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Abstract

We consider the notion of pre-CY algebra introduced in [3], and in [4], [5], for finite dimen-
sional space. Basic cases of those structures are classified. Namely, it is shown that there are
two different nontrivial 1-pre-CY structures of signature (1,1), up to the gauge group action.
For the signature (1,n) case, all 1-pre-CY structures are described as solutions of a functional
equation in R⊗R⊗R⊗V ∗, where R = K〈〈X〉〉 is a ring of formal power series in noncommuting
variables X = x1, ..., xn, and V = R1 is a degree 1 component of R.

In some cases of signature (1,n), for example, for the direct sum of (1,1)-signature solutions:γ =
x1 ·x1⊗

∂
∂x1

+ . . .+xk ·xk⊗
∂

∂xk
+1 cdot1⊗ ∂

∂xk+1
+0, zero cohomology group H0 of the complex

associated to γ is calculated. It turns out to be spanned on elements e−D(w) ⊗ ∂
∂xp

: k + 1 6

p 6 n, w ∈ X \ {xk+1}, for the derivation D =
∑

Di on R, where Di(xi) = xixk+1xi, and
Dj(xi) = 0, i 6= j.

The operad Ap,1 controlling the structure which is induced on A1 in the case of (1,n)-
signature 1-pre-CY structure is described precisely in terms of generators and relations.
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1 Introduction

We consider here the notion of pre-CY algebra introduced in [3] in general, and in [4], [5], for finite dimensional
case. It turns out, that even in the simplest situations, corresponding to the one-loop quiver there is quite
reach variety of pre-CY structures, which we are aiming to classify and explain here. Comparing to (cyclic or
Ginzburg) CY structures, where the main task usually was (see, for example, [2, 1]) to characterize properties
of algebras, which follow from the existence of the structure, the pre-CY structures always exist, and the
goal is to describe/classify them.

Definition 1.1. d-pre-CY structure on A∞-algebraA is an A∞ structure on A⊕A∗[1−d], cyclically invariant
w.r.t. natural non-degenerate pairing on A⊕A∗[1− d], such that A is A∞-subalgebra in A⊕A∗[1− d].

Note that the natural pairing on A⊕A∗ of degree N is given by 〈(a, f), (b, g)〉 = f(b)+ (−1)degag(a), for
a, b ∈ A, f, g ∈ A∗, and dega+ degb = N .

Considering cyclic d-CY-structures on graded algebras, one can see that it forces the restriction on the
number of nontrivial graded components of the algebra: An = 0, n > d (if A<0 = 0). This suggests the idea
to consider d-pre-CY structures with only d+ 1 nontrivial graded components. In particular, the basic case
which we study here is 1-pre-CY structures on graded algebras with two non-trivial graded components,
namely A = A0 ⊕ A1. The pair of dimensions of those components (dimA0, dimA1) we call a signature of
the 1-pre-CY structure.

We start with classification of 1-pre-CY structures of signature (1, 1), which perhaps is as much the
’simplest’ case, as the case of the field with one element.
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2 Classification of 1-pre-CY structures of signature (1, 1) on A∞-

algebras

As an underlying object for 1-pre-CY structures we consider a graded algebra A = A0 ⊕A1. In this section
we fix signature (1, 1), which means that dimA0 = 1, dimA1 = 1. In other words, we consider graded algebras
of the quiver with one single loop.

In spite of what intuition raised by working with associative (Lie) algebras should say, in this simple sit-
uation (of two-dimensional underlying algebra) there is an infinite-dimensional space of 1-pre-CY structures
on A. It looks like here it is a situation, where seemingly trivial object carries a lot of information, as it is
the case with the field of one element, or with the whole set theory being constructed out of the empty set.

Actually, the infinite dimensional space of structures, we got on this simplest algebra, can be equivalently
characterized as a space of structures, defined as a certain collection of operations on A1: two unitary
operations, three binary, etc., satisfying certain relations (which are consequences of the Maurer-Cartan
equation on A ⊕ A∗). In other words, we discover an operad, Ap,1, such that all structures on A1, which
are in 1-1 correspondence with 1-pre-CY structures on A = A0 ⊕A1 of signature (1, n) are algebras over the
operad Ap. Description of this operad by generators and relations is given in section 4.

