [K0 : Qp]-th power of

the crystalline Frobenius on

WD(ρΠ|GK ) = Dcris(ρΠ|GK )⊗K0⊗Qp Q̄p Q̄p

is semi-simple, its eigenvalues are distinct and given by

λi = ψv0
(tv0,i)

∏
σ
σ($)−nσ,i ∈ k(z) ⊂ Q̄p.

Proof. It follows from [Ch3, Theorem 3.2] that the representation is semi-stable with
Hodge-Tate weights and Frobenius eigenvalues as described above. The condition

λi
λj
6= p±[K0:Qp]

assures that the monodromy operator has to vanish and hence the representation is
crystalline. Further the condition λi/λj 6= 1 assures that the Frobenius has distinct
eigenvalues and is apriori semi-simple. �

By [Ch3, Corollary 3.9] there is a pseudo-character TY : GE,S → Γ(Y,OY ) such
that for all Π ∈ Zreg one has T ⊗ k(Π) = tr ρΠ. Let us write GE,S for the Galois
group of the maximal extension ES inside Q̄ that is unramified outside S and fix
a continuous residual representation ρ̄ : GE,S → GLd(F) with values in a finite
extension F of Fp such that the restriction ρ̄w0

= ρ̄|Gw0
is absolutely irreducible.

We write Rρ̄,S reps. Rρ̄w0
for the universal deformation rings of ρ̄ resp. ρ̄v and

let Xρ̄,S resp. Xρ̄v denote their rigid analytic generic fibers. As we assume ρ̄w0

(and hence also ρ̄) to be absolutely irreducible [Ch2, Theorem A and Theorem B]
implies that the universal deformation rings Rρ̄w0

and Rρ̄,S agree with the universal
deformation rings of the corresponding pseudo-characters tr ρ̄w0

resp. tr ρ̄.

Let Yρ̄ ⊂ Y denote the open and closed subset where the pseudo-character TY has
residual type ρ̄. Then the restriction to the decomposition group GK ∼= Gw0

⊂ GE,S
at w0 induces a map fρ̄ : Yρ̄ → Xρ̄w0

. Let NK/Qp : K× → Q×p denote the norm map
of K. We define gi : Y → Gm by

z 7−→ ψv0
(tv0,d+1−i) ·NK/Qp($)i−1.

Further we define a morphism

ωY = (ωY,i)i : Y −→Wd

by setting ωY,i = ι(κv0,d+1−i)δ((1 − i, . . . , 1 − i)), where ι : W → W denotes the
morphism induced by ι(δ)(z) = δ(z)−1.

Theorem 3.5. The map

f = (fρ̄, ωY , (gi)i) : Yρ̄ −→ Xρ̄w0
×W ×Gdm = Xρ̄w0

× T d
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factors over the finite slope space X(ρ̄w0
) ⊂ Xρ̄w0

×T d and fits into the commutative
diagram

Yρ̄
f //

ωY ##

X(ρ̄w0
)

ωd
��
Wd

Proof. The subset X(ρ̄w0
) ⊂ Xρ̄w0

×T d is Zariski-closed an hence it suffices to check
that f(z) ∈ X(ρ̄w0

) for all z = (Πz, χz) ∈ Zun∩Y (ρ̄), as this subset is Zariski-dense
by Lemma 3.3. However this amounts to say that for z ∈ Zun the representation
ρΠz |Dw0

is trianguline with graded pieces R(δi), where δi : K× → Q̄×p is the
character

δi|O×K : z 7−→
∏

σ
σ(z)−nv(σ),d+1−i+1−i

δi($) = ψv0
(z)(tv0,d+1−i)

∏
σ
σ($)i−1.

where as above v(σ) = ι∞ι
−1
p σ and we write (nv(σ),i) for the highest weight of

Πz,v(σ). By our choice of Zun this follows from Lemma 2.9 and Proposition 3.4. �

3.3. Variation on the density of trianguline representations. In order to
deduce density statements in the generic fiber of a local deformation ring from
density statements in the space of trianguline representations one needs to show
that the image of the space of trianguline representations is dense. This density
result is included in the work of Chenevier [Ch1] and Nakamura [Na3]. In our
case the situation will be a bit more restrictive: we only can make a statement
about the components of the space of trianguline representation that are met by
the eigenvariety. Hence we need to sharpen these density result a bit. In order to
do so we need to compare the fibers of the space of trianguline representations over
dominant algebraic weights with Kisin’s crystalline deformation rings.

Let k = (kσ,i) be an algebraic weight. We assume that kσ,1 < kσ,2 < · · · < kσ,d
for all σ. By the main result of [Ki3] there exists a closed subspace Xcris

ρ̄w0
,k ⊂ Xρ̄w0

parametrizing the representations that are crystalline of labeled Hodge-Tate weight
(−kσ,i). Let U cris

ρ̄w0
,k ⊂ Xρ̄w0

,k denote the subset of points where the eigenvalues of
the [K0 : Qp]-th power of the crystalline Frobenius are pairwise distinct. Recall
further that we have a map ω : Sns(ρ̄w0

)→Wd to the weight space.

Proposition 3.6. The map ω−1(k) → Xρ̄w0
induces a map gk : ω−1(k) → Xρ̄w0

which is étale over U cris
ρ̄w0

,k. Further g−1
k (U cris

ρ̄w0
,k) is open and dense in ω−1(k).

