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Abstract

In this paper, we define the homodyne q-deformed quadrature operator and find

its eigenstates in terms of the deformed Fock states. We find the quadrature rep-

resentation of q-deformed Fock states in the process. Furthermore, we calculate

the explicit analytical expression for the optical tomogram of the q-deformed

coherent states.

Keywords: Quantum tomography, quadrature operator, deformed coherent

states

1. Introduction

The general principle behind quantum tomography is that instead of ex-

tracting a particular property of a quantum state (e.g. quantum entanglement),

it aims to extract all possible information about the state that are contained in

the density operator. Quantum tomography characterizes the complete quan-5

tum state of a particle or particles through a series of measurements in different
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quantum systems described by identical density matrices, much like its classi-

cal counterpart, which aims at reconstructing three-dimensional images via a

series of two-dimensional projections along various directions. In optical phase

space, the position and momentum of a quantum particle are determined by the10

quadratures. By measuring one of the quadratures of a large number of iden-

tical quantum states, one obtains a probability density corresponding to that

particular quadrature, which characterizes the particle’s quantum state. Thus,

the quantum tomogram is defined as the probability that the system is in the

eigenstate of the quadrature operator[1].15

Quantum tomography is often used for analyzing optical signals, including

measuring the signal gain and loss of optical devices [2], as well as in quantum

computing and quantum information theory to reliably determine the actual

states of the qubits [3]. As for instance, one can imagine a situation in which a

person Bob prepares some quantum states and then sends the states to Alice to20

look at. Not being confident with Bob’s description of the states, Alice may wish

to do quantum tomography to classify the states herself. Balanced homodyne

detection provides an experimental technique to study the quantum tomogram

[3, 4], which is a probability distribution of homodyne quadrature depending on

an extra parameter of local oscillator phase θ. When θ is varied over a whole25

cycle, it becomes the tomogram and, thus, tomogram contains complete infor-

mation about the system. Quasi-probabilistic distributions describing the state

of the system can be reconstructed from the tomogram via transformations like

inverse Radon transformations[5]. In [6], the authors deal with the tomography

of photon-added coherent states, even and odd coherent states, thermal states30

etc. The tomogram of coherent states as well as the evolution of tomogram of a

state in a nonlinear medium was studied in [7], which essentially demonstrated

the signatures of revivals, fractional revivals and decoherence effects (both am-

plitude decay and phase damping) in the tomogram. Recently, the signatures of

entanglement was observed theoretically in the optical tomogram of the quan-35

tum state without reconstructing the density matrix of the system [8]. The

squeezed state of light [9] and time evolution of quantum states [10] were exper-
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imentally observed by measuring the quadrature amplitude distributions using

balanced homodyne detection technique. A detailed discussion on the formula-

tion of quantum mechanics using tomographic probabilities has been reported40

in [11, 12].

On the other hand, q-deformed oscillator algebras have been very famous

in various subjects during last few decades, which were introduced through a

series of articles [13, 14, 15, 16]. The q-deformed oscillator algebras are specific

cases of f -deformed algebras discussed in [17]. There are mainly two kinds of45

deformed algebras, namely, maths type [18, 19, 20] and physics type [13, 14, 21].

Algebras of both types have been utilized to construct q-deformed bosons having

applications in many different contexts, in particular, in the construction of

coherent states [13, 22, 20], cat states [23, 24], photon-added coherent states

[25, 26], atom laser [27], nonideal laser [28], etc. Besides, they are frequently50

used on the study of quantum gravity [29], string theory [30], non-Hermitian

Hamiltonian systems [31, 20, 24], etc. The principal motivation of the present

article is to study a method of quantum tomography for q-deformed coherent

states by considering the maths type deformed canonical variables studied in

[31, 20]. We also introduce the q-deformed homodyne quadrature related to the55

above mentioned deformed algebra, which is one of the principal requirements

for the study of quantum tomography.

