LINEAR DEPENDENCE IN MORDELL-WEIL GROUPS

WoJiciECH GAJDA AND KRZYSZTOF GORNISIEWICZ

ABSTRACT. We consider a local to global principle for detecting linear dependence
of nontorsion points, by reduction maps, in the Mordell-Weil group of an abelian
variety defined over a number field.

1. Introduction.

Let A be an abelian variety of dimension ¢, defined over a number field F, such
that all algebraic endomorphisms of A are over F. For a prime v of good reduction
for A we denote by r, : A(F) — A,(k,) the reduction homomorphism, where x,
is the residue field. Our main result in this paper is:

Main Theorem. [Thm. 5.1 & Cor. 6.1]

In every nonempty isogeny class of abelian varieties over F, there exists an abelian
variety A with the following property. Assume that Py, Py, ..., P. € A(F) are
points of the Mordell-Weil group, which are nontorsion over the ring of endomor-
phisms O = End A and such that Py, P,, ..., P, are linearly independent over O.
Denote by L the subgroup of A(F') generated by Py, Py, ..., P.. If r,(Py) € (L)
for almost all primes v, then there exist endomorphisms fi, fo, ..., fr € O such
that

Py = fiPy+ foPy + -+ f.P.

For an abelian variety A with O=Z and g = 2,6 or an odd integer, a stronger
criterion for linear dependence was proven in [4], Theorem 4.2. More generally, if
A is an abelian variety with the commutative ring of endomorphisms, then due to
a result of Weston cf. [14], Theorem, the condition r,(FPp) € r,(L), for almost all
v, implies a relation Py € L 4+ A(F)¢ors- One should note however, that neither the
method of the proof of [4], Thm. 4.2, nor the proof of Theorem of Weston, seem to
extend to abelian varieties with noncommutative rings of endomorphisms.

Our proof of the main theorem is based on techniques of Kummer theory and
Galois cohomology developed in papers [3], [4] and [5], augmented by an idea used
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in the proof of Theorem 5.2 of the preprint [10] by Larsen and Schoof. The combi-
nation of methods of [3], [4], [5] and [10] developed in the present work enabled us
to treat the problem of detecting linear dependence by reductions for any abelian
variety with no extra assumptions on the ring of endomorphisms nor on the dimen-
sion.

In Section 2 we introduce necessary notation and basic definitions of Kummer
theory for abelian varieties which was developed by Ribet in [12]. In Section 3,
following [10] we discuss the notion of integrally semisimple Galois modules. The
proof of the main theorem is contained in Sections 4 and 5. In the last section of
the paper we collected few corollaries which the reader may find of independent
interest. In particular, using our Lemma 4.1 we strengthened the result of Weston
mentioned above, by showing that one can remove the torsion ambiguity from the
relation among the points Py, P, ..., P, cf. Corollary 6.2. As another corollary of
the method of the proof of the main theorem we obtain the following genaralization
of Theorem 8.2 of [2] on a multilinear version of the support problem of Erdés to
arbitrary abelian varieties.

Corollary. [Cor. 6.5]

In every nonempty isogeny class of abelian varieties over F, there exists an abelian
variety A with the following property. Let Py, Q1, P2, Q2, ..., P., Q. € A(F) be
points which are nontorsion over O = End A and such that the following condition
holds true. For all sets of natural numbers {my,ma,...,m,} and for almost all
primes v of Op 1 if myry(Py) + maory,(P2) + -+ - + myry,(P.) = 0, then myr,(Py) +
m2TU(Q2) +eee Tt mrrv(QT) =0 in the group Av(/fv)'

Then there exist endomorphisms f1, fa, ..., [r€0 and torsion points Ry, Ro,
RN RTEA(F)tOTS such that leflPl + Rl, ngfgpg + RQ, ceey QTZfTPT + Rr.

2. Kummer theory of abelian varieties.

Notation.

