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Abstract

The problem of determining the ground state energy for a quantum
gas of anyons in two dimensions is considered. A recent approach to
this problem by means of lower bounds is here refined to bring out the
dependence on the n-particle probability distributions encoded in the
wave functions. Furthermore, a class of states which has been proposed
in the context of upper bounds for a related many-anyon problem, is
here considered from the point of view of these refined lower bounds.
A numerical approach to determining their corresponding probability
distributions is employed for a limited number of particles.

1 Introduction

Identical quantum particles in two spatial dimensions offer exciting possi-
bilities beyond the traditional quantum statistics of fermions and bosons,
so called fractional or anyon statistics. In its simplest (scalar/Abelian) for-
mulation it is characterized by a purely complex phase shift eiαπ for the
wave function under the interchange of two particles, where α ∈ [0, 2) is
known as the statistics parameter. However, while the standard cases of
non-interacting fermions (α = 1) and bosons (α = 0) are simply under-
stood in terms of one-particle states and operators, and the properties of
the corresponding ideal Bose and Fermi gases follow straightforwardly, the
physics of the ideal anyon gas still to this date remains an open problem,
despite possible relevance to the fractional quantum Hall effect (FQHE) in
2D electron gases [1, 15] as well as to other systems which are effectively two-
dimensional [27, 13]. One way to appreciate the increased level of difficulty
for the many-anyon model is to note that it is conveniently formulated as a
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system of bosons (or alternatively fermions) which are all interacting with
each other via long-range magnetic vector potentials. Such fully interact-
ing many-body systems are typically much more complicated to understand
than to merely work with copies of a single-particle system as in the case of
non-interacting bosons and fermions. Despite the lack of such fundamental
understanding for the anyon gas, there has been considerable progress over
the last 35 years on the quantum mechanics of many anyons (one of the more
successful approaches being mean-field theory) and the topic has been sum-
marized in several books and comprehensive reviews [9, 14, 17, 22, 23, 28].

Recently, a first set of rigorous lower bounds for the ground state energy
for the ideal anyon gas were derived [18, 19]. Interestingly, these exhibit
an unexpected and rather complicated dependence on the statistics param-
eter α. More precisely, the bounds concerning the many-particle limit only
become non-trivial for α being an odd numerator rational, and they further-
more become weaker with the size of the denominator of α. By dimensional
considerations, the ground state energy E0 per unit area for a free gas of N
anyons in the thermodynamic limit with fixed density ρ̄ := N/L2 is neces-
sarily ρ̄2 times a constant e(α) dependent only on α (we have chosen units
s.t. m = ~ = 1):

lim inf
N,L→∞

E0

L2
= e(α) ρ̄2.

Bosons saturate the trivial lower bound e(α) ≥ e(α = 0) = 0, while for
(spinless) fermions e(α = 1) = π. Now, the results of [18, 19] imply that, if
α = µ/ν is a reduced fraction with µ odd, then

e(α) ≥ C/ν2 > 0,

for some universal numerical constant 0.021 ≤ C ≤ π (the upper bound
following from the fermionic special case). This non-trivial bound for the
energy originates from a local kind of exclusion principle, or degeneracy
pressure, of the form of an effective repulsion between anyons caused by
the mismatch between the interchange phase, which depends on α, and the
pairwise orbital angular momentum phase, which is quantized in even inte-
ger multiples of 2π. However, although it is possible to reduce such a phase
mismatch by assuming certain configurations of the particles, it can never be
completely eliminated in the case of odd numerator rational α, thus explain-
ing the restriction on α above. These facts, considered together with several
other previously known peculiar features of many-anyon models1, led to the
question whether the true ground state energy actually is lower for even
numerator and/or large denominator rationals, and to a consideration of
families of trial states which exhibit a structure that could help to minimize
their energy for certain α [20]. These families, also given explicitly below,

1For example, several authors have pointed towards a non-analytic dependence on α
for the ground state energy in the large-N limit of N -anyon models (see e.g. [4]).
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are defined for rational α with a strong dependence on the denominator,
and are structurally different for even and odd numerator fractions.

With these considerations, we can formulate the following main open
questions that need to be addressed concerning the anyon gas:

Main questions. What is the true dependence e(α) on α for the ground
state energy per unit area of the ideal anyon gas? Is it clear that e(α) ≤ e(1)
for all α?2 Does there appear a significant difference between even and
odd numerator rational α? Does e(α) depend in a non-trivial way on the
denominator of α? Does the picture change significantly by the inclusion of
interactions or an external magnetic field?

In this work we approach this many-anyon problem from both directions
of upper and lower bounds. We reconsider the previously derived lower
bounds for the energy of the ideal anyon gas, following from a local form of
the exclusion principle for anyons (Section 2), and show that they exhibit
an even richer structure when the actual n-particle probability distribution
of the wave function is taken into account (Section 3). We also conduct a
numerical investigation (Section 4 and Appendix) of the distributions and
the dependence of the corresponding bounds for a class of interesting states,
including some of the above-mentioned trial states. Due to computational
limitations, the considered total particle number unfortunately remains too
low for any conclusions to be made concerning the thermodynamic limit,
although some interesting features can be brought out.

2 The many-anyon problem

We model a quantum mechanical system of N anyons with statistics param-
eter α ∈ R by means of bosonic, i.e. completely symmetric, wave functions
ψ ∈ L2

sym((R2)N ) together with the free kinetic energy operator

T̂A :=
1

2

N∑
j=1

D2
j , Dj := −i∇j +Aj(x). (1)

Here the purely topological magnetic vector potentials

Aj(x) := α
N∑
k=1
k 6=j

(xj − xk)I
|xj − xk|2

(2)

are responsible for capturing the correct exchange symmetry of the formally
defined (multivalued) anyonic wave function

ψA =
∏
j<k

eiαφjkψ, φjk := azimuthal angle of xj − xk. (3)

2This second question is motivated by the fact that the ground state energy is known
to peak for intermediate α for certain N ; see e.g. [21, 25] and Fig. 1-2 below.
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The case α = 0 then trivially corresponds to bosons, while for α = 1 the
particles are fermions, although in a bosonic (albeit interacting) represen-
tation. It was shown in [19] that the operator (1) with the corresponding
energy form (ψ will always be assumed to be normalized)

TA = 〈ψ, T̂Aψ〉 =
1

2

∫
R2N

N∑
j=1

|Djψ|2 dx

uniquely3 defines a self-adjoint operator T̂A for the free kinetic energy for N
anyons on R2.