Proof. By Corollary 2.7 the map ω−1(k) → Xρ̄w0
generically factors over Xcris

ρ̄w0
,k.

As Xcris
ρ̄w0

,k ⊂ Xρ̄w0
is Zariski-closed the first claim follows. It is further easy to see

that the preimage of U cris
ρ̄w0

,k is open and dense. It remains to prove the claim on
étaleness which we prove by verifying the infinitesimal lifting criterion. Consider
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an affinoid algebra A with ideal I ⊂ A satisfying I2 = 0 and the diagram

Sp(A/I) //

��

ω−1(k)

��
Sp(A) // U cris

ρ̄w0
,k.

This diagram gives rise to a family of filtered ϕ-modules over A and we write
(D,ΦD) for the associated family of Weil-Deligne representations on Sp(A). Further
the upper arrow in the diagram gives us a filtration

0 ( Fil
1 ( · · · ( Fil

d−1 ⊂ Fil
d

= D = D/I

by subspaces that are locally on Sp(A) direct summands and stable under the
Frobenius ΦD = ΦD mod I and we have to prove that this filtration uniquely lifts
to a ΦD-stable filtration Fil• of D such that locally on Sp(A) the Fili are direct
summands of D. After localizing on Sp(A) we may assume that D is free and that
all the Fil

i
are direct summands of D. We show that we can lift Fil

1
uniquely to

a Φ-stable direct summand of D. The rest will follow by induction. Let us chose
a basis ē1, . . . , ēd of D such that Fil

i
is generated by ē1, . . . , ēi and take arbitrary

lifts ej of the ēj in D. We write A = (aij) for the matrix of Φ in this basis. Then
the above implies that aij ∈ I for i > j and that aii 6= ajj for all i 6= j, as this is
true modulo all maximal ideals of A by definition of U cris

ρ̄w0
,k. We have to show that

there exists uniquely determined λ2 . . . , λd ∈ I and a µ ∈ A× such that

Φ(e1 +

d∑
j=2

λjej) = µ(e1 +

d∑
j=2

λjej).

However, this comes down to showing that

(A− µE)e1 +

d∑
j=2

λj(A− µE)ej = 0

has (up to scalar) a unique solution with λi ∈ I which is an easy consequence of
aij ∈ I for i > j and aii 6= ajj for i 6= j. �

Corollary 3.7. Let X(ρ̄,W∞, e) ⊂ X(ρ̄w0
) denote the Zariski-closure of those

connected components of X(ρ̄w0
)reg that are met by the image of the map f defined

in Theorem 3.5. Then the image of X(ρ̄,W∞, e) in Xρ̄w0
is Zariski-dense in a union

of irreducible components of Xρ̄w0
.

Proof. Let us write X for the Zariski-closure of the image of X(ρ̄,W∞, e) for the
moment. Following the proof of [Ch1, 4.5] and [Na3, Theorem. 4.3], we are reduced
to show that there exists a crystalline point ρ ∈ Xsm such thatX(ρ̄,W∞, e) contains
all possible triangulations of the representation ρ. Here Xsm ⊂ X is the smooth
locus which is Zariski-open and dense in X.

We first claim that the image of the eigenvariety produces many crystalline points
such that all possible triangulations are contained in X(ρ̄,W∞, e). Let z = f(y) ∈
X(ρ̄,W∞, e) for some y = (Π, χ) ∈ Z ∩Yρ̄ ⊂ Yρ̄ such that the image ρz of z in Xρ̄w0

is regular crystalline and uncritical in the sense of (2.3). Then the triangulations are
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in bijection with the orderings of the Frobenius eigenvalues as the representation is
regular and hence there are exactly d! such triangulations. We claim that all these
possible triangulations of ρ lie in f(Yρ̄). Indeed, as Πv0 is unramified, there are d!
distinct characters χi : Tv0

/T 0
v0

such that Πv0
appears in the parabolic induction

Ind
GLd(K)
B χi and as the representation is uncritical it follows that the parameters

of the triangulation are prescribed by the character χi.

Let us write kz = ω(z) and z1, . . . , zd! ∈ X(ρ̄,W∞, e) for the distinct points in
the preimage of the ρz. Then there exist open neighborhoods Ui ⊂ X(ρ̄,W∞, e) ∩
ω−1(k) of the zi such that Ui ∩ Uj = ∅. As the map gkz from Proposition 3.6 is
étale at all the zi it follows that the image of the Ui in U cris

ρ̄w0
,kz

is open and after
shrinking the Ui we may assume that Uz = gkz (Ui) = gkz (Uj) for all i, j. It follows
that all the crystalline representations ρ ∈ Uz have the property that X(ρ̄,W∞, e)
contains all their possible triangulations.

The claim now follows from the observation that
⋃
Uz as z runs over all classical

regular, uncritical crystalline points of the eigenvariety is Zariski-dense in X and
hence contains a point of the smooth locus Xsm. �

3.4. A density result for the space of p-adic automorphic forms. Now we
introduce the Banach space of p-adic automorphic forms of tame level Hv0 and
prove that a an element of Rρ̄,S vanishing on this space, vanishes on the eigenvariety
Y (W∞, S, e)ρ̄ too.

Recall that we have fixed a finite extension L of Qp with ring of integers O and
uniformizer $L. If H =

∏
vHv ⊂ G(AF,f ) is a compact open subgroup such that

Hv ⊂ GLd(Fv) for v|p, we can define, for W0 a finite O-module with a continuous
action of GLd(OF ⊗ Zp) and define

SW0(H,O) = {f : G(F )\G(A∞F )→W0 | f(gh) = h−1f(g) for all h ∈ H}.