Here we classify 1-pre-CY structures on A = A0 ⊕ A1 of signature (1, 1), and it turns out that there
are essentially two big classes of them. One, Σ0 corresponds to the case of trivial (zero) differential in A∞

structure on A⊕A∗, another, Σ1 - to a non-zero differential. These classes formed by orbits under the gauge
group action.

We express those structures (solutions of the Maurer-Cartan) as a formal power series in two commuting
variables - elements of k[[x, y]].

There is a dense subset Ω ⊂ k[[x, y]], consisting of series, which could be expressed, as a rational function
on x, y. We call those solutions (structures) rational.

Note, that inside the set of rational solutions there is a change of variables x 7→ x+ const, y 7→ y+ const
which allows to transform any solution from one orbit, Σ1 (with a nontrivial differential) to the one of
another form, Σ0 (without a differential).

Remark 2.1. Taking into account two remarks above, we can say, that in case of signature (1, 1) all solutions
could be described in terms of solutions without differential Σ0.

2.1 Preliminary remark on d-pre-CY structure on associative algebra

Here we introduce the reader to the taste of A∞ structures on A⊕ A∗, by proving the following quite easy
fact. Consider for now a subclass of A∞-algebras consisting of Z-graded associative algebras, namely put

A = (A,m(1)), with m(1) = m
(1)
2 .

Let us repeat the definition from the introduction, to separate clearly its three parts.

Definition 2.2. A d-pre-CY structure on A∞-algebra A is
(I). an A∞ structure on A⊕A∗[1− d],
(II). cyclically invariant w.r.t. natural non-degenerate pairing on A⊕A∗[1− d], meaning:

〈mn(α1, ..., αn), αn+1〉 = (−1)σ〈mn(αn+1, α1, ..., αn−1), αn)〉

where 〈(a, f), (b, g)〉 = f(b)+g(a) for a, b ∈ A, f, g ∈ A∗ and (−1)σ stands for the sign assigned according
to the Koszul rule.

(III) and such that A is A∞-subalgebra in A⊕A∗[1− d].

Theorem 2.3. Any Z-graded associative finite dimensional algebra A = (A,m),m = m2, A = ⊕Ak has a
structure of d-pre-CY algebra.

Proof. We prove, that any associative multiplication on A = ⊕Ak can be extended to an associative mul-
tiplication on A ⊕ A∗[1 − d], so that the natural form on A ⊕ A∗[1 − d] is cyclic with respect to the this
multiplication.

Indeed, we write 8 conditions with triples from A and A∗ involved, coming from the cyclicity condition
of the form: 〈xy, z〉 = 〈z, xy〉, x, y, z ∈ A⊕ A∗.
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Let a, b, c ∈ A, f, g, h ∈ A∗, and denote for any product u × v, u, v ∈ A ⊕ A∗, u × v = uv + u ⋆ v, uv ∈
A, u ⋆ v ∈ A∗, so uv stands for A component of u× v and u ⋆ v for the A∗ component of u× v.

The cyclicity
〈(a+ f)× (b + g), c+ h〉 = 〈(c+ h)× (a+ f), (b+ g)〉

gives 7 conditions on A,A∗ components:
(the condition 〈ab, c〉 = 〈ca, c〉 is trivially satisfied, since the natural form is zero on A×A)
(1).(f ⋆ b)(c) = (c ⋆ f)(b)
(2).h(ab) = (h ⋆ a)(b)
(3).(a ⋆ g)(c) = g(ca)
(4).(f ⋆ g)(c) = g(cf)
(5).h(fb) = (h ⋆ f)(b)
(6).h(ag) = g(ha)
(7).h(fg) = g(hf)
First, it is easy to see that this system splits into 3 independent groups of equations: 1-3,4-6, and 7. Only

the equations 2,3 in the first group of equations involves multiplication on A, they are related by means of
1. But note, that 2 and 3 together imply 1:

(f ⋆ b)(c) = f(bc) by (2), and (c ⋆ f)(b) = f(bc) by 3, so we get 1.
Hence from 2 and 3 we just define (f ⋆ a)(b) and (a ⋆ g)(c) via multiplication on A. We get the following

A-bimodule multiplication on A:

a ⋆ f ⋆ b(c) = f(bca).

