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Abstract

We discuss extension of soliton theories and integrable systems into non-commutative
spaces. In the framework of NC integrable hierarchy, we give infinite conserved
quantities and exact soliton solutions for many NC integrable equations, which are
represented in terms of Strachan’s products and quasi-determinants, respectively.
We also present a relation to an NC Anti-Self-Dual Yang-Mills equation, and make
comments on how “integrability” should be considered in noncommutative spaces.

1 Introduction

Non-Commutative (NC) extension of field theories is not just a generalization of them

but a fruitful study direction in both physics and mathematics. First of all, we introduce

motivation and goal of it.

1.1 Motivation to extend to NC spaces

Noncommutative spaces are characterized by the noncommutativity of the spatial coor-

dinates:

[xµ, xν ] = iθµν , (1.1)

where the anti-symmetric tensor θµν is called the NC parameter. In this paper, the NC

parameter is a real constant and closely related to existence of a background flux.

We summarize some properties of field theories on NC spaces.
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• Resolution of singularities

Eq. (1.1) looks like the canonical commutation relation [q, p] = ih̄ in quantum me-

chanics and would lead to “space-space uncertainty relation.” Hence the singularity

which exists on commutative spaces could resolve on noncommutative spaces. This

is one of the distinguished features of noncommutative theories and gives rise to

various new physical objects such as U(1) instantons [43].

• Equivalence between NC gauge theory and commutative gauge theory in background

magnetic fields

In the context of effective theory of D-branes, NC gauge theories are found to be

equivalent to ordinary gauge theories in the presence of background magnetic fields

and have been studied intensively for the last several years (For reviews, see e.g.

[8, 32, 53].) NC solitons especially play important roles in the study of D-brane

dynamics, such as the confirmation of Sen’s conjecture on tachyon condensation.

(For reviews, see e.g. [17, 29, 51].) We note that U(1) part of the gauge group is

necessary and plays important roles as in U(1) instantons.

• Easy Treatment

Solitons special to noncommutative spaces are sometimes so simple that we can

calculate various physical quantities, such as the energy, the fluctuation around

the soliton configuration and so on. Because of resolution of singularities, singular

configurations becomes smooth and become suitable for the usual calculation. Fur-

thermore, we can take large noncommutativity limit where the situations become

simple. The successful application to D-brane dynamics are actually due to this

point.

1.2 Towards NC Integrable Systems

NC extension of integrable equations such as the KdV equation is also one of the hot topics.

These equations imply no gauge field and NC extension of them perhaps might have no

physical picture or no good property on integrabilities. To make matters worse, NC

extension of (1 + 1)-dimensional equations introduces infinite number of time derivatives,

which makes it hard to discuss or define the integrability. Those equations had been

examined one by one. Now it was time to discuss the geometrical and physical origin of

the special properties and integrabilities, in more general framework.

We proposed the following study programs as future directions:

• NC twistor theory together with NC Ward’s conjecture

2



Twistor theory is the most essential framework in the study of integrability of AS-

DYM eqs. (See, e.g. [39, 59].) NC extension of twistor theories are already discussed

by several authors, e.g. [3, 28, 30, 31, 54]. This would give a geometrical foundation

of integrabilities of ASDYM eqs.

NC Ward’s conjecture is very important to give physical pictures to lower-dimensional

integrable equations and to make it possible to apply analysis of NC solitons to that

of the corresponding D-branes. Origin of the integrable-like properties would be also

revealed from the viewpoints of NC twistor theory and preserved supersymmetry in

the D-brane systems.

• NC Sato’s theory

Sato’s theory is known to be one of the most beautiful theories of solitons and re-

veals essential aspects of the integrability, such as, the construction of exact multi-

soliton solutions, the structure of the solution space, the existence of infinite con-

served quantities, and the hidden symmetry of them, on commutative spaces. So

it is reasonable to extend Sato’s theory onto NC spaces in order to clarify various

integrable-like aspects directly.

