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Abstract

We use a D5-brane with electric flux in AdSs x S® background to calculate
the circular Wilson loop of anti-symmetric representation in N = 4 super Yang-
Mills theory in 4 dimensions. The result agrees with the Gaussian matrix model

calculation.



1 Introduction and summary

The expectation values of Wilson loops are some of the most important kind of observables
in a gauge theory. In particular, Wilson loops are interesting operators in AdS/CFT
correspondence since they are calculable in AdS side using strings [1, 2].

In this paper, we are interested in the Wilson loop operators of the following kind in
N = 4 Yang-Mills theory.

Trp [pexp (z’jids(AH:'c“ + m:ﬂ))] , (1.1)

where 4 is a scalar field in N' = 4 Yang-Mills theory, R is a representation of the
gauge group U(N). This is a Lorentzian version of Wilson line, and we mainly consider
the straight path C' in Lorentzian case. When one performs Wick-rotation and some

conformal transformation, a circular Wilson loop is obtained.

Wa(C) = Trg [P exp (740 ds(iA, it + wm% | (1.2)

where C is a circle in Euclidean 4-dimensional space. The expectation value of this
operator depends on the representation R.

In the leading order of the calculation by fundamental string in AdS spacetime, namely
large N and large 't Hooft coupling A limit, we can hardly see the detail of this trace
structure R. In this limit, the expectation value is expressed as exp(k:\/X) where k is the
number of boxes when R is expressed by a Young diagram. This is because it is hard to
distinguish the winding and overwrapping of the strings; we can just see the string charge
k.

One way to see this trace structure in AdS side is to use a D3-brane with electric flux
whose induced metric is AdSy x S? [3]. This D3-brane corresponds to the Wilson loop
operator tr[U*], where U = Pexp (§, ds(iA,&" + ¢4|2|)) and tr denotes the trace in the
fundamental representation Tr. This operator can be expressed in terms of a certain
combination of the representation with & boxes. The authors of [3] have calculated the
on-shell action of AdS, x S? D3-brane with k unit of electric flux. They have shown that
this on-shell action reproduce the VEV of the Wilson loop, which can be calculated by
the Gaussian matrix model, in all order in kv/A/N and leading order in 1/\.

This kind of D3-brane for the Wilson loop is an analogue of a giant graviton for the
half BPS local operator. Especially, AdS, x S? D3-brane is an analogue of the giant
graviton wrapped on a S* in the AdSs [4, 5]. There is also an analogue of the giant
graviton wrapped on S? in the S® [6] for the Wilson line. This is a D5-brane wrapped on
5S4 in the S°.
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Figure 1: The eigenvalue distribution with a hole or AdSs x S® geometry with an AdS x S*
D5-brane.

In this paper, we consider this D5-brane. There is a BPS configuration of a single
D5-brane with electric flux whose induced metric is AdS, x S*. We will show that this
D5-brane preserves the same half of the supersymmetry as the AdS, x S? D3-brane. This
fact indicate that this D5-brane corresponds to the Wilson loop operator of (1.2) with
some trace structure R.

Actually, we claim that this AdS,; x S* D5-brane corresponds to the Wilson loop of
(1.2) with anti-symmetric tensor product of fundamental representation. We will explain
in this section the reason for this identification from two point of view. One is the bubbling
geometry [7], which is a Wilson line version of LLM bubbling geometry [8]. The other is
the D3-D5-F1 brane system.

First, let us explain from the bubbling geometry point of view. It is indicated in [7]
that the supergravity background which corresponds to a Wilson line is expressed as a
AdS, x S? x S* fibration over 2-dimensional surface with boundary. At the boundary, the
fiber becomes singular and either S? or S* shrinks. If we paint by black the points where
S? shrinks, and by white where S* shrinks, then we will obtain one dimensional black
and white pattern. This pattern seem to correspond to the eigenvalue distribution of the
Gaussian matrix model, which is used to calculate the expectation value of the Wilson
loops [9, 10].