Our paper is organized as follows: In Sec. 2, we define the q-deformed ho-

modyne quadrature operator. The eigenstates of the deformed quadrature have

been found analytically in Sec. 3. In the process, we also find the quadrature60

representation of the deformed Fock states. In Sec. 4, we provide a short review

of the optical tomography followed by the tomography of q-deformed coherent

states. Finally, our conclusions are stated in Sec. 5.
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2. q-deformed quadrature operator

Let us commence with a brief discussion of a q-deformed oscillator algebra

introduced in [19, 31, 20]

AA† − q2A†A = 1, |q| < 1, (1)

which is often known as the math type q-deformation in the literature. As

obviously, in the limit q → 1, the q-deformed algebra (1) reduces to the standard

canonical commutation relation [a, a†] = 1. The deformed algebra has been

used before in describing plenty of physical phenomena [20, 24, 26]. Moreover,

a concrete Hermitian representation of the corresponding algebra was derived in

[20] by utilizing the Rogers-Szëgo polynomial [21] with the operators A,A† being

bounded on the region of unit circle. The deformed algebra given in Eq. (1)

can be defined on the q-deformed Fock space forming a complete orthonormal

basis provided that there exists a deformed number operator [n] of the form

[n] =
1− q2n

1− q2
, (2)

such that the action of the annihilation and creation operators on the Fock65

states |n〉q are given by

A |n〉q =
√

[n] |n− 1〉q , A |0〉q = 0, (3)

A† |n〉q =
√

[n+ 1] |n+ 1〉q . (4)

In the limit q → 1, the deformed Fock state |n〉q reduces to the Fock state, |n〉,
which is an eigenstate of the operator a†a with eigenvalue n. It is possible to

define a set of canonical variables X,P in terms of the q-deformed oscillator

algebra generators

X = α(A† +A), P = iβ(A† −A), (5)

with α = β =

√

1 + q2

2
satisfying the deformed commutation relation [20]

[X,P ] = i
[

1 +
q2 − 1

q2 + 1
(X2 + P 2)

]

. (6)
4
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Let us now define the homodyne q-deformed quadrature operator

X̂θ =

√

1 + q2

2
(Ae−iθ +A†eiθ), (7)

with θ being the phase of the local oscillator associated with the homodyne

detection setup such that 0 ≤ θ ≤ 2π. Clearly at θ = 0 and π/2, one obtains

the dimensionless canonical observables X and P , respectively. The definition

given in Eq. (7) is consistent with the homodyne detection theory [32, 33, 34].

In the limit q → 1, the quadrature operator X̂θ reduces to the quadrature

operator,

x̂θ =
1√
2
(âe−iθ + â†eiθ), (8)

in the non-deformed algebra [a, a†] = 1.

3. Eigenstates of the q-deformed quadrature operator

This section contains the explicit calculation of the eigenstate of the q-

deformed quadrature operator X̂θ:

X̂θ |Xθ〉q = Xθ |Xθ〉q , (9)

with Xθ being the eigenvalue. By using Eqs. (3), (4) and (7), we obtain

q 〈n| X̂θ |Xθ〉q = XθΨnq
(Xθ) =

√

1 + q2

2
q 〈n| (Ae−iθ +A†eiθ) |Xθ〉q (10)

=

√

1 + q2

2

(

√

[n+ 1]e−iθ
q〈n+ 1|Xθ〉q +

√

[n]eiθq〈n− 1|Xθ〉q
)

=

√

1 + q2

2

(

√

[n+ 1]e−iθΨn+1q (Xθ) +
√

[n]eiθΨn−1q (Xθ)
)

,(11)

where we denote q〈n|Xθ〉q, q〈n+1|Xθ〉q and q〈n−1|Xθ〉q by Ψnq
(Xθ), Ψn+1q (Xθ)

and Ψn−1q (Xθ), respectively. The complex conjugate of Ψnq
(Xθ) gives the

quadrature representation of the deformed Fock state |n〉q:

Ψnq
(Xθ) = q〈Xθ|n〉q. (12)

