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Abstract

A number of recent advances in our understanding of scattering amplitudes have
been inspired by ideas from twistor theory. While there has been much work study-
ing the twistor space support of scattering amplitudes, this has largely been done
by examining the amplitudes in momentum space. In this paper, we construct the
actual twistor scattering amplitudes themselves. The main reasons for doing so are
to seek a formulation of scattering amplitudes in N = 4 super Yang-Mills in which
superconformal symmetry is manifest, and to use the progress in on-shell meth-
ods in momentum space to build our understanding of how to construct quantum
field theory in twistor space. We show that the recursion relations of Britto, Cac-
hazo, Feng and Witten have a natural twistor formulation that, together with the
three-point seed amplitudes, allow us in principle to recursively construct general
tree amplitudes in twistor space. The twistor space BCFW recursion is tractable,
and we obtain explicit formulae for n-particle MHV and NMHV amplitudes, to-
gether with their CPT conjugates (whose representations are distinct in our chiral
framework). The amplitudes are a set of purely geometric, superconformally in-
variant delta functions, dressed by certain sign operators. These sign operators
subtly violate conformal invariance, even for tree-level amplitudes in N = 4 super
Yang-Mills, and we trace their origin to a topological property of split signature
spacetime. Our work is related via a twistor transform to the ambidextrous twistor
diagram approach of Hodges and of Arkani-Hamed, Cachazo, Cheung and Kaplan.
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1 Introduction

In his development of twistor-string theory [1], Witten showed that gauge theory scattering
amplitudes have remarkable properties when analyzed in twistor space. The subsequent
activity led to substantial progress in our understanding of amplitudes, particularly with
the construction of the tree-level Yang-Mills S-matrix via the connected prescription of
twistor-strings [2], the MHV diagram formalism [3], the BCFW recursion relations [4, 5]
and the generalized unitarity and leading singularity methods [6–14]. Despite there having
been much work examining the support of amplitudes in twistor space (see e.g. [1, 3, 15–
20]), until this point there has been no systematic study of explicit formulae for the actual
twistor space amplitudes themselves.

There are many reasons why it is interesting to investigate the twistor representation of
scattering amplitudes more closely. Firstly, such an analysis should make the conformal
properties of scattering amplitudes manifest, whereas these can be difficult to see on
momentum space. Secondly, twistor theory brings out the complete integrability of the
anti-selfdual sectors of both Yang-Mills and General Relativity [21–24]; in the language
of twistor actions [25–28], there exist gauges for which the anti-selfdual sector is free [29].
Furthermore, Drummond, Henn & Plefka [30] have recently shown that the generators of
the dual superconformal algebra [31, 32] – one of the main tools in the construction of
multi-particle [33,34] and multi-loop [7–9,14,35,36] scattering amplitudes in N = 4 SYM
– have a simple (though second-order) representation on twistor space.

Additional motivation comes from Penrose’s twistor programme [37], which seeks to
reformulate fundamental physics on twistor space as a route towards quantum gravity.
Indeed, there has been a long-standing programme to understand scattering amplitudes
in twistor theory via twistor diagrams [38, 39], but this has proved technically difficult
for two reasons. Firstly, the standard form of the Penrose transform of on-shell states
requires the use of cohomology; this builds in extra gauge freedom, and requires that one
computes scattering amplitudes via multi-dimensional contour integrals in large complex
manifolds. In this paper, cohomology will be sidestepped at the expense of working in
(+ + −−) spacetime signature. With this signature, twistor space has a real slice RP3

and massless fields on split signature spacetime correspond to homogenous functions on
real twistor space, rather than cohomology classes. The Penrose transform then becomes
the closely related ‘X-ray transform’ of Fritz John [40] (see also [41]) and, as we show
in appendix B, the Fourier transform of the X-ray transform is precisely Witten’s half-
Fourier transform [1] to on-shell momentum space. We will base our analysis on this
half-Fourier transform.

A second technical problem one encounters when trying to describe twistor scattering
amplitudes is that off-shell states (arising in the internal legs of a Feynman diagram)
cannot be encoded on twistor space alone. In momentum space, such off-shell states
are easily incorporated by relaxing the condition that the wavefunction is supported
only on the mass shell. In the twistor diagram approach [38, 39], one instead relaxes
the condition that the wavefunction be holomorphic, and then proceeds to complexify
f(Z, Z̄) → f(Z,W ). This procedure leads to a description in terms of both1 twistors

1Twistor diagrams are ambidextrous, and one must choose arbitrarily whether to represent a given
external state on twistor or dual twistor space. While there is no problem with working with these two
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and dual twistors and hence provides a six-dimensional description of four-dimensional
objects, implying still more redundancy. However, the recursion relations discovered by
Britto, Cachazo & Feng [4] and proved by Britto, Cachazo, Feng & Witten [5] involve
only on-shell, gauge invariant objects, thereby eliminating much of the redundancy (even
on momentum space) of the Feynman diagram approach to scattering amplitudes. The
BCFW relations generate the full perturbative content of Yang-Mills and gravity starting
from only the three-particle amplitudes for 〈+ +−〉 and 〈− −+〉 helicity configurations.
Basing a twistor scattering theory on the BCFW relations allows us to avoid this second
difficulty.

The first twistor formulation of the BCFW recursion procedure was given in terms of
twistor diagrams by Hodges [42–44]. Hodges’ construction uses both twistors and dual
twistors, and has recently been rederived by Arkani-Hamed, Cachazo, Cheung & Ka-
plan [45] in work that is parallel to this paper, and similarly uses Witten’s half Fourier
transform. By contrast, in this article we will work with a chiral formulation in which all
external states are represented on (dual2) twistor space. The twistor diagram represen-
tation of [42–45] is related to ours by a (complete) Fourier transform on non-projective
twistor space. In section 7 we discuss the relation of this Fourier transform to the twistor
transform between projective twistor and dual twistor spaces, and use this to explain the
detailed relation between the work of Arkani-Hamed et al. [45] and the current paper.

If only dual twistor variables W are used, the (super-)momentum shift that is the first
step in the BCFW procedure corresponds to the simple shift

A(W1, . . . ,Wn)→ A(W1, . . . ,Wn − tW1)

in the twistor amplitude A, where t is the shift parameter. This formula is proved in
section 2 and makes manifest the (super-)conformal invariance of the BCFW shift. The
original use of the shift was to introduce a complex parameter in which propagators
within the amplitude generate poles, so that contour integration yields the recursion
relation as a residue formula. Here, our aim is not to prove the recursion relation (for
which see [5, 33, 46, 47]). Instead, t will be a real parameter that provides the one degree
of freedom required to go off-shell in twistor space. This is the key idea from the point
of view of a twistor theorist seeking to study perturbative scattering theory: rather than
representing an off-shell state by both a twistor and a dual twistor as in twistor diagrams,
one can describe it using a single twistor together with a BCFW shift. (See also [48] for a
hybrid formulation in which off-shell states are treated on momentum space while on-shell
states are treated on twistor space.)

To begin the recursion procedure, one must seed the BCFW relations with the three-
particle amplitudes. In (+ + −−) spacetime, these can be obtained directly by taking
the half Fourier transform of the momentum space expressions. Doing so leads in the

representations simultaneously (analogous to describing some particles on momentum space and others
on spacetime), for a basic description in terms of an action, one needs to specify the basic fields and the
space on which they live.

2For better agreement with the perturbative scattering theory literature, we work on dual twistor
space, where Yang-Mills amplitudes with 2 negative and n − 2 positive helicity gluons are supported on
a line. A full summary of our conventions may be found in appendix A.
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first instance to formulae3 whose superconformal properties remain somewhat obscure, in
contrast to our aim of making such behaviour transparent. To remedy this, in section 3.1
we introduce distributions on twistor space that are manifestly conformally invariant.
These are the basic objects out of which we construct the seed amplitudes in section 3.2.

One of the surprises of our analysis is that these basic three-particle amplitudes are
not conformally invariant, even in N = 4 SYM. The failure of conformal invariance is
rather subtle and is discussed in section 3.3 and further in the conclusions. In some
sense, it is merely the problem of choosing an overall sign for the amplitude; nevertheless,
there is a topological obstruction to doing this in a way that is consistent with conformal
invariance. The obstruction is analogous to the impossiblity of choosing a holomorphic
branch for

√
z on the punctured complex plane; one must choose a cut across which the

function will not be holomorphic. Similarly, to make the sign factor in the amplitude
well-defined requires the choice of a lightcone at infinity. Moreover, although the BCFW
shift is superconformally invariant, the recursion relations themselves are not. Once again,
the violation of conformal invariance is rather subtle; for example we explicitly show that
when n is odd, the n-particle MHV and googly MHV superamplitudes in N = 4 SYM
break conformal invariance – even at tree-level – in the same way as the three-particle
amplitudes. However, when n is even the conformal breaking of the seed amplitudes
and the recursion relations cancel each other out, so that these MHV (and hence googly
MHV) amplitudes are genuinely conformally invariant. We argue in the conclusion that
the origin of the failure of conformal invariance in our formalism is likely to be associated
with our resorting to split signature in order to sidestep cohomology. The topological
obstruction is only present in split signature. Furthermore, in the twistor actions for gauge
theory [1, 25, 26] the relevant sign factors are essentially determined by the differential
forms used in the Dolbeault cohomology description, but these signs are lost when reducing
the forms to functions so as to reach a split signature description.