In this article, we report recent developments of NC extension of soliton theories and

integrable systems. We prove the existence of infinite conserved quantities and exact

multi-soliton solutions in the framework of NC integrable hierarchy. We also give an

example of reduction of NC Anti-Self-Dual Yang-Mills equation into NC KdV eq.

1.3 NC Field Equations in the sense of Moyal deformations

NC field theories are given by the replacement of ordinary products in the commutative

field theories with the star-products and realized as deformed theories from the commu-

tative ones. The star-product is defined for ordinary fields on flat spaces, explicitly by

f ? g(x) := exp
(

i

2
θµν∂(x′)

µ ∂(x′′)
ν

)
f(x′)g(x′′)

∣∣∣
x′=x′′=x

= f(x)g(x) +
i

2
θµν∂µf(x)∂νg(x) +O(θ2), (1.2)

where ∂
(x′)
i := ∂/∂x′i and so on. This explicit representation is known as the Moyal

product [41].

The star-product has associativity: f ? (g ?h) = (f ?g)?h, and reduces to the ordinary

product in the commutative limit: θµν → 0. The modification of the product makes the

ordinary spatial coordinate “noncommutative” which means : [xµ, xν ]? := xµ?xν−xν?xµ =

iθµν .
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We note that the fields themselves take c-number values as usual and the differenti-

ation and the integration for them are well-defined as usual. A nontrivial point is that

NC field equations contain infinite number of derivatives in general. Hence the integra-

bility of the equations are not so trivial as commutative cases, especially for space-time

noncommutativity.

In this article, we mainly studies NC KP and KdV equations:

• NC KP equation in (2 + 1)-dimension ([x, y]? = iθ or [t, x]? = iθ)

∂u

∂t
=

1

4

∂3u

∂x3
+

3

4

(
∂u

∂x
? u + u ?

∂u

∂x

)
+

3

4
∂−1

x

∂2u

∂y2
− 3

4

[
u, ∂−1

x

∂u

∂y

]

?

, (1.3)

where t and x, y are time and spatial coordinates, respectively, and ∂−1
x f(x) =

∫ x dx′f(x′).

• NC KdV equation in (1 + 1)-dimension ([t, x]? = iθ)

∂u

∂t
=

1

4

∂3u

∂x3
+

3

4

(
∂u

∂x
? u + u ?

∂u

∂x

)
. (1.4)

The ordering of non-linear terms is crucial to preserve some special integrable proper-

ties and determined in the Lax formalism as we will see later. For NC KP and KdV eqs.,

the non-linear term 2u · ∂xu becomes symmetric: ∂xu ? u + u ? ∂xu.

2 NC Integrable Systems

In this section, we discuss some integrable aspects of NC integrable equations focusing on

NC KdV eq.

2.1 NC integrable Hierarchies

Firstly, we derive various NC integrable equations in terms of pseudo-differential operators

which include negative powers of differential operators.

An n-th order pseudo-differential operator A is represented as follows

A = an∂n
x + an−1∂

n−1
x + · · ·+ a0 + a−1∂

−1
x + a−2∂

−2
x + · · · , (2.1)
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where ai is a function of x associated with noncommutative associative products (here,

the Moyal products). When the coefficient of the highest order aN equals to 1, we call it

monic. Here we introduce useful symbols:

A≥r := ∂n
x + an−1∂

n−1
x + · · ·+ ar∂

r
x, (2.2)

A≤r := A− A≥r+1 = ar∂
r
x + ar−1∂

r−1
x + · · · . (2.3)

resrA := ar. (2.4)

The symbol res−1A is especially called the residue of A.

The action of a differential operator ∂n
x on a multiplicity operator f is formally defined

as the following generalized Leibniz rule:

∂n
x · f :=

∑

i≥0

(
n
i

)
(∂i

xf)∂n−i, (2.5)

where the binomial coefficient is given by

(
n
i

)
:=

n(n− 1) · · · (n− i + 1)

i(i− 1) · · · 1 . (2.6)

We note that the definition of the binomial coefficient (2.6) is applicable to the case for

negative n, which just define the action of negative power of differential operators.