2.1 Recent bounds for the many-anyon ground state energy

In [18, 19] it was found that the energy per unit area for an ideal gas of N
anyons is bounded from below by

TA

L2
≥ cAC

2
α,N ρ̄

2, ρ̄ :=
N

L2
, (4)

where L2 is the volume (area) of the system, cA is a universal numerical
constant in the range [0.021, π], and

Cα,N := min
p∈{0,1,...,N−2}

min
q∈Z
|(2p+ 1)α− 2q|. (5)

For fixed α, this expression is non-increasing with N and such that, if α =
µ/ν is a reduced fraction with odd numerator µ, then limN→∞Cα,N = 1/ν,
while limN→∞Cα,N = 0 otherwise. The graph of the function α 7→ Cα,N
can be obtained by cutting out a symmetric wedge of slope ν from the
upper half plane at each even numerator rational α = µ/ν, ν ≤ 2N − 3,
on the horizontal axis (cp. with Fig. 2 in [18]). The origin of this peculiar
statistics-dependent expression (5) is the following local energy bound, which
we conveniently refer to as a local exclusion principle for anyons (drawing
a parallel to a corresponding bound for fermions following exclusively from
the Pauli principle and which was used by Dyson and Lenard in their proof
of stability of matter [7]):

Lemma 1 (Local exclusion for anyons). Let ψ be a wave function of N
anyons defined on some subdomain Ω of R2. Then the contribution to the
free kinetic energy with exactly n anyons on a square Q ⊆ Ω with area |Q|
and with all other anyons residing outside Q is

1

2

∫
Qn

n∑
j=1

|Djψ|2 dx ≥ (n− 1)C2
α,n

c

|Q|

∫
Qn
|ψ|2 dx, (6)

3The form TA can be formally defined either minimally, taking its closure w.r.t. the
space of smooth functions supported away from any two-particle diagonals, or maximally
in the sense of distributions, and these two definitions can be shown [19] to coincide and
hence naturally associate to one and the same non-negative self-adjoint operator T̂A.
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where c = 0.056. The magnetic derivatives in the l.h.s. can be taken to be
independent of the N − n anyons outside Q using a gauge transformation.

Note that the l.h.s. can become zero in the case of a single particle (with
such Neumann b.c. on Q we can e.g. take ψ constant). The intuitive reason
for a strictly positive energy for the two-particle case and beyond (if α /∈ 2Z),
is the ‘mismatch’ between the phase contributed by the gauge potential
under particle interchange, and the allowed phase of the wave function due
to its imposed bosonic symmetry. Namely, contributing in (5) is the phase
(2p + 1)απ arising from the gauge potential under a pairwise continuous
interchange of two anyons when p other anyons are being enclosed in the
interchange loop (such a loop can equivalently be considered as a simple
interchange of two anyons followed by a complete encircling of the other p
anyons by one of the interchanged anyons), while−2qπ is the pairwise orbital
angular momentum phase of the wave function, for bosons being quantized
in even integers. A non-zero residual phase ϕ = (2p+ 1)απ − 2qπ gives rise
to an effective angular momentum barrier, i.e. a local repulsive potential in
the relative coordinate of each particle pair — in other words resulting in
a statistics degeneracy pressure. In the case of α being an odd numerator
rational this phase mismatch can never be completely overcome regardless
of the number and angular momenta of particles, while in the case of even
numerators it actually can, for certain configurations of the particles. For
example, for α = 2/3 and the situation that two such anyons symmetrically
encircle a third one with relative angular momentum −2, there is an effective
cancellation of the two phases: ϕ = 0.

In [18] another useful energy inequality for anyons was proved (from
which (4) also follows but with a weaker constant c′A), namely the Lieb-
Thirring inequality

TA ≥ c′AC2
α,N

∫
R2
ρ(x)2 dx, (7)

where ρ is the one-particle density distribution (17) associated to ψ, and
c′A ∈ [10−4, π]. An interesting application is to consider the model for N
anyons in a harmonic oscillator potential, with the one-body Hamiltonian
H1 = 1

2(−∆ + ω2|x|2), for which (7) yields the bound for the ground state
energy [19]

E0 ≥
1

3

√
8c′A
π
Cα,N ωN

3/2. (8)

Note that for the case N = 2 one finds E0 ≥ 8
3

√
c′A
π αω for α ∈ [0, 1], and

in other words a linear dependence on α. However, we also note that (7)
does not capture the bosonic ground state energy and is comparatively good
only for large values of N . On the other hand, for this simple special case of
two anyons in a harmonic well the system is exactly solvable [16], and the
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energy eigenvalues

En,l = ω(2 + 2n+ |l + α|), n = 0, 1, 2, . . . , l = 0, 2, 4, . . . ,

indeed exhibit a linear dependence on α. In [4], a general lower bound was
given for the ground state energy E0 for N anyons in a harmonic oscillator:

E0 ≥ ω
(
N +

∣∣∣∣L+ α

(
N

2

)∣∣∣∣) , (9)

where L is the total angular momentum of the state. This expression is
again linear in α for fixed L and N , but allows for a more complicated
dependence if one considers sequences of states with L ∼ −α

(
N
2

)
, which we

observe is required in order for E0 ∼ O(N3/2), and which was in [4] argued
to be the case for the true ground state. Given (8) one can actually prove
this energy dependence rigorously for odd numerator rational α [20]. For

fermions the correct asymptotics is E0 ∼
√

8
3 ωN

3
2 (and note that L ∼ −

(
N
2

)
in the bosonic representation (12)).

2.2 Proposed trial states

Because of the peculiar dependence on the numerator and denominator of
α in the bound (4) following from the local exclusion bound (6), considered
together with a number of other interesting facts such as the bound (9), the
question was raised concerning the validity of such a non-trivial bound or
Lieb-Thirring inequality for general intermediate α. To test this question
the following families of anyonic trial states were introduced in [20].