For example the AdSs x S® can be expressed by the pattern with one black segment
around the center. In this picture, the AdSy x S? D3-brane of [3] can be expressed by a
black point on a white part. This kind of eigenvalue distribution can be obtained by the
insertion of the operator tr[e*"], where k is a integer and M is the matrix of the Gaussian
matrix model. This is consistent with the fact that AdS, x S? D3-brane corresponds to
the Wilson loop tr[U*].

On the other hand, an AdS, x S* D5-brane looks like a white point on the black segment
as shown in figure 1. In the matrix model, this looks like a hole in the eigenvalues. This
kind of eigenvalue distribution can be obtained by the insertion of the operator Tr4, [e!]
where Ay is the rank k anti-symmetric representation. This is because of the following
reason. When one insert this operator, k eigenvalues out of IV feel a unit constant external

force. This force moves these k eigenvalues to the right. Then there appears a gap next

to the k-th biggest eigenvalue as shown in figure 2. This gap look like a hole.
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Figure 2: The picture of eigenvalue distribution and external force. The upper figure
expresses the eigenvalue distribution of the vacuum. When we add small external constant
force to the first k eigenvalues, these eigenvalues move a little to the right and there

appears a “hole” next to the k-th eigenvalue.

0|12 ]3[4 |56 7819
D3|O|OOIO| x| x| x|x]x]|x
DO x| x| x1O|O]O1O0O]10O] x
F1|O| x| x| x| x| x|x|x|x|0O

Table 1: The configuration of branes. Here () denotes the direction parallel to the brane,

and x denotes the one perpendicular to the brane.

Next let us explain from the original D3-D5-F1 system point of view. We are consider-
ing the NV D3-branes, one D5-brane and k fundamental strings between D3 and D5-brane,
as shown in table 1. This configuration actually preserves 8 SUSY instead of 4 SUSY.
This means adding D5-brane to D3-F1 system do not break father supersymmetry.

The fundamental string between D3 and D5 in this system behave as a fermion be-
cause of the following reason!. Let us consider this string in NSR formalism. Since the
worldsheet theory has 8 Dirichlet-Neumann directions, the vacuum energy in the NS sec-
tor is greater than 0. Therefore the zero energy states are in R sector. We only have two
fermion zero modes 0, 7. The representation of these zero modes is two dimensional.
The GSO projection leaves only one zero energy state. As a result, the only label is the
Chern-Paton factor at the end of D3-brane side. This ground states is in R sector, so
it behaves as a fermion, and the Chern-Paton indices are anti-symmetrized. As a result,
this stack of k strings looks like a particle in anti-symmetric representation of the gauge
group U(N) in the D3-branes.

In this configuration, we can express the N D3-branes by the supergravity solution.

!This is the same mechanism as the fermionic nature of the strings of baryons [11].
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Figure 3: The picture of the branes. There are N D3-branes, one D5-brane and k funda-

mental strings stretched between the D3-branes and the Db5-brane.

The D5-brane and the fundamental strings are expressed by the spike solution of the
D5-brane worldvolume theory [12, 13]. In the near horizon limit of the D3-branes, this
D5-brane solution has induced metric of AdS, x S*.

Let us summarize the result of this paper here. As already mentioned, it is shown that
the AdS, x S* D5-brane preserves the same half of the supersymmetry as the AdSy x S?
D3-branes. We also calculate the on-shell action of this D5-brane with careful treatment

of the boundary terms. The result is

2N
Son—shell = _\/X_ Sin3 eka (13)
3
where 6, is related to k by
2N (1 1.

We compare this result to the matrix model calculation in a semi-classical approximation.
They turn out to be completely the same in this level of approximation.

The construction of this paper is as follows. In section 2, we check the supersymmetry
of AdS, x S* D5-brane. In section 3, we treat circular Wilson loop and compare the
Db5-brane calculation and matrix model calculation.