Since conditions 4-7 does not involve multiplication on A, we can choose all these four expressions to be
equal to zero, which would mean zero multiplication on A∗. Using associativity of multiplication on A we
check, that this indeed provides an associative operation on A⊕A∗, indeed:

(a× b)× f = a× (b × f) since
(a× b)× f = (ab)× f
and
a× (b× f) = a× (bf + b ⋆ f)
(ab) ⋆ f(c) = f(c(ab))
a ⋆ (b ⋆ f)(c) = b ⋆ f(ca) = f((ca)b).
Also,(a ⋆ f) ⋆ b = a ⋆ (f ⋆ b) due to associativity of A.
In fact the existence of such extension of associative structure can be generally formulated as follows:

Lemma 2.4. Let A be an associative algebra, M an A-bimodule, then the following multiplication on A⊕M
makes it into an associative algebra:

(a+ f)(b+ g) = ab+ af + gb

Proof. Indeed,

((a+ b)(b+ g))(c+ h) = (ab+ ag + fb)(c+ h) = abc+ agc+ fbc+ abh

and

(a+ f)((b + g)(c+ h)) = (a+ f)(bc+ bh+ gc) = abc+ abh+ agc+ fbc.

We need also to check that the multiplication we got works well with the graded structure. Indeed,
(A ⊕ A∗[1 − d])n = An ⊕ (A1−d−n)

∗, so if we take a, b, c ∈ Am, f.g.h ∈ (A1−d−k)
∗ = (A∗[1 − d])k, then

f × a and a× f should be in (A1−d−k−m)∗ = (A∗[1− d])k+m.
Indeed, according to 2 f × a(b) = f(ab). If f ∈ (A1−d−k)

∗ and deg a + deg b = 1 − d − k, then deg b =
1− d− k −m, so f × a ∈ (A1−d−k−m)∗. The same for a× f(b).

So, we got an extension of associative structure from A to A ⊕ A∗[1 − d], which respects grading, and
cyclically symmetric with respect to the natural form on A ⊕ A∗. (Note also that construction does not
depend on d).
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2.2 Functional equation for the 1-pre-CY structures of signature (1, 1)

Taking into account that only two graded components of our algebra are non-zero, and the fact that n-ary
operation should be of degree −n+2, from the Maurer-Cartan equation, written on the (cyclically invariant)
inputs we get quadratic equations [u, u]MC = 0, and equations [u, v]MC = 0, where u consists of operations
with the following structure: one input from A∗, one output (from A1) , and i + j inputs from A1, where i
and j is the number of inputs before the input from A∗ and after, respectively. Graphically these cyclically
invariant operations could be depicted as follows.

u =
∑

aki,j i











j

A1

A∗

A1 A1

The variable v also is composed of cyclically invariant operations with certain type of inputs/outputs.
Our main concern here will be solution of the equation

(∗) [u, u]MC = 0.
After this is done, we get a linear system of equations on v for any u, which will give a natural vector

bundle structure on the space of solutions.
To any element u, which is the linear combination of operations of mentioned above structure, parame-

terized by two indexes i, j, we can associate a generating function in two variables x,y:

fu(x, y) =
∑

i+j=n−1

akijx
iyj

The Maurer-Cartan equation (*) on u, in terms of generating function will have a form of the following
functional equation.

(∗∗) f(x, y)
f(x, z)− f(y, z)

x− y
− f(y, z)

f(x, y)− f(x, z)

y − z

First, let us make the following nice observation about the symmetric property of the solutions of this
equation.

For any f(x, y) ∈ k〈〈x, y〉〉, denote by a(x, y, z) the following element from k〈〈x, y, z〉〉:

a(x, y, z) = f(x, y)
f(x, z)− f(y, z)

x− y
− f(y, z)

f(x, y)− f(x, z)

y − z

Theorem 2.5. f ∈ k〈〈x, y〉〉 is a solution of the above functional equation if and only if a(x, y, z) ∈
k〈〈x, y, z〉〉 is a symmetric series, meaning stable with respect to S3 action.

Proof.

Lemma 2.6. If f(x, y) ∈ k〈〈x, y〉〉 is a solution of the above functional equation then f(y, x) ∈ k〈〈x, y〉〉 is.