Consider a one-body Hamiltonian in two dimensions H1 = −1
2∆ + V

with confining external potential V and a corresponding set of eigenstates
ϕk. The corresponding N -anyon Hamiltonian is H =

∑N
j=1(1

2D
2
j + V (xj)).

Denote by zj := xj,1 + ixj,2 the particle coordinates represented in the
complex plane, and by zjk := zj − zk the pairwise relative coordinates.
Assuming that the total particle number N is given as a multiple of ν,
N = Kν, we arrange the particles into ν collections of K particles. Over
each such particle collection denoted Vq, q = 1, . . . , ν, we form a complete
graph (Vq, Eq), the set of edges Eq of which consists of all unordered pairs
(j, k) of particles in Vq. For even numerator rational α = µ/ν ∈ [0, 1] we
then define the N -particle wave function

ψα(z) :=
∏
j<k

|zjk|−α S

 ν∏
q=1

∏
(j,k)∈Eq

(z̄jk)
µ

 N∏
k=1

ϕ0(zk), (10)

while for odd numerator µ,

ψα(z) :=
∏
j<k

|zjk|−α S

 ν∏
q=1

∏
(j,k)∈Eq

(z̄jk)
µ
K−1∧
k=0

ϕk (zj∈Vq)

 , (11)
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where S denotes the action of symmetrization of all particle labels. Both
expressions in brackets are symmetric w.r.t. particle relabeling within each
collection Vq thanks to the parity of µ and the total antisymmetry of the
Slater determinant. Note that for the simple special case ν = µ = 1, the
expression (11) reduces to the fermionic ground state

ψα=1(z) =
∏
j<k

z̄jk
|zjk|

N−1∧
k=0

ϕk (z) (12)

expressed in the bosonic representation (3). The expressions (10) and (11)
also generalize to the correct gauge copies of the ground states for arbitrary
integer α ∈ Z. On the other hand, the symmetrized states in the brackets in
(10) with ν > 1 actually coincide with the Read-Rezayi states in the FQHE
[24, 3] (up to complex conjugation). However, because of the highly singular
Jastrow factor in (10) and (11), these wave functions need to be regularized
for ν > 1. We consider regularized states of the form ψ = Φrψα, with

Φr(z) :=
∏
j<k

|zjk|2α

(r2 + |zjk|2)α
,

which results in the local pairwise dependence ψ(z) ∼ |zjk|α on short scales
|zjk| � r (from considering the two-anyon model we know that this is the
expected local pairwise dependence).

The structure of these trial states ψ is s.t. in each term of the sym-
metrized expression (10) resp. (11) at most ν particles can be selected with-
out necessarily involving two particles in the same collection Vq. As soon as
ν + 1 particles are selected, there must be one collection Vq with two parti-
cles selected, say j, k ∈ Vq, and hence with an edge (j, k) ∈ Eq connecting
them. This amounts therefore to an associated factor (z̄jk)

µ in ψα, i.e. both
a repulsive factor |zjk|µ as well as an orbital phase e−iµφjk . The Jastrow
factor acts to attract all particles but balances with this repulsion in such a
way that groups of ν particles can form, but any additional particle zk, say
at a large distance r from the group, sees apart from the attractive factor
∼ (r−α)ν = r−µ also an equally strong repulsion rµ. This balance could act
to distribute the particles in such groups of ν. At the same time, while the
contribution from each such group to the magnetic potential Ak at zk, say
with a relative position vector r from the group, is approximately ∼ µr−1I,
there is also an orbital angular momentum in ψ with corresponding velocity
∼ −∇φjk ∼ −µr−1I, again leading to a cancellation. The attractive feature
of these trial states is hence this groupwise cancellation of terms appearing
in the magnetic derivatives Djψ and which otherwise are expected to pro-
duce a rapid growth in the energy with N (and indeed this is seen to be the
case in (9) if the angular momentum L would remain fixed).
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These trial states were originally considered in the context of harmonic
oscillator confinement, with the one-body operator

H1 =
1

2
(−∆ + ω2|x|2),

and its corresponding eigenstates ϕk. In this case (10) actually turns out to
be an exact but singular eigenfunction [5, 2] with energy E = ω(N+degψα),
where degψα = −α

(
N
2

)
+ νµ

(
K
2

)
= −αν−1

2 N is the degree of the non-
Gaussian part of the wave function. Note that in the case of odd numerator
α the degree increases to degψα ∼ νK3/2 = 1√

ν
N3/2 due to the Slater

determinants of harmonic oscillator eigenstates. Similarly, we have for the
total angular momentum L of the states ψ that L = −α

(
N
2

)
+ αν−1

2 N for
(10) and for certain magic numbers K in (11). This means that for these
particular sequences of states the r.h.s. of the lower bound (9) grows only
linearly with N .

Here we will consider the generalized hypothesis that these expressions
remain valid for other cases of one-body operators, such as the free Neu-
mann Laplacian H1 = 1

2(−∆Q0) on a domain Q0. Because of computational
advantages, it is under this assumption that these states will be considered
in the present work. We remark that in [4] it was argued that also in the
case of confinement on a disk (for which L is also a good quantum number)
there is the requirement that for the ground state L ∼ −α

(
N
2

)
to leading

order in N .
One may ask whether a grouping or clustering of the form (10)-(11) is

necessary for an energy of the lowest order in N . However, one can show
(cp. [20]) that by separating the particles one-by-one on disjoint supports
and then gauge transforming away the magnetic potentials, that the ground
state energy must be bounded by ∼ N2/|Q0| for arbitrary α (and . ωN3/2

for the harmonic oscillator problem). We may still ask about even numerator
rational and irrational α however, where the current lower bounds are not
sufficient to settle this question. Another question concerns the actual value
of the constant, which perhaps could be lowered using clustering states.