Note: While we were finishing this paper, we found a interesting paper [14] appeared
in arXiv. The authors of [14] use a D5-brane to calculate the Polyakov loop in thermal
theory. Among their result, the “constant solution” seem to be essentially the same as
the D5-brane solution of ours. In our paper, we identify this D5-brane solution as the
Wilson loop of anti-symmetric representation. We compare this D5-brane calculation and

the matrix model calculation in our paper.



2 Supersymmetry of AdS D-branes

In this section, we study the supersymmetry of the AdS,x S* D5-brane. We show that this
D5-brane preserves just the same half of the supersymmetry as an AdS, x S? D3-brane.

In this section, we work in Lorentzian signature.

2.1 Supersymmetry of AdSs; x S° spacetime

It is convenient to express the AdSs x S° background as the fibration of 2-dimensional
space with AdS, x S? x S* fiber [7].

ds? = L [cosh2 wdQ2 + du? + df? + sinh? u dO2 + sin® 0 d0?| (2.1)
4

Gs =7 [E°E°E'E*E° + E*E°E"E°E”] (2.2)

u >0, 0<6<m, (2.3)

where dQ2,d02,d02 are the metric of unit AdS,, S2, S* respectively. The vielbein of
the metric (2.1) are denoted by EM, M = 0,1,...,9 and the vielbein of unit AdS, by
e el, unit S? by e, e, and unit S* by €%, ..., e?. With this notation, the vielbein of
the fiber part of the metric (2.1) are expressed as E° = L coshue®, E' = L coshue!, and
E* = Lsinhue*, E° = Lsinhue®, and E% = Lsinfe®, ..., E° = Lsinfe’. The vielbein
of the base space part are expressed as E? = Ldu, E® = Ldf. In these equations L is
the radius of AdSs and S°. It is expressed as L = (a?47g,N)/%. Here g, is the string
coupling constant, and N is the number of D3-branes. The potential Cy for five form,

which satisfies dCy = G5, can be written as

1 1 3 1 1
Cy=4L" {(—gu + 32 sinh 4u) eetete® 4+ (g@ 1 sin 20 + 32 sin 49) 66676869} .

(2.4)

In order to investigate the supersymmetry preserved by D-branes, we need the explicit
form of the Killing spinor in this spacetime. We can expand the 10-dimensional IIB type

SpInor as 1 = Y, 1y €abel sk © X2 ® Xi ® xX. The detail of this expansion is written in



appendix A. With these notations, the supersymmetry condition can be written as

—ip1V3A3€ = [— sinh ul® 4 cosh uugl/grgl“ﬂ €, (2.5)
V1 Az3€ = [cosh ul'? — sinh u,u31/37'21“2} €, (2.6)

e = [cos O3 + sin 9/131/372112} €, (2.7)

Oy€ = %,ugynge, Ope = %ﬂ,ngTQFZ?,G, (2.8)

These equations can be solved by the usual manner. First, (2.8) determines the coor-

dinate dependence of e.

1 1
€ = exp (5[1,3V37'2’LL — 5)\37’29) C, (29)

where ( is a constant spinor. Next, eqs.(2.5)-(2.7) imply some projection conditions on (.

These conditions are written as
N2)\3T2F2C =, V1>\3F2C =(, )\1F3C =C. (2-10)

We should also assign the ten dimensional Weyl condition to this spinor. That condition

can be expressed in our € like

F23C = —i/L3V3>\3C. (211)

The number of independent components can be counted as follows. Originally each €,per 7K
is a pair of 2-component spinors, so it has 4 (complex) components. Each of a, b, ¢ takes
values +1,—1, and I = 1,2, J = 1,2, K = 1,2,3,4. In summary, originally ¢ has 2°
complex components. Then there are four projection conditions, each of which project
out half of the components. Then the independent complex components are 2° = 32.
Finally the Majorana condition relates J = 1 components and complex conjugation of

J = 2 components. This leaves 32 real components independent.