[ prime number
Z;  l—adic integers, Q; field of fractions of Z;
B[I¥]  subgroup of [*-torsion elements of an abelian group B

B, = U, B[l*], l-torsion subgroup of B
F  number field, O its ring of integers
Gr = G(F/F), F fixed algebraic closure of F
prime ideal of O, k,=OF /v residue field at v

v
g = G(Ry/kv)

A abelian variety of dimension g, defined over F
O  ring of algebraic endomorphisms of A
A)

Ti( Tate module of A at I, Vi(A) = T;(A) @ Q
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pr:  Gp — Aut(Ti(A)) = Glag(Z;) Galois representation of 17(A)
pi= residual representation Gr — GL(A[l*]) induced by p,

Fix = F(A[l*]), for k > 1, is the field Fkerpu
Floo - UkFlk

le - G(Flk/F)

Gie = G(F=/F)

Hlk = G(F/Flk)
Hi~ = G(F/Fp)

H*(G;M)  cohomology group of continuous cochains for a profinite group G

Let p; : Gp — Glyg(Z;) be the representation of the absolute Galois group
Gr = Gal(F/F), which is associated with Tate module of A at the prime [. For k >
1, we denote by pjx : Gp — Gla,(Z/1%) the residual representation attached to the
action of G at torsion points A[I*] := A(F)[I¥]. We put V;(A):=T}(A) ® Q. Define
groups: Hjk:=kerpp, Hij:=kerp;, Gp.:=Imppx and Gj=:=Imp;. Define fields of
division points: Fjx:=F» and Fjeo:=F™>=_ Consider the long exact sequence in
Galois cohomology:

HOGr, AF)) = HO(Gp, A(F)) —2— HY(Gp, All¥]) ——

induced by the exact sequence of Galois modules:

x1F

0 —— A[l*] —— A(F) —— A(F) —— 0.
The boundary homomorphism ¢ induces:
o) s A(F) JIFA(F) — H'(Gp; A[I]),
for H*(GFr, A(F)) = A(F). By definition of § (cf. [6], p. 97), we have:
¢M(P +1"A(F))(0) = o(R) - R,
where P € A(F), 0 € Gr and R € A(F) is a point such that [*R = P. One checks

that changing the choice of R changes the cocyle ¢(*)(P+1* A(F)) by a coboundary.
There are commutative diagrams:

(2.1) lxz
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which after passing to the inverse limit over k£ give a monomorphism:

(2.2) A(F) ®2 7 — H'(Gr; Ti(A)),

since A(F) ®z Z; = lim A(F)/I*A(F), by finite generation of A(F), and we have

lim HY(GF; A[I*]) = HY(GFp;Ti(A)), by finiteness of H°(Gr; A[l¥]). Consider the

restriction homomorphism in Galois cohomology:
(2.3) res: HY (Gp; Ti(A)) — HY(Hj; T(A))%,

of the embedding H;~ — Gpg. The fixed point set is taken with respect to the
action induced via the exact sequence of profinite groups:

0 — Hio — G — G« — 0.
Since Hj~ acts trivially at 7;(A) by definition, we have:

H (Hies Ty (A)) 9 = Home, . (Hi: Ti(A)).

Lemma 2.4. The restriction map (2.3) has a finite kernel.

Proof. By the inflation-restriction sequence [6], p. 100:
1 Hoo inf 1 . res 1 . G oo
0 — HY(Gree, TAYH™) — s HV(Gpi T(A)) " H(Hiw; TH(A))
we get ker(res) = HY(Goo; Ty (A)H>) = HY(G}; Ti(A)). On the other hand:
1 1
HY (G Ti(A)) @2 zZl7]= HY(Gi=; Ti(A) @z Zl7]) = H' (Gie<; Vi(A))

where the last gruop vanishes due to the theorem of Serre [13], Cor.1, p. 734. Hence,
the group ker(res) consists of elements of finite orders. The lemma follows, since
the Galois cohomology group H' (G r; Ty (A)) is a finitely generated Z;—module. [J

Definition 2.5. We define the homomorphism:
¢ A(F)®Z, — Homg,.. (Hi~;T;(A)),

by the composition of maps (2.2) and (2.3).
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Lemma 2.6.
For every prime l: ker ¢ = A(F)tors ® Zy. In particular, the group ker ¢ is finite.