3 Bounds depending on probability distributions

Proceeding at first in some generality, assume that we have a collection of N
quantum particles (either distinguishable or indistinguishable) confined to a
square Q0 in the plane. The particles could either be ‘rigidly’ confined with
zero (Dirichlet) boundary conditions, or satisfy free (Neumann) boundary
conditions4. The quantum wave function is in any case denoted by ψ ∈
L2(QN0 ) and assumed to be normalized ‖ψ‖ = 1 on Q0. The total expected

4Note that periodic b.c. leads to some technicalities in the case of anyons [8, 12].
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kinetic energy is given by

Tψ = 〈ψ, T̂ψ〉 =
1

2

N∑
j=1

∫
QN0

|Djψ|2 dx, T̂ =
1

2

N∑
j=1

D2
j ,

where Dj denotes, depending on the particle types, either an anyonic or an
ordinary momentum operator −i∇j for the j:th particle.

Consider now an arbitrary smaller square Q ⊆ Q0, and denote by Qc =
Q0 \ Q its complement in Q0. For any given subset A ⊆ {1, . . . , N} of the
particles we then have the probability

p̃A(Q) :=

∫
(Qc)N−|A|

∫
Q|A|
|ψ|2

∏
k∈A

dxk
∏
k/∈A

dxk (13)

of finding exactly those particles in the square Q upon measurement of the
state ψ. Note that

∑
A⊆{1,...,N}

p̃A(Q) =

∫
QN0

|ψ|2
N∏
k=1

(χQ(xk) + χQc(xk)) dx = ‖ψ‖2 = 1, (14)

in other words, some subset (possibly empty) of particles must always be
found on Q. The probability of finding exactly n particles on Q irrespective
of their labels, is

pn(Q) :=
∑

A⊆{1,...,N} s.t. |A|=n

p̃A(Q), (15)

again satisfying the normalization
∑N

n=0 pn(Q) = 1. The expected number
of particles to be found on Q is therefore

ρ(Q) :=

N∑
n=0

n pn(Q) =

∫
QN0

|ψ|2
N∑
j=1

χQ(xj)

N∏
k=1

(χQ(xk) + χQc(xk)) dx

=

∫
Q
ρ(x) dx, (16)

where x 7→ ρ(x) ∈ L1(Q0) is the one-particle density distribution function

ρ(x) :=
N∑
j=1

∫
QN−1

0

|ψ(x1, . . . ,xj = x, . . . ,xN )|2
∏
k 6=j

dxk. (17)

Now, consider for simplicty the case of identical particles (anyons with
statistics parameter α) and the contribution to the free kinetic energy when
exactly n particles reside on Q,

1

2

∫
Qn

n∑
j=1

|Djψ|2 dx ≥
en
|Q|

∫
Qn
|ψ|2 dx, (18)
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where we denote by en = en(α) the infimum of the spectrum of the corre-
sponding n-particle kinetic energy operator T̂nQ := 1

2

∑n
j=1D

2
j on Qn (where

Dj now only depend on these n particles in Q; cp. Lemma 1):

en := inf

 |Q|2

∫
Qn

n∑
j=1

|Djψ|2 dx
/∫

Qn
|ψ|2 dx : ψ 6= 0 in domain of TA

 .

Note that en is independent of |Q| by scale invariance and that we consider
free/Neumann b.c. on Q (i.e. in a generalized sense for Djψ), so e1 = 0 for
all α. For bosons we then have en ≡ 0 for all n, while for fermions we have
a sum of one-particle eigenvalues λk = π2

4 (n2
k,x + n2

k,y), nk,x, nk,y ∈ Z≥0, for

the Neumann Laplacian on [−1, 1]2:

en = 2

n−1∑
k=0

λk ≥
π2

2
(n− 1)+ and en ∼ πn2 + o(n2) as n→∞.

For the case of anyons with statistics parameter α ∈ R, the local exclusion
principle (6) provides the lower bound

en(α) ≥ c (n− 1)+C
2
α,n, c = 0.056. (19)

We consider it to be a very important question to understand the true
dependence of en(α) on n and α, and we will return to this question below.

Assuming Dirichlet b.c. on ∂Q0 and given an arbitrarily sized square
Q centered at the origin, we can, following [7, 19], write the total expected
kinetic energy for N particles as

2Tψ =

∫
R2N

N∑
j=1

|Djψ|2
1

|Q|

∫
Q0+Q

χy+Q(xj) dy dx

=
1

|Q|

∫
Q0+Q

∑
A⊆{1,...,N}

∫
((y+Q)c)N−|A|

∫
(y+Q)|A|

∑
j∈A
|Djψ|2

∏
k∈A

dxk
∏
k/∈A

dxk dy,

where in the second step we used a similar partition of unity as in (14) on
the square y+Q. Applying the local energy bound (18) on y+Q then yields

Tψ ≥
1

|Q|

∫
Q0+Q

∑
A⊆{1,...,N}

e|A|

|Q|
p̃A(y +Q) dy

=
1

|Q|2
N∑
n=0

en

∫
Q0+Q

pn(y +Q) dy,

and hence

Tψ
|Q0|

≥ ρ̄2 1

ρ2
|Q|

N∑
n=0

en
1

|Q0|

∫
Q0+Q

pn(y +Q) dy, (20)

10



where ρ̄ := N/|Q0| is the mean density, and ρ|Q| := N |Q|/|Q0|. Now,
assuming homogeneity of |ψ|2 on Q0 (i.e. translation invariance; this is a
natural assumption for an ideal gas in the thermodynamic limit) up to some
small error close to the boundary of Q0, we have that the integrand pn(y+Q)
is constant and that ρ(y+Q) ≈ ρ|Q|. If furthermore |Q| � |Q0| so that any
boundary effects can be neglected, then approximately

1

|Q0|

∫
Q0+Q

pn(y +Q) dy ≈ pn(Q′) and ρ|Q| ≈ ρ(Q′),

where Q′ is any square in the interior of Q0 s.t. |Q′| = |Q|. Hence (20)
simplifies to

Tψ
|Q0|

& ρ̄2 1

ρ2
|Q′|

N∑
n=0

en pn(Q′). (21)

An alternative approach to bounding the energy, also applicable in the
case of Neumann boundary conditions, is to split Q0 into exactly M equally
sized squares Qm, |Qm| = |Q0|/M . Applying the bound (cp. above, or e.g.
[18, 19])

TQ :=

∫
QN0

N∑
j=1

|Djψ|2 χQ(xj) dx ≥
1

|Q|

N∑
n=0

en pn(Q)

on each such square yields, again assuming homogeneity on Q0,

Tψ
|Q0|

=
1

|Q0|

M∑
m=1

TQm ≥
1

|Q0|
M

|Q1|

N∑
n=0

en pn(Q1) = ρ̄2 1

ρ2
|Q1|

N∑
n=0

en pn(Q1),

(22)
where ρ|Q1| = ρ(Q1) = N/M .