If Hv0 =
∏
v 6=v0

Hv, we can define

SW0(Hv0 ,O) = lim−→
Hv0⊂G(OFv0 )

SW0
(Hv0Hv0

,O),

where the limit is taken over all compact open subgroups of G(OFv0 ).

Let ŜW0
(Hv0 ,O) be the $L-adic completion of SW0

(Hv0 ,O). When W0 is the
trivial representation, we omit it from the notation.

If k is a dominant algebraic weight, we writeWk for the irreducible representation
of GQ̄p = (ResK/Qp GLd)Q̄p of highest weight k relatively to our choice of Borel
subgroup. Note that this representation is already canonically defined over the
reflex field Ek of the weight k and hence especially over our fixed field L, because
we assumed that L contains all the σ(K). Finally we writeWk for the representation
of GLd(K) or GLd(OK) given by composing the embedding

GLd(K) −→
∏

σ
GLd(L) = (ResK/Qp GLd)(L)

x 7−→ (σ(x))σ.

with the evaluation of Wk on L-valued points (and similar for its restriction to
GLd(OK)).
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Recall that W∞ is the representation of
∏
v∈S′p

∏
w∈I∞(v)G(Fv) fixed in sec-

tion 3.1. Using ιp and ι∞ and choosing L big enough, we can view W∞ as
a representation of

∏
v∈S′p

G(Fv) and put an L-structure on it. Let us write

Ŝk(Hv0 , L) = ŜW 0(Hv0 ,O) ⊗O L, where W 0 is a stable OL-lattice of the repre-
sentation W ⊗OL W∞ of G(OF ⊗ Zp).

If H is a compact open subgroup of G(Af ) we write H(H) for the image of Hun

in End(Ŝk(H,L)).

Now we fix H as in section 3.1, and assume moreover now that all places v|p
are split in E and Hv is maximal at theses places5. Recall that we fixed a Galois
representation ρ̄ which is automorphic of level H, i.e. there exists z ∈ Z such that
ρ̄ is isomorphic to the reduction mod $L of ρΠz . Let m be the maximal ideal of
Hun such that for v /∈ S, the conjugacy class of ρ̄(Frobv) coincides via the Satake
correspondence with the morphism H(G(Fv), Hv) = OL[G(Fv)//Hv]→ H(H)/m '
kL. Let Hv0 ⊂ G(OFv0 ) be a compact open subgroup and Hm(Hv0) be the image
of Hun

m in End(S(Hv0Hv0
,O)m).

Then there is a unique continuous map θ : Rρ̄ → Hm(Hv0) with the following
property: Given a morphism ψ : Hm(Hv0)→ Q̄p of OL-algebras, the deformations
ρ of ρ̄ corresponding to ψ◦θ are such that for v /∈ S, the conjugacy class of ρ(Frobv)
coincides via the Satake correspondence with the morphism

H(G(Fv), Hv) −→ Hm(Hv0)
ψ−→ Q̄p.

By unicity, these maps glue into a map

θ : Rρ̄ −→ lim←−
Hv0

Hm(Hv0
)

giving a continuous action of Rρ̄ on Ŝ(Hv0 ,O)m.

Now we can fix an idempotent e as in section 3.1 such that eSk(H,L)m 6= 0. We
will prove that if an element t ∈ Rρ̄ vanishes on eŜ(Hv0 , L)m, then it vanishes on
Yρ̄ = Y (W∞, S, e)ρ̄ too.

Lemma 3.8. There exists a GLd(OK)×Hun-equivariant homeomorphism

Ŝk(Hv0 , L)m 'Wk ⊗L Ŝ(Hv0 , L)m,

supposing that Hun acts trivially on Wk.

Proof. It is sufficient to prove it before the localization in m, by Hun-equivariance.
Then we can use the following list of GLd(OK)×Hun-isomorphisms

W 0
k ⊗OL Ŝ(Hv0 ,O) = lim←−

n

(W 0
k/$

n
L)⊗OL S(Hv0 ,O/$n

L))

= lim←−
n

(W 0
k/$

n
L)⊗OL (lim−→

Hv0

S(Hv0H
v0 ,O/$n

L))

= lim←−
n

lim−→
Hv0

(SW 0
k/$

n
L

(Hv0H
v0 ,O/$n

L)

= Ŝk(Hv0 ,OL).

5This restriction is only here to be able to apply the idempotent e at the spaces SW (H,L).
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�

Proposition 3.9. The GLd(OK)-representation Ŝ(Hv0 ,O)m is isomorphic to a
direct factor of C(G(OK), L)r for some r ≥ 0, where C(G(OK), L) denotes the
space of continuous L-valued functions on G(OK).

Proof. Using Lemma 3.8, it is sufficient to prove it when k = 0. Then we re-
mark that the Banach space Ŝ0(Hv0 , L) is the Banach space of continuous func-
tions G(F )\G(AF,f )/Hv0 → W∞. Let g1, . . . , gr′ a list of representative elements
of G(F )\G(AF,f )/H, we have G(F ) ∩ giHg−1 = {1} for each i, proving that
G(F )\G(AF,f )/Hv0 is isomorphic to GLd(OK)r

′
. This proves that S0(Hv0 , L)

is GLd(OK)-equivariantly isomorphic to C(GLd(OK), L)r with r = r′ dimW∞.
Using the fact that lim←−Hv0

H(Hv0
,OL) and its action on Ŝ(Hv0 , L) commutes to

GLd(OK), we can conclude that Ŝ0(Hv0 , L)m is isomorphic to a direct factor of
C(GLd(OK), L)r. �

From Lemma 3.8, there is an Hun-equivariant isomorphism

Sk(H,L)m ' HomGLd(OK)(W
∗
k , Ŝ(Hv0 , L)m).