In section 4 we translate the BCFW recursion relation itself onto twistor space, obtain-
ing a recursion formula that decomposes arbitrary tree-level twistor amplitudes into more
elementary ones. We focus on maximally supersymmetric Yang-Mills and gravity, and so
only discuss the twistor form of the supersymmetric BCFW relations [33,47]. Despite their
extra field content, these theories are much simpler than their non-supersymmetric coun-
terparts, even at tree-level (where the non-supersymmetric theories are contained as a sub-
set). This is because there are 2n n-particle scattering amplitudes in non-supersymmetric
Yang-Mills or gravity, corresponding to the different choices of helicity for the external
particles, whereas there are only (n + 1)-distinct n-particle tree amplitudes in N = 4
SYM or N = 8 SG – the NkMHV amplitudes, associated with a polynomial of degree
(k+ 2)N in the on-shell Grassmann momenta. This exponential simplification was a cru-
cial ingredient in the recent solutions of the classical Yang-Mills S-matrix by Drummond
& Henn [34], and the classical gravitational S-matrix by Drummond, Spradlin, Volovich
& Wen [49] using the supersymmetric version of BCFW recursion.

Armed with the twistor form of both the seed amplitudes and the BCFW recursion
relation, in section 5 we proceed to construct twistor space versions of various tree am-
plitudes in N = 4 SYM. A simple consequence of the twistor representation is that the

3See appendix C for a detailed derivation of the half Fourier transforms of various momentum space
amplitudes
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complete classical S-matrix of N = 4 SYM can be written in terms of sums of prod-
ucts of certain sign operators acting on a set of superconformally invariant δ-functions,
integrated over some copies of the twistor space (corresponding to the internal states in
the recursion). We explicitly perform these integrals for the n-particle MHV and NMHV
superamplitudes, as well as their CPT conjugates. We also give an algorithm for com-
puting some more general tree amplitude from the BCFW recursion relations. At first
sight, the structures appear to be complementary to those in the momentum space ap-
proach of Drummond & Henn [34]. We also give a preliminary discussion of loops. It is
likely that the generalized unitarity and leading singularity methods [6–14] have a natural
formulation on twistor space, but we restrict our attention to the half-Fourier transform
of the dimensionally regularized 4 particle 1-loop amplitude. We find formulae for both
the finite and IR divergent parts of the amplitude, and discover that the finite part is
superconformally invariant.

The twistor space support of amplitudes has previously been analyzed and fruitfully
exploited by a number of authors [1, 3, 15–20]. However, this was done implicitly, e.g.
by use of differential operators acting on the momentum space amplitudes, or by inte-
gral representations. Our explicit representation shows that the support of the twistor
amplitudes is in fact smeared out by certain non-local operators that break conformal
symmetry. These operators are locally constant functions on momentum space, and so
are not visible to the differential operators that were used there to determine the twistor
support of the amplitudes. Similarly, they are not visible when momentum space confor-
mal generators are used to test for conformal invariance, unless the detailed behaviour
of the amplitudes across its singularities is examined. If the non-local sign operators are
ignored, we are able to make closer contact with the predictions for the support of ampli-
tudes found in [1,3,15–20], although some decomposition and resummation is still needed
if full agreement with the expectations of the MHV formalism is to be made.

We consider N = 8 supergravity in section 6. A momentum space representation of
the complete classical S-matrix has recently been constructed in [49], using the interplay
of the KLT relations [50] (which motivate a particular form for the MHV amplitude [51])
with the properties of the earlier solution of the N = 4 SYM classical S-matrix [34].
The structure of the BCFW recursion relation is unchanged compared to Yang-Mills,
but the KLT property is obscured in taking the half Fourier transform to twistor space.
Nonetheless, there is a very close relationship between the twistor N = 8 SG and N = 4
SYM amplitudes.

At present, although the twistor form of the BCFW recursion relation and scattering
amplitudes have many remarkable properties, this work does not constitute a complete
theory in twistor space, because both the BCFW relation itself and the three-point seed
amplitudes currently need to be imported from momentum space by half Fourier trans-
form. We conclude in section 8 with a discussion of a possible way to relate our results to
the twistor action of [26] (and its ambitwistor cousin [52]), which goes some way towards
making the twistor theory self-contained. Note that one can similarly transform Risager’s
momentum shift [53] and its multiline extensions [54, 55] into twistor space, obtaining a
twistor space version of the MHV diagram formalism.

In appendix A we summarize our conventions and the basic background structures and
formulae. In appendix B we derive the half Fourier transform from the X-ray transform.
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In appendix C we give the basic calculations of the half Fourier transform of the seed
amplitudes.

2 The Momentum Shift on Twistor Space

The amplitude A(1, . . . , n) for a process with n massless particles is a function of n null
momenta p1, . . . , pn. Decomposing these null momenta into their spinor factors pi = |i]〈i|
(where |i] and |i〉 are spinor-helicity notation for left and right spinors λ̃iA′ and λiA,
respectively) the BCFW procedure starts by shifting two of them:

|i]→ |̂i] := |i] + t|j] , |j〉 → |ĵ〉 := |j〉 − t|i〉 . (1)

This shift apparently treats left- and right-handed spinors symmetrically. However, there
is some chirality in the BCFW shift (1) because the ‘permissible shifts’ – whether one
should translate a given state’s primed spinor or unprimed spinor – are correlated with the
helicities of the states being shifted [5]. This chirality is more apparent in the maximally
supersymmetric extensions of the BCFW procedure [33,47]: any (irreducible) representa-
tion of an N = 4 YM supermultiplet or an N = 8 gravity supermultiplet with maximal
on-shell supersymmetry is necessarily chiral, as either the positive or negative helicity
state must be chosen to sit at the top of the supermultiplet. In particular, all external
supermultiplets have the same helicity, so (1) together with the ‘permissible shift’ rule are
replaced by the chiral supershift

‖iK→ ‖̂iK := ‖iK + t‖jK , |j〉 → |ĵ〉 := |j〉 − t|i〉 , (2)

where ‖iK = (λ̃i, ηi) denotes both the primed spinor momenta and the Grassmann coor-
dinate of the on-shell momentum superspace of the ith state; ηj itself is not shifted.

In (+ + −−) spacetime signature, Witten showed in [1] that the (dual) twistor and
on-shell momentum space superfields are related by the half Fourier transforms

f(λ, µ, χ) =

∫
d2|N λ̃ eiJµλ̃K Φ(λ, λ̃, η) ; Φ(λ, λ̃, η) =

1

(2π)2

∫
d2µ e−iJµλ̃K f(µ, λ, χ) ,

(3)
where (λA, µ

A′) and χa are the bosonic and fermionic components of a (dual) supertwistor
W, and

Jµλ̃K := µA
′
λ̃A′ + χaη

a (4)

is the natural pairing between (µ, χ) and the on-shell momentum space coordinates (λ̃, η).
Under the momentum supershift (2) (choosing i = 1 and j = n for simplicity), the twistor
superamplitude transforms as

Â(W1, . . . ,Wn) =

∫ n∏
i=1

d2|N λ̃i eiJµiλ̃iK A
(
1̂, . . . , n̂

)
=

∫
d2|N ˆ̃λ1 d2|N λ̃n eiJµ1

ˆ̃
λ1K eiJ(µn−tµ1)λ̃nK

n−1∏
j=2

d2|N λ̃j eiJµj λ̃jKA
(
1̂, . . . , n̂

)
= A(W1, . . . ,Wn − tW1) ;

(5)
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i.e. the half Fourier transform combines with the shift |n〉 → |n〉 − t|1〉 in the unprimed
spinor to result in a shift of the entire (super)twistor4 Wn along the line joining it to
W1. Equation (5) provides a key motivation for the rest of this paper. It shows that
the BCFW shift is (super)conformally invariant and may be simply expressed on twistor
space.

3 Twistor Amplitudes and Conformal Invariance

The BCFW recursion procedure is seeded by the three-point MHV and MHV amplitudes.
For N = 4 SYM, twistor space versions of these may be obtained by directly taking the
half Fourier transform of the momentum space expressions

AMHV(1, 2, 3) =
δ(4|8)

(∑3
i=1 |i〉Ji‖

)
〈12〉〈23〉〈31〉

AMHV(1, 2, 3) =
δ(4)
(∑3

i=1 |i〉[i|
)
δ(0|4) (η1[23] + η2[31] + η3[12])

[12][23][31]
.

(6)

For example, for the 3-particle MHV amplitude one finds in the first instance5

AMHV(W1,W2,W3) =
δ(2|4)(µ1〈23〉+ µ2〈31〉+ µ3〈12〉)

〈12〉〈23〉〈31〉
, (7)

where the δ-functions run over the supertwistor components (µA
′
, χa). AMHV(W1,W2,W3)

has support precisely where W1, W2 and W3 are collinear, and has the standard ‘current
correlator’ denominator [56] that inspired twistor-string theory [1].