The above observations lead us to define for a general probability vector
p = (pn) ∈ (R≥0)N+1:

Eα[p] :=
1

ρ[p]2

N∑
n=0

en(α) pn, ρ[p] :=
N∑
n=0

n pn,

as well as the explicit lower bound energy functional for anyons with statis-
tics parameter α following from (19):

Eα[p] :=
1

ρ[p]2

N∑
n=0

C2
α,n(n− 1)+ pn. (23)

Hence, it follows under assumptions of homogeneity and |Q|/|Q0| � 1 that
the kinetic energy per unit area for an N -anyon state ψ is bounded as

Tψ
|Q0|

& ρ̄2 Eα[pψ(Q)] ≥ cρ̄2Eα[pψ(Q)], (24)
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where pψ(Q) is the probability distribution (15) induced from ψ on Q ⊆ Q0.
Given a wave function ψ, we can hence try to find as good a lower bound
(24) as possible by choosing the size of Q to maximize Eα[pψ(Q)]. Note that
by using the monotonicity of n 7→ Cα,n for fixed α we have a simple lower
bound for Eα:

Eα[p] ≥ 1

ρ[p]2

(
N∑
n=0

C2
α,N (n− 1) pn + C2

α,N p0

)
=
C2
α,N

ρ[p]2
(ρ[p]− 1 + p0) .

Hence, for a probability distribution p s.t. the expected number of particles
is ρ[p] = 2,

Eα[p] ≥
C2
α,N

4
(1 + p0) ≥

C2
α,N

4
, for ρ[p] = 2. (25)

It follows therefore by choosing |Q| s.t. ρ(Q) = 2 that Tψ/|Q0| & c
4C

2
α,N ρ̄

2,
which is actually nothing but the bound (4) (but with the slightly better
constant associated to a disk geometry). Furthermore, note that there is
also a simple upper bound for Eα[p] depending on ρ = ρ[p]:

Eα[p] ≤ 1

ρ2

N∑
n=0

C2
α,2n pn =

C2
α,2

ρ
, (26)

and that then in particular Eα[p]→ 0 as ρ→∞.
It is interesting to point out that for probability distributions p with a

relatively high weight on p2, it is actually the two-particle exclusion constant
Cα,2 (which is monotone in α ∈ [0, 1]) which governs the behavior of the
energy bound in Eα[p]. This is something we will see explicitly in some of
our examples below.

3.1 Bosonic ground state

Consider as a concrete example the ground state wave function ψ for N
bosons on Q0 with Neumann boundary conditions, i.e. the constant function

ψ(x) := |Q0|−N/2.

In this case we can easily compute the probability distributions:

p̃A(Q) =
|Q||A||Qc|N−|A|

|Q0|N
= pn(1− p)N−n,

with p := |Q|/|Q0|, and

pn(Q) =

(
N

n

)
pn(1− p)N−n,

N∑
n=0

n pn(Q) = pN = N
|Q|
|Q0|

,

12



i.e. a binomial distribution with p = ρ/N . In the limit N →∞ we obtain a
Poisson distribution

pn(Q) =
1

n!
ρne−ρ, ρ = N

|Q|
|Q0|

.

Due to the quadratic dependence on ρ in p2, we note that with such
bosonic probability distribution pψ(Q) in (24) we have

Eα[pψ(Q)] =
1

ρ2

N∑
n=2

C2
α,n(n− 1)

(
N

n

)( ρ
N

)n (
1− ρ

N

)N−n
→ C2

α,2

(
N

2

)
1

N2
= C2

α,2

N − 1

2N
, as ρ→ 0, (27)

and hence
Tψ
|Q0|

& cC2
α,2

N − 1

2N
ρ̄2.

We conclude that it is actually the two-particle exclusion constant Cα,2
which dictates a lower bound for such bosonic probability distributions, as
well as for any wave functions with a similar quadratic small-ρ dependence
in p2. This could e.g. include states which have been obtained by a regu-
larization on very short scales in order to have finite energy, i.e. to actually
belong to the domain of the quadratic form Tψ (which the bosonic ground
state does not for α /∈ 2Z; see [19]).

3.2 Fermionic ground state

The situation is immediately much more complicated for the fermionic N -
particle ground state wave function on Q0,

ψ(x) :=
1√
N !

N−1∧
k=0

ϕk (x1, . . . ,xN ),

where the Slater determinant ranges over the N lowest eigenfunctions ϕk
for the Neumann Laplacian −∆Q0 , ordered by non-decreasing eigenvalue
λk. In this case we can only expect homogeneity in the limit N → ∞. If
we consider the behavior of the probability distribution pψ(Q) for small |Q|
then we find that, thanks to the pairwise antisymmetry of the wave function,

p2(Q) ∼
∫
Q2

|ψ(x1,x2, x
′)|2dx1dx2 ∼

∫
Q2

|(x1−x2)·Ψ1(x′)|2dx1dx2 ∼ |Q|3,

and in general
pn(Q) ∼ |Q|b3n/2c,

hence ρ(Q) ∼ |Q| to leading order, and Eα[pψ(Q)] ∼ ρ→ 0 as |Q| → 0. The
optimal bound following from Eα must therefore in this case be obtained
for |Q| s.t. ρ ∼ 1.

13



3.3 Anyonic trial states

Interestingly, we observe that for even numerator (reduced) rational α = µ/ν
we have

Cα,n ≡ 0 for n ≥ ν, (28)

and hence the energy bound Eα[p] truncates to

Eα[p] =
1

ρ[p]2

ν−1∑
n=2

C2
α,n(n− 1) pn. (29)

In order to verify this claim (28), note that since ν ≥ 3 (ν = 1 is trivial) is
necessarily odd it must also be contained in the set {1, 3, 5, . . . , 2ν − 3} and
hence there is a p ∈ {0, 1, . . . , ν − 2} s.t. ν = 2p + 1. Taking q = µ/2 we
then have

Cα,n ≤ Cα,ν ≤
∣∣∣(2p+ 1)

µ

ν
− 2q

∣∣∣ = 0 for n ≥ ν.