The composition of pseudo-differential operators is also well-defined and the total set of

pseudo-differential operators forms an operator algebra. For a monic pseudo-differential

operator A, there exist the unique inverse A−1 and the unique m-th root A1/m which

commute with A. (These proofs are all the same as commutative ones.) For more on

pseudo-differential operators and integrable hierarchies, see e.g. [33, 2, 4, 1].

In order to define the NC KP hierarchy, let us introduce a Lax operator:

L = ∂x + u2∂
−1
x + u3∂

−2
x + u4∂

−3
x + · · · , uk = uk(x; x1, x2, x3, . . .). (2.7)

The noncommutativity is introduced into the coordinates (x1, x2, . . .). The differential

operator Bm is given by

Bm := (L ? · · · ? L︸ ︷︷ ︸
m times

)≥0. (2.8)

The NC KP hierarchy is defined as

∂mL = [Bm, L]? , m = 1, 2, . . . , (2.9)
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where the action of ∂m := ∂/∂xm on the pseudo-differential operator L should be inter-

preted to be coefficient-wise, that is, ∂mL := [∂m, L]? or ∂m∂k
x = 0. The KP hierarchy

gives rise to a set of infinite differential equations with respect to infinite kind of fields

from the coefficients in Eq. (2.9) for a fixed m. Hence it contains huge amount of differ-

ential (evolution) equations for all m. The LHS of Eq. (2.9) becomes ∂muk which shows

a kind of flow in the xm direction.

If we put the constraint (Ll)≤−1 = 0 or equivalently Ll = Bl on the NC KP hierarchy

(2.9), we get a reduced NC KP hierarchy which is called the l-reduction of the NC KP

hierarchy, or the NC lKdV hierarchy, or the l-th NC Gelfand-Dickey hierarchy. We can

easily show

∂uk

∂xNl
= 0, (2.10)

for all N, k because ∂Ll/∂xNl = [BNl, L
l]? = [(Ll)N , Ll]? = 0, which implies Eq. (2.10).

In particular, the 2-reduction of the NC KP hierarchy is just the NC KdV hierarchy.

Let us see explicit examples.

• NC KP hierarchy

The coefficients of each powers of (pseudo-)differential operators in the NC KP

hierarchy (2.9) yield a series of infinite NC “evolution equations.” For example,

– for m = 1

∂1−k
x ) ∂1uk = ∂xuk, k = 2, 3, . . . , (2.11)

which implies x1 ≡ x.

– for m = 2

∂−1
x ) ∂2u2 = u′′2 + 2u′3,

∂−2
x ) ∂2u3 = u′′3 + 2u′4 + 2u2 ? u′2 + 2[u2, u3]?,

∂−3
x ) ∂2u4 = u′′4 + 2u′5 + 4u3 ? u′2 − 2u2 ? u′′2 + 2[u2, u4]?,

∂−4
x ) ∂2u5 = · · · , (2.12)

which implies that infinite kind of fields u3, u4, u5, . . . are represented in terms

of one kind of field 2u2 ≡ u as is seen in Eq. (2.12).

– for m = 3

∂−1
x ) ∂3u2 = u′′′2 + 3u′′3 + 3u′4 + 3u′2 ? u2 + 3u2 ? u′2,
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∂−2
x ) ∂3u3 = u′′′3 + 3u′′4 + 3u′5 + 6u2 ? u′3 + 3u′2 ? u3 + 3u3 ? u′2 + 3[u2, u4]?,