2.2 Supersymmetry of AdS; x S? D3-branes

Let us first consider here the supersymmetry preserved by a AdS, x S? D3-brane of [3] in
order to compare it to the one preserved by a D5-brane. In general, the supersymmetry
preserved by branes can be examined by the kappa symmetry projection 0 = (14+T')€ as in
[15, 16, 17, 18, 19, 20, 21]. The matrix I" is determined by the kind and the configuration



of the brane. For example, the kappa symmetry projection for D-branes in IIB theory

can be expressed as

dPTHT = —e ?(—det(G + F)) "2 X (p11)-form:

1 i i1 n,
X = zn: Wdf oL dé F(il.‘.i2n>7-3 172,

X gx™s
_ ¢ OX™ por  E% Ty (2.12)

(i1...05) 8511 85“ mi

where £ are the coordinates of the worldvolume, X™ are the spacetime coordinates, and
E¢ are the components of the vielbein defined by £E* = E2dX™. We also use in this
expression the 2-form on the worldvolume F = B + 27a/F, where B is the pullback of
the NSNS 2-form and F' is the field strength of the worldvolume gauge field.

Let us begin with AdS, x S? D3-brane. This D3-brane extends to the AdS, x S? fiber
direction. In order to preserve the SO(5) symmetry, this D-brane sits on a point in the
base space where the S* shrinks, i.e. § = 0 or § = 7. We also have the electric field on the
worldvolume which is proportional to the volume form of the AdS,. The world volume
coordinates are denoted by £°, &1, €%, €5 and the spacetime coordinate by X°, X!, X4, X°.
X% and X! parametrize the AdS, and X*, X parametrize S2. We also assume the metric

is diagonal for simplicity. The configuration of D3-brane we consider here is
X0 =¢9 Xt =¢! Xt =¢ X5 =65, u = wuy, : constant. (2.13)
The gauge field can be written as
F = aEJElde0de, (2.14)

where « is a real constant. Here in this paper, we take the vielbein E? diagonal for

simplicity?. In this configuration of D3-brane, the kappa symmetry projection (2.12)

1
VvV1—a2

This operator acts on the ordinary IIB spinor. The corresponding operator acting on the

I'(D3) = (Dorasime + al'ys71) . (2.15)

€ spinor can be expressed as

1 .
F(D?)) = ﬁ(—,ungTQ + ZOél/ng). (216)

2It is actually possible for the metric of eq.(2.1)



For the D3-brane at § = 0, the condition becomes 0 = (1 + I'(D3))e with € =
exp|(1/2) psvsmug]C because of eq.(2.9). This condition leads to the following conditions

for uy, o and (.

V1= a2 0:[1—M373]C, a>0

sinh uy = , .
|Oé| 0:[1+/L3T3]C7 a<0

(2.17)
a > 0 and a < 0 are two directions of electric field. They preserves opposite super-
symmetry. Note that the projection conditions 0 = [1 4 us73]e are compatible with the
conditions (2.10),(2.11).

On the other hand, the D3-brane at § = 7 preserves the following supersymmetry.
The condition can be written as 0 = (1 +I'(D3))e with € = exp[(1/2)usvsmaug](—iA372)C.

This condition read the following conditions for u; and (.

V1—a? 0=[1—-pus73)(, a<0

sinhu, = , .
| 0=[1+ps7s]¢, a>0

(2.18)

Note that the relation between the sign of a and the projection is opposite to the case of
0 =0.

2.3 Supersymmetry of AdS; x S* D5-brane

Let us turn to the AdS, x S* D5-brane. In order to preserve the SO(3) symmetry, this
D5-brane should sit on a point u = 0 in the base space. We also have the gauge field
excitation in the AdS; part. The worldvolume coordinates are denoted by £°, €1, €6, ... €Y.
The S* part of the spacetime coordinates are denoted by X°, ..., X? We consider the

configuration of D5-brane expressed as®
XOZSO Xlzfl XGZSG...X9:£9
u =0, 0 = 0y : constant, F = BEYELde0de". (2.19)

We obtain the kappa-symmetry projection for this D5-brane by inserting this configuration
to (2.12). It can be written as

1 .
\/ﬁ <F0167897-1 - 5F678927-2)

3This configuration of D5-brane is a similar one as the “baryon configuration” in [22]. Compared to

[(D5) = (2.20)

[22], & =(constant) and the number of fundamental string charge is smaller than N in the configuration

of this paper.



