SL(2,7Z)-INVARIANCE AND D-INSTANTON
CONTRIBUTIONS TO THE D°R* INTERACTION

MICHAEL B. GREEN, STEPHEN D. MILLER, AND PIERRE VANHOVE

ABSTRACT. The modular invariant coefficient of the D°R?* interaction
in the low energy expansion of type IIB string theory has been conjec-
tured to be a solution of an inhomogeneous Laplace eigenvalue equa-
tion, obtained by considering the toroidal compactification of two-loop
Feynman diagrams of eleven-dimensional supergravity. In this paper
we determine its exact SL(2,Z)-invariant solution f(£2) as a function of
the complex modulus, 2 = x + iy, satisfying an appropriate moderate
growth condition as y — oo (the weak coupling limit). The solution is

2minx

presented as a Fourier series with modes fn(y)e , where the mode

coefficients, ﬁl(y) are bilinear in K-Bessel functions. Invariance un-
der SL(2,Z) requires these modes to satisfy the nontrivial boundary
condition fn(y) = O(y™?) for small y, which uniquely determines the
solution. The large-y expansion of f(€2) contains the known perturba-
tive (power-behaved) terms, together with precisely-determined expo-
nentially decreasing contributions that have the form expected of D-
instantons, anti-D-instantons and D-instanton/anti-D-instanton pairs.
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1. INTRODUCTION

The low energy expansion of string theory has a rich dependence on
the moduli, or scalar fields, that parameterize the coset space G(R)/K(R),
where G is the duality group and K its maximal compact subgroup. In this
paper we will be concerned with the simplest nontrivial example, type 11B
superstring theory in D = 10 space-time dimensions, in which G = SL(2)
and K = SO(2). Duality invariance of the theory implies that the IIB
scattering amplitudes should transform covariantly under the discrete arith-
metic subgroup, G(Z) = SL(2,Z). This implies that the coefficients of the
terms at any order in the low energy expansion of the amplitude are modular
functions, which restricts their dependence on the moduli.

Terms of sufficiently low dimension in the effective action preserve a frac-
tion of the 32 supercharges, i.e., they are BPS interactions. Such interactions
have particularly simple moduli-dependent coefficients. The lowest-order
terms that contribute to the four-particle amplitude, beyond the Einstein—
Hilbert action, are the 1-BPS and 1-BPS interactions of order R* and D*R%,
where R* denotes four powers of the Riemann curvature tensor with the six-
teen indices contracted by a standard sixteen-index tensor [1, appendix 9.A]
that will not concern us here. These interactions have coefficients given by
non-holomorphic Eisenstein series, E% (©) and E% (), respectively (we refer

to (2.3) for a definition of these series). Here 2 = x + iy is the complex
modulus and y~! = gp is the type IIB string coupling.

It is the coefficient of the next term, the :-BPS interaction DSR* that
is the subject of this paper. This interaction enters into the type IIB string
frame low energy effective action in the form

o / d"z/—det G110y~ £(Q) D6 R, (1.1)

where G119 is the ten-dimensional string frame metric, £, is the string length
scale and we have suppressed an overall numerical coefficient. The factor of
y~1 cancels when G119 is rescaled in a manner that converts the expression
to the Einstein frame, in which SL(2,Z) duality should be manifest. The
coefficient f(Q) is a modular function that was conjectured in [2] to be the

solution of an inhomogeneous Laplace eigenvalue equation’

2
(A =12) /() = - (2¢B) (), (1.2)

where Aq = y/? (8:% + 85) The basis of this conjecture was an implementa-
tion of the duality that relates M-theory compactified on a torus to type I11B
string theory compactified on a circle [5-7]. More precisely, the procedure
used in [2] was to evaluate the terms of order D% R* in two-loop four-graviton
supergravity amplitude compactified on a two-torus to nine dimensions. The

n reference [2], f(©2) was denoted by 5%7%; it has also been denoted by &£(o,1) in earlier
papers on this subject, such as [3] and [4].
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complex structure of the torus, {2, translates into the complex coupling con-
stant of the type IIB string theory while the torus volume, V), is proportional
to an inverse power of the radius of the string theory circle, rp.

However, the analysis of the solution of (1.2) in [2] was incomplete in
several respects. Although the power-behaved terms in the large-y expansion
of () were determined in [2], a general analysis of the solution including
the non power-behaved parts of the solution was missing. The objective of
this paper is to develop such an analysis. Furthermore, since (1.2) is the
simplest of the more general inhomogeneous eigenvalue equations that arise
at higher orders in the low energy expansion [8], such an analysis should be
of more general significance.

The layout of this paper is as follows. The detailed solution of (1.2) is
given in section 2. Our procedure is to consider the inhomogeneous second
order differential equations satisfied by the mode coefficients of the Fourier

series R 4
Q) = 3 fuly) e (1.3)

This requires the imposition of appropriate boundary conditions on fn(y)
at y — oo and y — 0. The y — oo condition (the weak coupling limit) is
determined by the moderate growth condition? requiring that

Q) = oy, (1.4)
which corresponds to tree-level behaviour of the D R* interaction in string

perturbation theory. The y — 0 condition (the strong coupling limit), which
is much less obvious, requires

faly) = O@y™). (1.5)
We will see that this condition follows from a subtle relation between the
weak coupling limit condition and SL(2,Z) invariance. These boundary con-
ditions pin down the solution completely (with no arbitrary undetermined
coefficients) and we are able to determine the exact solution for f,(y) for all
n.
The solution has the form

Faly) = duo fy) + an vy Kz (2nnly) (1.6)
+ Y > M, (wlnly) Ki(2n|n|y) Kj(2m|naly),

ni+ne2=n 4,5=0,1
(n1,n2) #(0,0)
where «, are constants and M7, ,,(2) are quadratic polynomials in z and
1/z. The K-Bessel functions must be replaced by an appropriate limit when
either n, ny, or no vanishes; see section 2.2 for complete details. The first
term in (1.6), which contributes only to the n = 0 mode, has the form

°In the present context, this condition means that for any yo > 0 there exists some
constant C' > 0 such that |f(z + iy)| < Cy® for all y > yo.
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f(y) = aoy® 4+ a1y + agy~", which corresponds to the sum of perturbative
contributions up to genus-two. One additional power behaved term arises
n (1.6) from the n = 0 contribution lim,_,g an\/@K%(Qﬂ\n\y) = By73,
where 3 is a constant. This corresponds to a genus-three contribution in
string perturbation theory. The coefficients ag, a1, as, and 3 were deter-
mined by somewhat different means in [2].

The large-y behaviour of the K-Bessel functions in (1.6) gives a rich
spectrum of exponentially decreasing terms that may be interpreted as D-
instanton effects in string theory®. It is particularly notable that there are
instanton/anti-instanton terms in the large-y expansion. For example, the
zero mode, ﬁ), contains a sum of an infinite series of exponentially sup-
pressed terms of the form Y 77°_ cp, e~*mmly where the coefficients c,, are
easily deduced from the large-y limit of (1.6) as we will also describe in
section 2.

In section 3 we will discuss how the information in the solution of (1.2)
makes contact with string theory. In particular, the small coupling (equiva-
lently, large-y) expansion of the solution obtained in section 2 contains a rich
array of instanton and anti-instanton contributions. One of the main new
observations in this paper is that these conspire to ensure that the strong
coupling (y — 0) limits of the Fourier modes satisfy the appropriate small-y
boundary condition. This appears somewhat analogous to the manner in
which instanton effects conspire to ensure the absence of a singularity in
three-dimensional A = 4 supersymmetric Yang—Mills theory in the work of
Seiberg-Witten [9)].

For completeness, we will present several alternative procedures for de-
termining the solution to (1.2) in three appendices. In appendix A, we will
make the SL(2,7) properties of (1.2) explicit by expressing the solution as
a series of the form

Q) = E3(Q) + ) (dety) > F(y9), (1.7)
yES

with & = {£1}\{(mL nt) € Ma(Z)NGLT(2,R)| ged(my,ny) = ged(ma, ng) =
1} (which is the set of 2 x 2 matrices with integer entries and co-prime rows
modulo an overall sign). The function F'(€2) depends only on the ratio of
the real and imaginary parts of €2, and satisfies a second order inhomoge-
neous ordinary differential equation given in (A.5). The convergence of the
sum over the images of F'(£2) under SL(2,Z) transformations is obtained
only if one imposes suitable boundary conditions in the limits z/y — 0 and

3The terminology is motivated by the fact that large-y behaviour proportional to
e2rinmtn2)y=2m(Imil+In2Dy g characteristic of contributions of D-instantons and anti-D-
instantons, although the precise form of such contributions has not been obtained by
explicit D-instanton calculations.
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x/y — 00.4 The Fourier modes of the SL(2, Z)-invariant expression (1.7) are
considered in appendix A.2, where we give an alternative expression of the
Fourier modes f,(y) of f(£2) in terms of integrals. We have not succeeded
in directly computing those integrals, but their values are of course deter-
mined by the analysis of section 2. Furthermore, the convergence properties
of these integrals again leads to the y — 0 boundary condition that was
deduced by general arguments in section 2.