While (7) is manifestly (super)Poincaré invariant, its conformal properties are still not
transparent, since (µA

′
, χa) appear in (7) on a rather different footing to λA. As indicated

in the introduction, the conformal properties of scattering amplitudes are exhibited most
clearly by writing them in terms of manifestly SL(4|N ; R) invariant6 distributions on
real projective twistor space. In section 3.1 we discuss the twistor distributions that in
section 3.2 turn out to be relevant for describing twistor space scattering amplitudes.

3.1 Distributions on projective twistor space

The most elementary distribution is the delta function supported at a point Y ∈ RP3,
We write this as δ

(3)
−n−4(W,Y ) and it has the defining property

f(Y ) =

∫
RP3

f(W )δ
(3)
−n−4(W,Y )D3W (8)

4That only Wn is shifted should not be surprising: (2) is generated by λ̃n∂/∂λ̃1, ηn∂/∂η1 and
−λ1∂/∂λn. Under the half Fourier transform (3) one replaces λ̃ → ∂/∂µ, ∂/∂λ̃ → −µ, η → ∂/∂χ
and ∂/∂η → −χ, so these generators combine to form −W1∂Wn

.
5See appendix C for a detailed derivation of the half Fourier transforms of various momentum space

amplitudes.
6The superconformal group in (++−−) signature spacetime is SL(4|N ; R) or PSL(4|4; R) whenN = 4.
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for f a function of homogeneity degree n and where D3W := 1
4
εαβγδWαdWβ ∧ dWγ ∧ dWδ

is the canonical top form of homogeneity +4. This RP3 delta function can be described
using an elementary integral of the standard, non-projective δ-function on R4:

δ
(3)
−n−4(W,Y ) =

∫ ∞
−∞

dt

t1+n
sgn(t) δ(4)(W − tY ) . (9)

Equation (9) has the right support because Wα− tYα = 0 only if W and Y lie on the same
line through the origin in R4 and hence define the same point in the projective space. It
is also easy to check that under the scalings Wα → aWα and Yα → bYα, we have (at least
for a/b > 0)

δ
(3)
−n−4(aW, bY ) =

bn

an+4
δ

(3)
−n−4(W,Y ) , (10)

so that the subscript labels the homogeneity of the first entry. As R−{0} is not connected,
the behaviour under sign reversal must be considered separately. Scaling (Wα, Yα) →
(aWα, bYα) with a/b < 0 induces the scaling

dt

t1+n
sgn(t)→ (−1) × bn

an
dt

t1+n
sgn(t) (11)

where the extra sign change comes from the factor of sgn(t). However, under this scaling

the limits of the t integral also change sign, so that δ
(3)
−n−4(W,Y ) itself has no extra signs.

These properties ensure that (8) is well-defined projectively whenever f(W ) is.
Perhaps surprisingly, we actually do want to consider twistor functions and distribu-

tions that have wrong sign behaviour, in the sense that

f̃(aW ) =

{
anf̃(W ) a ∈ R+

−anf̃(W ) a ∈ R−
(12)

so that they scale with an extra minus sign when the scaling parameter is negative7. For
these we can define a tilded δ-function δ̃

(3)
−n−4(W,Y ) such that

f̃(Y ) =

∫
RP3

f̃(W )δ̃
(3)
−n−4(W,Y )D3W . (13)

For (13) to be well-defined, δ̃
(3)
−n−4(W,Y ) must have ‘wrong sign’ behaviour in both W and

Y , so it is related to (9) by

δ̃
(3)
−n−4(W,Y ) = sgn

(
W

Y

)
δ

(3)
−n−4(W,Y ) =

∫ ∞
−∞

dt

t1+n
δ(4)(W − tY ) , (14)

where the second equality follows because t = W/Y on the support of the δ-function.
In concrete calculations, the dt integrals are easily performed explicitly using one of

the δ-functions, say the component of the |λ〉 spinor in the direction of some fixed spinor

7Just as ordinary homogeneous functions can be thought of as sections of a line bundle O(n) on
the projective space, such ‘wrong sign’ functions correspond to sections of another family of invariantly
defined line bundles Õ(n) on the projective space.
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|α〉. On the support of δ(4)(W1 − tW2), t = 〈α1〉/〈α2〉, so we can reduce to three δ-
functions. However this breaks conformal invariance. Both the δ(3)(W,Y ) and δ̃(3)(W,Y )
enforce the conformally invariant condition that W and Y coincide projectively, but the
only ways for us to express this condition invariantly is via the formal definition (8) or
the integral formulæ (9) & (14). This is because it is not possible to impose Wα ∝ Yα
with an invariant set of irreducible equations: The three conditions Wα ∝ Yα are given by
the six equations

WαYβ −WβYα = 0 , (15)

but are subject to three relations. Choosing any three of the equations breaks conformal
invariance and will also admit spurious solutions for which Wα is not proportional to Yα.
The integrals over dt above are the easiest way to express the full projective invariance.

The projective delta functions combine naturally to form the supersymmetric delta
functions. For example, consider the ‘wrong sign’ δ̃-function

δ̃
(3|N )
N−4−n(W,Y) =

∫ ∞
−∞

dt

t1+n
δ(4|N )(W − tY)

:=

∫ ∞
−∞

dt

t1+n
δ(4)(W − tY )

N∏
i=1

(χi − tψi) ,
(16)

where W = (Wα, χi) and Y = (Yβ, ψj). By including a factor of sgn(t) in the measure, we
can also define a supersymmetric δ-function with the correct sign behaviour, but because
of the twistor structure of the BCFW recursion relations, we will find that (16) is more
directly useful. When N = 4 and n = 0, (16) has homogeneity zero in both its arguments
(as appropriate for N = 4 twistor supermultiplets), whereas for N = 8 SG we will most
frequently set n = 1 so that δ̃(3|8)(W,Y) has homogeneities (3, 1) in (W,Y). In each of
these cases, we omit the subscript.

One can also define a family of descendant δ-functions and δ̃-functions that enforce
collinearity and coplanarity etc. of more twistors, rather than just coincidence. In par-
ticular, we will make use of the N = 4 and N = 8 collinear δ̃-functions

δ̃(2|4)(W1; W2,W3) :=

∫
R2

ds

s

dt

t
δ(4|4)(W1 − sW2 − tW3)

δ̃(2|8)(W1; W2,W3) :=

∫
R2

ds

s2

dt

t2
δ(4|8)(W1 − sW2 − tW3) .

(17)

which are again superconformally invariant by construction. These collinear δ̃-functions
have correct sign behaviour for W1, but wrong sign behaviour for W2 and W3. The
completely right sign untilded collinear δ-function is (for N = 4)

δ(2|4)(W1,W2,W3) :=

∫
R2

ds

|s|
dt

|t|
δ(4|4)(W1 − sW2 − tW3)

= sgn(〈W1W2〉〈W3W1〉) δ̃(2|4)(W1; W2,W3) ,

(18)

where the second line follows from using the delta functions in the λA coordinates to
evaluate s = 〈13〉/〈23〉 and t = 〈12〉/〈32〉 so that

sgn(st) = sgn(〈W1W2〉〈W3W1〉) . (19)
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For N = 4, (18) is invariant under scaling of each of its arguments, and performing
elementary substitutions shows that in fact it is totally symmetric under exchange.

Non-projectively W1 − sW2 − tW3 can only vanish when W1 lies in the two-plane
containing the origin that is spanned by W2 and W3. Therefore δ̃(2|N )(W1; W2,W3) and
δ(2|N )(W1,W2,W3) have codimension 2|N support on the set where W1, W2 and W3 are
collinear. Again, in order to explicitly perform the s, t integrals we must break conformal
invariance: The invariant condition for collinearity (in the bosonic twistor space) is

εαβγδW1βW2γW3δ = 0 , (20)

but there is no conformally invariant or global way to take just two of these four equations8.
A natural extension to the coplanarity δ̃-function is

δ̃(1|N )(W1,W2,W3,W4) :=

∫
R3

dr

r

ds

s

dt

t
δ(4|N )(W1 − rW2 − sW3 − tW4) . (21)

and similarly for δ(1|N ). Differently weighted versions are obtained by including vari-
ous powers of the r, s, t, . . . variables in the measures, together with signs to change the
right/wrong sign behaviours. (For exampe, replacing dr/r → dr/|r| produces a version
that is right sign in W1 and W2 and wrong sign in W3 and W4)

3.1.1 The Hilbert transform and the sgn function

The original Hilbert transform is a complex structure on functions on the real line that
fall off as O(1/x) as x→∞. It is given by the formula

H[f ](x) = p.v.
1

π

∫
R

dy

y
f(x− y) , H[H[f ]] = −f . (22)

One way to view the Hilbert transform is to say that if f = Re(F ) where F is a complex
function that is holomorphic on the upper half plane, then H[f ] = Im(F ). This follows
by expressing the principal value regularization for the distribution 1/y as

1

y
=

1

2
lim
ε→0

(
1

y + iε
+

1

y − iε

)
; (23)

the right hand side give rise to the Cauchy integral formula for iF and its complex con-
jugate in terms of an integral of f along the real axis.