The operator that acts on € spinor can be expressed as

I(D5) = (2.21)

\/%ﬁQ(—#s)\sﬁ — 18A3Ty).

The condition 0 = (1 + I'(D5))e with € = exp (—%A3726;) ¢ reads the conditions on

O, 0 and (. It can be written as
cos O, = 3, 0=[1— pusms)C. (2.22)

As a result, the following three kind of D-branes preserves the same half of the super-

symmetry 0 = [1 — p373]C.
o AdS; x S? D3-brane at 6 = 0 with o > 0.
e AdS; x S? D3-brane at 6 = 7 with a < 0.

o AdS, x S* D5-brane.

2.4 String charges of AdS D-branes

We expect that the AdS; x S* D5-brane corresponds to the anti-symmetric tensor rep-
resentation. The rank of this anti-symmetric tensor is equal to the fundamental string
charge of the Db-brane. String charges can be expressed by the variation of the NSNS
B-field.

5S .8

k= 2ma

(2.23)
The bosonic part of the action of the D5-brane in this geometry can be written as

85 = —T5/d6§\/ —det(G+f) +T5/.7:/\C4, (224)

where T5 = 1/((27)°a’3g,) is the tension of D5-brane. If we insert the configuration

obtained in the previous subsection, the action become

Sy =—T; / dCEJE €S . . egLtsin® Op\/1 — 32

3 1 1
+ T / d¢BEEL el ... egdL? (gek = 5in 20 + o5 sin 40k) , (2.25)

where we take the vielbein E¢ diagonal. Taking the definition of beta Fo; = BEJF] into

account, we can calculate the variation §S5/0Fy;. Then we insert the supersymmetry

10



condition cos#, = [ into the result and we obtain the fundamental string charge of this

D5-brane as *

2N (1 1.

Note that this calculation of the string charge depends on the gauge of Cy. This ambiguity
comes from the definition of the string charge in the presence of RR-flux. Here we employ
the definition in which the single AdS; fundamental string at w = 8 = 0is k = 1. Thus we
consider this fundamental string as the counterpart of the Wilson loop of the fundamental

representation.

3 AdS;xS* D5-brane solution and the circular Wilson
loop

In this section, we calculate the on-shell action of the AdSy x S* D5-brane. According to
the AdS/CFT correspondence, this on-shell action is equal to the expectation value of the
circular Wilson loop of anti-symmetric representation. We will show that it reproduces

the same result as the matrix model calculation in a semi-classical approximation.

3.1 Wick rotation of the solution and the on-shell action

In order to consider the circular Wilson loops, we should perform Wick-rotation of the

geometry. The metric of Euclidean version of AdSy; can be written as
L2
dsthgs, = ?(dy2 + dr® + r’de® + da3 + da3). (3.1)

The S® part is the same as before. The RR 4-form is also Wick-rotated in the usual
manner. The relevant part (S° part) of RR 4-form is the same as eq.(2.4).
We need to consider the action of the D5-brane. The bulk part of the Euclidean

D5-brane action is written as

Sbulk = T5 / de\/ det(G + f) - ZT5 /fC4 (32)

We use the notation Sy, because we will add certain boundary terms later. We can
obtain the solution by Wick-rotation from the solution of the previous section. However
since we need the conjugate momentums to calculate the boundary terms of the action,

let us begin with the ansatz.

“Here the volume of unit S* is [d¢®...d¢% €§...e§ = %WQ.