In appendix B we will describe how the solution may be obtained in a
manner suggested by Schmid’s work on automorphic distributions of Eisen-
stein series [10,11]. This gives yet another formula for f,(y) in lemma B.12.
In appendix C we will comment on the solution using the Roélcke-Selberg
spectral expansion. This leads to a complete solution of (1.2), but one
which seems to be very difficult to use in practice (at least for the nonzero
Fourier modes) since it involves properties of unknown cusp forms.

2. FOURIER MODES OF THE INHOMOGENEOUS LAPLACE EQUATION

2.1. Fourier modes and boundary conditions. We will now consider
(1.2) in terms of the Fourier modes of both sides. We write the Fourier
expansion of the solution as

fla+iy) = > faly) ™™ (2.1)
nez
and the Fourier expansion of the source term as
S(e+iy) = —4(¢B3)*Es(e+iy)* = > Su(y) e (2.2)
nez

The latter are determined by the standard Fourier expansion of the non-
holomorphic Eisenstein series,

Es(af + ly) = 1 Z ys _ Z}-Ths(y) 627rinz7

1 2s
2(29) oty e i) T T
(2.3)
where the zero mode consists of two power behaved terms,
Val(s—3)C(2s—1)
Fos(y) = ¥ + : y 7, 2.4
g I Es) 24
and the non-zero modes are proportional to K-Bessel functions,
2m® o1
Fns(y) = W In[*"2 01—2s(|”|)\/§K57%(27T|”|3/): n#0 (2.5)

(see [12, §1.6]).

4We are grateful to Don Zagier for describing the solution satisfying the appropriate
boundary conditions, as well as for discussions concerning the relevance of this solution.
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Since the Laplace operator Ag commutes with all group translations, the
differential equation (1.2) can be equivalently stated as the simultaneous
differential equations

(y282 12 — 4n*n® 2)fn( ) = Sn(y)v n ez, (26)

for each Fourier mode of (2.1). We will determine the solution for each value
of n in the form

By = ) + flw), (2.7)

where f;f(y) is a particular solution to the equation and ff(y) is a solution
of the homogenous equation which is chosen in order that the solution ﬁ(y)
satisfies appropriate boundary conditions.

We now need to consider these boundary conditions. The large y (meaning
weak string coupling) growth condition (1.4) on f(x+iy) carries over to each
fourier coefficient ﬁL(y), thus

fuly) = O@P) for large y. (2.8)

In fact modes with n # 0 will be shown to decay like a constant times
Yy exp(—2m|n|y) in this limit, with values of e,, that will be discussed later.
In addition to this boundary condition on each ﬁ(y) for large y, there is
also a condition for small y which is in fact a consequence of (2.8) together
with the SL(2,Z)-invariance of f(2). It is given by the following lemma.

Lemma 2.9. If h(x + iy) is an SL(2,Z)-invariant function on the upper
half plane satisfying the large-y growth condition h(z+iy) = O(y®) for some

s > 1, then each Fourier mode h fO T+ iy)e 2" dy of h satisfies

the bound hn( ) = O(y*=*) for small y. In particular, the small-y boundary
condition for any mode number n is

faly) = O@y™?). (2.10)

Proof. Note the inequality Fs(z + iy) > y® for s > 1, which comes from
dropping all terms with ¢ # 0 in the definition (2.3). By assumption, the
large-y bound states that there is a constant C' > 0 such that |h(z + iy)| <
Cy® for any = + iy in F, the standard fundamental domain for SL(2,7Z).
It follows that |h(z + iy)| < CEs(z +iy) in F, and hence, by automorphy,
everywhere in the upper-half plane. This, together with the fact that Es(z+
iy) > 0, implies

~ 1 s 1)C(2s
Pa(y)l < 0/0 Ey(z+iy)de = C <y L VI = )c)( () 1)y1_5>.
(2.11)

Therefore En(y) O(y'=*) as y — 0. In the particular case h = f and
s = 3, the bound (1.4) then implies (2.10). O
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The conditions (2.8) and (2.10) specify a unique solution to (2.6). To be
explicit, we observe that the solution space of the corresponding homoge-
neous differential equation

(y202 — 12 —an’n®P)fH = 0 (2.12)
consists of the two-dimensional space

{72 = avylz(2minly) + by K1 (2xlnly) [a,b € CY, n # 0,

or {fI' = ay* + by ?|a,beC}, n =20,
(2.13)
where the modified Bessel functions of the third kind are defined by
Ki(y) = \J&P)e™ (2.14)
and  Ir(y) = 5= (P(-y)e’ + P(y)e™), (2.15)

with P(y) = 1 + g + ;—2 + % The unique expression (2.7) that satisfies
the boundary conditions in the two dimensional solution space to (2.6), for
n # 0, can be deduced by noting the following asymptotic behaviour of
Bessel functions. In the y — oo limit the relevant functions behave as

6—27r|n|y
VY K7/9(27|nly) iz (14’0(%))
g (2.16)
1
and /Yy I/2(27|nly) W(1+O(?))’

so only the K7/, solution satisfies the boundary condition, which means
that @ = 0 in (2.13). The coefficient b of the solution to the inhomogeneous
equation is then determined by noting the y — 0 asymptotics

15 3
\/QK7/2(27r]n\y) = 7 - 3 + O(y) (2.17)
16|n|273y3 8|n|2my

and imposing the condition (2.10) for small y, which requires the =3 term
in (2.17) to cancel with a similar term in the particular solution fF(y).
The situation for n = 0 is of course simpler and again has ¢ = 0, and b
determined by asymptotics at the origin.

In order to analyze the particular solutions of (2.6) we need first to discuss
the Fourier modes of the source term, which can be conveniently broken into
a sum of products of Fourier modes of the nonholomorphic Eisenstein series
given in (2.4) and (2.5),

Suly) = D Smm(y). (2.18)

ni,ne €Z
ni+nzs=n

The sy, n, are naturally divided into the following classes:
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e When n; =ng =0,

3 _1
soo(y) = —(2¢(3)y> +4¢(2)y 7)*. (2.19)
e When either ny =0 and no =n # 0 or ng =0 and ny = n # 0,

oa(|nl)

sno(y) = soml(y) = —8W(26(3)y2+4C(2))W

K1(27[nly)

(2.20)
where oa(|n[) = 3 g, k%, the sum being over positive divisors.
e When n; # 0 and nsy # 0,

o(|n1]) o2(|n2l)

Sni,ng (y) = —064 7T2 Yy ‘n1n2|

K1(27|nily) K1(27|n2ly) . (2.21)

In parallel with (2.18), it will be useful to express fn(y) as the sum

J/C;L(y) = Z J?nth (y) > (2’22)

ni+ne=n

where

(y2 812/ —-12- 471'2(”1 + n2)2y2) ]?711,712 (y) = Sning (y) : (2’23)

The space of solutions to this equation is again two dimensional and ob-
viously shares the same homogeneous solutions given in (2.13) with n =
ny1 + n2. There is an obvious ambiguity breaking apart (2.6) into a sum
of differential equations (2.23): a homogeneous solution could be simul-

taneously added to one ]‘A}Lhm and subtracted from another -]?"'1 ny» Where
n} + nb = n1 + ng, without affecting the overall sum (2.22). To avoid this
ambiguity, we shall insist that each ﬁllm satisfies the same growth condi-
tions as fn(y),

f, = O(y?) fory large,
Jona () (y )2 y larg (2.24)

Jfrins(y) = Oy *) for y small.

As before, such solutions are unique and have the form
Frons @) = Jarna(¥) + @ngng VY Kz ja(2mna + noly), (2.25)

for any values of ny and no, where fnplm is a particular solution satisfy-
ing the large-y bound O(y?®) and ay, n, is the coefficient of the homoge-
neous solution, which will be determined by the small-y boundary condition
frina (y) = O<y72)'

We will now determine the explicit solutions for various choices of the
integers (n1,n2). These give rise to the following sectors:

(1) ny = ng = 0;
(ii) n1 = 0,m2 # 0 or ny # 0,n2 = 0;
(iii) ning > 0;
(iv) ming < 0;
(v) ni,ng #0 and n =n; +ny = 0.
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The last case is a special case of (iv) but merits separate discussion.