Of course these observations only apply in the context of the lower bound
(19), and the situation for the functional Eα[p] could certainly be very dif-
ferent. Indeed, we can actually show that all en are bounded from below in
terms of Cα,2, although this bound rapidly beomes weaker with n:

Proposition 2. We have e2(α) ≥ cC2
α,2 and en(α) ≥ n(n−1)

8

(
3
4

)n−2
cC2

α,2

for n ≥ 3.

Proof. We consider in the l.h.s. of (18) the square Q split into four smaller
squares Qq, |Qq| = |Q|/4, and insert a corresponding partition of unity

1 =
n∏
k=1

4∑
q=1

χQq(xk) =
∑

q∈{1,2,3,4}n
χQq1×Qq2×...×Qqn (x1, . . . ,xn). (30)

We keep only the terms χQq1×Qq2×...×Qqn where two of the qi are equal
and all the others are different, and for each such term we can apply the
corresponding 2-particle exclusion bound involving e2 ≥ ẽ2 := cC2

α,2, i.e.

T̂nQ ≥
4∑

qi=1

∑
q

ẽ2

|Qqi |
χQq1×Qq2×...×Qqn =: f,

where there are in total 4 ·
(
n
2

)
· 3n−2 terms in the sum f (note that some

terms in (30) contribute several terms in f thanks to the summation over
all n particles in the energy). Now we apply the uncertainty principle as in
Lemma 7 in [18], splitting

T̂nQ = κT̂nQ + (1− κ)T̂nQ ≥
κ

2
(−∆Qn) + (1− κ)f

14



into two terms with κ ∈ (0, 1) and applying the diamagnetic inequality
on the first. We separate these operators in terms of the projection P0 =
u0〈u0, ·〉 onto the ground state u0 := |Q|−n/2 of the Neumann Laplacian,

−∆Qn ≥
π2

|Q|
P⊥0 ,

f = (P0 + P⊥0 )f(P0 + P⊥0 ) ≥ (1− ε)P0fP0 + (1− ε−1)P⊥0 fP
⊥
0 ,

with ε ∈ (0, 1), hence

|Q|T̂nQ ≥
(
κπ2

2
− (1− κ)(ε−1 − 1)4ẽ2

)
P⊥0 + (1− κ)(1− ε)

4
(
n
2

)
3n−2

4n
4ẽ2P0,

using ‖P⊥0 fP⊥0 ‖ ≤ ‖f‖∞ ≤ ẽ2/|Qqi | and

‖P0fP0‖ =

∫
Q0

ū0fu0 dx = |Q|−n · 4
(
n

2

)
3n−2 · ẽ2

|Q1|
|Q1|n.

Taking κ = ε = 0.5 and using that 2ẽ2 � π2/4 we obtain the claimed
inequality.

We have thus obtained non-zero bounds for all en≥2(α) for α /∈ 2Z,
although they weaken rapidly with n and cannot compete with (19) for odd
numerator rationals. However, there is also a different reason why the true
Neumann energy en might be lower for even numerator rationals and n = kν
being a multiple of ν. Namely, as discussed in [6], the collective motion of the
n− 1 relative variables yj of an n-anyon system can be partially separated

out in terms of a radial variable R =
√∑

j |yj |2 and an overall angular

variable θ:

yj :=
1

j(j + 1)

j∑
k=1

xk −

√
j

j + 1
xj+1 = Rξje

θI , (ξj) ∈ S2(N−1)−1, ξ1 = e1.

In terms of these, the kinetic energy operator can be written

T̂nQ =
1

2
P̂ 2
R +

1

2R2

(
P̂θ − α

n(n− 1)

2

)2

+
1

2R2
Ĥ(θ, ξ).

The first two terms correspond to a two-anyon system with statistics pa-
rameter α′ = α

(
n
2

)
, while solutions to Ĥψ = 0 classically would correspond

to a pure collective motion of particles and frozen internal motion, ξ̇j = 0
[6]. We note that for even numerator α = µ/ν and n = kν, the effective

statistics parameter α′ = α
(
n
2

)
= µk(kν−1)

2 is always an even integer, while
for e.g. µ odd, ν even, and n = kν an odd multiple of ν, α′ = α

(
n
2

)
is always

a half-integer.
Summing up the discussion so far, the main questions concerning the

anyon gas are now being approached along the following lines:

15



Question 1. What is the true dependence on α for the Neumann energies
en≥3? Is en significantly higher/lower for α = µ/ν with µ odd/even at n = ν
or n = kν for some k > 1?

Partial answers. The above analytical results are certainly not sufficient to
settle this question. We have also addressed this question by means of
numerical studies using a cut (non-orthonormal) basis approach (cp. [21,
25, 26]) — see Figure 1 — as well as by means of a lattice approximation (cp.
[11]) — see Figure 2. Both of these suggest (and also comparing with the
harmonic oscillator case [21, 25]) that e3 rather has a peak around α = 2/3,
where there is a crossing of two energy levels corresponding to the bosonic
resp. fermionic ground states. Unfortunately we have not been able to
make any conclusions concerning larger n due to computational limitations,
although the lattice study showed no clear such peak for 6 particles (see
Figure 2).

Question 2. What conclusions can be made by understanding the limit of
en as n→∞?

Partial answers. If a superlinear dependence does emerge at some n, e.g.
en ≥ c′(n − k)+ for some k, then we we must have E [p] ≥ c′

4k at ρ[p] = 2k.
Indeed,

E [p] ≥ 1

ρ[p]2
c′

N∑
n=k+1

(n− k)pn =
c′

ρ[p]2

(
N∑
n=0

(n− k)pn +
k−1∑
n=0

(k − n)pn

)

≥ c′

ρ[p]2
(ρ[p]− k + 0) =

c′

4k
.