11



The ansatz used here is as follows. We identify one of spacetime coordinate ¢ as one
of the world volume coordinate. The other worldvolume coordinate is denoted by p and
we assume y and r are functions of p. As in the previous section, we assume D5-brane is

wrapped on a S* with § = 0 (constant). With this ansatz, the action can be written as

Shulk = / dpdo Ly, (3.3)

8 o 4|4 Lir 9 5 3 : 1.
Ebulk:T5§7r L* |sin® 0, /i (Y2 +172) + F2, —iF,, 50;6—31n29k—|—§sm46k )

(3.4)
Here prime sign “” denotes the p derivative.
The conjugate momentum to y becomes®
aﬁbulk 8 . L4T2 L4T2 —1/2
e T5§7r2L4 sin’ 6 /i Y " (> +1")+ F2, : (3.5)

On the other hand, the conjugate momentum to A, can be written as

8*Cbulk
OF

pa = (27a)

~1/2
= (27ro/)T5§772L4 sin® 0, F L (y* +1?) + F2 -1 §9 — sin 20, + E sin 46
3 Py y4 Py 2 k k 8 k :

(3.6)

Now let us turn to the solution. The solution can be written as

L*R
Yy =p, r=+/R?—p? Fpp = —icOS 91@7, (3.7)

where R is a real positive constant which correspond to the radius of the circular Wilson
loop. What we want to do is to insert this solution to the action and obtain on-shell
action. When we insert this solution in to Sy, the integral is divergent near p = 0. In
order to treat this quantity, we introduce a cut off py. Then the on-shell value of Sy

inserted this solution becomes

R 2
Shulk = / dp / dp Lk
PO 0

= (—1 + E) ﬁ\/X {sing’ 0, — cos 0y, (§9k — sin 20}, + 1 sin 49k>] ) (3.8)
o) 37 2 8

5Here “conjugate momentum” means the one when we consider p as “time.”
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In order to treat the effect of the boundary correctly, we should introduce the boundary
terms. Here we follow the procedure of [3, 23]. We should solve the equation of motion
with the boundary condition dp, = 0, dpa = 0 instead of oy = 0, 6A=0. To realize
this boundary condition from the variation of the action, we should add the following
boundary terms to the action.

2N
= (—E + @) ~—Vsin® 6. (3.9)
p=p0 po 1t) 3m

2
dey,y = - / dgopyy
0

R 27 1
S = — d d —F
bdy, A /p ) P /o P PA oo P¥

R\ 2N 3 1
=(1-=)==V|-sin® 0y + sin® 0, — cos by, [ =0, — sin 20, + —sin4b;, || .
po) 3w 2 8
(3.10)
If one sums up these three contributions, the divergence cancels and in the limit py — 0

the total action becomes
2N .,
Stot = Sbulk + Sbdy,y + Sbdy,4 = —\/Xy sin®” 0y,. (3.11)

This is the final result of the calculation of AdS side. The expectation value of the Wilson
loop is exp(—Siet) in the calculation in AdS side.

Let us here do some simple check. The string charge k is related to 0y as eq. (2.26).
When £ is much smaller than NV, the angle 8, becomes small. In this case, k is related to
0, by
ﬂ@i%

k= . 3.12
v (3.12)

If we insert this expression to eq.(3.11) and take 6;, < 1 into account, we obtain
Siot 2 —kVA. (3.13)

This is the expected one from k overwrapping fundamental strings. Actually our result

includes the corrections of k/N. The first few terms look like
2/3 1\ 53 2 1o\ &3
Siot = —kVA 1_3 3k _ 3 (3nk _ 33 (3rk +o(= ,
10 \ 2N 280 \ 2N 25200 \ 2N N
(3.14)

Interestingly, these corrections includes the fractional power of k/N.
Another check is related to the complex conjugation. The rank £k anti-symmetric

representation of SU(N) and the rank (N — k) anti-symmetric representation are related

13



by complex conjugation. We expect that the VEV of these Wilson loops are the same.
Actually the parameter 65 and 6y_y) are related as 6(y_j) = 7™ — 0; because of eq.(2.26).
Therefore Sy in (3.11) for k£ and (N — k) are the same.