When θ = 0, the wave function Ψnq
(Xθ=0) corresponds to the position rep-

resentation of the deformed Fock state. Henceforth, we use Ψnq
(Xθ) in the

5
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calculation instead of Ψnq
(Xθ) because the former is directly the quadrature

representation of the deformed Fock state to obtain. After taking the complex

conjugate of the Eq. (11) and rearranging the terms in it, we get a three term

recurrence relation for Ψnq
(Xθ):

Ψn+1q (Xθ) =
e−iθ

√

[n+ 1]

[

2
√

1 + q2
XθΨnq

(Xθ)−
√

[n] Ψn−1q (Xθ)e
−iθ

]

. (13)

First few terms of which are

Ψ1q =
e−iθ

√

[1]

2Xθ
√

1 + q2
Ψ0q (Xθ) (14)

Ψ2q =
e−2iθ

√

[2]

[

2Xθ
√

1 + q2

(

2Xθ
√

[1](1 + q2)

)

−
√

[1]

]

Ψ0q (Xθ) (15)

Ψ3q =
e−3iθ

√

[3]

[

2Xθ
√

1 + q2
1
√

[2]

(

2Xθ
√

1 + q2
2Xθ

√

[1](1 + q2)
−
√

[1]

)

−
√

[2]
2Xθ

√

[1](1 + q2)

]

Ψ0q (Xθ).

(16)

Using Eqs. (13-16), we find the analytical expression for q-deformed Fock state

|n〉q in the quadrature basis as

Ψnq
(Xθ) = Jnq

(Xθ)e
−inθΨ0q (Xθ). (17)

Here, we introduce the new polynomial Jnq
(Xθ) which is defined by the following

recurrence relation

Jn+1q (Xθ) =
1

√

[n+ 1]

[

2Xθ
√

1 + q2
Jnq

(Xθ)−
√

[n]Jn−1q (Xθ)

]

, (18)

with J0q (Xθ) = 1 and J1q (Xθ) = 2Xθ/
√

[1](1 + q2). In order to check the

consistency, we take the limit q → 1 and, indeed in the limiting condition the

wavefunction Ψnq
(Xθ) given in Eq. (17) reduces to the quadrature representa-

tion of the Fock state |n〉:

Ψnq→1
(Xθ → xθ) =

Hn(xθ)

π1/4 2n/2
√
n!

e−inθe−x2

θ/2, (19)

with Hn(xθ) being the Hermite polynomial of order n and identifying

Ψ0q→1
(Xθ → xθ) =

e−x2

θ/2

π1/4
. (20)
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Correspondingly, the recurrence relation in Eq. (18) merges with the recurrence

relation of the Hermite polynomials

Hn+1(xθ) = 2xθHn(xθ)− 2nHn−1(xθ). (21)

Next, we calculate the eigenstate of the q-deformed quadrature operator. By

using Eqs. (12) and (17), we derive the explicit expression for the eigenstates

of q-deformed quadrature operator X̂θ as follows:

|Xθ〉q =

∞
∑

n=0

|n〉q q〈n|Xθ〉q = Ψ0q (Xθ)

∞
∑

n=0

Jnq
(Xθ)e

inθ |n〉q , (22)

with Ψ0q (Xθ) being the ground state wavefunction in the deformed quadrature

basis such that

q 〈X ′
θ|Xθ〉q = δ(Xθ −X ′

θ) = Ψ0q (Xθ)Ψ0q (X
′
θ)

∞
∑

n=0

Jnq
(Xθ)Jnq

(X ′
θ). (23)

When we take the limit q → 1 in the expression given in Eq. (22), we get the

eigenstates of the quadrature operator x̂θ [1]:

|xθ〉 =
1

π1/4

∞
∑

n=0

einθ√
n!

1

2n/2
Hn(xθ)e

−x2

θ/2 |n〉 . (24)

In the following section, we use the eigenstates |Xθ〉q obtained in Eq. (22) to70

calculate the optical tomogram of the q-deformed coherent state.