Proof. (of lemma) Any function f(x, y) ∈ k〈〈x, y〉〉 can be presented as

f(x, y) =
f(x, y) + f(y, x)

2
+

f(x, y)− f(y, x)

2

Denote fs =
f(x,y)+f(y,x)

2 , fa = f(x,y)−f(y,x)
2

The following holds.
1. if f(x, y) is a solution, then fa and fs are solutions.
2. if f(x, y) is a solution and f(x, y) = −f(y, x), then f = 0
So, all solutions are symmetric.
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Now we can see that a(x, y, z) stable under S3:
i. a(x, y, z) = a(y, z, x) - equation says this, for symmetric f
ii. a(x, y, z) = a(y, x, z), since f(x, y) = f(y, x) by lemma.
Being stable with respect to generators of S3, a(x, y, z) is stable under S3.

2.3 Solution of the functional equation for the 1-pre-CY structures of signature

(1, 1)

Now we are going to describe all solutions of the functional equation (**) obtained in the previous section.
Suppose f is not a zero function. We can multiply the equation (**) by (x− y)(y − z), and obtain

(y − z)f(x, y)(f(x, z)− f(y, z))− (x− y)f(y, z)(f(x, y)− f(x, z)) = 0

We divide this by (x− y)(x− z)(y − z), and get

f(x, y)

(x− y)

f(x, z)

(x− z)
+

f(x, z)

(x− z)

f(y, z)

(y − z)
=

f(x, y

(x − y)

f(y, z)

(y − z)

Denote by g(x, y) := f(x, y)/(x− y)
Thus for g(x, y) we have the equation:

g(x, y)g(x, z) + g(x, z)g(y, z) = g(x, y)g(y, z)

And hence, h(x, y) := 1/g(x, y) satisfies the equation

h(y, z) + h(x, y) = h(x, z)

Now we are going to prove the following theorem.

Theorem 2.7. If h(x, y) ∈ k〈〈x〉〉k〈〈y〉〉 is a solution of the equation

h(y, z) + h(x, y) = h(x, z),

then h(x, y) = P (x) − P (y), for some P (x) ∈ k〈〈x〉〉.

Here by k〈〈x〉〉 =
∞∑

i=−N

αix
i, αi ∈ k we denote the field of formal Laurent series on x (finite from one

side).

Proof. Denote by Q(A(x, y)) the field of fractions of the domain A(x, y) = {
∞∑

i,j=0

xiyj} - formal power series

of positive degrees.
Obviously, Q(A(x)) = k[[x]] ⊂ k((x)) and

Q(A(x, y)) ⊂ k〈〈x〉〉k〈〈y〉〉

Q(A(x, y)) ⊂ k〈〈y〉〉k〈〈x〉〉

So, we consider solutions of the equation in the bigger extension then Q(A(x, y)).
Write the equation by degrees of y:

∞∑

k=a

pk(x)y
k +

∞∑

k=b

gk(z)y
k = h(x, z).

Obviously,

Q(A(x, y)) = Q(A(y, x)) ⊂ k〈〈x〉〉k〈〈y〉〉 ∩ k〈〈y〉〉k〈〈x〉〉

Collect terms near yk:
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∞∑

k=min(a,b)

(pk(x) + qk(z))y
k = h(x, z).

h(x, z) does not depend on y. Thus, p0 and q0 are arbitrary, pk(x) + qk(z) = 0 for all k 6= 0, so
pk(x) = ck ∈ C, qk(x) = −ck ∈ C. Write h in the form

h(x, y) = p0(x) +
∑

k 6=0,k>a

cky
k = p0(x) + r(x).

Substituting it into the equation we get r(y) = p0(y), hence h(x, y) = p0(x)−p0(y), for p0(x) ∈ k〈〈x〉〉.

3 Generalization of the functional equation for the 1-pre-CY of

signature (1, n)

Here we consider the case A = A0 ⊕ A1 and dimA0 = 1, dimA1 = n (signature (1, n)). Let X be the set
of free variables X = {x1, . . . , xn}, the linear space V = spanX and the algebra of formal power series on
these non-commuting variables R = 〈〈x1, . . . , xn〉〉.

Let A = R⊗R⊗ V ∗ and B = R⊗R⊗R⊗ V ∗. Denote generators of V ∗ by ∂
∂x1

, ..., ∂
∂xn

. We encode the
solutions of the Maurer-Cartan equation as a set of elements from A of the form:

F =
∑

cm1,m2,um1 ⊗m2 ⊗ u

(where m1,m2 ∈ 〈X〉, u ∈ X∗ = { ∂
∂x1

, ..., ∂
∂xn

} ). The Maurer-Cartan equation itself is defined via the
operation ⋆ : A× A → B, and constitutes a condition that certain element in B is zero. Namely, F ∈ A is a
solution of Maurer-Cartan equation if and only if

F ⋆ F = 0.