This implies that if t ∈ Rρ̄ vanishes on Ŝk(Hv0 , L)ρ̄ it will vanish at each point of
Z ⊂ Yρ̄. These points being Zariski-dense in Y , the function t vanishes on Yρ̄.

3.5. A density result for the eigenvariety. Now we fix k a regular weight. We
say that a closed point y ∈ Yρ̄ is crystabelline of Hodge-Tate weights k if its image
in X(ρ̄) is crystalline on an abelian extension of K and its Hodge-Tate weights
are given by k. The purpose of this section is to prove that if t ∈ Rρ̄ is zero on
the subset of points of Yρ̄ which are crystabelline of Hodge-Tate weights k, then t
induces the null function on Yρ̄.

Recall that we have fixed a Borel subgroup B ⊂ GLd(K) and let us write N ⊂ B
for its unipotent radical. Further we write N0 = N ∩GLd(OK).

Definition 3.10. Let Π be an irreducible smooth representation of G(Fv0
). We

say that Π has finite slope if the operator Uv0
has a non zero eigenvalue on the

space ΠN0 . If Π is an irreducible automorphic representation of G(AF ), we say
that Π has finite slope if Πv0

has finite slope as a smooth representation of G(Fv0
).

The following result tells us that finite slope automorphic representations of
G(AF ) give rise to closed points of Yρ̄.

Proposition 3.11. Let Π be an irreducible automorphic representation of G(AF )
of finite slope. Then there exists a point z ∈ Y (Q̄p) such that ψz|Hun = ψΠ|Hun .
Moreover, if

⊗
w∈I∞(v0) Πw is isomorphic to Wk, then the Galois-representation

attached to z becomes semi-stable of weight k, when restricted to the Galois group
of an abelian extension of K. If moreover, for ηi = ωY,i(z)δW((kσ,i)), we have
ηi 6= ηj for i 6= j then this Galois representation is even potentially crystalline of
weight k.

Proof. By assumption, there exists f ∈ Ŝ(Hv0 , L)N0
m which is an eigenvector of

H×L[T 0] such that the character of H is ψΠ and the eigenvalue of Uv0
is non zero.
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Let χ be the character of T 0 giving the action of T 0 on f . By [Loe, Proposition
3.10.1], we have

eŜ(Hv0 , L)N0
m [χ] ' lim−→

r

eS(χ, r)

By Proposition 3.2, there exists a point z of Y (Q̄p) such that ψz|Hun = ψΠ|Hun .
The claim about becoming semi-stable after an abelian extension follows easily using
the map to the finite slope space and the fact that the fibers over regular locally
algebraic characters have this property. By Theorem 3.5, the character (ηi)i gives
the action of the inertia on the Weil-Deligne module of this Galois representation,
which is non monodromic under the last assumption of the proposition. �

This proposition shows us that if we want to prove that an element t ∈ Hun

vanishing on all crystabelline points of type k of Yρ̄ is zero, it is sufficient to
prove that an element t ∈ Hun vanishing on all Sk(Hv0 , L)m[Πf ] with Π an ir-
reducible automorphic representation of finite slope such that eΠf 6= 0, then t = 0

on eŜk(Hv0 , L)m.

To produce sufficiently automorphic finite slope representations we can use the
following result. Now we write In for the level n Iwahori subgroup of GLd(OK)
i.e. elements of GLd(OK) such that the entries below the diagonal are divisible by
$n, and B0 = B∩In and N0 = N ∩B0. Recall that the level of a smooth character
χ : O×K → C× is the least integer n such that 1 +$n+1OK is contained in ker(χ).

Proposition 3.12. Let χ =
⊗d

i=1 χi be a smooth character of T 0 such that for
1 ≤ i ≤ n−1, the level of χi is stricly bigger than the level of χi+1, then there exists
an open subgroup I(χ) such that I(χ) = (I(χ) ∩ N̄)T 0(I(χ) ∩ N), I(χ) ∩ B = B0

and if we write χ for the composite I(χ) → T 0 → C×, then the pair (I(χ), χ) is
a type for the inertial conjugacy class of (T, χ), more precisely, if π is a smooth
irreducible representation of GLd(K), then

HomI(χ)(χ, π) 6= 0⇐⇒ π ∼= Ind
GLd(K)
B (η)

with η a character of T such that η|T = χ. Moreover, in this case, π has finite
slope.