∂−3
x ) ∂3u4 = u′′′4 + 3u′′5 + 3u′6 + 3u′2 ? u4 + 3u2 ? u′4 + 6u4 ? u′2

−3u2 ? u′′3 − 3u3 ? u′′2 + 6u3 ? u′3 + 3[u2, u5]? + 3[u3, u4]?,

∂−4
x ) ∂3u5 = · · · . (2.13)

These just imply the (2 + 1)-dimensional NC KP equation [46, 33] with 2u2 ≡
u, x2 ≡ y, x3 ≡ t and ∂−1

x f(x) =
∫ x dx′f(x′):

∂u

∂t
=

1

4

∂3u

∂x3
+

3

4

∂(u ? u)

∂x
+

3

4
∂−1

x

∂2u

∂y2
− 3

4

[
u, ∂−1

x

∂u

∂y

]

?

. (2.14)

And higher-order flow gives an infinite set of higher-order KP equations. The order

of nonlinear terms are determined in this way.

• NC KdV Hierarchy (2-reduction of the NC KP hierarchy)

Taking the constraint L2 = B2 =: ∂2
x + u for the NC KP hierarchy, we get the NC

KdV hierarchy. This time, the following NC hierarchy

∂u

∂xm
=

[
Bm, L2

]
?
, (2.15)

include neither positive nor negative power of (pseudo-)differential operators for the

same reason as commutative case and gives rise to the m-th KdV equation for each

m. For example,

– for m = 3, identifying the time coordinate as x3 ≡ t:

u̇ =
1

4
u′′′ +

3

4
(u′ ? u + u ? u′) , (2.16)

which is just the (1 + 1)-dimensional NC KdV equation.

– for m = 5 identifying the time coordinate x5 ≡ t:

u̇ =
1

16
u′′′′′ +

5

16
(u ? u′′′ + u′′′ ? u) +

5

8
(u′ ? u′ + u ? u ? u)′, (2.17)

which is the (1 + 1)-dimensional 5-th NC KdV equation.

We note that the time coordinate is defined for each flow equation. This point is

important for discussion on conserved quantities of NC integrable equations.

In this way, we can generate infinite set of the l-reduced NC KP hierarchies. More

explicit examples are seen in e.g. [18]. (See also [44, 56].) The present discussion is also

applicable to other NC hierarchies, such as, the NC Ablowitz-Kaup-Newell-Segur (AKNS)

hierarchy [7], the NC Toda field hierarchy [48] the NC toroidal KdV hierarchy [19] and

so on.
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2.2 Conservation Laws

Here we prove the existence of infinite conservation laws for the wide class of NC soliton

equations. The existence of infinite number of conserved quantities would lead to infinite-

dimensional hidden symmetry from Noether’s theorem.

First we would like to comment on conservation laws of NC field equations [26]. The

discussion is basically the same as commutative case because both the differentiation and

the integration are the same as commutative ones in the Moyal representation.

Let us suppose the conservation law

∂tσ(t, xi) = ∂iJ
i(t, xi), (2.18)

where σ(t, xi) and J i(t, xi) are called the conserved density and the associated flux, re-

spectively. The conserved quantity is given by spatial integral of the conserved density:

Q(t) =
∫

space
dDxσ(t, xi), (2.19)

where the integral
∫
space dxD is taken for spatial coordinates and the surface term of the

integrand Ji(t, x
i) is supposed to vanish.

Here let us return back to NC hierarchy. In order to discuss the conservation laws,

we have to specify for what equations the conservation laws are. The specified equations

possess space and time coordinates in the infinite coordinates x1, x2, x3, · · ·. Identifying

t ≡ xm, we can get infinite conserved densities for the NC hierarchies as follows (n =

1, 2, . . .) [18]:

σn = res−1L
n + θim

m−1∑

k=0

k∑

l=0

(
k
l

)
∂k−l

x res−(l+1)L
n ¦ ∂ireskL

m, (2.20)

where the suffices i must run in the space-time directions only. The symbol “¦” is called

the Strachan product [52] and defined by

f(x) ¦ g(x) :=
∞∑

s=0

(−1)s

(2s + 1)!