We can extend the idea of the Hilbert transform to distributions on twistor space (or
more general projective spaces) as follows: choose a line in twistor space by fixing a point
A and then perform a Hilbert transform along the line joining W to A. That is, we make
the following

Definition 3.1 The Hilbert transform of a function (or distribution) f(W ) in the direc-
tion A is

HA[f ](W ) :=
1

π

∫ ∞
−∞

dt

t
f(Wα − tAα) , (24)

where the integral is understood by the principal value prescription.

8There is a Poincaré invariant choice in this case, which leads to the explicit form (7) of the three-point
MHV amplitude.

10



Thus, the basic wrong sign δ̃-functions may be viewed as Hilbert transforms of the non-
projective δ-function, for example

δ̃(3|N )(W1,W2) = πHW2 [δ
(4|N )(W1)]

δ̃(2|N )(W1; W2,W3) = π2HW2

[
HW3 [δ

(4|N )(W1)]
] (25)

and so on.
The Hilbert transform has a useful interplay with the Fourier transform. Representing

a (non-projective) distribution f(W ) by its Fourier transform F (Z) we can write∫ ∞
−∞

dt

t
f(Wα − tAα) =

∫
dt

t
d4Z ei(W−tA)·ZF (Z)

= −iπ

∫
d4Z sgn(A·Z) eiW ·Z F (Z)

= iπ sgn

(
iA· ∂

∂W

)
f(W )

(26)

where in the second line we use the fact that

p.v.

∫ ∞
−∞

dt

t
e−iat = −iπ sgn a , (27)

and in the last line follows by setting9 Zα = −i∂/∂Wα. At least formally, this allows us
to express the weighted projective δ-functions in terms of pseudo-differential operators.
In particular, when N = 4 we have10

δ̃(3|4)(W1,W2) =

∫
dt

t
δ(4|4)(W1 − tW2)

= iπ sgn

(
iW2 ·

∂

∂W

)
δ(4|4)(W1)

(28)

and

δ̃(2|4)(W1; W2,W3) =

∫
ds

s

dt

t
δ(4|4)(W1 − sW2 − tW3)

= (iπ)2 sgn

(
iW2 ·

∂

∂W1

iW3 ·
∂

∂W1

)
δ(4|4)(W1) ,

(29)

9Note that iA· ∂
∂W is Hermitian.

10We can similarly write formally

log
(

iA· ∂
∂W

)
f(W ) =

∫
dt
|t|
f(W + tA)

although this integral needs to be regularised more carefully [57]. So similarly,

δ(3|4)(W1,W2) = log
(

iW2 ·
∂

∂W1

)
δ(4|4)(W1) .

We will not have so much use for this formula however.
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whereas when N = 8 the principal value integral (see e.g. [57])

p.v.

∫ ∞
−∞

dt

t2
e−iat = −π|a| (30)

gives

δ̃(3|8)(W1,W2) =

∫
dt

t2
δ(4|8)(W1 − tW2)

= −π
∣∣∣∣iW2 ·

∂

∂W1

∣∣∣∣ δ(4|8)(W1)

(31)

and

δ̃(2|8)(W1; W2,W3) =

∫
ds

s2

dt

t2
δ(4|8)(W1 − sW2 − tW3)

= π2

∣∣∣∣iW2 ·
∂

∂W1

iW3 ·
∂

∂W1

∣∣∣∣ δ(4|8)(W1)

(32)

This notation helpfully encodes the scaling behaviour, and it will often be convenient to
write both the basic seed amplitudes and the recursion relations themselves in terms of
these sign operators.

3.2 Seed amplitudes in N = 4 SYM

We now have all the necessary ingredients to state the twistor space form of the basic
three-point amplitudes in a way that clarifies their conformal properties. In this section,
we confine ourselves to a discussion of N = 4 SYM, postponing the (largely parallel) case
of N = 8 SG until section 6.

The twistor form of the 3-particle MHV superamplitude in N = 4 SYM may be
written as

AMHV(W1,W2,W3) = sgn(〈W2W3〉) δ̃(2|4)(W1; W2,W3)

= sgn(〈W1W2〉〈W2W3〉〈W3W1〉) δ(2|4)(W1,W2,W3) .
(33)

where 〈WiWj〉 = 〈λiλj〉 is the usual spinor product of the λ-parts of the spinor. Thus the
complete superamplitude is a superconformally invariant δ-function imposing collinearity
of W1,W2,W3, times a sign factor. The sign factor ensures that (33) is antisymmetric
under the exchange of any two points, compensating the antisymmetry of the colour factor
Tr(T1[T2, T3]). Since the sign only depends on the ordering of the three twistors, we see
that the twistor amplitude is completely geometric: it depends on the three ordered points
on a line.

Remarkably, the extension of this amplitude to the n-point MHV amplitude is the
product

AMHV(W1, . . . ,Wn) = (−1)n−3

n∏
i=3

AMHV(W1,Wi−1,Wi) ,

(34)

12



as shown by half Fourier transform in appendix C and obtained from twistor BCFW
recursion below. Each three-particle MHV amplitude enforces collinearity of W1, Wi−1

and Wi, so the product of such three-particle amplitudes has the well-known collinear
support in twistor space. Again, the amplitude is purely geometric; there are no extra
spinor or twistor products. The cyclic symmetry of the MHV amplitude is not explicit,
but follows from (34) and the cyclic symmetry of the 4-point amplitude

AMHV(1, 2, 3)AMHV(1, 3, 4) = AMHV(2, 3, 4)AMHV(2, 4, 1) . (35)

This four-point identity is easily proved using the three-point amplitude in the form (7).

The three-point MHV amplitude, given in on-shell momentum superspace by [33]

AMHV(p1, p2, p3) =
δ(4)(p1 + p2 + p3) δ(4)(η1[23] + η2[31] + η3[12])

[12][23][31]
, (36)

has the twistor space representation

AMHV(W1,W2,W3) = sgn

([
∂

∂W2

∂

∂W3

])
δ̃(3|4)(W1,W2) δ̃(3|4)(W1,W3) .

(37)

The operator sgn[∂2 ∂3]) is a pseudo-differential operator that is closely related to the
Hilbert transform. Like the Hilbert transform, it can be easily understood in terms of its
Fourier transform (whence it arose). AMHV may also be written explicitly as

AMHV(W1,W2,W3) =
λ1

λ2

λ1

λ3

δ(〈12〉) δ(〈13〉) ×

δ′
((
µA

′

2 −
λ2

λ1

µA
′

1

)(
µ3A′ −

λ3

λ1

µ1A′

))
δ(0|4)

(
χ2 −

λ2

λ1

χ1

)
δ(0|4)

(
χ3 −

λ3

λ1

χ1

)
(38)

which follows directly from the half Fourier transform. Again, this explicit representation
obscures the conformal properties and in practice the implicit form (37) will actually be
more useful. It is easy to show that (37) is antisymmetric under exchange of any two
external states, again compensating the antisymmetry of the colour factor.

Using the sign-function representations of the delta functions, we can also write the
three-point amplitudes as

AMHV(W1,W2,W3) = (iπ)2sgn (〈23〉 iW2 ·∂W1 iW3 ·∂W1) δ
(4|4)(W1)

AMHV(W1,W2,W3) = (iπ)2sgn ([∂W2∂W3 ] iW1 ·∂W2 iW1 ·∂W3) δ
(4|4)(W2) δ(4|4)(W3) .

(39)
This representation may seem rather formal, but it is well-defined as a distribution and in
any case is completely equivalent to the concrete forms (7) & (38). Alternatively, one can
obtain an ambidextrous representation of the amplitudes by writing the δ(4|4)-functions
in terms of Fourier transforms, as is done in [45] and as we discuss further in section 7.

13



The differential operators inside the sign functions in (39) play a prominent role in what
follows. For future reference, we therefore define

Hi
jk := (iπ)2sgn

(
〈WjWk〉 iWj ·

∂

∂Wi

iWk ·
∂

∂Wi

)
(40)

and similarly

H̃jk
i := (iπ)2sgn

([
∂

∂Wj

∂

∂Wk

]
iWi ·

∂

∂Wj

iWi ·
∂

∂Wk

)
. (41)

These Hi
jk and H̃ij

k operators are conjugate, in the sense that they are related by making

the replacements Wi ↔ ∂/∂Wi and exchanging the infinity twistor and its dual Iαβ ↔ Iαβ.
Each of these operators will play an important role in the construction of general tree
amplitudes. In this representation, the cyclic symmetry of the three-point amplitude is
the identity

H1
23δ

(4|4)(W1) = H2
31δ

(4|4)(W2) , (42)

while the cyclic symmetry (35) of the four-point amplitude is

H2
13H4

13δ
(4|4)(W2)δ(4|4)(W4) = H3

24H1
24δ

(4|4)(W3)δ(4|4)(W1) . (43)

3.3 On conformal invariance

The results of the previous subsection showed that seed amplitudes in N = 4 SYM
are one or two superconformally invariant δ-functions, dressed by certain signs (which
may not be locally defined). Although the delta functions in (33) & (37) are manifestly
superconformally invariant, the factors of sgn(〈WiWj〉) and the operator sgn([∂2 ∂3]) are
not. No choice of tilded or untilded δ-function removes all of these signs, which are
necessary for the amplitudes to have the correct cyclic and exchange properties.