Proof. Let ni be the level of χi and define I(χ) as the subgroup of I of matrices
(ai,j)1≤i,j ≤d such that $nj |ai,j for j < i. It is immediate to check that χ can be
extended in a character of I(χ). It is enough to prove that (I(χ), χ) is a type for the
GLd(K)-inertial equivalence class of (T, χ). In this aim, we use the characterization
of part 2 of the introduction of [BK]. The only non trivial condition is (iii). We
follow closely the arguments of [BK] where the situation is much more general.
Let z be the element of T whose diagonal entries are ($n−1, $n−2, . . . , $, 1) and
fz the element of H(G,χ) with support I(χ)zI(χ) such that fz(z) = 1. We only
have to prove that fz is an invertible element of H(G,χ). Let fz−1 be the element
of support I(χ)z−1I(χ) such that fz−1(z−1) = 1. We want to prove that g =
fz−1 ∗ fz has support in I(χ). The support of g is contained in I(χ)z−1I(χ)zI(χ).
Now remark that I(χ)zI(χ) =

∐
u∈I(χ)/(I(χ)∩zI(χ)z−1) uzI(χ) and that each class

of I(χ) modulo I(χ) ∩ zI(χ)z−1 contains an element of N ∩ I(χ) = N0, so that
I(χ)z−1I(χ)zI(χ) = I(χ)z−1N0zI(χ) ⊂ I(χ)NI(χ). By [BH, Prop. 11.1.2.], it
is then sufficient to check that if an element u ∈ N intertwines the character χ,
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then u ∈ N0. We can restrict us to the case d = 2. Let u = ( 1 x
0 1 ). Suppose that

x /∈ OK and choose n = n1−v(x) with ni the level of χi. If u intertwines χ, an easy
computation shows us that we must have χ1(a+x$nc)χ2(d−x$nc) = χ1(a)χ2(d)
for each (a, d, c) ∈ O×K×O

×
K×OK . As n1 ≥ n2 +1, we have χ2(d−x$nc) = χ2(d),

so that we have χ1(1 + x$nc) = 1 for all c ∈ OK , which contradicts the fact that
n1 = n+ v(x) is the level of χ1. �

Let T̃ 0 be the set of smooth characters T 0 → Cp of the form χ1 ⊗ · · · ⊗ χd such
that the level of χi is strictly bigger than the level of χi+1 for 1 ≤ i ≤ d− 1.

Proposition 3.13. Let B be the Banach space of continuous function O×K → Cp
and for n ∈ N, let B≥n denote the subspace generated by the characters O×K → C×p
of finite level bigger than n. Then B≥n is dense in B.

Proof. As the space of smooth functions from O×K → Cp is dense in B and a basis
of this space is given by the set of all characters of finite level as a basis, the closure
of B≥n in B is a subspace of finite codimension. If it is strictly included in B,
there exists a continuous map λ : B → Cp which is U -equivariant for some open
subgroup U ⊂ O×K acting trivially on Cp. Then λ gives rise to a non trivial Haar
measure on U which can not exist. �

Corollary 3.14. Let C(T 0,Cp) denote the space of continuous Cp-valued functions
on T 0. Then the subspace of C(T 0,Cp) generated by the elements of T̃ 0 is dense.

Proposition 3.15. 6 Let C(N0\GLd(OK),Cp) denote the space of Cp-valued con-
tinuous functions on GLd(OK) which are left invariant under N0. Then the sub-
space ∑

χ∈Td

Ind
GLd(OK)
I(χ) (χ) ⊂ C(N0\GLd(OK),Cp)

is dense.

Proof. If χ ∈ T̃ 0, the character χ of T 0 uniquely extends to a character χ of I(χ)
which is trivial on In ∩ N and In ∩ N̄ . Let’s name such a function a character
function for the moment. More generally for g ∈ GLd(OK), the function χ(·g) of
support I(χ)g−1 is named a right translated character function. For χ ∈ T̃ 0, the
space Ind

GLd(OK)
I(χ) (χ) is exactly the subspace of C(N0\GLd(OK ,Cp)) generated by

the right translated character functions. Let f : GLd(OK) → Cp be a continuous
function, invariant on the left under N0. We have to prove that we can approximate
f by right translated character functions. Let g1, . . . , gr a system of representatives
of the quotient I1\GLd(OK). Let fi = f(· g−1

i )|I1 , so that f =
∑r
i=1 fi(·gi).

Now fix 1 ≤ i ≤ r. Fix ε > 0. As I1 is compact, we can find n ≥ 1, such that
for h ∈ In ∩ N̄ , we have ||fi − fi(· h)|| < ε. Let h1, . . . , hs ∈ I1 a system of
representatives of (In ∩ N̄)\(I1 ∩ N̄), which is also a system of representatives of
In\I1, and define fi,j = fi(· h−1

j )|In . Let f ′i,j be the function on In defined by
f ′i,j(ntN̄) = fi,j(t) for (n, t, N̄) ∈ (N ∩ In)×T 0× (N̄ ∩ In). As (N̄ ∩ In) is a normal
subgroup of (N̄ ∩ I1), we have ||fi,j − f ′i,j || < ε. Using Corollary 3.14, for each

6V. Paskunas informed us that he has more general versions of this result in his forthcoming
work with M. Emerton
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(i, j) ∈ [1, r]× [1, s], we can find elements f̃i,j ∈ Td, such that ||f ′i,j |T 0 − f̃i,j || < ε.
Now we can write each f̃i,j as

∑
k ai,j,kχi,j,k with I(χi,j,k) ⊂ In. We extend each

χi,j,k to I(χi,j,k) as previously described. As I(χi,j,k) ⊂ In, we can write f̃i,j as a
finite sum of right translated character functions. If f̃ =

∑
i,j f̃i,j(· hjgi), we have

||f − f̃ || < ε, and f̃ is a finite sum of right translated character functions. �

Now we can conclude the proof.

Proposition 3.16. Let t ∈ Rρ̄ such that t is zero on each eSk(Hv0I(χ),Cp)m[χ]

such that χ ∈ T̃ 0, then t = 0 on eŜ(Hv0 , L)N0
m .