It then follows by (22) and choosing M ∼ N/(2k) that actually en & c′

4kn
2

as n→∞ (assuming homogeneity for the Neumann problem).
On the other hand, if there exists a subsequence s.t. ek/k → 0 as

k → ∞, then for every ε > 0 there is a family of probability distributions
[0, N ] 3 ρ 7→ p(ρ) s.t. E [p(ρ)] < ε for all ρ (if N large enough). Indeed, we
can e.g. choose p s.t. p0 = 1− ρ/k, pk = ρ/k, and zero otherwise, implying
ρ[p] = kpk = ρ and E [p] = 1

ρek/k. We can then take k large enough so that
E [p(ρ)] < ε (note that for 0 ≤ ρ ≤ 1 we could also take e.g. p0 = 1 − ρ,
p1 = ρ and zero otherwise, implying E [p(ρ)] = 0).

We can thereby conclude that (19) can be improved for odd numerator
rational α and large n:

en(α) &
c

4
C2
α,nn

2, as n→∞,

while for even numerator α we ask if en(α)/n→ 0 as n→∞ or if this holds
for some subsequence of n and if wavefunctions can be constructed with
probability distributions supported on such a specific sequence of pn.
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Figure 1: Approximative numerical diagonalization for the Neumann prob-
lem with N = 2 (upper plot) resp. N = 3 (lower plot) anyons on a square
Q = [−1, 1]2. The vertical axis shows the energy and the horizontal axis
the statistics parameter, ranging from α = 0 to α = 1. A cut approxi-
mating basis has been used, consisting of symmetric states times a Jastrow
factor (blue, starting from the bosonic end) resp. antisymmetric states (red,
starting from the fermionic end) involving the K lowest-energy one-particle
eigenstates ϕk. For N = 2 we have used K = 5 (15 resp. 10 N -particle
states), while for N = 3 we have taken K = 4 (20 states) for the symmetric
(blue) states, and K = 6 (15 states) for the antisymmetric (red) states. The
lowest range of points in these plots constitute approximative upper bounds
for the ground state energy eN (α) (the integrals were evaluated numerically
using Monte Carlo methods).
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Figure 2: Spectra for N = 2, N = 3 resp. N = 6 anyons on a 5× 5 lattice,
using the prescription in [11] for the board geometry. Only the two lowest
eigenvalues have been plotted, with α on the horizontal axis.
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Question 3. Is it possible to realize such a specialized probability distribu-
tion p as arising from a wave function ψ, i.e. p = pψ?

Let us investigate the approximate small-|Q| behavior for the regular-
ized anyonic trial states ψ = Φrψα. Because of the regularization parameter,
there are two possible scales involved; |Q| � r2 resp. r2 � |Q| � |Q0|. On
the very shortest scales the attraction from the Jastrow factor in ψα is sup-
pressed and we are left with a purely repulsive expression: for x1, . . . ,xn ∈ Q
and x′ ∈ (Qc)N−n with |Q| � r2,

|ψ(x1, . . . ,xn, x
′)| ∼

∏
1≤j<k≤n

|zjk|α
∏

(j,k)∈∪qEq

|zjk|µ |Λ| ∼ |Q|
α
2 (n2)+µ

2
m+λ

2 .

Here we are considering only an approximate leading order term in the
symmetrized expression for ψ, where Λ denotes the remaining regular factor

involving ϕk with short-scale dependence |Λ(x)| ∼ |Q|
λ
2 for some λ = λ(n) ≥

0, and m = m(n) denotes the minimal number of edges in ∪qEq connecting
n particles. Hence, after integrating over Qn,

pn(Q) ∼ |Q|n+α(n2)+µm+λ, for |Q| � min{r2, |Q0|},

where we have m = 0 for n ≤ ν, m = k for n = ν + k, 1 ≤ k ≤ ν, and so on.
In particular, ρ(Q) ∼ |Q| and p2(Q) ∼ ρ2+α for all considered trial states
on the smallest scales.

On the other hand, on relatively large scales r2 � |Q| � |Q0| the regu-
larizing factor becomes suppressed and leaves a pure attraction,

|ψ(x1, . . . ,xn, x
′)| ∼

∏
1≤j<k≤n

|zjk|−α
∏

(j,k)∈(Eq)

|zjk|µ |Λ| ∼ |Q|−
α
2 (n2)+µ

2
m+λ

2 ,

so that
pn(Q) ∼ |Q|n−α(n2)+µm+λ, for r2 � |Q| � |Q0|.

In the particularly interesting case of n = kν being a multiple of ν, we have
m = ν

(
k
2

)
and find for the even numerator case (λ = 0)

n− α
(
n

2

)
+ µm+ λ =

k

2
(µ− (µ− 2)ν). (31)

Hence, for µ = 2 we find pn=kν(Q) ∼ |Q|k, reminiscent of the bosonic
probability distribution but now in multiples of k, while for even µ ∈ [4, ν−1]
the r.h.s. of (31) is smaller than k

2 (ν − 2ν) = −kν/2 < 0 and we arrive at

the somewhat startling conclusion pn=kν(Q) & |Q|−kν/2. In the case of odd
numerators there is an additional power bk/2c from each Slater determinant
in Λ, producing

n−α
(
n

2

)
+µm+λ =

k

2
(µ− (µ− 2)ν) + νbk/2c =

k

2
(µ− (µ− 3)ν) (−ν/2),

(32)
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where the additional parenthesis concerns the case when k is odd. For µ = 1

we then have pn=kν(Q) ∼ |Q|
k
2

(2ν+1) (−ν/2), and for µ = 3, pn=kν(Q) ∼
|Q|

3
2
k (−ν/2), but for odd µ ∈ [5, ν − 1] we again find pn=kν(Q) & |Q|−kν/2.

Consider as a concrete example the α = 2/3 state for which

p0 ∼ 1, p1 ∼ |Q|, p2 ∼ |Q|
4
3 , p3 ∼ |Q|, p4 ∼ |Q|2, p5 ∼ |Q|

7
3 , p6 ∼ |Q|2,

while for α = 1/3

p0 ∼ 1, p1 ∼ |Q|, p2 ∼ |Q|
5
3 , p3 ∼ |Q|2, p4 ∼ |Q|4, p5 ∼ |Q|

17
3 , p6 ∼ |Q|7.