(
1

2
θµν∂(x′)

µ ∂(x′′)
ν

)2s

f(x′)g(x′′)
∣∣∣
x′=x′′=x

. (2.21)

This is a commutative and non-associative product.

We can easily see that deformation terms appear in the second term of Eq. (2.20) in

the case of space-time noncommutativity. On the other hand, in the case of space-space

noncommutativity, the conserved density is given by the residue of Ln as commutative

case.

For examples, explicit representation of the NC KP equation is as follows:
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• space-space noncommutativity [x, y]? = iθ:

σn = res−1L
n, (2.22)

which is essentially the same as commutative one. In this case, the equation is

the first order differential equation w.r.t. time and notion of time evolution and

Hamiltonian structure are well-defined as in commutative situation. In particular,

the trace of a pseudo-differential operator A (2.1) should be defined as tr A :=
∫

dxdxires−1A, where the integration
∫

dxi must be done over all spatial directions.

• space-time noncommutativity [t, x]? = iθ:

σn = res−1L
n − 3θ ((res−1L

n) ¦ u′3 + (res−2L
n) ¦ u′2) . (2.23)

This time, the deformation part is non-trivial. However the meaning of the exis-

tence of infinite conserved quantities is hard to discuss because the equation contains

infinite time derivatives and it is hard to discuss time evolution, Hamiltonian struc-

ture, Poisson brackets and so on. One possible direction is to find the corresponding

commutative description via the Seiberg-Witten map [50].

2.3 Exact Soliton Solutions

Here we show the existence of exact multi-soliton solutions of NC integrable hierarchy by

giving the explicit formula in terms of quasideterminants.

Let us introduce the following functions,

fs(~x) = eξ(~x;αs)
? + ase

ξ(~x;βs)
? , ξ(~x; α) = x1α + x2α

2 + x3α
3 + · · · , (2.24)

and αs, βs and as are constants. Star exponential functions are defined by

ef(x)
? := 1 +

∞∑

n=1

1

n!
f(x) ? · · · ? f(x)︸ ︷︷ ︸

n times

. (2.25)

An N -soliton solution of the NC KP hierarchy (2.9) is given by a quasideterminant of

the Wronski matrix [9]:

L = ΦN ? ∂xΦ
−1
N , (2.26)

where

ΦN ? f = |W (f1, . . . , fN , f)|N+1,N+1,
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=

f1 f2 · · · fN f
f ′1 f ′2 · · · f ′N f ′
...

...
. . .

...
...

f
(N−1)
1 f

(N−1)
2 · · · f

(N−1)
N f (N−1)

f
(N)
1 f

(N)
2 · · · f

(N)
N f (N)

. (2.27)

Definition of quasideterminants is seen in Appendix A. The Wronski matrix W (f1, f2, · · · , fm)

is as usual:

W (f1, f2, · · · , fm) :=




f1 f2 · · · fm

f ′1 f ′2 · · · f ′m
...

...
. . .

...

f
(m−1)
1 f

(m−1)
2 · · · f (m−1)

m




, (2.28)

where f1, f2, · · · , fm are functions of x and f ′ := ∂f/∂x, f ′′ := ∂2f/∂x2, f (m) := ∂mf/∂xm

and so on.

In the commutative limit, ΦN ? f is reduced to

ΦN ? f −→ det W (f1, f2, . . . , fN , f)

det W (f1, f2, . . . , fN)
, (2.29)

which just coincides with commutative one [4]. In this respect, quasi-determinants are fit

to this framework of the Wronskian solutions.

From Eq. (2.26), we have a more explicit form as [9]:

u2 = ∂x

(
N∑

s=1

W ′
s ? W−1

s

)
, Ws := |W (f1, . . . , fs)|ss. (2.30)

The l-reduction condition (Ll)≤−1 = 0 or Ll = Bl is realized at the level of the soliton

solutions by taking αl
s = βl

s or equivalently αs = εβs for s = 1, · · · , N , where ε is the l-th

root of unity. For the KdV eq., αs = −βs.