2.2. Solutions of the equations in distinct sectors of n; and ns.
(i) ny = ng = 0

In this case the source term, sgo(y), is given by the power behaved terms
in (2.19) and it is easy to see that the solution to (2.23) is

R 2
YRR PR T TU BT R

Furthermore, ag = 0 and foo(y) = J/”;fo(y).
The complete zero mode, ﬁ)(y) is given by the sum of fo’o(y) and the

terms of the form fnh,m (y) that arise in case (v), and will be discussed in
section 2.3.

(ii) n1 =0,ng #0orn; #0,n2 =0

It is easy to verify by substitution that (2.23) with source term (2.20) has
a particular solution given by

fPoty) = fon)

8oa(|n
) (8ol Ko2alaly) + abo(mlnby) K 2alaly)). (227)

where the coefficients are given by

@o(z) = = (90¢(3) — n’x* +922((3)) (2.28)

and q,lljo(z) = (90¢(3) — n’nt 4 5422C(3)) . (2.29)

NM‘,_.NM—l

Note that the expression (2.27) respects the symmetries

fnl,TLQ (y) = f*nl,*TLQ (y) = fng,nl (y) . (230)
Since qu’o(y) ~ _4”2(|”|)(975£j4_904(3)) y~3 as y — 0, the coefficient a0 of the

second term in (2.25) must be taken to be

64 o2(|n|) (n®m* — 90¢(3))

_ (2.31)
135|n|2 7

ano = Qon =

in order that complete solution satisfies the boundary condition (2.24) at
the origin.



10 M.B. GREEN, S.D. MILLER, AND P. VANHOVE

Thus the full solution (2.25) given by

Faoy) = fouly) =

8
el (q2,0<wrnry>f(o<2w\n|y> + gL olalnly) K (2lnly))
L Shoalln) (2t = 90CE) o
e A LIRS
behaves as
R - 2
Fol) = fn) = 2 0n) ey

in the y — 0 limit. In the large-y limit the solution behaves as

Faoly) = Jouly) = ™2 x (an(lnl) Il 2 ¢3)yE + 0(1)),
(2.34)
where the exponential suppression has a form characteristic of a charge-n D-
instanton and the other factors are associated with the instanton measure.
This will be commented upon further in section 3.

(iii) ning > 0 and (iv) ning < 0 with ny +ng # 0

Let sgn(x) denote the sign function and H(z) = H%n(x) denote the
Heavyside function. It is easy to check that an explicit particular solu-
tion to (2.23) with source given by (2.21) is given by the bilinear sum in K
and K7 Bessel functions

P
e (Y) =
327 oa(|n1|) o2(|ne|)

STl [ 3 nal D g, (wln + naly) Ki(2m|na ly) K (2w |naly),

4,j=0,1
(2.35)
where the matrix coefficients are given by the expressions
qglom(z) = sgn(ning) (—4znineg (n% +n2 — 6ning) — 2 ning(ng — ns)?),
(2.36)
Uning(2) = (H(ning) + H(—ning) sgn(n) sgn(ni + no))

X (—nq (13n%n2 — 65n1n3 4+ nd + 19n§) + ?;—8 nina(ng —n9)), (2.37)

Gnins(2) = (H(ning) + H(—ning) sgn(ng) sgn(ni + nz))
x (—ng2 (13n3n1 — 65nanf +n3 + 19n7) + 33 nanf(ng — n1)), (2.38)
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and

qijll,ng (Z) = —dzning (n% + n% — 6711712)
_ Uniny — 94ning + 1mind + nf + nj
z

(2.39)

Imposing the small-y boundary condition on fmm (y) in (2.25) requires
128w o3 (|na|) o2 (|n2])
45n2n3|ny + n2|%

— 80nin3 — 80nin3 + 60nin3(ny — na) log(\%b), (2.40)

Unyn = sgn(ni+no) (3 +n3+15nins + 15010}

and the resulting y — 0 behaviour of (2.25) is given by

J/c;n,m (y) =

In sector (iii), where |n; +ng| = |n1]|+|n2|, the y — oo behaviour of (2.25)
has the instantonic form

8 o2 (|n1]) o2(|nal)
5n2n3y

+ 0(1). (2.41)

J?m no (y) = e—27r|n1+n2\y ( O my 1
2|n1 —|—TL2|§
6472 go(|n1]) o2(|na|) n? 4+ n2 — 6n1n _
_ 2(‘ 1|) 12(| 2|) 1 2 41 2 + O(y 1)) . (242)
3|n1n2|5 (nl +n2)
In sector (iv), where |n| = |n1 +na| < |n1| + |n2| a qualitatively new feature

is that there are an infinite number of values of n; and no having a fixed
value of n = ny +ngo. Because of this, the y — oo limit is very different from
the large-y limit for the nina > 0 case in (2.42) since the particular solu-
tion contains terms that decrease exponentially relative to BPS D-instanton
terms. Explicitly, when nins < 0 the large-y behaviour is given by

ﬁu,nz(y) = Onyng \/§K7/2(27T|n1 +n2|y)
_ g2nmbtnaby (ozumnazunzo . O(y_3)>

5
|n1nalz y?

_ e—27r\n1+n2|y Lan(l + O(yil))
2|n1 +n2‘§

Y <02(|n1|)052(|n2|) + o)
[ning|2 y2
(2.43)
The second term in either expression can be more exponentially damped
than the first term as nq or ny increases with n = ni + n9 held fixed.

(v) ni,m2 #0 withn=ny +nge =0

This is a special case of (iv) and the particular solution can now be ob-
tained by carefully considering the limit ny = —nj + € with € — 0 in (2.35).
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Superficially, the presence of the |n1 + n2|~° factor there suggests that this
limit gives a badly divergent result. However, there are massive cancela-
tions caused by properties of the K-Bessel functions and the resulting limit
simplifies to be

3271’02(’711‘)2

P ) S rt (xlnaly) Ki(2nlnaly) K (2rlnaly)

3
315 |nq| et
- (2.44)
where the coefficient matrix, 7%/, has components
0z = 2 (—51224 + 4822 — 15)
rOlz) = %) = —(1282" +122% 4 15) (2.45)
rtl(z) = 27! (5122° + 162" + 3322 — 15).
The solution of the homogeneous equation solution can also be obtained by
setting no = —n1 + € in ay, n, and considering the limit € — 0, which leads
to
: 8 a2 (ml)?
n;ir?nl Oy ng VY Krp2(27In1 +noly) = N2y (2.46)
In order to verify that the full solution
n A 8 73(|nal)?
o P 2 1
fro—m(¥) = fop—n(¥) + A ndn2yp (2.47)
satisfies the y = 0 boundary condition, we also note that for small y
P 8oa(|ni])?® | 8oa(|ml)?
P
= _ 0(1). 2.48
en®) = graps b g 0. @4

Therefore, it follows from (2.47) that at small y the full solution for the
(n1, —n1) mode is

n 8 aa(|m1)?
o SO 4 0(1), 9.49
Ina, () 5‘n1|4y + O(1) ( )
and at large y it is
> 8 oa(|nal)? | 1y<02(|nl)2 3
e () = — et o) ) 2.50
Jrr—ni (y) b2y C Py +O0(y™) (2.50)

Note that the power behaved term proportional to 1/y® was uncovered by
a different method in [2] and is interpreted as a genus-three contribution
to the amplitude in string theory perturbation theory. The exponentially
decaying term is characteristic of the contribution of a charge-(ni, —n1) D-
instanton/anti D-instanton pair.
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2.3. The complete expression for each Fourier mode, f,(y).

Having determined the expressions for ﬁn,nz (y) we shall now study the

n-th mode fn(y), which we recall was given in (2.22) as the sum of fnlm (y)
over ny and ng with ny+ng = n. We first note that by (2.26) and the explicit

formulas for each f,, n, given in section 2.2, the SL(2, Z)-invariant function

f(Q) — @Eg)(ﬁ) is O(y) for y large. Applying lemma 2.9, we conclude

that its Fourier coefficients f,,(y) — 24(33)2 Fn.3(y) obey the bound O(y~¢) for
any fixed positive real number ¢ > 0. Using formulas (2.4) and (2.5), this

gives the asymptotic statement

. 945¢(3)* o 5(In)) 1

faly) = 475 Y2 + O(y™), (2.51)

again for any fixed e > 0. In the case n =0, 0_5(|n|) should be interpreted
as ((5). The error term can be slightly improved using the Kronecker limit
formula, though this will not be important for our purposes. Note that
even though each term in (2.22) satisfies the small-y bound O(y~!), their
aggregate sum diverges like =2 in (2.51).