Proof. Clearly Homg,o. (Hi; Ti(A))CHom(Hje<;Ti(A)), but T;(A) is a free Z;—
module, hence Homg,o (Hi=;Ti(A)) is a free Z;—module. Let >, P; ® a; €
A(F)tors ® Zy, and let n € N, be such that nP; = 0 for every j. Then 0 =
p(D_;nP; ® aj) = nep(32; Py ® o) € Homg, e (Hi; T)(A)) and the last module
is free, so ¢(3_; P ® aj) = 0. Hence, >, P; ® aj € ker¢. To finish the proof we
apply Lemma 2.4, since (A(F) ® Z;)tors = A(F)tors @ Zy. O

We fix a finitely generated O—submodule A of A(F') and points Py, Py, ..., P, €
A which are linearly independent over O and generate A. All modules over O
considered in this paper are by definition left O—modules. For P € A(F') and
k € N we define the Kummer map:

(2.7) &) Hye — AllF)
1 1
P(0) =o(5P)~ P

where Hyx = G(F/Fy) and 5z P = R € A(F) is such a point that (¥R = P. Observe
that by definition:
op) = res™ (3 (P + IFA(F)),

where
res(k) Hl(GF,A[Zk]) N Hl(Hlk,A[lk])le = HOmle (Hlk,A[lk])

is the restriction map. We define:
o®) : Hye — EP A[l¥]
i=1

k k k
k) — (¢§31),¢§32)7. . SDT))'

For k£ > 1, the following diagram commutes.

We denote by:

(2.8) ¢p : Hiw — Ti(A)
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the group homomorphism obtained by passing to the inverse limit. Note that by
Definition 2.5 ¢p = ¢(P). Let

®: He — @Ti(A)

=1

be defined by the formula:
¢ = ((bPlv s 7¢PT)'

Proposition 2.9.
The image of @ is an open subset of @;_, T;(A) with respect to the l—adic topology.

Proof. [4], Lemma 2.13.

3. Integrally semisimple Gr—modules.

In this section we collect material on integrally semisimple Galois modules fol-
lowing Section 4 of [10]. The main technical result in this section is Proposition
3.6, which generalizes [10], Lemma 4.5.

Definition 3.1.

Let T be a free Z;—module equipped with a continuous action of the Galois group
Gr and let V = T ® Q; be the associated rational Galois representation. We
say that the module T is integrally semisimple, if for every G p—subrepresentation
W C V the following exact sequence of Z;[G p]—modules splits.

0 —TNW —T—T/TNW —0

Lemma 3.2.

Let V' be a finitely dimensional Q;—wvector space with a continuous action of G
such that the associated representation is semistmple. There exists a lattice T C V
which is an integrally semisimple G p—module.

Proof. Without loss of generality we can assume that V' = V1 ®q, Qf for an irreucible
representation V; of G and k£ € N. Since G is compact, there exists a G p—stable
lattice 71 C V1. Let T' = T ®g, Zf C V1 ®q, Qf. We check that T is integrally
semisimple. Let then W C V be a subrepresentation of V. Then W = V; ®q, W,
for a subspace Wy of Qf. Hence:

WNT = (Vi ®q, Wo) N(T) @z, ZF) = (T1 @z, Wo) N (Ty @z, ZF) = T @z, (ZF "W).
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Consider the exact sequence of Z;—modules:
(3.3) 0—ZFNWy — ZF — Q — 0.

Since Wy is a [—divisible group, the quotient group @ = Zr /(ZFNWy) is nontorsion,
so @ is a free goup, and the exact sequence (3.3) splits. Tensoring by 7} we obtain
the exact sequence of Z;|Gr|-modules:

0 —TNW —T—T®z Q—0
which splits. [

Observe that the representation V; = 1; ® Q; is semisimple, if the module 17 is
integrally semisiple in the sense of Definition 3.1.

Lemma 3.4.
If A is an abelian variety defined over a number field F, then forl sufficiently large,
Tate module T;(A) of A is integrally semisimple.

Proof. We fix an embedding of F' in the field of complex numbers C. Let M =
H1(A(C);Z) = Z*. Then O := EndA acts at M, i.e., there is an embedding
O — End(M) = Msg24(Z). Let h : End(M) — Hom(O, End(M)) be defined
by the formula: h(m)(r) = rm — mr. Define the commutant C' := ker h. Let
O, = 0® %, C; .= C® 7Z;. By comparision of singular and étale cohomology
we get: Endg, (T;1(A)) = End(M) ® Z; = Mg 24(Z;). By the theorem of Faltings
[8], Satz 4 and Bemerkung 2, for every [, the commutant of O; in End(T;(A))
equals the Z;—module generated by matrices from the image of p;(Gp). If (W N
T1(A))®Q is a Gp—submodule, then it follows that T;(A)/(WNT;(A)) is a finitely
generated, nontorsion C;—module. On the other hand, for [ big enough, C} is a
maximal order in C®@Q;. By [7], Thm. 26.12, it follows that any finitely generated,
nontorsion C;—module is projective, if [ is big enough. Hence, the exact sequence
of Z;|G p]—modules:

0 — W N Ti(A) — Ty(A) — Ty(A)/(W N Ti(A)) — 0,

splits for [ > 0. O

Proposition 3.5.