Physical interpretation of the configurations is non-trivial because even when f(x) and

g(x) are real, f(x) ? g(x) is not in general. However, the N -soliton solutions can be real

in the following situations.

• One-soliton solutions

First, let us comment on one-soliton solutions [?, 26]. Defining z := x+vt, z̄ := x−vt,

we easily see

f(z) ? g(z) = f(z)g(z) (2.31)
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because the star-product (1.2) is rewritten in terms of (z, z̄) as

f(z, z̄) ? g(z, z̄) = eivθ(∂z̄′∂z′′−∂z′∂z̄′′ )f(z′, z̄′)g(z′′, z̄′′)
∣∣∣ z′ = z′′ = z

z̄′ = z̄′′ = z̄.

(2.32)

Hence NC one soliton-solutions are essentially the same as commutative ones and

hence can be real in all region of the space-time.

• Asymptotic region of N -soliton solutions

In order to analyze the asymptotic behavior of N -soliton solutions, we usually take a

new coordinate comoving with the I-th soliton. Then we can see that in the asymp-

totic region, the configuration just coincides with the commutative one. Hence,

asymptotic behavior of the multi-soliton solutions is all the same as commutative

one. As the results, the N -soliton solutions possess N localized energy densities. In

the general scattering process without resonances, they never decay and preserve

their shapes and velocities of the localized solitary waves. The phase shifts also

occur by the same degree as commutative ones. These observations are crucially

due to special properties of quasideterminants. Detailed discussion is seen in [21].

2.4 Reduction of NC ASDYM Eq.

Here we briefly discuss reductions of NC ASDYM equation into lower-dimensional NC

integrable equations such as the NC KdV equation. let us summarize the strategy for

reductions of NC ASDYM equation into lower-dimensions. Reductions are classified by

a choice of gauge group, a choice of symmetry, such as, translational symmetry, a choice

of gauge fixing, and a choice of constants of integrations in the process of reductions.

Gauge groups are in general GL(N). We have to take U(1) part into account in NC case.

A choice of symmetry reduces NC ASDYM equations to simple forms. We note that

noncommutativity must be eliminated in the reduced directions because of compatibility

with the symmetry. Hence within the reduced directions, discussion about the symmetry

is the same as commutative one. A choice of gauge fixing is the most important ingredient

in this paper which is shown explicitly at each subsection. The residual gauge symmetry

sometimes shows equivalence of a few reductions. Constants of integrations in the process

of reductions sometimes lead to parameter families of NC reduced equations, however, in

this paper, we set all integral constants zero for simplicity.

NC ASDYM equations can be represented in complex representation as follows (No-

tation is the same as the book of Mason-Woodhouse [39]):

Fwz = ∂wAz − ∂zAw + [Aw, Az]? = 0,
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Fw̃z̃ = ∂w̃Az̃ − ∂z̃Aw̃ + [Aw̃, Az̃]? = 0,

Fzz̃ − Fww̃ = ∂zAz̃ − ∂z̃Az + ∂w̃Aw − ∂wAw̃ + [Az, Az̃]? − [Aw, Aw̃]? = 0, (2.33)

where z, w, z̃, w̃ are linear combinations of the coordinates of the 4-dimensional spaces

(x0, x1, x2, x3), and Az, Aw, Az̃, Aw̃ denote the gauge fields in the Yang-Mills theory. This

is actually equivalent to the condition of anti-self-duality of the gauge fields :Fµν = −∗Fµν

where the symbol ∗ is the Hodge dual.

Here, we present non-trivial reductions of NC ASDYM equation with G = GL(2) to

the NC KdV equation.