The constant term: The n = 0 mode is given by
foly) = fooly) + Z Jra = (V) - (2.52)
n17#0

The sum of the second term in (2.47) over all nonzero integers n; is

16 oa(m)® 16 ((6)¢(4)%¢(2) _ 4¢(6)
217‘(2y32>0 2m6 o 217T2y3 C(8) - 27y3, (253)

where we have used the Ramanujan identity

=, oi(m) oy (m VC(r—t)C(r—t)((r—t—1¢
3 atmotm _ (et oy

As a result of this and (2.26), we can write the complete solution for the
zero mode as

. 2602 o, 4CREE) A A0 §ge )

foly) = —5—v + 5yt ) 57 4
n#0

(2.55)
where the expression for ﬁf_n(y) is given in (2.44) and is exponentially
suppressed as y — oo. The behaviour as y — 0 is more subtle since the sum
in (2.22) does not commute with the small-y limit, and was given above in
(2.51). A finer asymptotic expansion can be obtained using Mellin transform

methods.
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The non-zero Fourier modes: Modes with n # 0 get contributions from
the sectors labelled (ii), (iii) and (iv), so that,

n—1
W) = Fao®) + fon®) + D Famm® + 2 > farmem @)
ny=1 ni>n+1

(2.56)
It is first important to verify that the last sum is convergent. This involves an
estimate of the behaviour of its terms as |n1| — oo, which arises in case (iv).
The K;(2m|n1|y)K;(2m|n — nily) terms in the n; sum (coming from (2.35)
are exponentially suppressed as |n;| gets large. Furthermore, for fixed n, an
analysis of formula (2.40) shows that au, n—n, = O(n;®) as n; — co. Thus
the terms coming from the homogeneous solutions v, n,/yK7/2(27m|n1 +
naly) also converge because the sum Y apy nop, is finite.
The leading behaviour in the weak coupling limit ¥y — oo has the form

R = e (s @y o) (257)

which is dominated by the behaviour of fn,O and }B,n- The behaviour for
small y was given in (2.51). It is also possible to study these asymptotics
using the explicit formulas for J?m,nz given in section 2.2, or from an analysis
of (A.44) (which gives an alternative description of the terms in (2.56)). See
also formula (B.13), which gives yet another formula for fn(y)

3. DISCUSSION AND CONNECTIONS WITH STRING THEORY

The motivation for considering the differential equation (1.2) from [2]
was based on considering the compactification of the two-loop Feynman
diagrams of the four-graviton amplitude of eleven-dimensional supergravity
on T2, in the zero-volume limit, V — 0. The first non-leading term in the
low-energy expansion of this amplitude was argued in [2] to give the effective
type IIB string theory interaction f(€2) DSR*, with f(f2) satisfying (1.2). In
this paper we have determined the exact solution for all the Fourier modes
fn(y) from (1.3).

The zero mode fy(y) (2.55) possesses four terms that are power behaved
in y that were originally discussed in detail in [2]. The coefficients of these
powers are rational numbers multiplying products of zeta values. The values
of these coeflicients should agree with explicit perturbative string theory cal-
culations up to genus three. The genus zero and genus one string results were
known to agree at the time of publication of [2]. The genus-two contribution
has been related [13] to the integral of an invariant introduced in [14, 15],
which has also recently been evaluated [16] and agrees with the genus-two
term (the y~! term in (2.55)). The genus-three part (the y—3 contribution
in (2.55)) agrees precisely with the prediction for that term in the type IIA
theory, that arises from the expansion of the one-loop eleven-dimensional
supergravity amplitude compactified on a circle [17]. Furthermore, a recent
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genus-three string theory calculation [18] also precisely reproduces this 33

contribution. R

In solving for the modes f,(y), it was important to understand the nature
of the boundary conditions at y = oo and y = 0. Although the condition
at large y (the weak coupling regime) is simply that no term can be more
singular than y3, which is the power corresponding to tree-level perturbation
theory, the condition at y = 0 is more subtle. We showed in lemma 2.9 that
the necessary condition is that ﬁb(y) = O(y~?) in the limit y — 0, which fol-
lows as consequence of SL(2,Z) invariance together with the y — oo bound,
fA‘n(y) = O(y?). This is a highly non-trivial condition, in that it implies
that the infinite series of terms that manifests itself as a series of exponen-
tially decreasing D-instanton and anti D-instanton contributions at large v,
simultaneously conspires to cancel a singular term in fA‘n(y) at small y. This
bears some similarity to the behaviour of the metric on the Coulomb branch
of three-dimensional N/ = 4 supersymmetric SU(2) Yang-Mills theory with
no flavour fields in Seiberg-Witten theory [9] (see also [19]). In that case,
the expansion of the moduli space metric at large values of the Higgs field
also gets contributions from an infinite series of exponentially suppressed
terms [20], but the solution can be uniquely determined by requiring the
Coulomb branch metric to be non-singular at the origin®.

The expressions for the Fourier modes contain detailed information con-
cerning the instanton-like contributions that decrease exponentially at large
y. Such terms that have the form expected of contributions arising from D-
instantons, anti D-instantons and D-instanton/anti D-instanton pairs. This
is explicit in the large-y limits given in (2.44) for the terms contributing to

]?O(y) and in (2.34), (2.42) and (2.43) for the terms contributing to J?n(y)
In particular, (2.50) shows that the constant term, j%(y), has an infinite
series of exponentially decreasing terms in the large-y limit, which have
exponential factors e 4"1"l¥ that have the form which would arise from a
D-instanton/anti D-instanton pair with charges n and —n. Furthermore,
the measure contains the square of the divisor sum oy(|n|),
o2(In])? 1

e—4minly 5.

mp g (3.1)
Since the measure for a single charge-n D-instanton contains a single power
of a divisor sum, this is another indication that terms of this form in
fA’o(y) might be identified with D-instanton/anti D-instanton pairs. Such
instanton/anti-instanton terms should break all supersymmetries, giving rise

to extra fermionic zero modes. Soaking these up should ought to account

5Tt has been suggested that the series of exponentially suppressed terms might be
interpreted as instanton/anti-instanton contributions [21]. However, the identification of
the radial coordinate in the Atiyah-Hitchin metric with the corresponding scalar vacuum
expectation value in the explicit semi-classical solution is ambiguous. Owing to the high
degree of supersymmetry in our case, it is not possible to redefine the modular parameter
Q without losing SL(2,Z) invariance, so this ambiguity is not present.
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for the fact that they are suppressed by the factor of 1/y2 in (3.1), although
we have not determined such factors in the measure from an explicit D-
instanton calculation. N R

The exponentially suppressed terms that contribute to f,, 0 and fo, with
n # 0 might be interpreted as contributions of single charge-n D-instantons
or charge-n anti D-instantons with a measure that can be read off from (2.34),

e 2minly (4‘72<‘"|) C(3)y'/? + 0(1)) 7 (3.2)

‘n‘5/2

5/2 yelative to (3.1). Likewise, the large-y contribution

which has a factor of y
to fn(y) with n = n; + ny and sign(n;) = sign(ng), obtained in (2.42) has

the form
e~ 2y 5o (1ng)) o (|ne]) x (function of ni,ng), (3.3)

which has a power of y°.

It would be desirable to understand the particular powers of y in the
prefactors of (3.1), (3.2) and (3.3) in terms of the zero modes associated with
supersymmetry breaking, but we have not understood this in a systematic
manner.

In any case, given the non-standard application of M-theory /string theory
duality that motivated (1.2), we would like to determine whether this equa-
tion accurately describes the coefficient of the D®R* interaction beyond the
checks outlined above. Further motivation for this equation and its general-
isation to higher-rank duality groups was obtained in [22-24] in considering
properties of the low energy effective action of type II string theory in lower
dimensions obtained by toroidal compactification to dimension D. In these
cases the coefficient of the D-dimensional DSR* interaction, f(P), is a func-
tion of the moduli associated with the E11_p(Z) duality group®. Equation
(1.2) then generalises to an inhomogeneous Laplace eigenvalue equation [3]

(A(D) _ 604 DD_)(2D - 6>> FO) = _ (5

—

D)

2
> +120((3)dp-6,0, (3.4)

Njw

where AP)is the laplacian on the homogeneous space and ES(D) is the max-

imal parabolic Langlands Eisenstein series attached to the parabolic associ-
ated with the first node of the Dynkin diagram (which is the coefficient of
the R* interaction in D dimensions). The constant terms in various para-
bolic subgroups were analysed to a certain extent for the cases with D > 6
in [22,23] and for D = 3 in [3], and agreed with expectations based on pertur-
bative string theory calculations. This has also been extended to the cases
of D =1 and 2 in [25]. The analysis of the non-zero Fourier modes presents
new challenges that extends the considerations of [4], which considered the
maximal parabolic Langlands Eisenstein series that arise as coefficients of
the R* and D*R* interactions. The four dimensional version of (3.4) has

6Recall that the duality groups of rank < 8 are specific real split forms of SL(2,Z),
SL(3,72) x SL(2,Z), SL(5,%), Spin(5,5,2), E¢(Z), E7(Z), Es(Z).
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also received support from consideration of the soft scalar limits of A" = 8
supergravity amplitudes in four dimensions [26] .