Proof. We know that
∑
χ Ind

GLn(OK)
I(χ) (χ) is dense in C(N0\GLn(OK),Cp) and that

Ŝk(Hv0 , L)m is isomorphic to a direct summand of C(GLd(OK), L)r for some r.
It follows that S1 = Ŝk(Hv0 , L)m⊗̂LCp is isomorphic to a direct summand of
C(GLd(OK),Cp)r. We can write C(GLd(OK),Cp)r = S1 ⊕ S2.

As the functor F =
⊕

χ HomI(χ)(χ,−) commutes with finite direct sums, we
know that F (S1) ⊕ F (S2) is dense in [C(GLd(OK),Cp)r]N0 . As the functor of
N0-invariants commutes with direct sums, we conclude that F (S1) ⊂ SN0

1 must
be dense. By assumption, t vanishes on F (S1), hence on SN0

1 , which contains
Ŝk(Hv0 , L)N0

m . Finally we conclude by remarking that

Ŝk(Hv0 , L)N0
m = Wk ⊗L Ŝ(Hv0 , L)N0

m .

�

Corollary 3.17. Let f ∈ Rρ̄ be a function vanishing on all points of Yρ̄ which are
crystabelline of Hodge-Tate weights k. Then the image of f in Γ(Yρ̄,OY ) is zero.

3.6. Conclusion. Let us summarize what we have proven so far using eigenvari-
eties. The following definition will be useful.

Definition 3.18. Let X be a rigid space and R be a ring together with a ring
homomorphism ψ : R→ Γ(X,OX).
(i) A subset Z ⊂ X is called R-closed if Z = {x ∈ X | ψ(f)(x) = 0 for all f ∈ I}
for some ideal I ⊂ R.
(ii) A subset U ⊂ X is called R-open if its complement is R-closed.

Further we have an obvious notion of the R-closure of some subset Z ⊂ X and a
notion of R-density.

Let k = (kσ,i)σ ∈
∏
σ Zd be a regular algebraic weight and Xk(ρ̄w0) denote

the Rρ̄v0 -closure of the set of potentially crystalline points of X(ρ̄w0) which have
labelled Hodge-Tate weights k. We have finally proved the following result.

Theorem 3.19. The image of Y (W∞, S, e)ρ̄ is contained in Xk(ρ̄w0).

4. The main theorem

Let us fix a continuous representation r̄ : GK → GLd(F) fulfilling the condition
of Conjecture A.3 of [EG], which is automatic if d = 2. We also assume that p does



24 E. HELLMANN, B. SCHRAEN

not divide 2d. We need to embed our local situation into a global one. For this we
use the results of the appendix of [EG].

Corollary A.7 of [EG] tells us that we can find F a totally real field, E a totally
imaginary quadratic extension of F and a continuous irreducible representation
ρ̄ : GF → Gd(F̄p) (see for example [EG, §5.1] for the definition of Gd) such that

• 4|[F : Q] ;
• each place v|p of F splits in E and Fv ' K;
• for each place v|p of F , there is a place ṽ of E dividing p and such that
ρ̄|GFṽ ' r̄ ;

• ρ̄ is unramified outside of p ;
• ρ̄−1(GLd(F̄p)×GL1(F̄p)) = GE ;
• ρ̄(GE(ζp)) is adequate (in the sense of [Tho, §2])
• ρ̄ is automorphic, we will explain now what this means.

Let v1 be a place7 of F which is prime with p and satisfies the same hypothesis as
in [EG, §5.3]. We define the compact open subgroup H =

∏
vHv ⊂ G(A) so that

Hv ' GLd(OK) if v|p, Hv ⊂ G(Fv) is maximal hyperspecial if v - p and v 6= v1, and
Hv1 an open pro-`-subgroup of G(Fv1) for ` the residual characteristic of v1. We
say that ρ̄ is automorphic if SW (H,L)ρ̄ 6= 0 for some irreducible locally algebraic
representation W of G(OF ⊗ Zp).

Lemma 4.1. There exists an irreducible algebraic representation W∞ of the group∏
v∈S′p

∏
w∈I∞(v)G(Fv) such that Ŝ(Hv0 , L)ρ̄ 6= 0.

Proof. By definition, we know that there exists an irreducible locally algebraic
representation W of G(OF ⊗ Zp) such that SW (H,L)ρ̄ 6= 0. Let Ŝ(Hp, L)ρ̄ =
lim←−n lim−→Hp⊂G(OF⊗Zp)

S(HpHp,OL/$n
L)ρ̄. We see, as in section 3.4 that SW (H,L)ρ̄ '

HomG(OF⊗Zp)(W
∗, Ŝ(Hp, L)ρ̄) and that, as aG(OF⊗Zp)-representation, S(Hp, L)ρ̄

is isomorphic to a non zero direct factor of C(G(OF ⊗ Zp), L)r for some r ≥ 1.
We can then find an irreducible algebraic representation W v0 of

∏
v∈S′p

G(Fv) such

that Hom∏
v∈S′p

G(Fv)(W
v0 , Ŝ(Hp, L)ρ̄ 6= 0 and choose for W∞ the irreducible alge-

braic representation of
∏
v∈S′p

∏
w∈I∞(v)G(Fv) associated to W v0 as explained in

section 3.4, then we have Ŝ(Hv0 , L)ρ̄ ' Hom∏
v∈S′p

G(Fv)(W
v0 , Ŝ(Hp, L)ρ̄. �

4.1. A result of density in crystalline deformation spaces. Fix k a regular
algebraic weight such that HomGLd(OK)(W

∗
k , Ŝ(Hv0 , L)ρ̄) 6= 0. In this section we

will use patching techniques to prove that the Rr̄-closure of automorphic points of
Xcris
r̄,k is a union of connected components of Xcris

r̄,k .