3.2 Gaussian matrix model calculation

It is conjectured that the vacuum expectation value of the circular Wilson loop in N = 4
U(N) Yang-Mills theory can be calculated by the Gaussian matrix model [9, 10]. In
this subsection, we calculate the expectation value of the Wilson loop of anti-symmetric
representation by the Gaussian matrix model in semi-classical approximation.

Let us consider the one matrix model with Gaussian potential. The expectation value

of a gauge invariant function f(M) of N x N hermitian matrix M is defined as

(D)1= [ AMFOD) exp (-% tr[M2]> , (3.15)

7 = /dMeXp (—? tr[MQ]) . (3.16)

Here “gauge invariant” means f satisfies f(VMV ™) = f(M) for any unitary matrix V.
In the above definition, the measure dM is dM = [[ dM,; with the constraint M =M.

The expectation value of the circular Wilson loop Trg[U], U := Pexp ¢ ds[iA, " +
@4|2|] in N = 4 Yang-Mills theory can be calculated by this matrix model as

(Trr[U)yw = (Trale™]) . (3.17)

One of the standard methods to evaluate the matrix integral is diagonalizing the

matrix. For example, the partition function Z can be rewritten as the integral of the
eigenvalues myq,...,my as

IN &
7 = CN/Hdm] mi—mj)zexp <—TZmJZ)

1<i<j<N j=1

:C’N/Hdmj exp(—Se(m)), (3.18)

N
Se(m) = 2}\ Zm —2210g|m1 myl, (3.19)

7j=1 1<j
where Cy is a constant which comes from the Jacobian. Let us consider the saddle point

of this theory. The “equation of motion” for m; becomes

0= —mz —2) ——— — (3.20)

—m,;
J#i J

14



It is convenient to introduce the resolvent w(z) := tr Ml - = ZN,l L At the saddle
- J=1 mj—=z
point, we can derive the following differential equation for this resolvent from the equations

of motion.

0= —~ Tzw(z) +w(2)? - W'(2). (3.21)

In the large N limit, the last term w’(z) can be negligible. In this case, the above

differential equation becomes a algebraic equation and is easily solved as

w(z) = 2N <—§ + (;)2 - %) . (3.22)

The density of eigenvalues is expressed as

1 2N
== — —_— , — ) _ —_— J— 2
p(x) 5 (w(z —i€) —w(z + i€)) - VA — 22 (3.23)
Let m§°l)(0)7 7 =1,..., N be the eigenvalues of the solution of the classical equation of

motion with the order m\” (0) > m{™(0) > m{V(0) > -+ > m{P(0). Also let us define 6,
by the classical value m,(:l) (0) =: v/ XcosBy. Since k is the number of eigenvalues between
m{M(0) = VX and m\” (0) = V/A cos b, we can write down the relation between k and 6,

using the above eigenvalue density p(x) as
VA ON (1, 1
k= / dz p(x) = — <—9k — —sin 29k> : (3.24)
VA cos 0, ™ 2 4
This is consistent with the equation (2.26).

Now let us consider the rank k anti-symmetric representation A;. The VEV of the

Wilson loop Try, U can be calculated by the matrix integral

(Tea M), = % / M Tra [eM] exp (-% tr[Mﬂ) | (3.25)

When we diagonalize the matrix M, the trace of anti-symmetric representation becomes
Try, [eM] = > exp (my, + - +my,). (3.26)

1<j1<jo < <ji <N
In the integral of the eigenvalues, all the eigenvalues are equivalent. So the expecta-

tion value of all terms in the above sum become the same. Therefore we can write the

expectation value of the Tra, [e"] as®
Cy (N [T
N
(Tra, [eM]>mm =— ( k) /jlzl1 dm; exp(mq + - -+ my) exp(—Se(m)). (3.27)