Since the natural region of validity of perturbative supergravity is V > %,
it is not obvious why the M-theory argument that leads to f(€2) should
be a good approximation to the exact answer. However, in common with
analogous duality arguments for BPS quantities, the fact that the D®R* in-
teraction is 1-BPS seems to justify what would otherwise be an outrageous
continuation in V. In considering higher order interactions in the low energy
expansion there is no reason, based on our current understanding, for ex-
pecting such a continuation from large to small V to be valid. Nevertheless,
it might be of interest to analyze the structure of the compactified Feynman
diagrams of eleven-dimensional supergravity further, if only to find inspi-
ration for the possible mathematical structure of higher order terms. The
paper [8] contains a detailed discussion of higher order corrections to the
low energy expansion, that arise by expanding the two-loop four-graviton
amplitude of eleven-dimensional supergravity to higher orders beyond the
DSR* interaction studied in this paper. This does not yield any contribu-
tions that survive the rg — oo limit to D = 10 dimensions, but does give
contributions that may be useful at finite values of rp (i.e., in the D =9
type IIB theory). Even though the analysis in [8] is not the complete story,
the equations that emerge from the higher order expansion of the two-loop
amplitude suggest that (1.2) is a specially simple example of a more general
set of equations for the higher-order coefficients.
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APPENDICES: OTHER METHODS TO SOLVE THE INHOMOGENEOUS
LAPLACE EQUATION (1.2)

In the following three appendices we will briefly describe other approaches
to constructing solutions to (1.2). None of them is completely satisfactory,
though each reveals different information about the solution; further variants
of these might be useful in studying the DS R* coefficient in lower dimensions
(equivalently, for higher rank groups).
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APPENDIX A. THE SOLUTION AS A POINCARE SERIES

The procedure used to determine the solutions for ]?n(y) in section 2
has the drawback that the modularity properties of the complete solution
f(€) in (1.3) are obscured in the mode-by-mode analysis. In particular, the
values of the coefficients oy, n, in (2.25) were determined only by invoking
a boundary condition at y = 0. This appendix presents a solution for f(£2)
in terms of a Poincaré series that makes both the SL(2,Z)-invariance and
growth conditions of each fmm (y) manifest. The results of this section
should be viewed as complementary to those of section 2, where the modes
were expressed very explicitly in terms of products of K-Bessel functions
(whereas here they will be given in terms of integrals).

A.1. Sum over translates of one-dimensional solution. Squaring the
definition of Es/ given in (2.3), we write

Es(Q)? = > Im(mQ)*?Im (120)*?
Y1,72 €EToc\I'
= E3(Q) + > Im(mQ)¥?Im (12Q)%? (A1)
Y17#Y2 €T \I'
= B3(Q) + ) (dety)*T(h9),
yeS

Too = {(%' £1) € SL(2,2)}, S = {£1\{(Tmi L) €

where I' = SL(2,Z),
2,R)| ged(mq,n1) = ged(me, ne) = 1}, and

MQ(Z) N GLJr(

TQ) = T(e+iy) = o%), o) = (*+ 1)/, (A.2)
Indeed, this can easily be seen using the calculations
RevQ  ning +maniz + minow + m1m2(aj2 + y2) (A.3)
Im~Q y dety '

and

((nins + moniz + mingx + mima(2* + y?))? + (y det 7)2)_3/2
- (\mlz + n1|2\m2z + ng\Q)_S/Q . (A4

We shall use the fact that 7 (z + iy) only depends on the single parameter
3 to construct a solution to (1.2) from (A.1).
Consider the differential equation

<d <(1 +u?) dd> - 12> hw) = —o(u), (A5)

du U

where the differential operator on the lefthand side corresponds to A — 12
acting on functions of the ratio u = %
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Lemma A.6. The function”

7+ 44u® + 40ut 16 (4 5 9 1 )
— — | = +5u* +u(3+5u”) tan™ " (u A7
A — 3 (3+5u?) tan ! (w) ) (A7)

3
is the unique smooth, even function satisfying both (A.5) and the decay con-
dition h(u) ~ ﬁ as u — £oo. It furthermore extends to a holomorphic
function on C — {iv||v| > 1}, with jump discontinuities along these branch

cuts given by

h(u) =

lim A(u+iv) — lim h(u+iv) =

u—0+ u—0-
2 (v (502 —3) — ATy > A8
% Sv (51}2 — 3) + 740”4;§f“f+7 , v<—1. .
With h(u) as defined in (A.7), define
FQ) = Fla+iy) = 4¢E3)°h(E) (A.9)

so that (A — 12)F = —4¢(3)?>T. Appealing to the expression (A.1), the
general solution to (1.2) among automorphic functions having polynomial
growth has the form

£ = 2O E0) + Y (dety) PF(Q) + aEi(Q), a € C. (A.10)
yES

Note that A is bounded by a constant multiple of o, and so F' is bounded
by a constant multiple of 7. Thus the absolute convergence of the sum
(A.10) follows from that of (A.1). This argument furthermore shows that
the v-sum is O(y?) as y — oo; since F3((2) satisfies the same bound, this
implies the coefficient

a = 0 (A.11)

in order for (1.4) to hold. Thus (A.10) simplifies to

2
Q) = L EQ) + Y (dety) P F(HQ) (A.12)
yeES
as a result.
Consider the function

¢((mhns), Q) = [many —numo| PF(pigint) . (A.13)

7 The first term of the solution (A.7) (which solves (A.5)) was essentially obtained
in [2], but in that reference the second term (which solves the homogeneous version of
(A.5)) was instead a function of the two variables x and y rather than only of their
ratio. The combination of terms in (A.7), which was pointed out to us by Don Zagier,
has asymptotic behaviour that guarantees convergence of the sums that arise in (A.10),
whereas the expression used in [2] leads to a divergent result.
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For Q) fixed, it has the well-defined limit 24(33)2 L along the singular

[m2Q+no |6
set ming — nyme = 0, which we shall take as its defining value there. Thus

(A.12) can be rewritten as
f©) = > o((mm) @), (A4
(m1,n1),(ma,n2) € (ZXZ)' |+
where
(Zx7)/£ = {(0,1)}u{(c,d)]|c>0,gcd(c,d) =1}. (A.15)

We shall later derive expressions for the Fourier modes of (A.12) in terms
of the Fourier transform of h,

TL(T) = /h(u) e 2T gy,
R
4 (37%*r? 4 5)

10
= 2 <7r2r2 —|—1) Ko(2m|r|) + TR Ki(2m|r|) (A16)
32 '
- ————K:2xr|), r #0,
el 2

~ 1

h(0) = =.

(0) 5

This computation may be performed in a variety of ways: shifting the contour
of integration and wrapping around the the branch cuts, using properties
(A.8); explicitly computing the Fourier transform h(u)(1 + u?)~* for Re s
large, and then analytically continuing to s = 0; or taking the Fourier trans-
form of the differential equation (A.5), and explicitly solving the resulting
differential equation subject to the constraints that h is continuous and has
rapid decay.

A.2. Fourier coefficients via a term-by-term analysis. Returning to
the expression (A.14), we break the sum into pieces defined by

f©) = 229 + =% + 2MQ) + 2H(9), (A.17)
where ,
200) = o390 = X, (A18)
SN = Y > ()9, (A.19)
m2 =1ged(n2,ma) =1
S = ) > e (")), (A.20)
m1 =1ged(n1,m1)=1
and

U = > > > T e((mm),9). (A2l

m1=1ged(n1,m1)=1m2=1gcd(na2,ma) =1
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The contribution of these terms to the Fourier modes, ﬁl(y), will be de-
scribed in the rest of this appendix. In sections A.2.1 and A.2.2 we will
derive Fourier expansions

Q) = 2@ = ) EmEN(), (A.22)
nez
and
211 Z Z 27rzn1+n2x nl,ng(y) (A23)
nyE€EZ n2€Z

respectively. The Fourier modes S0 (y) and S (y) are related to the fnlm
of section 2.1 by the formulas

fooly) = 2°0Q) + 250'(y) + Show),
Faoy) = Jouly) = S3y) + Epply), n#0, (A24)
and  fon(y) = L1y, ning # 0.