Is this a failure of conformal invariance, or merely a failure to make invariance mani-
fest? Consider the three-point MHV amplitude, written in the second form of (33) which
makes the exchange properties transparent. On the support of the delta function, the
three twistors are collinear and the sign factor just depends on the ordering of the points
along this line. Thus, if we could consistently orientate all the lines in twistor space,
we would be able to replace the factor sgn(〈W1W2〉〈W2W3〉〈W3W1〉) by the prescription
that the collinear delta-function is to be multiplied by +1 if the ordering of the three
twistors agrees with the chosen orientation, and by −1 if not. The amplitude would then
be conformally invariant. However, there is a topological obstruction to doing this: an
oriented line in RP3 can always be continuously deformed so that it comes back to itself
with the opposite orientation (e.g. by rotating it through π about an axis that is perpen-
dicular to the line, thinking of it in affine R3). Globally, the space of RP1s inside RP3

is conformally compactified split signature spacetime with topology (S2 × S2)/Z2. This
space has fundamental group Z2, and this fundamental group precisely corresponds to the
possible orientations of the twistor line11.

11A related fact is that the integral in the X-ray transform requires an orientation, and so gives rise to
massless fields that have wrong-sign behaviour with respect to this Z2, i.e., they are wrong-sign sections
of the line bundle of functions of homogeneity −1 on the 4-quadric with signature (3, 3) in RP5. This
‘wrong-sign’ behaviour is not correlated with that of the amplitude.
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After removing a line I ‘at infinity’, one can orientate all the RP1s that do not meet
this line. The remaining twistor space fibres over RP1 and we can fix the orientation on
any line that does not meet I by pulling back the orientation of this RP1. Equivalently,
removing a line I from twistor space removes a point i from conformally compactified
spacetime. The space of twistor lines that do not intersect I corresponds to the region
of conformally compactified spacetime that is not null separated from the point i, in
other words affine spacetime R2,2. Thus, provided one stays within a single copy of split
signature affine spacetime, the sign factors in (33) just amount to an overall sign that
may be consistently chosen. However, there is no consistent way to extend this over the
whole of RP3, and conformal invariance is genuinely broken.

How do we reconcile this with the fact that momentum space amplitudes are annihi-
lated by all the superconformal generators (see e.g. [1])? Let us examine in detail how
conformal invariance is broken. Acting on the three-point MHV amplitude (in the form
of the second equation of (33)) with the conformal generators J β

α =
∑3

i=1 Wiα∂/∂Wiβ,
the only possible contribution comes from the sign function. We obtain

J β
α AMHV(W1,W2,W3) = (W2αI

βγW3γ −W3αI
βγW2γ) δ(〈W2 W3〉) δ̃(2|4)(W1; W2,W3) .

(44)
On the support of the delta functions in this expression, the Wi are all collinear and
〈W2W3〉 = 0. Geometrically, the condition 〈W2W3〉 = 0 means that W2 and W3 lie in the
same plane through the line ‘at infinity’ (IαβWα = 0, or λA = 0). So the delta functions
in (44) give support only when the Wi all lie on a line that intersects the line at infinity.
On such lines, the coefficient W2αI

βγW3γ −W3αI
βγW2γ does not vanish (unless W2 and

W3 actually coincide). Thus, the failure of conformal invariance occurs where all three
particles’ λA spinors are proportional. This is the most singular part of the momentum
space amplitude – a momentum space calculation (or one based on the explicit twistor
form (7)) could only uncover the failure of conformal invariance with a careful analysis of
anomalous terms in the action of the conformal generators in the triple-collinear limit.

However, although the failure of conformal invariance is associated with the collinear
singularities of the momentum space amplitudes, note that nothing singular is happening
in twistor space. Given a line in ‘affine’ twistor space, a collinear singularity occurs when
two or more marked points on this line collide – this process is conformally invariant. By
contrast, the violation of conformal invariance above is associated with support on lines
that intersect I. No twistors need collide, and from the point of view of the conformally
compactified space, this line is on the same footing as any other. Moreover, the collinear
delta function δ(2|4)(W1,W2,W3) corresponds to

δ(4|4)
(∑3

i=1 |i〉Ji‖
)

|〈12〉〈23〉〈31〉|
(45)

on momentum space, so (at least away from singularities) it equals12 ±AMHV(1, 2, 3).
Thus, on the open region of momentum space with collinear singularities removed, (45) is
likewise annihilated by all the generators of the superconformal algebra. However, under
a finite conformal transformation, (45) fits together across the singularities in a way which
is conformally invariant, while the amplitude itself does not.

12Recall that in split signature, the momentum space spinors are real.
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The conformal properties of the three-point MHV amplitude follows similarly from a
CPT transformation (or the Fourier transform of section 7). Although the n-particle MHV
amplitudes might at first sight appear worse, many of the sign factors cancel: Arrange
the 3-point factors in (34) pairwise, and use cyclic symmetry and the first line of (33)
to ensure that the only sign factors are sgn〈1i〉, occuring in both the ith and (i + 1)th

term. These signs then cancel. With this cancellation, the even-point MHV amplitudes
are manifestly conformally invariant. The odd-point amplitudes still end up with the
one three-point subamplitude in the product (34) whose conformal breaking sign factor
cannot be made to cancel. This is consistent with the topological argument because the
relation

A(1, 2, . . . , n− 1, n) = (−1)nA(n, n− 1, . . . , 2, 1) , (46)

requires that odd-point amplitudes, but not even-point amplitudes, change sign under a
reversal of the orientation of points along the line.

4 BCFW Recursion in Twistor Space

We now use the half-Fourier transform to translate the supersymmetric BCFW recursion
relation into twistor space. See [5] for a proof of the original BCFW rule in Yang-Mills, [46]
for gravity and [33,47] for the supersymmetric extension.

In both N = 8 SG and N = 4 SYM, the (super-)BCFW recursion rule states that

Ã(1, . . . , n) =
∑∫

dNη ÃL
(
1̂, 2, . . . , i, {−p̂, η}

) 1

p2
ÃR({p̂, η}, i+ 1, . . . , n− 1, n̂) (47)

where Ã denotes a tree-level superamplitude that has been stripped of its overall mo-
mentum conserving δ-function (and, in Yang-Mills, also of its colour factor). The sum is
taken over all possible ways of splitting the external states among the two subamplitudes,
subject to the requirement that the shifted momenta reside in separate subamplitudes
(and subject to cyclic symmetry in SYM). The integral over the Grassman variables η of
the internal supermultiplet accounts for the possible helicity states of the internal particle.
The propagator momentum p is defined as usual, i.e.

p :=
∑
j∈L

pj , (48)

where L is the set of external particles attached to the left subamplitude. The supermo-
menta in the subamplitudes are shifted compared to the external momenta according to
the general prescription (2). Similarly, in the subamplitudes ÃL,R, the propagator mo-
mentum p is shifted as p → p̂ := p − t|1〉[n|. For a given term in the sum in (47) (i.e.,
a given decomposition into subamplitudes) the shift parameter t is fixed to the value t∗
that ensures p̂2(t∗) = 0. Consequently, all the momenta in ÃL,R are null, so these are fully
on-shell subamplitudes. Note that the t∗ are real in (+ +−−) signature spacetime.

As a preliminary step towards transforming the BCFW relation to twistor space, first
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restore the momentum-conserving δ-functions to (47). One finds

A(1, . . . , n) =
∑∫

d4p dNη δ(4)

(
−p+

∑
j∈L

pj

)
ÃL(t∗)

1

p2
δ(4)

(
p+

∑
k∈R

pk

)
ÃR(t∗) ,

(49)
where now p is a priori unconstrained (and in particular is generically off-shell). We can
always obtain a null momentum by projecting the arbitrary momentum p along some
fixed null momentum direction, so we can always set

p = `− t|1〉[n| , (50)

where ` = |λ〉[λ̃| is a null but otherwise arbitrary momentum, and t is an arbitrary
parameter.

In terms of the (`, t) variables, the integration measure and propagator combine to
become

d4p

p2
= sgn(〈1|`|n])

dt

t
d3` = sgn(〈1λ〉[λ̃n])

dt

t

(
〈λdλ〉d2λ̃− [λ̃dλ̃]d2λ

)
. (51)

The sign factor sgn(〈1|`|n]) arises because the orientation on the dt factor changes sign
with 〈1|`|n]. This can be seen from the fact that the momentum lightcone is naturally ori-
ented by the orientation of momentum space, together with the choice of outward normal
going from p2 < 0 to p2 > 0. The direction dt is essentially that of |1〉[n|, and is aligned
or anti-aligned with this outgoing normal according to the sign of 〈1λ〉[λ̃n]. Therefore
we must incorporate this sign in order to have agreement with the given orientation on
momentum space. The measure

d3` = 〈λdλ〉d2λ̃− [λ̃dλ̃]d2λ (52)

on the null cone in momentum space is invariant under the scaling (λ, λ̃) → (r−1λ, rλ̃)
where r is an arbitrary function of the projective spinors [λA] and [λ̃A′ ]. We can represent
this null cone as a rank two bundle over the RP1 factor, coordinatized by the [λA] on the
base and λ̃A′ up the fibre; doing so amounts to restricting r to be a function of [λA] alone.
The measure then reduces to d3` = 〈λdλ〉 d2λ̃, which combines with the integral over the
internal ηs to give

d4p

p2
dNη = sgn(〈1λ〉[λ̃n])

dt

t
〈λdλ〉 d2|N λ̃ . (53)

Thus the integral and propagator in the BCFW recursion may together be interpreted as
an integral over the on-shell momentum superspace of the internal state, together with
an integral over the BCFW shift parameter.