4. q-deformed optical tomography

In order to find the optical tomogram of the q-deformed coherent states, let

us first briefly recall the notions of the optical tomography. For a state of the

system represented by the density matrix ρ̂, the optical tomogram ω(Xθ, θ) is

given by the expression

ω(Xθ, θ) = 〈Xθ|ρ̂|Xθ〉, (25)

with the normalization condition

∫

ω(Xθ, θ) dXθ = 1, (26)
7
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where |Xθ〉 is the eigenstate of homodyne quadrature operator X̂θ with eigen-

value Xθ. Thus, the tomogram of a pure state represented by the density matrix

ρ̂ = |Φ〉 〈Φ| is given by the expression ω(Xθ, θ) =| 〈Xθ|Φ〉 |2[7, 6, 35]. Here, we

are interested to compute the tomogram of the deformed Fock state and coher-

ent states. Using the above equation for ω(Xθ, θ) and the eigenstates (22) of

the q-deformed quadrature operator X̂θ, we calculate the optical tomogram of

the deformed Fock state |n〉q as

ω1(Xθ, θ) =| 〈Xθ|n〉q |2= Ψ2
0q
(Xθ)J

2
nq
(Xθ). (27)

In the limit q → 1, the optical tomogram ω1(Xθ, θ) goes to the optical tomogram

of the Fock state |n〉:

ω1(xθ, θ) =
e−x2

θ H2
n(xθ)√

π 2n n!
. (28)

Next, we calculate the tomogram of the q-deformed coherent states [19]

|Φ〉q =
1

√

Eq(| α |2))

∞
∑

n=0

αn

√

[n]!
|n〉q , [n]! =

n
∏

k=1

[k], [0]! = 1, (29)

where α ∈ C and

Eq(| α |2) =
∞
∑

n=0

|α|2n
[n]!

. (30)

Given the eigenstates (22) of the q-deformed quadrature operator X̂θ, we find

the tomogram of the above q-deformed coherent states |Φ〉q as follows

ω2(Xθ, θ) =

∣

∣

∣

∣

∣

∞
∑

n=0

αnJnq
(Xθ)e

−inθΨ0q (Xθ)
√

Eq(| α |2)
√

[n]!

∣

∣

∣

∣

∣

2

. (31)

In the limit q → 1, the above tomogram ω(Xθ, θ) become the tomogram of the

Glauber coherent states |α〉 [1]

ω2(xθ, θ) =
1

π1/4
exp

(

−x2
θ

2
− |α|2

2
− α2 e−i2θ

2
+
√
2αxθ e

−iθ

)

, (32)

which corroborate the expression given in Eq. (31) for the tomogram of q-75

deformed coherent state. Figures 1(a)-1(c) show the optical tomogram of q-

deformed coherent state for q = 0.9, 0.95, and 0.999 with |α|2 = 5, respectively.

Figure 1(d) displays the tomogram of coherent state |α〉 with the same value of
8
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Figure 1: Optical tomogram of q-deformed coherent states for various values of q: (a) 0.9, (b)

0.95, (c) 0.999 with |α|2 = 5. The plot (d) shows the optical tomogram of Glauber coherent

state |α〉 with the same value of |α|2.

|α|2 used in Figs. 1(a)-1(c). It is evident from the Figs. 1(c) and 1(d) that the

q-deformed coherent state goes to coherent state |α〉 in the limit q → 1.80

5. Conclusions

We defined a q-deformed quadrature operator and found its eigenstates in

terms of a new q-deformed polynomial. This q-deformed quadrature operator

reduces to the standard one in the limit q → 1. In this limit, the existing

homodyne detection technique can be used to measure the quadrature opera-85

tor eigenvalues but it has to be verified that the same technique can be used

for measuring the q-deformed quadrature amplitudes for q 6= 1, which is not

attempted in this study. The eigenstates of the quadrature operator obtained

in this paper are very important because they enable us to find the quadra-

ture representation of any q-deformed state. These eigenstates are also required90

to find theoretically the optical tomogram of the quantum states. We found
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the quadrature representation of the deformed Fock states and confirmed it by

checking the limiting case. These quadrature representations can be used to find

easily the quasi-probability distributions of deformed quantum states. Finally,

the q-deformation of the quantum tomography has been found by utilizing the95

expression for the eigenstates of the q-deformed quadrature operator.
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