The operation ⋆ is defined on monomials as follows and then extended by linearity. For arbitrary µ1, µ2,m1,m2 ∈
〈X〉 and u, v ∈ X , we define ⋆ as

(µ1 ⊗ µ2 ⊗ v) ⋆ (m1 ⊗m2 ⊗ u) =
∑

m1=avb

aµ1 ⊗ µ2b⊗m2 ⊗ u−
∑

m2=cvd

m1 ⊗ cµ1 ⊗ µ2d⊗ u.

The sums are over all occurrences of v ∈ X in the monomials m1 and m2 respectively (one with the ’+’ sign
and another with the ’–’ sign), which naturally splits there in two parts, a, b ∈ 〈X〉 and c, d ∈ 〈X〉.

The above presentation of the Maurer-Cartan equation as a ’functional equation’ F ⋆ F = 0 on elements
of A admits the following reformulation as an infinite system of quadratic equations on the structural
constants of the operations, which are precisely the coefficients of F . Let us write explicitly monomials
m1,m2,m3 ∈ 〈X〉 as

m1 = xi1 . . . xik , m2 = xj1 . . . xjm , m3 = xs1 . . . xsq .

An element F ∈ A has the shape

F =
∑

ci1,...,ik,j1,...,jm,rxi1 . . . xik ⊗ xj1 . . . xjm ⊗
∂

∂xr

.

Let us write down the coefficient of F ⋆ F near the monomial

(∗) xi1 . . . xik ⊗ xj1 . . . xjm ⊗ xs1 . . . xsq ⊗
∂

∂xr

= m1 ⊗m2 ⊗m3 ⊗
∂

∂xr

.

Such a monomial can be obtained either by substitution to a monomial in A with the ’output’ xr of another
monomial from A (with an arbitrary output xp) from the left of ’zero’, or from the right of ’zero’. More
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precisely, the monomial (∗) can be obtained by the following substitution corresponding to a splitting m1 =
ab, m2 = cd

xr

↑
a xp d ⊗ m3

↑
b ⊗ c

or by the following substitution corresponding to a splitting m2 = a′b′, m3 = c′d′:

xr

↑
m1 ⊗ a′ xp d′

↑
b′ ⊗ c′

These two possibilities for any fixed monomial (∗) m1 ⊗m2 ⊗m3 ⊗
∂

∂xr
∈ B give us the terms with sign

’+’ and sign ’–’ respectively of the equation

∑
m1=ab,m2=cd, p caxpd,m3,

∂
∂xr

· cb,c, ∂
∂xp

=
∑

m2=a′b′,m3=c′d′, p cm1,a′xpd′, ∂
∂xr

· cb′,c′, ∂
∂xp

.

The sums are over 1 6 p 6 n and all possible splittings of m1,m2 as products m1 = ab, m2 = cd of
monomials a, b, c, d and m2,m3 as products m2 = a′b′, m3 = c′d′ of monomials a′, b′, c′, d′ respectively.

We have such a quadratic equation for every monomial m1 ⊗m2 ⊗m3 ⊗
∂

∂xr
∈ B.

4 Operad Ap,1

Any 1-pre-CY structure on A = A0 ⊕A1 of signature (1, n) induces on A1 a structure of an algebra over the
operad Ap,1. This operad is more complicated than the A∞ operad and perhaps than most of others known
so far.

For each N , it has N + 1 N -ary operations, which we denote πN
j with 0 6 j 6 N . These operations

correspond to the operations from the 1-pre-CY structure with the output in A1, exactly one input from A∗
0

preceded by j inputs from A1 and followed by N − j inputs from A1.
The precise relations on the generators of this operad are as follows:

∑

s+1−l=a,m−l+j−s=b
k−j=c, s6j

πk
j ◦s π

m
l =

∑

j=a, s−1−j+l=b
m−l+k−s=c, s>j

πk
j ◦s π

m
l

for every non-negative integers a, b, c satisfying a+ b + c > 0. The terms with different signs correspond to
substitution ’from different sides of 0’.