FEvery nonempty isogeny class of abelian varieties defined over a number field F
contains an abelian variety A such that for every l, Tate module T;(A) is integrally
semisimple.

Proof. Observe that an isogeny of degree a power of a prime I’ # [ does not change
the module T;(A). Hence, by Lemma 3.4, it is enough to show that for every
rational prime [, there exists an abelian variety B isogenous to A, for which 7;(B)
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is integrally semisimple. The vector space Tj(A) ® Q; contains a lattice A which is
integrally semisimple by Lemma 3.2. Multiplying by a power of [, if necessary, we
can assume that A C T;(A). The quotient group 7;(A)/A defines a finite Gp—stable,
[—torsion subgroup D of A. To finish the proof we put B = A/D. O

Proposition 3.6.

Let M, N be free, finitely generated Z;—modules with continuous actions of Gg. Let
N be integrally semisimple. Assume that there are homomorphisms of Z;|G g]—mo-
dules:

1,09, ... ,ar,ﬁzM—>N
such that for every m € M and every k € N:
if ai(m),as(m),...,a.(m)€I"N, then pB(m)ci*N.

Then there exists a homomorphism of Z;|G p]—modules:

’y:éNHN
i=1

such that v o (a1, a9, ... ,a.) = [.

Proof. Let o = (av1,02,...,00) : M — @._; N. We will denote: W, :=
Ima®Q;, Wg :=ImBoQ; and V := @;_, N®Q,. Since (N~ [¥ M =0, by assump-
tion, if a;(m)=0, for every i€{1,2,... ,r}, then 5(m)=0. Hence, keraCkerf and
the space Wg=M /ker3 @ Qy is the quotient of the linear space Wo=M /kera ® Q.
Let £ : W, — Wj denote the quotient map. Since N is integrally semisim-
ple, the Z;[Gp]—module, @;_, N is also integrally semisimple and there exists a
Z;|Gr]—module P C @._, N, which is the complement of W,N@P,_; Nin@,_, N.
We denote by 7 : @;_, N — W, NE,_, N the quotient map, which is a homo-
morphism of Z;|G p]—modules. Define the homomorhpism v : @;_, N — N @ Q,
by the composition:

D N - N®Q
Wa NE@P._, NC W —— W

By construction, for every m € M we have y(a(m)) = $(m). To finish the proof
it is enough to show that I'm~y C N. Since 7 (hence 7 also) is trivial map at the
submodule P, it is enough to show that v(W,N@;_, N) C N. Ifn € W,nP,_, N,
then there is k > 0, such that (*n € a(M), so I*n = a(m) for an m € M. If k > 0,
then by asumption 3(m) € I* N, hence:

v(n) =17y (*n) = 7y (a(m)) = 17*B(m) e N. O
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4. Three lemmas.

To simplify notation in this section we put: T} := T;(A), T = @,_, T, Av(ky)i ==
Ay(K0)i—tors and A[m]” = @D;_; A[m].

Lemma 4.1.
Let Py,...,P. € A(F) be points which are linearly independent over O = End A
and let | be a rational prime. Consider the reduction maps:

Ty - A(F) B— Av(ﬁv)lftorsion

at primes v of good reduction for A such that v {1. There exists a set I of prime
ideals of Op, such that 11 has positive density and

ro(P1) =1y(P2) =...=71,(P) =0
for every v € I1.
Proof. The argument is similar to the proof of [4], Thm. 3.1, see also [5]. De-
fine fields: Flk(likf\) = er@ and Fje (7= A) = F*"®. Consider the following
commutative diagram:
G(Fie (2 A)/Fie) Ty im Ty

G(Fpess (geter A) [ Fpess) —— (A7 /(A7

G(Fp () [ Fye) ———= (A[IF))" /I (A[M)"

where the horizontal maps are induced by Kummer maps ®, ®#+t1 &*) and m e N
such that ("1} C Im®. Such a number m exists by Proposition 2.9. For k > m
images of the homomorphisms:

G(F (5 A)/Fix) — (ALN) ™ (A"

and
1

M)/ Fpesn) = (AL (ALY

G(Fir (o7
are isomorphic. Hence, the homomorphism:

1

G(Flk+1 (lk—|—1

R)/Fyen) — G(Fi (i A)/Fiv)
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is surjective, so:

1.
A) N Fje+1 = Fe,

Flk(lk

for K > m. For such k we have the following tower of fields:

Flk+1 lik[\)

N
T

jo

Flk+1

F

By the theorem of Bogomolov ([1], Cor. 1, p.702) for k big enough there exists
a nontrivial homothety h in the image of p;, which acts at T; by multiplcation by
1+ I*ug, for ug € Z;*. We choose

1€ G(Fran (5 8)/F) € G(Fiuan (5:8)/F)

such that V‘Fk(ikf\) = id, v|F,,,, = h. By Chebotarev density theorem ([9], Thm
"y

10.4, p. 217) there exists a set 11 of primes of O, with positive density such that for

v € II the Frobenius element Fr, in the extension Fyr+1(zA)/F equals 5. For such

a v we fix an ideal w in (’) 11 R) OVer v. Consider the commutative diagram:

Tv

A(F) ————— Ay (k)i

| |

A(Flk+1 (Z%A)) s Aw(/iw)l
Now we repeat Step 4 of the proof of Theorem 3.1 of [4]. Vertical maps in the
diagram are natural injections. Let [° be the order of 7, (P;) € Ay, (ky); for ¢; >0
and i € {1,...,r}. The the point Q; = #P; € A(FlkH(%A)) maps to the point
70 (Q;) € Ay (ky); of order [%FF because [%T*r,,(Q;) = 0. By the choice of v we
get:

h(rw(Q:)) = (14 Fue)ru(Qs),
where h is the homothety chosen before. The choice of v implies also that r,(Q;) €
Ay (Ky)1, hence h(14,)(Q;) = 1 (Q;), so I¥7r,(Q;) = 0. This is possible only if ¢; = 0.
Hence, r,(P;) is zero. [
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Lemma 4.2.
Let M be a finitely generated abelian group, L C M a subgroup and x € M. If for
every rational prime l, t @ 1 € LQ Z; + (M ® Zi)tors, then © € L + Myops

Proof. Consider the short exact sequence of groups:
(4.3) 0— L+ Mpps — M — N — 0.
Tensoring with Z; gives the exact sequence of Z;—modules:
(4.4) 0— (L4 Myps) @72, — M @7, — N @ Z; — 0.
Observe that:
(L + Myors) ® Zy = L @ Zj + Myors @ Zy = L @ Zy + (M ® Zi)tors-

Hence, by the exactness of (4.4): 2 ®1 € LR Z;+ (M & Z;)tors if and only if z® 1
goes to zero in N ® Z;. Denote by T the image of z € M in N in the sequence (4.3).
Clearly, for x as in the assumption, 7® 1 =0 in N ® Z,, if and only if, T has order
prime to [. Since [ is arbitrary, = 0. Hence, by (4.3) we get © € L + Myyps. O

Let P € A(F) be a point of infinite order and let & € N. We choose R :=

- 7~ —=ker (k)
7P € A(F) such that I*R = P. Let Fx(5P) := Freor , where gbgf) denotes the

Kummer homomorphism (2.7).

Lemma 4.5.
Let w 11 be a nonzero prime ideal of OF,, , which is a prime of good reduction for
A. Then the following two conditions are equivalent:

(1) ry(P) € I¥ Ay (Ky), where Ky = OF,, /w,
(2) Fry(R) = R, where Fry, € Gal(Flk(likP)/Flk) is the Frobenius at w.

, . . )
Proof. Let w’ be an ideal in OFlk(ﬁcp) over w.

(2)= (1) If Fr,(R) = R, then w’ splits completely in Fj (likf?)/Flk In particular,
Kuw' = Kuw, hence 1y (R) € Ay (Kw') = Aw(Kw), SO

o (P) = 1Fry (R) € 1F Ay (Ky).

(1) = (2) Consider the diagram:

(4.6)
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which implies:
"7/ (R) = 1y (I"R) = 14 (P) = 7 (P).