There exists a complete noetherian local ring R�
r̄ pro-representing the functor

Dr̄ on the category of local Artinian W (F)-algebras (A,mA) with residue field F,
where Dr̄(A) is the set of continuous homomorphisms r : GK → GLd(A) reducing
to r̄ modulo the maximal ideal of A. Let r� be the universal homomorphism
r� : GK → GLd(R

�
r̄ ). By Kisin’s result [Ki3] there exists a reduced p-torsion

7The introduction of this auxiliary place is only needed for the patching construction which
will be used in the forthcoming lines
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free quotient Rcris,�
r̄,k of R�

r̄ such that a continuous ζ : R�
r̄ → Q̄p factors through

Rcris,�
r̄,k if and only if ζ ◦ r� is crystalline of Hodge-Tate weight k. If r̄ is absolutely

irreducible, the natural map Rcris
r̄,k → Rcris,�

r̄,k is formally smooth. We say that
a Q̄p-point of Spec(Rcris,�

r̄,k ) is automorphic if the corresponding deformation of r̄
is automorphic. Further an irreducible component of Spec(Rcris,�

r̄,k [1/p]) is called
automorphic if it contains an automorphic point. Our goal in this section is to use
the usual patching construction to prove the following result.

Theorem 4.2. Let X be an automorphic component of Spec(Rcris,�
r̄,k [1/p]). Then

the set of automorphic points in X is Zariski dense.

Let Xaut,�
r̄,k be the union the components of the rigid analytic generic fiber Xcris,�

r̄,k

of Spf Rcris,�
r̄,k that correspond to automorphic components of Spec(Rcris,�

r̄,k [1/p]).
When r̄ is absolutely irreducible, we can define in the same way, Xaut

r̄,k inside Xcris
r̄,k .

Corollary 4.3. The set automorphic points in Xaut,�
r̄,k is Rr̄-dense in Xaut,�

r̄,k . If r̄
is absolutely irreducible, the set automorphic points in Xaut

r̄,k is Rr̄-dense in Xaut
r̄,k .

Given a rigid space X over Qp we write |X| for the underlying point set of X.
Similarly we write |X| for the set of closed points of a Qp-scheme X. Let R be a
complete local Noetherian Zp-algebra with finite residue field and let X denote the
generic fiber of R in the sense of Berthelot. Further let X = SpecR[1/p]. Then we
have |X| = |X| as if we write R = Zp[[T1, . . . , Tn]]/(f1, . . . , fm) then both sets are
identified with the Gal(Q̄p/Qp)-orbits in

{x = (x1, . . . , xn) ∈ Q̄p | |xi| < 1 and fj(x) = 0},

compare also [dJ, Lemma 7.1.9]. Further a subset Z ⊂ |X| = |X| is dense in X if
and only it is R-dense in X. This proves that the theorem implies the corollary.

Proof of the Theorem. Define Rv1
as the universal ring pro-representing the functor

of lifts of ρ̄|Gv1 . Let Rloc = R�
v1
⊗̂v∈SpR

cris,�
ṽ,k and R∞,g = Rloc[[x1, . . . , xg]]. Then

the patching construction (see [Tho, §6]) gives us, for g big enough, a R∞,g-module
M∞ of finite type whose support in SpecR∞,g is a union of irreducible components.
Let R be the quotient of Rloc corresponding to one of these irreducible components.
Then M∞ is a faithful R[[x1, . . . , xg]]-module. Moreover, M∞ is constructed as an
inverse limit of spacesMn, whereMn is a quotient of a space of automorphic forms,
on which the action of R∞,g factors through a ring of Hecke operators.
Lemma 3.4.12 in [Ki2] shows that the irreducible components of SpecRloc[[x1, . . . , xg]]
are of the form Spec(

⊗
v∈Sp∪{v1}R

′
v) where R′v is an irreducible component of

Rcris,�
ṽ,k if v|p and of R�

v1
of v = v1. Now fix v|p, and R′v an automorphic irre-

ducible component of Rcris,�
r̄,k . This means that there exists an irreducible compo-

nent R′[[x1, . . . , xg]] of Rloc[[x1, . . . , xg]] containing R′v. If t ∈ Rcris,�
r̄,k vanishes on

each automorphic point, then t acts trivially on the spaces Mn, and so on M∞.
Now M∞ being a faithful R-module, the image of t in R is zero, which implies that
t = 0 in R′v since R′v is p-torsion free. �
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4.2. End of the proof. Fix a regular weight8 k = (kσ,i)σ ∈
∏
σ Zd and recall the

subsetWd
k,la ⊂ Wd. In this section we prove the following theorem which will imply

the desired result on the density of potentially crystalline representations of fixed
weight. The data of F , E, G, H, ρ̄ are checking the properties of section 3.1, so
that we can consider the eigenvariety Yρ̄ = Y (W∞, S, e)ρ̄ with S = Sp ∪ {v1} and e
a well suited idempotent.