This gives a presentation of the operad Ap,1 by generators and relations.

5 Structural theory

Bearing in mind the Remark 1, we restrict ourself meantime by the case of solutions with zero differential
on A⊕A∗.

Suppose for now, we are in the following situation, A0 is one-dimensional, A1 is two-dimensional, the
extended differential A∗

0 → A1 is zero, the ’unary’ operations δ10 , δ
1
1 : A1 → A1 of type 0 − 1 and 1 − 0 are

NOT both zero (Upper index stands for arity of operation on A1, lower index - means the number of entries
from A1 before the A0 entry).

In this situation we perform reduction of solutions of signature (1,2), to already obtained solutions of
signature (1,1). More precisely, we show that
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Lemma 5.1. There is an A∞ subalgebra in any solution of signature (1,2), which is a solution of signature
(1,1).

Proof. By the Maurer-Cartan (δ10)
2 = (δ11)

2 = δ10δ
1
1 − δ11δ

1
0 , which implies the one-dimensional space

Imδ10 = Imδ11 = kerδ10 = kerδ11 = B.
(to include the case when one of deltas is zero: Imδ10 + Imδ11 = kerδ10 ∩ kerδ11 = B.)
Claim: B is invariant under all our operations in the following sense. If we take the (k+m)-ary operation

on A1 δk+m
k (corresponds to the operation with k entries from A1 followed by the entry from A∗

0 and then
by m entries from A1 with the output from A1 treated as an (k +m)-ary operation on A1), then plugging
in all entries from B yields the output from B.

Without loss of generality δ10 6= 0.
We use induction by k + m. If k + m = 1, the statement is true since both δ10 and δ11 take values in

B. Now assume that k +m = n > 1 and the statement holds in the case of < n-ary operations. We start
with k = 0, m = n. Write the Maurer-Cartan equation for total entries of signature 001...1 and plug in
the 1-entries from A1, B,..., B. All the outputs fall into B by the induction hypothesis except for possibly
δn0 (δ

1
0 ·, ·, ..., ·). Since the image of δ10 is B, we have that δn0 sends Bn to B, as required.
Now use this and repeat the procedure for Maurer-Cartan equation for total entries of signature 0101...1.

Only two terms of Maurer-Cartan will involve operation of arity n-1, one of which is the same as above:
δn0 (δ

1
0 ·, ·, ..., ·), already shown to have image in B.
In the same way, δn1 sends Bn to B and so on, until we get all δnk .

6 Examples of 1-pre-CY structures of signature (1, n) and their

zero cohomology

Here we consider particular solutions of Maurer-Cartan of signature (1, n) which are obtained as a direct
sum of solutions of signature (1, 1) described above. We calculate cohomology H0 of the complex associated
to this solution. It terns out to be formulated in terms of explicitly given derivation on the ring R of formal
power series on noncommutative variables x1, ..., xn

Consider particular solution γ of signature (1, n) which is a direct sum of solutions of signature (1, 1) of
the type x · x⊗ ∂

∂x
, 1 · 1⊗ ∂

∂x
and 0.

Theorem 6.1. Let γ = x1 · x1 ⊗ ∂
∂x1

+ . . . + xk · xk ⊗ ∂
∂xk

+ 1 · 1 ⊗ ∂
∂xk+1

+ 0, X = {x1, . . . , xn} and

X ′ = X \ {xk+1}. Then

H0(γ) =
n
⊕

p=k+1
Sp {Φ̃(w) ⊗

∂

∂xp

: k + 1 6 p 6 n, w ∈ 〈X ′〉},

where Φ̃ is an automorphism of R, Φ̃ = e−D for the derivation D =
∑

Di, where

Di(xi) = xixk+1xi, Dj(xi) = 0, i 6= j,

(and extended by the Leibnitz rule to the monomials).

Let us describe Φ̃ more constructively and give few examples. Denote by Φ the operation of replacing
one occurrence of an xi with 1 6 i 6 k in w by xixk+1xi, while

Φ̃(w) =
∑

u

(−1)su,

where the sum is taken over all monomials u, which can be obtained from w by applying operations Φ, while
s = s(u) is the number of operations required.