By definition we have: A(Flk(liklf’))[lk] = A(Fjx)[I*] = A[l*]. This together with
the commutativity of the diagram (4.6) gives Ay (K )[I¥] = Aw(kw)[I¥] and that
Tw | ar) i @ monomorphism. Let r,,(P) = I*Q for Q € Ay(kyw). Then

*lQ — rw (R)] = 1°Q — I*ry (R) = ry(P) — 1y(P) =0,

hence Q7. (R) € Ay (K )[I¥] = Ay (K0)[IF], but Q € Ay (ky), S0 we get 7 (R) €
Ay (k). In particular:

(4.7) T [FTw(R) — R] = Fryy(ry (R)) — ry (R) = 1y (R) — 1y (R) = 0.
On the other hand:
I*[Fry(R) — R] = Fr,(P) — P =0.

Hence, Fr,(R) — R is in the group A[l*], at which 7, is injective. The equality
(4.7) implies Fr,(R) = R. O

5. Proof of Main Theorem.

Theorem 5.1.

Let A be an abelian variety over a number field F' such that O=Endp A=Endz A.
We assume that for all rational primes | the Tate module T;(A) of A is integrally
semisimple. Let Py, Py, ..., P. € A(F) be points of the Mordell-Weil group which
are nontorsion over the ring O and such that Py, Ps, ..., P, are linearly idependent
over O. Denote by L the subgroup of A(F) generated by Py, Py, ..., P.. If r,(Py) €
Ty (L) for almost all primes v of F, then Py € OL, i.e., there exist endomorphisms
fl, fg, ey fr € O such that

Py= fiP1+ foaPo+ -+ fr Py

Proof. For a profinite group G and a rational prime [ we denote by
G = lim G /1FGeb

the [—adic completion of the abelianization G = G/[G, G] of G. Let j; : G — G
denote the natural homomorphism of topological groups. Every group homo-

~

morphism Hj~ — Tj(A) induces a homomorphism of Z;—modules: Hjee —
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Ti(A). Hence, the Kummer map ¢ of Definition 2.5 induces a homomorphism of
Z;—modules: R )
¢: A(F)®Z, — Homg,.. (Hi~;T;(A)),

such that the following diagram commutes.

Homg,o (Hi;Ti(A))

(5.2) A(F) ®@ 7 Hom (ji;Ty(A))

Homg, s (Hyo; Ti(A))

Observe that qﬁ(ﬁ) = ¢p : Hio — Tj(A) is the Kummer map (2.8), where P =
PolcAF) oL

The proof of the theorem falls naturally into two steps. First we deduce the
claim of the theorem from an additional condition. Then assuming that the extra
condition does not hold, we obtain a contradiction with the assumption of the
theorem.

Step 1. )
Assume that for all rational primes [, all n € N and all 0 € Hj:

(5:3) if H(P1)(0), d(P2)(0),--.  dp, (0) €I'TI(A),  then §(Py)(o) € I"Ty(A).

Let & : Hjoo — @._, Ti(A), be the map <i>:(¢2(]31), e ,QE(PT)) We apply Propo-
sition 3.6 to M=Im®, N=T;(A) and cn=¢(P,), ao=0(P,), ..., ar=¢(P,) and
B=¢(Fp). Proposition 3.6 implies that there is a homomorphism of Z; |G| —modules

g: @TZ(A) — Ti(A)

such that go® = ¢(Pp). Let g; : Ti(A) — Ty(A) for 1 < i < r, be the restriction of
g to the ith component Tj(A) of @;_, Ti(A). Hence, g; is a Z;|G p]|—endomorfizmem
of T;(A). We have: Y._, gid(P;) = ¢(Fy). By the theorem of Faltings [8], Satz 4:
Endg,i¢.)(T1(A)) 2 O ® Zy. 1t follows that there is an element fi € ©®Z; such
that gzgg(f)l) = QZE( f,lf’z) Since ¢ is a homomorphism of Z;—modules we obtain the
equality:

(5.4) 6O fiP) = $(Py).

=1



14 WOJCIECH GAJDA AND KRZYSZTOF GORNISIEWICZ

The diagram (5.2) and Lemma 2.6 imply that: kergﬁ C A(F)tors ® Zy. Hence, by
(5.4):

P()@lzpo == Z,]Ezpz‘i‘@ S OL®ZZ+A(F)tOTS®Zl7
i=1

for some Q € A(F)tors @ Zy. It follows by Lemma 4.2, applied to OL C M = A(F)
and z = Py, that

Py=> fiP+Q

for some f; € O and Q € A(F)tors. To complete the first step of the proof we have
to show that @ = 0. We have Q = Py — > fiP; € A(F)tors- By Lemma 4.1 there
exist infinitely many v (even positive density) such that

ro(P1) =...=1ry(P.) =0.