In the even numerator case we note that p2 is of a lower order than p3 ∼ p1 ∼
ρ, possibly with the result of bringing a higher weight to the 3-particle term
in Eα or Eα. We do not know how to interpret the less well-behaved cases
where pn involve negative powers of |Q| (and, interestingly, peaking for n at
multiples of ν), other than to conclude the breakdown of this approximation
scheme concerning r2 � |Q| � |Q0|. The interesting question is what
actually happens for any of these anyonic trial states around |Q| ∼ r2, and
for this we will resort to numerical studies.

4 Numerical studies

We wish to investigate the forms of the probability distributions pψ(Q) in-
duced from N -anyon wave functions ψ such as the above trial states, and
the corresponding strength of local exclusion for anyons given by the ex-
plicit bound Eα[p] for such p = pψ(Q) (however, as we have pointed out,
the stronger bound concerning Eα[p] might actually be very different). Our
preliminary results are given in Appendix A-C. We have evaluated the prob-
ability distributions

pn(Q) =

(
N

n

)
p̃A={1,...,n}(Q)

numerically to a reasonable precision (based on the complexity of the state
and the corresponding speed of convergence) using Monte Carlo based inte-
gration methods. We used Mathematica for the construction of the explicit
integrands, and for multi-dimensional numerical integration we employed
the Vegas algorithm which is part of the Cuba library for Mathematica [10].

For computational simplicity we choose the squares Q0 = [−1, 1]2 with
Neumann boundary conditions and Q = [−`, `]2, ` < 1, centered at the
origin. Some of the states we consider typically cannot be expected to be
homogeneous, and it is therefore also important to estimate their degree of
inhomogeneity. For this purpose we have plotted the corresponding expected
number of particles ρ(Q) = ρ[pψ(Q)] as a function of the expected number
of particles under the assumption of homogeneity, ρ|Q| := N |Q|/|Q0|.
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Depending on the complexity and homogeneity, we have chosen a range
of sizes |Q| of squares (or, equivalently, densities ρ|Q|) to evaluate the dis-
tributions for. The corresponding distributions pψ(Q) have been plotted
(both in a linear and a logarithmic scale; see below), as well as the resulting
values of Eα[pψ(Q)] for the full range α ∈ [0, 1]. For convenience, we have
indicated by light-gray curves the canonical lower bound (25) for the energy
as well as the limiting lower bound (27) for bosons.

We have chosen to study the simplest even numerator trial state α = 2/3
in order to more easily compare the effects of clustering of particles using
a small total particle number N . It is known that the Read-Rezayi type
states lead to an effective clustering of particles even after symmetrization,
however, here we would also like to study the interplay of this effect with
the repulsion due to the regularizing factor Φr. We therefore also consider
the behavior of the pure Jastrow factors Φ∗r(z) := Φr(z)

∏
j<k |zjk|−α in our

trial state wave functions, i.e. the completely symmetric states

Φ∗r(z) =
∏
j<k

|zjk|α

(r2 + |zjk|2)α
, Φ∗r→∞(z) =

∏
j<k

|zjk|α.

4.1 N = 6 particles

The case N = 6, considered in Appendix A, is the first non-trivial case
where an even numerator trial state, α = 2/3, can be investigated. We
have plotted probability distributions and energy bounds Eα for this state
ψ = Φrψα=2/3 for r = 0.03, 0.3, 1 and r = 3, as well as for Φ∗r for r = 1
and r = ∞. For comparison, we have also plotted corresponding values for
the bosonic and the fermionic ground states. We note that the trial states
appear to be more homogeneous for smaller r.

4.2 N = 9 particles

In the case N = 9, considered in Appendix B, the precision is worse because
of the increased complexity and consequently evaluation time. We have
again plotted distributions and bounds for ψ = Φrψα=2/3 with r = 0.1, 0.3, 1,
and for Φ∗r with r = 1 and r =∞. It is clear that for the trial states there is
a push of the weight of the distributions towards the 3-particle probability
p3 (for small ρ, where the contribution of p2 and p3 are of similar order in
Eα, and logarithmic scale), e.g. comparing the r = 1 states Φr=1ψα=2/3

resp. Φ∗r=1, i.e. with and without the ‘Read-Rezayi factor’ responsible for
the grouping of particles.

4.3 N = 12 particles

The N = 12 case is considered in Appendix C. We have succeeded in evalu-
ating some approximate distributions for the α = 2/3 trial state for r = 0.3
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and r = 1. There is also here a strong indication that there is a push of the
weight towards p3 for the trial state.

5 Conclusions and outlook

We have introduced a refined approach to bounding the ground state en-
ergy for the anyon gas from below, based on the n-particle probabilities pn of
the wave function and the energies en for the n-anyon Neumann problems.
Whether this would improve the currently available bounds or not depends
on details of the actual large-n dependence of en which we have not yet
been able to determine, despite some improved understanding. However, if
en turn out to be particularly low for certain values or sequences of n then
these bounds may not be able to improve the situation (or possibly rather
be replaced by upper bounds) if wave functions can be constructed with
suitable properties for their probability distributions. Motivated by this
question, we also investigated some families of anyonic trial states which
appear to have some clustering properties, possibly resulting in their proba-
bility distributions pn being peaked at certain n. Some preliminary numer-
ical investigations were carried out for the simplest trial state at α = 2/3
with particle numbers up to N = 12, and these indeed showed indications
of a readjustment of the weight of the distributions towards p3 for small
densities. Evidently, much more work is needed in order to make any firm
conclusions, however one possible approach to gaining new valuable insight
into this difficult problem has been outlined.
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Dereziński, Gerald Goldin, Thierry Jolicoeur and Stéphane Ouvry for useful
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H* Appendix A: N=6 *L

H* homogeneity: *L
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H* probability distributions, linear scale: *L
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H* Appendix B: N=9 *L

H* homogeneity: *L
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H* probability distributions, linear scale: *L
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H* probability distributions, logarithmic scale: *L
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H* bounds in terms of E_alpha: *L
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H* Appendix C: N=12 *L

H* homogeneity: *L
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H* probability distributions, linear scale: *L
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H* bounds in terms of E_alpha: *L
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