For example, if w ∈ 〈xk+2, . . . , xn〉, then Φ̃(w) = w, for 1 6 i 6 k,

Φ̃(xi) = xi − xixk+1xi + xixk+1xixk+1xi − . . . = xi

∞∑

m=0

(−1)m(xk+1xi)
m,

8



while for distinct i, j satisfying 1 6 i, j 6 k,

Φ̃(xixj) = xixj − xixk+1xixj − xixjxk+1xj + . . . = xi

(
∞∑

m,r=0

(−1)m+r(xk+1xi)
m(xjxk+1)

r

)
xj .

From these formulas one can directly see that

Φ̃(xixj) = Φ̃(xi)Φ̃(xj).

Proof of Theorem 6.1. Let us write down the action of γ, where

γ = x1 · x1 ⊗
∂

∂x1
+ . . .+ xk · xk ⊗

∂

∂xk

+ 1 · 1⊗
∂

∂xk+1
+ 0

on the monomial w ⊗ ∂
∂xp

= xi1 . . . xiN ⊗ ∂
∂xp

:

[xi1 . . . xiN ⊗
∂

∂xp

, γ] =

{
0 if p > k + 1;
(xp · w − w · xp)⊗

∂
∂xp

if p 6 k

+
∑

s:is=k+1

xi1 . . . xis−1
· xis+1

. . . xiN ⊗
∂

∂xp

+
∑

s:is6k

xi1 . . . xis · xis . . . xiN ⊗
∂

∂xp

For convenience, we call the first group of terms in this equality (they appear from inserting into γ) —
group I, the terms in the second group are called group II, while the terms in the last sum are called group
III.

Our goal is to describe

H0 =




a =

∑

w∈〈X〉
16p6n

aw⊗ ∂
∂xp

w ⊗
∂

∂xp

: [a, γ] = 0





.

For time being, we assume a ∈ H0 and see how this inclusion reflects on the coefficients of a.

Proposition 6.2. Let 1 6 p 6 n, w = w1xαxk+1xβw2, 1 6 α, β 6 n. If degw1 > 1 and degw2 > 1, then
aw⊗ ∂

∂xp

= 0 except perhaps for the case α = β 6 k.

Proof. Note that

[w ⊗
∂

∂xp

, γ] = ...± w1xα · xβw2 ⊗
∂

∂xp

+ . . .

and this term can only occur in the II-part of [w ⊗ ∂
∂xp

, γ]. Since the relation α = β 6 k fails, this term

never appears in the III-part. It can not appear in the I-part either, because degw1 > 1 and degw2 > 1.
Thus [w⊗ ∂

∂xp
, γ] contains a monomial, which does not feature in pairing of γ with anything else. Hence the

equality [a, γ] = 0 yields aw⊗ ∂
∂xp

= 0.

Proposition 6.3. Assume that w starts with xk+1. Then aw⊗ ∂
∂xp

= 0 for 1 6 p 6 n.

Proof. By assumption w = xk+1w
′. Note that

[w ⊗
∂

∂xp

, γ] = ...± 1 · w′ ⊗
∂

∂xp

+ . . .

and this term can not occur in any other way. As in the proof of the previous proposition, it can not cancel
and therefore the equality [a, γ] = 0 yields aw⊗ ∂

∂xp

= 0.
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Proposition 6.4. Assume that w is a monomial of the form w = xpxk+1xiw
′, where 1 6 p 6 k and

1 6 i 6 n. Then aw⊗ ∂
∂xp

= −axiw′⊗ ∂
∂xp

if i 6= p and aw⊗ ∂
∂xp

= −2axiw′⊗ ∂
∂xp

if i = p.

Proof. Indeed, the term xp · xiw
′ ⊗ ∂

∂xp
occurs (with + sign) in [w ⊗ ∂

∂xp
, γ] once if i 6= p (type I) and

twice if i = p (types I and III). The same term features once (type II) with plus sign in [xiw
′ ⊗ ∂

∂xp
, γ] and

does not pop up in any other way. Hence the equality [a, γ] = 0 yields aw⊗ ∂
∂xp

= −axiw′⊗ ∂
∂xp

if i 6= p and

aw⊗ ∂
∂xp

= −2axiw′⊗ ∂
∂xp

if i = p.

Proposition 6.5. Assume that w is a monomial of the form w = w1xixk+1xiw2, where 1 6 i 6 k,
degw1 > 1 and degw2 > 1. Then for 1 6 p 6 n, aw⊗ ∂

∂xp

= −aw1xiw2⊗
∂

∂xp

.