In the (λ, λ̃, t) variables, the momentum δ-functions in the integral in (49) become

δ(4)

(
−λλ̃+

∑
j∈L

p̂j(t)

)
δ(4)

(
λλ̃+

∑
k∈R

p̂k(t)

)
, (54)

which are the δ-functions associated with the subamplitudes AL,R(t) for arbitrary values
of the shift parameter t. However, on the support of these δ-functions, t is fixed to be
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precisely t = t∗ and then ` = p̂(t∗). Hence the δ-functions allow us to replace ÃL,R(ti)
by AL,R(t) inside the integral (49). Thus we have a form of the BCFW recursion relation
in which the propagator has been absorbed into the measure and all the ingredients are
manifestly on-shell:

A(1, . . . , n) =
∑∫

dt

t
〈λdλ〉 d2|N λ̃ sgn(〈1λ〉[λ̃n])

× AL(1̂, . . . , {−λ, λ̃, η})AR({λ, λ̃, η}, . . . , n̂) . (55)

This form of the BCFW recursion relation is somewhat similar to a completeness relation:
One decomposes the amplitude by inserting a complete set of on-shell states. However,
such an interpretation does not account for the shift of the external states 1 and n, nor
the integral over the shift parameter t.

4.1 The iε-prescription on R2,2

There is a subtlety13 in the definition of the propagator measure in (51) & (53) because the
1/t factor means that the t-integral is singular. We have seen that for tree amplitudes, the
integral is performed by integration against a delta-function, and so the regularization is
not urgent, but it nevertheless should in general be regularized, particularly if one wishes
to apply these ideas to loop processes.

In quantum field theory in Minkowski space, stability of the vacuum requires that
only positive energy states be allowed to propagate towards the future. This is achieved
by using the Feynman propagator ∆F (x − y) = 〈0|Tφ(x)φ(y)|0〉 which is time-ordered.
Using the Fourier transform of the time-ordering step functions

θ(x0 − y0) = − 1

2πi

∫ ∞
−∞

dE
e−iE(x0−y0)

E + iε
(56)

one arrives at the iε-prescription 1/p2 → 1/(p2 + iε) for the momentum space propagator.
However, in this paper we are tied to split signature spacetime, R2,2, which makes

no distinction between past and future. The lightcone is connected as are the ‘timelike’
vectors which are now on the same footing as space-like ones. There is no past or future so
it does not make sense to ask that positive energy particles propagate ‘forwards’ in time
and negative energy ones ‘backwards’. Correspondingly, in split signature momentum
space, the natural choice of iε prescription is

1

p2
→ 1

2

(
1

p2 + iε
+

1

p2 − iε

)
. (57)

We will therefore adopt this prescription when we need to. Thus, the measure in (51) can
be written as

d4p

p2
→ 1

2

(
d4p

p2 + iε
+

d4p

p2 − iε

)
=

1

2

(
dt

t+ iε
+

dt

t− iε

)
sgn(〈1|`|n])d3` ,

(58)

13We thank N. Arkani-Hamed for discussions of this point.

18



and this amounts to treating the dt integral via a Cauchy principal value integral. Al-
though we will often write the abbreviated form (51), we will take the dt integral to be a
principal value integral. (This is in contrast to the proof [5] of the BCFW relations which
treats it as an S1 contour integral.) This wont make any difference to tree level calcula-
tions where the integral is determined by delta-functions, but this will make a difference
for loops.

4.2 Transform to twistor space

We will now take the half-Fourier transform of equation (55) with respect to the λ̃ vari-
ables of the external states and substitute in the inverse half-Fourier transform from
twistor space for the subamplitudes. On the lhs, this is just the definition of the twistor
superamplitude:

A(W1, . . . ,Wn) :=

∫ n∏
i=1

d2|N λ̃i eiJµiλ̃iK A(1, . . . , n) . (59)

Whereas on the right hand side we obtain

AL(t) =

∫
d2|Nµ

(2π)2
eiJµλ̃K

∏
j∈L

d2|Nµ′j
(2π)2

e−iJµ′j
ˆ̃
λj(t)KAL(W′

1, . . . ,W)

AR(t) =

∫
d2|Nµ′

(2π)2
e−iJµ′λ̃K

∏
k∈R

d2|Nµ′k
(2π)2

e−iJµ′kλ̃KAR({λ, µ′, χ′}, , . . . , {λn − tλ1, µ
′
n, χ

′
n}))

(60)
where we use the hatted variables

‖ˆ̃λ1(t)K = ‖λ̃1K + t‖λ̃nK ‖ˆ̃λj(t)K = ‖λ̃jK for j 6= 1 (61)

in the transformation of the external states in AL. It makes no difference whether we write

‖ˆ̃λkK or simply ‖λ̃kK for the variables in AR, since the shifts in AR do not involve these
variables. However, as indicated in (60), we must account for the shift |n〉 → |n〉 − t|1〉
explicitly. The change in sign between the Fourier transform of the internal state in AL
compared to AR accounts for the fact that ` is the momentum flowing out of AL and in to
AR. Note that the supertwistors associated to the internal state have the same unprimed
spinor part λA in both AL and AR.

We now insert these subamplitudes into (55) and transform the whole expression back
to twistor space. For all the external states except 1 and n, this is trivial. Changing

variables λ̃1 → ˆ̃λ1 also allows us to perform the d2|N ˆ̃λ1 d2|Nµ′1 integrals directly. The
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remaining integrals are

1

(2π)6

∫
dt

t
〈λdλ〉d2|Nµ d2|N λ̃ d2|N λ̃n d2|Nµ′ d2|Nµ′n eiJ(µ−µ′) λ̃K eiJ(µn−µ′n−tµ1) λ̃nK

× sgn(〈1λ〉[λ̃n]) AL(W1, . . . ,W)AR({λ, µ′, χ′}, . . . , {λn − tλ1, µ
′
n, χ

′
n})

=
1

(2π)6

∫
dt

t
D3|NW d2|N λ̃ d2|N λ̃n d2|Nµ′ d2|Nµ′n eiJ(µ−µ′) λ̃K eiJ(µn−µ′n) λ̃nK

× sgn(〈1λ〉[λ̃n]) AL(W1, . . . ,W)AR(W′, . . . ,W′
n − tW1) ,

(62)
where in the second line we have translated ‖µ′nK to ‖µ′nK− t‖µ1K and defined

W′ := (λ, µ′, χ′) and W′
n := (λn, µ

′
n, χ

′
n) . (63)

We also combined 〈λdλ〉d2|Nµ into the measure D3|NW on the supertwistor space of the
internal state.

To proceed, we somewhat formally write

sgn[λ̃λ̃n] = sgn

[
∂

∂µ′
∂

∂µ′n

]
(64)

inside the integrals14. The operator sgn[ ∂
∂µ′

∂
∂µ′n

] then acts on AR (as a distribution),

whereupon the remaining integrals (except those over t and the internal supertwistor W)
become straightforward. We are left with

A(W1, . . . ,Wn) =
∑∫

dt

t
D3|NWAL(W1, . . . ,W)

× sgn

(
〈1λ〉

[
∂

∂µ

∂

∂µn

])
AR(W, . . . ,Wn − tW1) . (65)

The only t-dependence is inside AR. Since our split signature iε-prescription means that
the dt/t integral to be understood as a principal value integral, from section 3.1.1 we can
write ∫

dt

t
AR(W, . . . ,Wn − tW1) = iπ sgn

(
iW1 ·

∂

∂Wn

)
AR(W, . . . ,Wn) . (66)

Combining this with (65), we arrive at our final form of the BCFW recursion relation in
(dual) supertwistor space:

A(W1, . . . ,Wn) =
∑∫

D3|NWAL(W1, . . . ,W)

× iπ sgn

(
〈W1W〉 iW1 ·

∂

∂Wn

[
∂

∂W

∂

∂Wn

])
AR(W, . . . ,Wn)

,
(67)

14The definition of this operator will always be via the Fourier transform. In particular, this makes
transparent that sgn([∂i ∂j ][∂i ∂j ]) = 1, which will be a key property in manipulating the recursion
relations
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where 〈W1W2〉 = 〈12〉 and [∂W ∂Wn ] = ∂2/∂µA
′
∂µA′n. Thus, in twistor space, BCFW

recursion recursion involves gluing two subamplitudes together using the operator

sgn

(
〈W1W〉W1 ·

∂

∂Wn

[
∂

∂W

∂

∂Wn

])
(68)

and then integrating over the location of the intermediate supertwistor. Based on (67)
and the forms of the three-point amplitudes given in (39), we immediately conclude that
the complete classical S-matrix of N = 4 SYM can be written as a sum of products of
sign operators acting on basic δ-functions, with these products then integrated over some
number of copies of supertwistor space.