First, let us take a dimensional reduction by null translations:

X = ∂w − ∂w̃, Y = ∂z̃. (2.34)

and identify space-time coordinates as t ≡ z, x = w+w̃, and put the following non-trivial

reduction conditions on the gauge fields

Aw̃ =

(
0 0

u/2 0

)
, Az̃ =

(
0 0
1 0

)
, Aw =

(
0 −1
u 0

)
, Az =

1

4

(
u′ −2u

u′′ + 2u ? u −u′

)
,

then we can see Eq. (2.33) reduces to the NC KdV equation:

u̇ =
1

4
u′′′ +

3

4
(u′ ? u + u ? u′) . (2.35)

In this non-trivial way, the NC KdV equation is actually derived. Many other NC inte-

grable equations are proved to be derived from NC ASDYM equation by reduction, which

is summarized in [20, 21].
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A Brief Introduction to Quasi-determinants

In the appendix, we make a brief introduction of quasi-determinants introduced by Gelfand

and Retakh [13] and present a few properties of them which play important roles in the

following sections. The detailed discussion is seen in e.g. [12].
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Quasi-determinants are not just a generalization of usual commutative determinants

but rather related to inverse matrices. From now on, we suppose existence of all the

inverses.

Let A = (aij) be a N × N matrix and B = (bij) be the inverse matrix of A, that is,

A?B = B?A = 1. Here all products of matrix elements are supposed to be star-products,

though the present discussion hold for more general situation where the matrix elements

belong to a noncommutative ring.

Quasi-determinants of A are defined formally as the inverse of the elements of B = A−1:

|A|ij := b−1
ji . (A.1)

In the commutative limit, this is reduced to

|A|ij θ→0−→ (−1)i+j det A

det Aij
, (A.2)

where Aij is the matrix obtained from A deleting the i-th row and the j-th column.

We can write down more explicit form of quasi-determinants. In order to see it, let us

recall the following formula for a block-decomposed square matrix:

(
A B
C D

)−1

=

(
(A−B ? D−1 ? C)−1 −A−1 ? B ? (D − C ? A−1 ? B)−1

−(D − C ? A−1 ? B)−1 ? C ? A−1 (D − C ? A−1 ? B)−1

)
,

where A and D are square matrices. We note that any matrix can be decomposed as

a 2 × 2 matrix by block decomposition where one of the diagonal parts is 1 × 1. Then

the above formula can be applied to the decomposed 2× 2 matrix and an element of the

inverse matrix is obtained. Hence quasi-determinants can be also given iteratively by:

|A|ij = aij −
∑

i′(6=i),j′(6=j)

aii′ ? ((Aij)−1)i′j′ ? aj′j

= aij −
∑

i′(6=i),j′(6=j)

aii′ ? (|Aij|j′i′)−1 ? aj′j. (A.3)

It is sometimes convenient to represent the quasi-determinant as follows:

|A|ij =

a11 · · · a1j · · · a1n
...

...
...

ai1 aij ain

...
...

...
an1 · · · anj · · · ann

. (A.4)

Examples of quasi-determinants are, for a 1× 1 matrix A = a

|A| = a,
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and for a 2× 2 matrix A = (aij)

|A|11 =
a11 a12

a21 a22
= a11 − a12 ? a−1

22 ? a21, |A|12 =
a11 a12

a21 a22
= a12 − a11 ? a−1

21 ? a22,

|A|21 =
a11 a12

a21 a22
= a21 − a22 ? a−1

12 ? a11, |A|22 =
a11 a12

a21 a22
= a22 − a21 ? a−1

11 ? a12,

and for a 3× 3 matrix A = (aij)

|A|11 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11 − (a12, a13) ?

(
a22 a23

a32 a33

)−1

?

(
a21

a31

)

= a11 − a12 ?
a22 a23

a32 a33

−1

? a21 − a12 ?
a22 a23

a32 a33

−1

? a31

− a13 ?
a22 a23

a32 a33

−1

? a21 − a13 ?
a22 a23

a32 a33

−1

? a31,

and so on.
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