6Note that in [3] the Wilson loop is multiple winded fundamental one and the operator evaluated in
matrix model is the operator tr[e*M] = Z;\Ll efmi. So the operator in the integrand of the eigenvalue
integral is ™!, This is the crucial difference between the matrix model calculation of [3] and ours in

this paper.
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The insertion of the operator looks like a source term for the theory. In order to evaluate

this integral, let us consider the saddle point of the following action including the source.

k
S(k,m) = S.(m) =Y _m;
i=1
on N k
:TZm§—2210g|mi—mj|—Zmi. (3.28)
j=1 i<j i=1

We would like to evaluate the integral by saddle point. The classical equation motion can
be written as
08
— =0. 3.29
o (3.29)

(c)

Let us write the solution of this equation as m; " (k). We put the argument & in order to

remember that it depends on k. The on-shell action can be written as
S(k) := S(k,mD(k)) — S(0,mD(0)). (3.30)
We can approximate the integral (3.27) by

(Tra,[eM]) = exp(—=S(k)). (3.31)

mm

Let us regard k as a continuous variable and differentiate S by k.

N

(cl)
- Z(amj (k)> 05 (hm ) + 2 e m (k). (332

ok < ok ) om;

The first sum vanishes because of the equation of motion. As for the second term, the
differential can be written as S(k+1,m) — S(k,m) = —m;. We can also replace m,(fl)(k)
by m{™(0) because the difference is very small, namely the relative error (m™ (k) —
m,201)(0))/m,(€C1)(0) ~VA/N < 1. As a result, we can write the derivative of S as

a8 )
5 = —m{(0). (3.33)

The derivative S by the parameter 65, of eq. (3.24) can be expressed as

0§ 0k dS 2NV .,
=T = i . 34
26, = 06, Ok ——sin 0y, cos Oy, (3.34)

This equation can be easily integrated with the boundary condition S(k = 0) =0 as

INV |

S=- sin® 0. (3.35)

3T

This is completely the same as (3.11).
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A Spinors in AdS; x S? x S* fibration

Since in AdSs x S® background only the metric and the RR 5-form G5 are excited, the

invariance of the gravitino under supersymmetry transformation can be written as
1
577/)M = va + §¢5TQFM§. (Al)

The dilatino condition becomes trivial. The parameter of supersymmetry is a doublet of
Majorana-Weyl spinors. We use the Pauli matrices 7; to rotate this doublet.

We use the 10-dimensional gamma matrices as follows.

M=¢"®i 211, MNM=s¢'®o 11,
MP=19me1®1, MP=100®1®1,

M= 2631, P=¢®o 61,

I =5®o0c®6607%, (a=6,7,8,9), (A.2)

where (01, 09,0¢) and (dy4, 05, 06) are sets of Pauli matrices. (61,02, 3) is another set of
Pauli matrices, and we defined 6° as 6° := id,. v*, (a = 6,7,8,9) are gamma matrices of

Euclidean 4 dimensions.
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Vil = cacyxl,.  oxl=ax!, (p=0,1, a=+1, I[=12), (A.3)

2
o R 1 o o R
VoXi = SbopXly oy =%, (p=45, b=+l J=12) (A4)
o 1
VoxX = 5%%_2, Yersox S = exX, (p=6,...,9, b=+1, K =1,23,4).

(A.5)

where V is the covariant derivative of Levi-Civita connection of unit AdS,, S? or S*.
One can reduce the problem to 2-dimensions by expanding the 10-dimensional spinor

pair 17 by the above Killing spinors.

n:ZXLI;@EabcIJK@)AG)]@Xf- (A6)

a,b,c
€aber sk 18 a pair of 2-dimensional spinor. 'y, I's, 0¢, 71, T2, T3 act on €gper k.
Let pj,vj, Aj, (j = 1,2,3) be sets of Pauli matrices which act on the indices a, b, c

respectively. This means, for example,
(15€)abe = (H5) aa’ €atbe- (A7)
We also define a set of matrices p;, (j =1,2,3) as
P1 = K3T3, P2 = V3T, P3 = K3V3T2. (A.8)

These three matrices p; satisfy the algebra of the Pauli matrices.
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