Although the non-local operator (68) and integrals over internal twistors seem rather
awkward and may initially seem disappointing, just as the momentum δ-functions allow
us to perform the integrals in (55) and return to the unintegrated form (47), we will see
in the examples below that the recursion relation (67) is quite tractable and the integrals
and operators can often be evaluated explicitly, although not yet so systematically as in
the momentum space representation.

5 SYM Twistor Amplitudes from BCFW Recursion

In this section we use the BCFW recursion relations to calculate the twistor form of
various scattering amplitudes in N = 4 SYM. We denote the n-particle NkMHV twistor
superamplitude by Ank(1, . . . , n), although we occasionally omit the super- or subscript
when the context makes it clear.

5.1 On the general structure of N = 4 Amplitudes

Scattering amplitudes in a theory with unbroken supersymmetry such as N = 4 SYM
can only depend on combinations of Grassmann variables that are invariant under the R-
symmetry group. In split signature spacetime this is SL(N ; R), so invariants can only be
constructed by complete contractions with the N -dimensional Levi-Civita symbol. Thus,
decomposing momentum space amplitudes into their homogeneity in the ηs, only multiples
of N will appear for the homogeneities, with NkMHV amplitudes being homogeneous
polynomials of degree (k + 2)N in the ηs. The n-fold half Fourier transform for an n-
particle amplitude sends such a homogeneous polynomial to a homogeneous polynomial
of degree (n−k−2)N in the χs, so n-particle NkMHV amplitudes on (dual) supertwistor
space have homogeneity (n− k− 2)N in the anticommuting variables. According to this
counting, the 3-particle MHV amplitude should be taken as having k = −1, but for all
other tree amplitudes, k ≥ 0.

We can use the recursion relations to show that, ignoring the conformal breaking sign
factors, a general n-particle NkMHV superamplitude is obtained by acting on (n− 2− k)
δ(4|4)-functions with 2(n − 2) Hilbert transforms. To start the induction, recall from
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section 3.2 the 3-point MHV and MHV amplitudes

A3
0(1, 2, 3) = sgn〈23〉

∫
ds

s

dt

t
δ(4|4)(W1 − sW2 − tW3)

A3
−1(1, 2, 3) = sgn[∂2∂3]

∫
ds

s

dt

t
δ(4|4)(W2 −W1) δ(4|4)(W3 − tW1) ;

(69)

these are constructed from two (= 2(n − 2)) Hilbert transforms acting on a product of
(1− k) δ(4|4)-functions, where k = 0,−1 for the MHV and MHV amplitudes, respectively.
Now proceed by induction on n and k: Suppose that a given term in the BCFW recursion
decomposes an n-point NkMHV amplitude Ank into an r-point NlMHV amplitude Arl and
a s-point NmMHV amplitude Asm. Then

n = r + s− 2 and k = l +m+ 1 . (70)

The D3|4W integration in the recursion removes one projective δ(3|4)-function, and this
δ(3|4)-function is a single Hilbert transform of a δ(4|4)-function. Thus the total number of
constituent δ(4|4)-functions in Ank is one less than the sum of the numbers in Arl and A2

m,
i.e.

#
(
δ(4|4)-functions

)
= (r − 2− l) + (s− 2−m) = (n− 2− k) (71)

by induction from the three-point amplitudes. On the other hand, the gluing operator (68)
itself involves the Hilbert transform sgnW1·∂n (which cannot cancel with one in the right
hand amplitude as W1 is not a variable in that amplitude), so the net number of Hilbert
transforms remains the same and we inductively find

# (Hilbert transforms) = 2(r − 2) + 2(s− 2) = 2(n− 2) (72)

as was to be proved.
The other constitutents in the 3-point amplitudes and the recursion relations are the

local and non-local sign factors sgn〈ij〉 and sgn[∂i∂j]. It is clear from the form of the
discussion of conformal properties of the n-point MHV amplitudes in section 3.3 that
there is ample scope for the cancellation of these factors so we can make no uniform
statement about how many of these survive in a final formula for an amplitude.

5.2 Solving the recursion relations

There are two terms in the BCFW decomposition of a generic amplitude Ank that play
a somewhat distinguished role – when one or other of the two subamplitudes is a three-
point amplitude. In these cases, momentum space kinematics ensure that with the [1n〉
shift we have chosen, only the right subamplitude can be MHV (in which case the left
subamplitude is An−1

k ), while only the left subamplitude can be MHV (in which case
the right subamplitude is An−1

k−1). We call the first case the ‘homogeneous contribution’
following [34], and the second case the ‘conjugate homogeneous contribution’. We now
explain how to perform the integral in the twistor BCFW recursion explicitly in these
two cases. This will form the basis of our strategy for solving the recursion relations in
general.
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Figure 1: The MHV amplitude is supported on a line in twistor space.

5.2.1 The homogeneous term and MHV amplitudes

The homogeneous contribution to the twistor BCFW decomposition of Akn is∫
D3|4WAk(1, . . . , n− 2,W) sgn (〈1W〉 iW1 · ∂n [∂W ∂n]) A−1(W, n− 1, n) . (73)

Recalling the form (69) of the MHV amplitude we see that the sgn[∂W∂n] operators in
the subamplitude and recursion cancel up to a constant factor of −1, coming from the
different ordering of W and Wn in the two terms. Since

iπ sgn (iW· ∂n−1) δ(4|4)(Wn−1) = δ̃(3|4)(Wn−1,W) (74)

we can perform the D3|4W integration trivially, yielding the contribution

Ak(1, . . . , n− 2, n− 1) × sgn (〈1n− 1〉 iW1 · ∂n iWn−1 · ∂n) δ(4|4)(Wn) . (75)

Recognizing the 3-point MHV amplitude, we obtain the final form

−Ak(1, . . . , n− 2, n− 1)×A0(1, n, n− 1) (76)

for the contribution to Ank from the homogeneous term. Thus the homogeneous term
simply tacks on a 3-point MHV amplitude to the (n − 1)-particle NkMHV amplitude.
This has the effect of inserting the dual twistor Wn in between Wn−1 and W1, that were
adjacent in the subamplitude.

For MHV amplitudes (k = 0), the homogeneous term is the complete BCFW decom-
position and we immediately obtain

An0 (1, . . . , n) = (−1)n−3

n∏
i=3

A0(1, i− 1, i)

=
n∏
i=3

Hi
i−1,i−2 δ

(4|4)(Wi)

(77)

in agreement with equation (34). The basic three point MHV amplitude is proportional
to a collinear delta function, so the n-particle MHV amplitude requires that all the points
are collinear in twistor space, as is well-known. (See figure 1.)
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5.2.2 The conjugate homogeneous term and the MHV amplitudes

The conjugate homogeneous contribution to the decomposition of Ank is∫
D3|4WA0(1, 2,W) sgn (〈1W〉 iW1 · ∂n [∂W ∂n]) An−1

k−1(W, 3, . . . , n) . (78)

From (69) we have

A0(1, 2,W) = iπ sgn

(
〈W1〉 iW1 ·

∂

∂W2

)
δ̃(3|4)(W2 − sW1,W) (79)

and the δ̃(3|4)-function again allows us to perform the D3|4W integral directly. We obtain

−π2sgn ([∂2 ∂n] iW1 · ∂2 iW1 · ∂n) An−1
k−1(2, 3, . . . , n) = −H̃2n

1 An−1
k−1(2, 3, . . . , n) . (80)

Applying H̃2n
1 to An−1

k−1(2, . . . , n) inserts the point W1 in between W2 and Wn, which are
adjacent in the colour ordering of the subamplitude.

Just as the homogeneous term is the only contribution to the BCFW decomposition
of an MHV amplitude, so too this conjugate homogeneous term is the only contribution
to the ‘googly MHV’ amplitude Ann−4 – the CPT conjugates of the MHV amplitudes. To
see this, first note that for Ank 6= 0, generically k ≤ n−4 (with the equality holding for the
googly MHV amplitudes) except that the three-point MHV amplitude has k = n−3. This
CPT conjugate to the statement that, with the exception of the 3-point MHV amplitude
A3
−1, amplitudes with k < 0 vanish. Now, if we decompose a googly MHV amplitude
Ann−4 into Arl and Asm subamplitudes, since r+ s = n+ 2 and l+m = n− 4 + 1 we must
have (r− l) + (s−m) = 7. Consequently, one of the subamplitudes must be a three-point
MHV and momentum kinematics dictates that it is the left subamplitude. The other sub-
amplitude is then An−1

n−5; the googly MHV amplitude with one fewer leg. Thus (80) is the
only contribution to the BCFW decomposition of a googly MHV amplitude. Continuing
recursively we have

Ann−4(1, . . . , n) = (−1)n

(
n−1∏
i=2

H̃in
i−1

)
δ(4|4)(Wn−1) δ(4|4)(Wn)

. (81)

In this expression, the H̃in
i−1 do not commute and are ordered with increasing i to the

right. To perform the last step of the induction we used the specific form of the 3-point
MHV amplitude. Thus the googly MHV amplitudes are built up from a product of H̃
operators acting on two δ(4|4)-functions.