Writing (2.26) as foo(y) = fa0(v) + Foo (v) + Fog (v), where f37(y) is pro-
portional to y°~2", we see that

2
fw) = o) = X (A.25)

A.2.1. Poisson summation for X' and L0, We will now apply Poisson
summation to (A.19) to put it in the form (A.25). First, reindexing the sum
shows

yol@Q) = Z Z Z & ((my motrms ) Q)

m2=1ny € (Z/m2Z)* T €L

= Z Z Z *3 ((maz + ng + rma + imay) ™) (A.26)
my

ma2=1ng € (Z/maZ)* €L

_ Z Z Z i <m2x +/r:/22y+ T’m2> .

me=1ny € (Z/maZ)* T€L

The sum over ns ranges over all residue classes of integers modulo mo that
are coprime to meo. Applying Poisson summation to the inner sum,

Zh(m2x+n2+rm2> Z/ 2mmh(m2x+n2+rm2> ir

rez m2y nez
mozxr+ng ~
= Z T ey h(ny), (A.27)
nez
we obtain

00 2 n2 )
EO,I(Q) _ Z 4C(§) Z Z 2min( x+m2 yh(ny) (A.QS)
mo=1

m
2 nye(Z/maZ)* neZ
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The ns-sum can be written in terms of the Ramanujan sum

m2 . no

my(n) = Y Mma", (A.29)
(m;?nzggzl
which satisfies the identity
Cm2(n) — Ul_r(‘n‘) (A30)
mj ¢(r)

mo=1
When applied in the r = 3 case to (A.28), this results in the expression
SOHQ) = BYQ) = 4¢B) Y o s(nl)yh(ng),  (A31)
nez

which has the form (A.25). Formula (A.30) also applies when n = 0 provided
we use the convention that o_2(0) = ((2). Since h(0) = 1/6 by (A.16), it
follows that the n = 0 term in (A.31) gives the total contribution

S0y + S = Ac@¢®y = £ (A.32)

to ﬁ),o(y), which is the second term on the right hand side of (2.26). Fur-
thermore,

S0My) = 4¢(3)oa(nl)yh(ny) for n # 0. (A.33)

A.2.2. Poisson summation for Y%, In order to produce the Fourier se-
ries (A.23), we perform a double Poisson summation on the definition of
Y11 in (A.21) to obtain the formula

(0)

=2 2 22 2 2 eltunim)9
m1=1ny € (Z/mZ)* r1 €Zm2=1ny € (Z/maZ)* T2€Z

o0

= 77'11 ni+rimi 727ri(ﬁ1r1+ﬁ2r2)
o Z /2 mo n2+r2m2) ’Q) € dridrs .

mi,mz2=1 ny € Z/mlz R

ng € (Z/mQZ
f1,M2 €Z
(A.34)
The integral is given by
—2mi(nyri+nar
/ F(ml(x+liy)+(n1+rlm1)) ‘ e ) d'/"l dT'Z
R? ma(z+iy)+(n2+rams) Im1(ng + roma) — ma(ng +r1mq)[3

(A.35)
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With the change of variables rq — ri —x— 2~ r9 > ro —x — @ this integral
becomes

627ri ((fn +h2)x+n1 7+n2 %)

/ [mima(rg — )| 7% F(Ri s :;:Z;) 2w R ey

R R DT

ro+41

/ Iry — 11|78 P11 ¢ 2mGaurita20m) gy dpy | (A.36)

after changing variables 7 — yr; and ro — yre. After applying (A.30)
twice, we can write (A.34) in the form (A.23) with mode coefficients given
by

. 4 R ) o
Sinan W) = ;0—2(\n1|)0—2(!n2\)1(n1,n2;y) (A.37)
where
r1+1
I(hy,hosy) = ! 5 / %“)3 e~ 2milmyritizyra) qr dry . (A.38)
4¢(3)? Jr2 r2 — 1
Using '
F(Od) = 4¢(3)2h(mrztl) (A.39)
this can be rewritten as
h(far2tl) o X
I(ta, hoyy) = / 2L e 2Tyt ey iy (A.40)
r2 |12 — 71|

Lemma A.41. The integral (A.40) is absolutely convergent. Consequently,
Z(Ry, f2;y) is bounded in y and the Fourier modes (A.37) are O(y~1).

Proof. Since the exponential has modulus 1 and h > 0, it suffices to show
the convergence of Z(0,0;y). Recalling that h(u) is bounded by a constant
multiple of o(u) = (u? + 1)~3/2 this reduces to the convergence of the
integral

r2—T1

/ ry — 1|73 (14 (2t =32 gy dry =

/2(1 + )32 (1423 dry dry, (A42)
R
which is of course finite. O

In fact, we know from (A.37) and (2.26) that

Seoly) = fc<> 1(0,0;y) = fagly) = ——, (A.43)

so that Z(0,0;y) = 2 / 5 (this can also be verified by numerical integration).
Equations (A.32)-(A.33) show that S (y) = O(y) for small y, and so
(A.24) and lemma A.41 imply that the modes f,, », are at most O(1/y)
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for small values of y. Nevertheless, the y — 0 limit of this expression is
more singular than 1/y because the n-th Fourier coefficient f,(y) includes
the sum

Yo Funemy) = 2 Y ol o—a(ln — m|) I(ni,n —nisy).

n1 #0,n Y ny1 #0,n
(A.44)

Indeed, in (2.51) the y — 0 behaviour of this expression was shown to be
proportional to a constant multiple of 1/y2.

APPENDIX B. POINCARE SERIES AND EISENSTEIN AUTOMORPHIC
DISTRIBUTIONS

We now return to the sum over v in (A.12),

S (det 1) BF (), (B.1)

vyES

where we recall that S = {£1}\{(i ni) € Ma(Z)NGLT(2,R)| ged(my,ny) =
ged(ma, n2) = 1}. We begin with some comments about the structure of the
set S. Suppose [mn] € Z? is a vector with d = ged(m,n). Then d divides
[mnl]y for any integral 2 x 2 matrix y. Consequently, if v € SL(2,Z) then

ged([mn]) = ged([mn]y). If v has the form v = (7"2 b) € SL(2,Z) and

mo d
(mins) €S, then (mint)y = (! 7?) for some relatively prime integers
p1,p2 € Z, where pi = ming — nimsg > 0. Thus

S = (G )vIp1>0,p2 € (Z/pZ)", v €T} (B.2)

parameterizes elements of S via I' = PSL(2,Z).
In light of (B.2), (B.1) becomes

> (dety) PP (1) Z > S pPF((RE)9).

veS p1=1py € (Z/p1Z)* v € PSL(2,Z)
(B.3)

By virtue of its definition in (A.9), F ((% V) Q) = F(p1Q) = F(2) and so
(B.3) can be written as

> Y Y e ((imp)e)

p1=1ps€(Z/p1Z)* v€ PSL(2,Z)

= > o’ D> FE+y)= ) o), (B4

%e@ v €D\ vy €T\

where

Q) = Y pPF(E+9). (B.5)
ﬁf €Q
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Thus (B.4) writes the sum (B.1) as a sum of left translates of ® over I'oo\T',
the type of the sum that the terminology “Poincaré series” is traditionally
reserved for.

A standard double coset decomposition for I's,\I'/T's, and application of
Poisson summation (see [27,28]) to the last expression in (B.4) gives

D (dety)PF(4Q) = ®(Q) +

yeS
Y% Y e / I B(S — ) dr. (B.6)

c=1de(Z/cZ)* nE€Z

To compute this integral, we use the following Fourier expansion of ®:

Lemma B.7. In terms of the function h from (A.9),

Ble+iy) = 4¢3) Y o-a(ln)) ™ yh(ny), (B.8)
nez

where h(-) was computed in (A.16) and o_y(|n|) = 2 djn d=2 is to be inter-
preted as ((2) when n = 0.