Theorem 4.4. Let X ⊂ Xreg(r̄) be the union of connected components intersecting
the image of the eigenvariety Yρ̄. Then the subset ω−1(Wd

k,la) ∩X is Rr̄-dense in
X.

Proof. Let us write X ′ ⊂ X for the Rr̄-closure of ω−1(Wd
k,la) ∩X. It then follows

from Corollary 3.17 (resp. Theorem 3.19) that

f(Yρ̄) = f(Yρ̄) ∩X ⊂ X ′.

Given any regular algebraic weight k′ in the image of ωY let us write Xk′ for the
intersection of ω−1(k′) with X. Let y ∈ Yρ̄ be a classical regular point mapping
to x ∈ Xk′ and let Z denote the connected component of Xk′ containing x and let
Zcris ⊂ Z be the Zariski-open (and dense) subset of crystalline points.

By construction Z maps under the projection to Xr̄ to a connected component Z ′
of Xcris

r̄,k′ . Further the component Z ′ is an automorphic component, as by assumption
the representation defined by x extends to an automorphic Galois representation.

Let t ∈ Rr̄ be an element vanishing on X ′ and consider its image, still denoted by
t, in R′ the quotient of Rcris

r̄,k′ corresponding to Z ′. Let z′ ∈ Z ′ be an automorphic
point corresponding to a crystalline GK-representation rz′ . By definition, we can
find an irreducible cuspidal automorphic representation Π of an unitary group G,
of some level H̃ ⊂ H as in section 3.1 such that (ρΠ)w0

' rz′ . Then there exists
a triple (W∞, S, e) and a character χ of T/T 0 such (Π, χ) ∈ Z the set of classical
points of the eigenvariety Y (W∞, S, e) and hence Theorem 3.19 implies that the
image of (Π, χ) ∈ Y (W∞, S, e)ρ̄Π in X(r̄) is in fact contained in X ′. By Corollary
4.3 the image t in R′ is zero. As the map of Z in Xr factors through Z ′, the elements
t vanishes on Z, which implies that Z ⊂ X ′.

We can now conclude. There is a quasi-conpact neighborhood U of f(y) inside
X such that U is isomorphic to a product of an open subset U1 ⊂ Wd with a rigid
space U2 which we may chose to be connected. This is true, as (by construction)
locally around y the space Xreg(r̄) looks like a product of an affine space with Gdm.
After shrinking U1 we may also assume that Yρ̄ ∩ U surjects onto U1. As U is
quasi-compact, there exist C1, . . . , Cd such that

Ci ≥ valx(ψv0
(tv0,1 . . . tv0,i)(x)) + 1

for all x ∈ U , where valx is the valuation on k(x) normalized by valx(p) = 1. Let
us write Z1 ⊂ U1 for the set of dominant algebraic weights nσ,1 ≥ · · · ≥ nσ,d such
that Ci < nσ,i − nσ,i+1 + 1 for all i and σ : K ↪→ Q̄p. Then Z1 is Zariski dense in
U1 and hence ω−1(Z1) ∩ U is Zariski dense in U .

8not necessarily as in preceding section
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It remains to show that X ′ contains ω−1(Z1)∩U . A point x ∈ f(Yρ̄)∩U mapping
to k′ ∈ Z1 is classical by the choice of Ci and [Ch3, Theorem 1.6 (vi)]. Applying
what preceeds with the point x and the component of Xk′ containing {k′} × U2

we find that {k′} × U2 ⊂ X ′. This implies that X ′ contains ω−1(Z1) ∩ U which is
Zariski dense in U , hence U ⊂ X ′.

We have proven thatX ′ contains all connected components ofX that meet f(Yρ̄).
Changing the eigenvariey Yρ̄ we find that X ′ = X. �

Theorem 4.5. Let p - 2d and let K be a finite extension of Qp. Let r̄ : GK →
GLd(F) be an absolutely irreducible continuous representation which has a poten-
tially diagonalizable lift and let Rr̄ be its universal deformation ring. Assume that
r̄ 6∼= r̄(1). Let k = (ki,σ) ∈

∏
σ:K↪→Q̄p Z

d be a regular weight. Then the represen-
tations that are crystabeline of labeled Hodge-Tate weight k are Zariski-dense in
SpecRr̄[1/p].

Proof. The assumptions that r̄ is absolutely irreducible and r̄ 6∼= r̄(1) imply that
Z = SpecRr̄[1/p] is smooth and irreducible.

Let X ⊂ X(r̄) be the subset defined in Theorem 4.4. Our assumptions imply
that the X is non-empty and hence Corollary 3.7 implies that X has dense image in
Z. Let t ∈ Rρ̄ be a function vanishing on all crystabelline points of weight k. Then
Corollary 2.7 implies that it vanishes on X ∩ ω−1(Wd

k,la) and hence by Theorem
4.4 is vanishes on X. The claim follows as X has dense image in Z. �

As already mentioned above the extra assumptions on r̄ are known to be true in
the 2-dimensional case (see Remark A.4 in [EG]). This gives the following result.

Corollary 4.6. Let p 6= 2 and let K be a finite extension of Qp. Let r̄ : GK →
GL2(F) be an absolutely irreducible continuous representation such that r̄ 6∼= r̄(1).
Let Rr̄ be its universal deformation ring and let k = (ki,σ) ∈

∏
σ:K↪→Q̄p Z

2 be a
regular weight. Then the representations that are crystabeline of labeled Hodge-Tate
weight k are Zariski-dense in SpecRr̄[1/p].
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