By assumption, r,(P) € r,(L), so we also have r,(Py) = 0. Hence, for infinitely
many o :

T’U(Q) = T”U(PO - Zfzpz) = T"U(PO) - Zfﬂ"v(Pz) =0.

It is well-known that for almost all v, the reduction map r, : A(F)iors — Ay(Ky)i
restricted to the torsion subgroup is an injection cf. [3], Lemma 2.13, hence @) must
be zero.

Step 2.

We assume to the contrary that the condition (5.3) does not hold, i.e., that there ex-
ists a prime [, a natural number n and o € H~ such that ¢(P;)(c) € [T} (A), fori €
1,...,r,and ¢(Py)(0) ¢ I"T;(A). Since H is a profinite abelian group the [—adic
completion H is isomorphic to a closed subgroup of H {‘02 Let 6 € H;~ be a lifting
of o defined by this isomorphism. Since T;(A)/I"T;(A)=A[l"], it follows by the defi-
nition of ¢2(15) that ¢ acts trivially at the points Z%Pl, ceey Z%Pr, and acts nontrvially
at the points ;% Py. Define the field Fi (A, 74 Py) := Fiw (7 A) Fio (7% By). Con-
sider the open set in the Galois group G(Fj (lioof\, %,0150) /F') consisting of elements
which act in the same way as ¢ := 6‘ono(%.o/1,%.oﬁo)' We claim that there exists
k > n and an element v in this open set, such that v acts as a scalar congru-
ent to 1 modulo I*, but not modulo /**1 on the Tate module Tj(A). Indeed, by
the theorem of Bogomolov [1], Cor. 1, p.702 in G~ there exists a nontrivial ho-
mothety T=als, such that a € Z;=Z/(1-1)&(1+1Z;) is congruent to 1 modulo

[. Lifting 7 to a homothety h € G(Floo(l%,of&, l%po)/F), we define the element

v o= h'"& which has the desired property, if k is sufficiently large. We use Cheb-
otarev density theorem to choose infinitely many prime ideals v in O in such a
way that Fr, is close enough to v, so Fr, acts trivially at points of A[l*] and
at points Z%Pi for 1 < ¢ < r, but acts nontrivially at all points Z%PO. Let w be
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a prime in Fj» which is over v. Since F'r, is the identity in the extension Fj./F
and A, (7)[I*] = Aw(kw)[¥] = Ay(ky)[I*] = (Z/1%)?9, reducing modulo v chosen
above, we obtain A, (k,); = (Z/1¥)?9. Tt follows by Lemma 4.5 that the elements
ro(P1), ..., ry(Py) are divisible by ", and that r,(Py) is not {"—divisible in the
group A,(k,);. Hence, the orders of r,(Py), ... ,r,(P.) are divisible by at most
[*=" and the same is true for any element of the subgroup of A, (k,); = (Z/1¥)%9
generated by these points. On the other hand, the order of r,(FPy) in A,(ky); is
divisible by at least [¥~"*1. This holds true for infinitely many prime ideals v which
we have chosen above. Hence, r,(Py) ¢ r,(L) for infinitely many v, contrary to the
assumption of the theorem. [J

6. Corollaries.

Corollary 6.1.

In every nonempty isogeny class of abelian varieties over F' there exists a variety A
for which the conclusion of Theorem 5.1 holds true, i.e., if Py, Py, ..., P. € A(F)
are points which are nontorsion over the ring O, and Py, Ps, ..., P. are linearly
idependend over O, and r,(Py) € (L) for almost all primes v of F, then Py € OL,
where L denotes the subgroup of A(F') generated by Py, Pa, ..., Py.

Proof. 1t follows by Theorem 5.1 and Proposition 3.5. [

Lemma 4.1 has two immediate corollaries. Corollary 6.2 strengthens a result of
Weston [14], Theorem. Corollary 6.3 gives a different proof of Theorem 4.1 from
the paper [11] in the case of a simple abelian variety.

Corollary 6.2.

Let A be an abelian variety defined over a number field F such that O = End A is
a commutative ring. Let L be a subgroup of the Mordell-Weil group A(F) and P €
A(F) a nontorsion point. If for almost all primes v of F we have r,(P) € r,(L),
then P € L.

Proof. Thomas Weston showed that under the assumptions we get the relation:
P € L+ A(F)tors cf. [14], Theorem. We clear the torsion ambiguity in this relation
using Lemma 4.1 in the same way as in the first step of the proof of Theorem
5.1. O

Corollary 6.3.