Proof. Indeed, the term w1xi · xiw2 ⊗ ∂
∂xp

occurs (with + sign) in [w ⊗ ∂
∂xp

, γ] once (type III) and in

[w1xiw2 ⊗
∂

∂xp
, γ] once (type II) and does not feature in any other way. Hence the equality [a, γ] = 0 yields

aw⊗ ∂
∂xp

= −aw1xiw2⊗
∂

∂xp

.

We use the above information to prove the following fact.

Proposition 6.6. Assume that 1 6 p 6 k. Then aw⊗ ∂
∂xp

= 0 for every monomial w.

Proof. The case w = 1 is trivial. Assume now that w starts with xi. By Proposition 6.4, aw⊗ ∂
∂xp

=

caxpxk+1w⊗ ∂
∂xp

, where c = −1 if i 6= p and c = −2 if i = p. Applying Proposition 6.4 two more times, we get

aw⊗ ∂
∂xp

= caxpxk+1w⊗ ∂
∂xp

= −2caxpxk+1xpxk+1w⊗ ∂
∂xp

= 4caxpxk+1xpxk+1xpxk+1w⊗ ∂
∂xp

.

Thus

axpxk+1xpxk+1xpxk+1w⊗ ∂
∂xp

= −
1

2
axpxk+1xpxk+1w⊗ ∂

∂xp

.

On the other hand, Proposition 6.5 applied with w1 = xpxk+1 and w2 = xk+1w implies that

axpxk+1xpxk+1xpxk+1w⊗ ∂
∂xp

= −axpxk+1xpxk+1w⊗ ∂
∂xp

By the above 3 displays, aw⊗ ∂
∂xp

= 0.

It remains to consider the case p > k + 1. In this case terms of type I can not contribute. The
only equations that occur are those provided by Propositions 6.4 and 6.5, which read aw1xixk+1xiw2⊗

∂
∂xp

=

−aw1xiw2⊗
∂

∂xp

for 1 6 i 6 k and every monomials w1, w2 (including the constants).

To complete the proof of theorem 6.1 we should show that the map Φ̃ we get can be obtained as e−D for
some D, and hence is an automorphism.

Consider the following derivation D on R⊗ V ∗. Let

Di(xi) = xixk+1xi, Dj(xi) = 0, i 6= j,

D =
∑

Di and D is extended by the Leibnitz rule to the monomials, for example,

D(xixj) = D(xi)xj + xiD(xj) = xixk+1xixj + xixjxk+1xj .

Note, that introduced above Φ̃(w) = D(w), when s = 1, i.e. when Φ applied once.
It is easy to see that

D(xi) ◦D(xj) = D(xj) ◦D(xi).

We can consider
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e−D =

∞∑

n=0

(−1)n

n!
Dn

and check, that e−D = Φ̃ and it is an automorphism of R.
First, from the definitions one can see, that

Φ̃(u) = Id−D(u) +
1

2
D(u)−

1

6
D(u) + ...

so Φ̃(u) does indeed coincide with e−D(u).

Now we can see, that Φ̃ is a homomorphism, and after that it is obviously an automorphism, since inverse
is given by eD(u).

Indeed, for any derivation, which increases the degree (so the series make sense)

eD(a)eD(b) =

(
∞∑

n=0

1

n!
Dn(a)

)(
∞∑

m=0

1

m!
Dm(b)

)
=
∑

m,n>0

1

n!m!
Dn(a)Dm(b).

Using the iterated Leibnitz

Dk(ab) =

k∑

j=0

(k
j

)
Dj(a)Dk−j(b),

and for any derivation D we have

eD(ab) =

∞∑

k=0

1

k!
Dk(ab) =

∞∑

k=0

1

k!

k∑

j=0

(k
j

)
Dj(a)Dk−j(b)

=
∑

m,n>0

(m+ n

n

)Dn(a)Dm(b)

k!
=
∑

m,n>0

(m+ n

n

)Dn(a)Dm(b)

(m+ n)!

=
∑

m,n>0

(m+ n)!

n!m!

Dn(a)Dm(b)

(m+ n)!
=
∑

m,n>0

1

n!m!
Dn(a)Dm(b) = eD(a)eD(b)
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