Proof. Writing the rationals in (B.5) as an integer plus a rational in the
interval [0,1) we have that

r+iy) = Y pt Y, Y F(B4ztn+iy)

p1=1 p2 € (Z/p1Z)* nE€L
[o.¢]

SIS AED SEND O At TR SRR
p1=1 p2 €(Z/pZ)*n€EL

— Z p? Z Z 2mn(x+ /R (u + iy) e 2 dy,

pi=1  pye(Z/pr1Z)*n€L

00
_ § :627rmr § :pIS § : 627rmpg/p1

nezZ p1=1 p2 € (Z/p12)*
x 4((3)* / h(%) e™2mnv dy
R Y
(B.9)
after applying Poisson summation and (A.9). The lemma now follows from
(A.30). O

After inserting (B.8), the integral in (B.6) becomes

—oming it miGER Ty oy o my
4¢(3) " € Z o_a(Iml)e Y 22 147) h(c2(r2+y2)) dr.
meZ

(B.10)
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In terms of the Kloosterman sum S(a, b;c) := 3", (z/ez)+ €((az + br~1) /c),
the second term on the righthand side of (B.6) equals

163 Y. Y T o_y(|ml) S(m,nse)

c=1lmmneZ

—27ri(m’+%)
X / e 2 (r?+y?) y
R

hagsm) dr. (B.11)

(r?+y?) r2+y?)

The Fourier coefficient of the Fourier mode x — e(nx) of (B.1) can thus be
read off from this and (B.6); combining with (A.12) proves the following

Lemma B.12. The Fourier modes fn(y) from (1.3) are given as the sums

o~ 2 o~
Fay) = ZEEF0) + 4¢3) oa(n)) yhiny) +
—27mir n+$ N
4¢(3) Z 0_2(]m|)S(m,n;c)/ € ( 62(T2+y2))02(r2z’l+y2) h <c2(rnzliy2)> dr,
c>0 R
meZ

(B.13)
where Fp, s(y) is defined in (2.4)-(2.5).

Remark: The function ®(z + iy) can be interpreted in terms of Schmid’s
automorphic Eisenstein distribution as

Batiy) = 4C6) [ nurah(E)du (B.14)
where

() = Y g by = D ou(lnf) ™™ (B.15)

PgEZL nez
q>0

is the automorphic distribution corresponding to the Eisenstein series E, 1
(see [11, §4]). It can be alternatively be thought of as a distributional limit
of values of E, 11 (x+1iy) asy — 0 [10]. Integrals such as (B.14) represent the
embedding of a vectors (playing the role of h) in the line model of a principal
series representation of SL(2,R), into spaces of automorphic functions. Thus
® can itself be naturally viewed as an automorphic function. Furthermore,
identity (B.8) is an immediate consequence of (B.15).

APPENDIX C. SOLUTION AS EXPRESSED VIA SPECTRAL THEORY

We shall now present the spectral expansion of the solution f to (1.2).
Though we shall not directly link it to the expression (B.13), there is in fact
a famous connection between Kloosterman sums and the spectral theory of
automorphic forms (see, for example, [27,29]).

A significant complication here is that the source term —(2¢ (3)E%)2 in

(1.2) is not integrable over the automorphic quotient, hence a divergent
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contribution must be subtracted from it. However, it is striking that the
corresponding source term is integrable for D5, Eg, E7, and Eg [3,4].
Consider L?(I'\H), with the inner product

(fi, f2) = /F\H fi(z +1iy) folz +iy) dzgy : (C.1)

The Rolcke-Selberg spectral expansion theorem states that any function
H € L*(T'\H) can be expanded as

o

HG) = )6 + g [ HE)E@), (€2
j=0 e s=

where the ¢; are an orthonormal basis for the discrete spectrum satisfying

(A+Xj)¢p; =0 for some eigenvalue A\; > 0 (¢ is the constant \/g , whereas

the ¢; for j > 1 are Maass cusp forms).
Consider the inhomogeneous differential equation

A—12)F = —F2,,, F automorphic under I, C.3
3/2

which differs from (1.2) by the constant multiple 4¢(3)2. The polynomially-
bounded solutions to its homogeneous analog

(A—12)F = 0 (C.4)

which are automorphic under I' are all scalar multiples of the Eisenstein se-
ries Ey, which we recall grows like y* as y — 0o. Because of the growth con-
dition (1.4), the solution f to (1.2) is 4¢(3)? times the unique I'-automorphic
solution F(z + iy) to (C.3) which grows by at most O(y?) in the cusp.

For large values of y, the Eisenstein series Fs(z + iy) is asymptotic to its

constant term Fo,o(y) = y*+e(2s—1)y'~* given in (2.4), where c(s) = g5

and £(s) = m~%/2T'(s/2)¢(s). Thus the righthand side of (C.3) is asymptotic
to —y2 —2¢(2)y —c(2)?y~! as y — oo. The automorphic function Ey, defined
as the constant term in the Laurent expansion

B, = 7r(53—1) + El + (3 - 1) El + O((S - 1)2) (05)
of s at s = 1, is asymptotic to y as y — oco. Therefore
H = —Ej, + B3 + 2¢(2)E1 = O(log(y)) (C.6)

and is in particular in L?(T'\H). Applying the spectral expansion (C.2), we
see that
> (H, ¢, 1 H, FE,
(A1) = — S ) $;(Q) + / B poyas.
]:0AJ+12 47TZ Res:1/2 8(8—1)—12
(C.7)
Since H is square integrable and since the coefficients on the righthand

side of (C.7) are each smaller than their respective counterparts in (C.2),
Parseval’s theorem shows that (A — 12)7'H is also in L2(T'\H).
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Applying A to both sides of (C.5) and comparing constant terms in s at
s = 1 results in the differential equation AFE; = % Since AE3 = 6FE3, we
conclude

o0

F = LBE5(Q) +2c2) (L5 E1(Q) Z

1 (H, Es)
473 Re s=1/2 S(S — 1) — 12

quj
)\+12

Es(Q)ds (C.8)

is the unique solution to (C.3) which is O(y?) for large y.

The solution (C.8) can be explicated by computing the inner products
(H,¢;) and (H, E,). For j > 1 the former are more complicated and can be
computed in terms the L-functions of the Maass forms ¢; using the Rankin-
Selberg unfolding method. However, since the Maass forms themselves are
quite mysterious, this is of dubious direct utility. The Maass forms are char-
acterized by having zero constant term. This indicates that the nonconstant
Fourier modes of the solution to (1.2) are difficult to directly compute using
the spectral expansion.

At the same time, the inner products (H, ¢o) and (H, E;) can be computed
very explicitly, and together give an alternative derivation of the constant
Fourier mode (2.55) of the solution to (1.2). The rest of this appendix
indicates how these computations are carried out.

Let Fo = {z + iy|lz € [~ %, 2] 2?2 +y? > 1,y < C} denote the points
in the standard fundamental domain F for SL(2 Z) having imaginary part
bounded by C. Let A® be the truncation operator on automorphic functions
which subtracts the constant term at points in the I'-translates of F — F¢:

. _ o(x + iy) o(u+ iy)du, e F—-Fc,
WCoarn) = { Srrm=losurindu v e FoFe. oy

(this formula defines A“¢ on the fundamental domain F; its value elsewhere
is determined by automorphy).
The Maass-Selberg relations state that

Csﬁ-@—l Csi— 82 082 S1
ACE,  E,) = ———+¢(253—1 251 — 1
( 51 Esy) 81+571+c( 52 )81* 5 (251 )2751
1—s1—352
+ (251 — 1)e(255— 1) ——— . (C.10)
1 — 81 — 89

Since A®FE,, decays rapidly in the cusp, this inner product differs from
f]__c Eleisz% by an additive term of size o(1) as C' — oo.

Since H is square-integrable its inner product with Ej/5,; converges,
though the inner products of its three constituent terms in (C.6) do not.
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Write

(H,Eyj244) = — lim E%(Q)E%_it(ﬂ) ded gy

p)
C—oo Jr, 2 Y

. dx dy . r dx dy
Jim . E3()E;_;,(Q) Tz" + 2¢(2) Jim - Ey(Q) By, () =27
(C.11)

Since the compensating o(1) terms disappear in the C' — oo limit, E; J2—it
can be replaced with A¢E; /2—it in each of the above integrals. The second
integral on the righthand side can then be directly handled by (C.10), while
the third integral requires simply taking the constant term in the Laurent
expansion of both sides at so = 1.