Fiz a rational prime [. Let A be a simple abelian variety defined over the number
field F. Let P € A(F) be a point of infinite order and let Q) € A(F)i—tor. Then there
exists a set I of primes of F of positive density, such that for v € Il the [—part of
ry(P) coincides with 7,(Q).
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Proof. The point P — @ is of infinite order. Since A is simple, the ring O ® Q is a
division algebra. It follows that P — () is nontorsion over O. By Lemma 4.1 there
exists a set of primes II, with positive denstiy, such that if v € II, then r,(P—Q) = 0
in the group A, (ky);. O

The method of the proof of Theorem 5.1 provides the following two corollar-
ies. Note that Corollary 6.5 extends Theorem 8.2 of [2] to abelian varieties with
noncommutative algebras of endomorphisms.

Corollary 6.4.
The claim of Theorem 5.1 holds true, if we replace the condition: r,(Py) € ry(L),
for almost all v, by the following: for almost all v, the order of r,(Py) divides orders

OfT’v(Pl), TU(PQ), sy TU(PT).

Proof. As in Step 1 of the proof of Theorem 5.1, assuming the condition (5.3), we
show that P € OL. Then assuming that the condition (5.3) does not hold, we show
that for infinitely many ideals v images of the points Pi,..., P, by the reduction r,
are not [¥~"+1 _divisible, but r,(P,) is divisible by I¥="*! for k > n as in Step 2
of the proof of Theorem 5.1. Hence, the order of r,(Py) does not divide the orders
of r,(P;) for those v, and for 1 <4 < r, which contradicts the assumption. [

Corollary 6.5.
Let A be an abelian variety defined over a number field F' such that O = EndgA =
EndrpA and Ti(A) is integrally semisimple for every prime l. Note that, due to
Proposition 3.5, the assumption on T;(A) holds true for at least one variety in
every nonempty isogeny class over F. Let Py, Q1, P2, Qo, ..., Pr, Q. € A(F) be
points which are nontorsion over O such that the following condition holds true.
For all sets of natural numbers {my, ma,...,m,} and for almost all primes v of
Op : if miry(P1) + mary(P) + -+ + myry(P) = 0, then myr, (P1) + mar,(Q2) +
coo+mery(Qr) = 0 in the group Ay(ky).

Then there exist endomorphisms f1, fo, ..., fr€O and torsion points Ry, Ra,
RN Rr€A<F)tors such that leflpl + R, QQZfQPQ 4+ Ro, ..., Qr:frPr + R,.

Proof. We describe the changes in the proof Theorem 5.1 which suffice to deduct
Corollary 6.5. The condition (5.3) is replaced by: Assume that for all rational
primes [, alln € N, all 0 € Hjoo and 1 < i < 7r:

(6.6) it G(P)(0) € I"Ti(A), then (Qi)(0) € I"Ti(A).

In the first step of the proof, we apply Proposition 3.6 to every pair of homomor-
phisms (ﬁ(ﬁ’j), qB(QJ), for 1 <7 < r. The first part of Step 1 of the proof of Theorem
5.1 repeats in this case, which shows that QQ; = f; P; + R; for f; € O and a torsion
point R;. Note that this time we can not remove the torsion ambiguity because
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Lemma 4.1 does not apply. In the second step of the proof, we assume that the
condition (6.6) does not hold, i.e., that there exist a prime [, a natural number n,
o € Hi~ and 1 < j < r such that ¢(P;)(c) € I"Ti(A) and ¢(Q;)(c) ¢ I"T;(A). Ob-
serve that to get a contradiction with the assumption of the corollary, it is enough
to consider the reduction maps 7, : A(F) — Ay (Ky)i—torsion- In the same way as
in Step 2 of the proof of Theorem 5.1, we find k& > n, such that for infinitely many
prime ideals v of O, the order of r,(P;) is bounded from above by I*~" while the
order of r,(Q;) is bounded from below by (¥~ "1 and A,(k,), = (Z/1*)?9. To get
the contradiction we take: m; = [¥=" and m; = I¥, for i # j. O

Remark 6.6. We conclude the paper with two naturally arising questions.

(1) Is it posssible to have integers for f;’s in the linear relation of the points in
Theorem 5.1 7

(2) Does there exist an abelian variety, defined over a number field, for which
the claim of the main theorem of Introduction fails ?
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