However, the integral involving E% (2)2Es(2) is more subtle since standard

regularization techniques (such as Zagier’s method [30]) do not directly ap-
ply. This is because if we unfold the fastest growing series, Es, there still
2

remains the product Es E1_,,, which has size on the order of y?. Zagier’s
2 2

method first truncates Es by subtracting a term of size y*/2, and what re-
2

mains decays only like y~1/2; this is not enough to get integrability. Instead

we play a similar game as in (C.6) by using other Eisenstein series which
match those growth rates, and rewrite the first integral on the righthand
side of (C.11) as

/ Eg/z(Q)E%—it(Q) digy =

E3/2(Q)[E3/2(Q)E%,-t(9) — By it() — ¢(5 — it) By 11(Q))] dedy

Feo ! v
+ Es(Q) By (Q) %dv 4 o(3 — it) Es3/5(82) Ea4it(€2) drdy
Fc 2 v Fc v
(C.12)

The advantage of this rearrangement is that the bracketed expression on
the righthand side grows at most like O(logy), and so Zagier’s truncation
applies. The last two integrals can be estimated using the Maass-Selberg
relations (C.10).

Finally, the inner product (H, ¢¢) can be also computed using these tech-
niques (using the fact it the residue of Eg at s = 1 is a constant function),
though an important simplification occurs because ¢q is constant: namely,

the truncated integral of Eg /2¢0 = ?Eg /2E3/5 can be computed using the
Maass-Selberg relations (C.10).



30

(1]

2]

3]

(4]

(10]

(11]

(12]
(13]
(14]
(15]

[16]
(17]

18]

[19]

20]

(21]

M.B. GREEN, S.D. MILLER, AND P. VANHOVE

REFERENCES

M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 2: Loop Am-
plitudes, Anomalies And Phenomenology,” Cambridge, Uk: Univ. Pr. ( 1987) 596 P.
( Cambridge Monographs On Mathematical Physics)x

M.B. Green and P. Vanhove, Duality and higher derivative terms in M theory, JHEP
0601 (2006) 093 [arXiv:hep-th/0510027).

M. B. Green, S. D. Miller, J. G. Russo and P. Vanhove, “Eisenstein Series for Higher-
Rank Groups and String Theory Amplitudes,” Commun. Num. Theor. Phys. 4 (2010)
551 [arXiv:1004.0163 [hep-th]].

M.B. Green, S.D. Miller, and P. Vanhove, “Small representations, string instantons,
and Fourier modes of Eisenstein series” (with an appendix by D. Ciubotaru and P.
Trapa), to appear in the Journal of Number Theory volume in memory of Stephen
Rallis, [hep-th/1111.2983]

E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B 443 (1995)
85 [hep-th/9503124].

J. H. Schwarz, “An SL(2,Z) multiplet of type IIB superstrings,” Phys. Lett. B 360
(1995) 13 [Erratum-ibid. B 364 (1995) 252] [hep-th/9508143].

P. S. Aspinwall, “Some relationships between dualities in string theory,” Nucl. Phys.
Proc. Suppl. 46 (1996) 30 [hep-th/9508154].

M. B. Green, J. G. Russo and P. Vanhove, “Modular properties of two-loop max-
imal supergravity and connections with string theory,” JHEP 0807 (2008) 126
[arXiv:0807.0389 [hep-th]].

N. Seiberg and E. Witten, “Gauge Dynamics and Compactification to Three-
Dimensions,” In *Saclay 1996, The mathematical beauty of physics* 333-366 [hep-
th/9607163].

W. Schmid, “Automorphic distributions for SL(2,R)”, in: Confrence Moshé Flato
1999, Quantization, Deformations and Symmetries, volume 1, Mathematical Physics
Studies 21 (2000), Kluwer Academic Publishers, pp.345-387

S.D. Miller and W. Schmid, “The Rankin-Selberg method for automorphic distri-
butions,” in Representation theory and automorphic forms, Birkhuser Boston, 2008.
111-150

D. Bump, “Automorphic Forms and Representations”, Cambridge Studies in Ad-
vanced Mathematics, 55, 1996.

E. D’Hoker and M. B. Green, “Zhang-Kawazumi Invariants and Superstring Ampli-
tudes,” arXiv:1308.4597 [hep-th].

S.W. Zhang, “Gross - Schoen Cycles and Dualising Sheaves” Inventiones mathemat-
icae, Volume 179, Issue 1, pp 1-73 arXiv:0812.0371

N. Kawazumi, “Johnson’s homomorphisms and the Arakelov Green function”,
arXiv:0801.4218 [math.GT].

E. D’Hoker, M.B. Green, B. Pioline and R.Russo, In preparation.

M. B. Green, H. -h. Kwon and P. Vanhove, “Two loops in eleven-dimensions,” Phys.
Rev. D 61 (2000) 104010 [hep-th/9910055].

H. Gémez and C. R. Mafra, “The Closed-String 3-Loop Amplitude and S-Duality,”
arXiv:1308.6567 [hep-th].

N. Dorey, V. V. Khoze, M. P. Mattis, D. Tong and S. Vandoren, “Instantons, three-
dimensional gauge theory, and the Atiyah-Hitchin manifold,” Nucl. Phys. B 502
(1997) 59 [hep-th/9703228].

G. W. Gibbons and N. S. Manton, “The Moduli space metric for well separated BPS
monopoles,” Phys. Lett. B 356 (1995) 32 [hep-th/9506052].

A. Hanany and B. Pioline, “(Anti-)Instantons and the Atiyah-Hitchin Manifold,”
JHEP 0007 (2000) 001 [hep-th/0005160].



22]

23]
24]
[25]

[26]

27]
28]
29]

(30]

SL(2,Z)-INVARIANCE AND D-INSTANTON CONTRIBUTIONS 31

M. B. Green, J. G. Russo and P. Vanhove, “Automorphic Properties of Low En-
ergy String Amplitudes in Various Dimensions,” Phys. Rev. D 81 (2010) 086008
[arXiv:1001.2535 [hep-th]].

M. B. Green, J. G. Russo and P. Vanhove, “String Theory Dualities and Supergravity
Divergences,” JHEP 1006 (2010) 075 [arXiv:1002.3805 [hep-th]].

A. Basu, “The D® R* Term in Type IIB String Theory on T2 and U-Duality,” Phys.
Rev. D 77 (2008) 106004 [arXiv:0712.1252 [hep-th]].

P. Fleig and A. Kleinschmidt, “Eisenstein series for infinite-dimensional U-duality
groups,” JHEP 1206 (2012) 054 [arXiv:1204.3043 [hep-th]].

N. Beisert, H. Elvang, D. Z. Freedman, M. Kiermaier, A. Morales and S. Stieberger,
“E7(7) Constraints on Counterterms in N/ = 8 Supergravity,” Phys. Lett. B 694
(2010) 265 [arXiv:1009.1643 [hep-th]].

P. Sarnak, “Some Applications of Modular Forms,” Cambridge Tracts in Mathemat-
ics, 99, Cambridge University Press.

H. Iwaniec, “Topics in Classical Automorphic Forms,” Graduate Studies in Mathe-
matics, 17, American Mathematical Society Press.

H. Iwaniec, “Spectral Methods of Automorphic Forms,” Graduate Studies in Math-
ematics, 53, American Mathematical Society Press.

D. Zagier, “The Rankin-Selberg method for automorphic functions which are not of
rapid decay,” J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) no. 3, 415437 (1982).

MICHAEL B. GREEN, DEPARTMENT OF APPLIED MATHEMATICS AND THEORETICAL
Puysics, WILBERFORCE ROAD, CAMBRIDGE CB3 OWA, UK
E-mail address: M.B.Green@damtp.cam.ac.uk

STEPHEN D MILLER, DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, Pis-
CATAWAY, NJ 08854-8019, USA
E-mail address: miller@math.rutgers.edu

PIERRE VANHOVE, INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, LE BOIS-MARIE,
35 ROUTE DE CHARTRES, F-91440 BURES-SUR-YVETTE, FRANCE
INSTITUT DE PHYSIQUE THEORIQUE,, CEA, IPHT, F-91191 GIF-SUR-YVETTE, FRANCE,
CNRS, URA 2306, F-91191 GIF-SUR-YVETTE, FRANCE

E-mail address: pierre.vanhove@cea.fr



	1. Introduction
	2. Fourier modes of the inhomogeneous Laplace equation
	2.1.  Fourier modes and boundary conditions
	2.2. Solutions of the equations in distinct sectors of n1 and n2
	2.3. The complete expression for each Fourier mode, f"0362fn(y)

	3. Discussion and connections with string theory
	Appendices: Other methods to solve the inhomogeneous Laplace equation (1.2)
	Appendix A. The solution as a Poincaré Series
	A.1. Sum over translates of one-dimensional solution
	A.2. Fourier coefficients via a term-by-term analysis

	Appendix B.  Poincaré series and Eisenstein automorphic distributions
	Appendix C. Solution as expressed via spectral theory
	References