Cyclic symmetry of the googly MHV amplitudes implies many identities in these
formulæ that are not manifest, but which will be useful in the following. In particular,
there is an obvious relation from the cyclic symmetry of the 3-point amplitude, while that
of the four-point amplitude yields

H̃24
1 H̃34

2 δ(4|4)(W3) δ(4|4)(W4) = H̃31
2 H̃41

3 δ(4|4)(W4) δ(4|4)(W1) (82)
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which is the CPT conjugate of the relation (43) among the Hi
jk operators. Finally, since

the four-point amplitude may be represented either as an MHV or a googly MHV ampli-
tude, we have

H2
13H4

13 δ
(4|4)(W2) δ(4|4)(W4) = H̃24

1 H̃34
2 δ(4|4)(W3) δ(4|4)(W4) . (83)

As with the MHV amplitudes, we can use the cyclic identities to ensure that the sgn[∂i∂j]
factors cancel pairwise, leaving us with at most one such factor. Thus, following the
discussion of section 3.3, the MHV amplitudes with an odd number of external particles
violate conformal invariance – they do not extend to the conformal compactification of
affine spacetime, but rather to its double cover.

5.3 NMHV amplitudes

We now compute the twistor form of the NMHV amplitude An1 . For n = 5 this is a googly
MHV and (81) gives

A5
1(1, 2, 3, 4, 5) = H̃25

1 H̃35
2 H̃45

3 δ(4|4)(W4) δ(4|4)(W5)

= −H̃25
1 A4

0(2, 3, 4, 5) .
(84)

In fact, we will be able to write the general n-particle NMHV amplitude in terms of this
5-point amplitude and m-point MHV amplitudes. To see this, note that the contribution
to an n-point NMHV amplitude from all but the homogeneous term is

n−3∑
i=2

∫
D3|4WAi+1

0 (1, . . . , i,W) sgn (〈1W〉 iW1 · ∂n [∂W ∂n])An−i+1
0 (W, i+ 1, . . . , n) . (85)

Using (34) (or (77)) we can split the MHV subamplitudes as15

Ai+1
0 (1, . . . , i,W) = −Ai0(1, . . . , i)A0(1, i,W)

An−i+1
0 (W, i+ 1, . . . , n) = An−i−1

0 (i+ 1, . . . , n− 1)A4
0(i+ 1, n− 1, n,W) .

(86)

The first terms on the rhs of these equations are independent of both W and Wn, so
may be brought outside both the D3|4W integral and the non-local sign operators in (85).
Thus we only need consider the expression∫

D3|4WA0(1, i,W)× sgn (〈1W〉 iW1 · ∂n [∂W ∂n])A4
0(i+ 1, n− 1, n,W) . (87)

But this is conjugate homogeneous and is just the five-point NMHV superamplitude
A5

1(1, i, i+ 1, n− 1, n)! Therefore, the sum of contributions (85) reduces to16

n−3∑
i=2

Ai0(1, . . . , i)A5
1(1, i, i+ 1, n− 1, n)An−i−1

0 (i+ 1, . . . , n− 1) , (88)

while the homogeneous term is An−1
1 (1, . . . , n− 1)A3

0(1, n, n− 1).

15When i = 2 or n− 3 no splitting is necessary.
16When i = 2 or i = n− 3, the ‘two-point’ MHV amplitudes in this sum should be replaced by unity.
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Figure 2: The NMHV amplitude is supported on three coplanar lines in twistor space.
Point 1 (distinguished by its role in the BCFW recursion relations) is located at the
intersection of two of these lines.

Working by induction, one can show that this recursive formula is solved by the double
sum

A1(1, . . . , n) =
n∑
j=5

j−3∑
i=2

A5
1(1, i, i+ 1, j − 1, j)

× A0(1, . . . , i)A0(i+ 1, . . . , j − 1)A0(j, . . . , n, 1)
(89)

where all ‘two-point amplitudes’ should be replaced by unity. For example, the twistor
form of the 6-particle NMHV amplitude equals

A1(1, 2, 3, 4, 5)A0(1, 5, 6) +A1(1, 2, 3, 5, 6)A0(3, 4, 5) +A1(1, 3, 4, 5, 6)A0(1, 2, 3) . (90)

Notice that the n-particle MHV amplitude may be decomposed as

A0(1, i, i+ 1, j − 1, j) × A0(1, . . . , i)A0(i+ 1, . . . , j − 1)A0(j, . . . , n, 1) (91)

whenever i and j lie in the ranges permitted by the double sum in (89). Thus, to obtain
an NMHV amplitude from the MHV amplitude, one chooses two points (Wi,Wj) with
i− j > 2, and replaces the five-point MHV amplitude

A0(1, i, i+ 1, j − 1, j) = −A0(1, i, j)A0(i, i+ 1, j − 1, j)

= −H1
ijδ

(4|4)(W1)A0(i, i+ 1, j − 1, j)
(92)

by the five-point NMHV amplitude

A1(1, i, i+ 1, j − 1, j) = −H̃ij
1 A0(i, i+ 1, j − 1, j) . (93)
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The twistor W1 is distinguished here purely through its role in the BCFW recursion
relation. This way of viewing the structure is perhaps most analgous to the dual super-
conformal invariants R (or P) in the work of Drummond et al. [14, 32,34].

Geometrically, the twistor support of the NMHV amplitude is easy to understand,
provided we ignore the effect of the nonlocal operator sgn([∂i ∂j]) in H̃ij

1 . Replacing this
operator by 1, we find

A1(1, i, i+ 1, j − 1, j)→ (iπ)2sgn (iW1 ·∂i iW1 ·∂j)A0(i, i+ 1, j − 1)A0(i, j − 1, j)

=

∫
ds

s

dt

t
A0(Wi − sW1,Wi+1,Wj−1)A0(Wi − sW1,Wj−1,Wj − tW1)

(94)

This is a product of coplanar delta functions that altogether impose the condition that
W1, Wi, Wi+1, Wj−1 and Wj are all coplanar. The remaining MHV amplitudes in (89)
then require that the MHV amplitudes A0(1, . . . , i), A0(i+1, . . . , j−1) and A0(j, . . . , n, 1)
lie in this plane. Thus, ignoring the non-local sgn[∂i ∂j] operator, the overall picture of an
NMHV amplitude is shown in figure 2. This is initially at variance with the picture from
twistor-string theory, in which the NMHV contribution should be based on a degree-two
curve in the connected prescription, or a pair of skew lines in the disconnected prescrip-
tion, rather than the three coplanar lines of figure 2. However, the five-point NMHV
amplitude can be presented in various forms; in particular it may be represented as a sum
of contributions that are supported on two intersecting lines as in the MHV formalism.
This then decomposes the above formula to a rather larger sum of terms supported on
two lines.

5.4 Conjugate NMHV amplitudes

The recursion for theAnn−5 amplitudes is essentially conjugate to that of the NMHV ampli-
tudes. The conjugate homogeneous term involves a 3-point MHV subamplitude and a con-
jugate NMHV subamplitude with one fewer points; its contribution is−H̃2n

1 An−1
n−6(2, . . . , n).

In the remaining terms, each subamplitude is googly MHV. These terms are given by∫
D3|4W

i−2∏
j=2

(−H̃ji
j+1)A0(i, 1, 2)A0(i, 1,W) sgn(〈1W〉W1 ·∂n [∂W∂n])An−in−i−4(W, i+1, . . . , n) ,

(95)

summed over i for i = 2, . . . , n − 2 and with the H̃-operators ordered with increasing j
to the left. (We have used the cyclic property of the MHV amplitude to ensure that 1
and W appear together in a 3-point MHV amplitude.) To perform the integral, use the
delta-function in A0(i, 1,W) (as in the conjugate homogeneous term). We obtain

i−2∏
j=2

(−H̃ji
j+1)A0(i, 1, 2)H̃i n

1 An−in−i−4(i, i+ 1, . . . , n)

= −
i−2∏
j=2

(−H̃ji
j+1)A0(i, 1, 2)An−i+1

n−i−3(1, i, . . . , n) ,

(96)

where we have used (81) to identify H̃i n
1 An−in−i−4(i, i+ 1, . . . , n) as an MHV amplitude.
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Adding up the homogeneous and the inhomogeneous terms, one finds

Ann−5 =
∑

2≤i≤j≤n−2

(
i−1∏
l=2

−H̃ln
l−1

)(
j∏

m=i

−H̃mi
m−1

)
A0(j, i− 1, i)An−i+1

n−i−3(i, j, . . . , n) , (97)

where the H̃-operators are ordered with increasing index to the right.

5.5 General tree amplitudes

Rather than give more closed-form formulæ, we just describe the strategy for integrating
the recursion relation and outline the structure of the terms that arise. The homogeneous
or conjugate homogeneous term of any amplitude may be regarded as understood, at least
inductively, via the discussion of section 5.2.

In a generic N2MHV amplitude, the remaining inhomogeneous terms involve one
NMHV and one MHV subamplitude. If the MHV subamplitude is on the left, we can
perform the integral over the internal twistor using the same strategy as for the con-
jugate homogeneous term. This yields a product of an MHV subamplitude and an H̃
operator acting on the NMHV subamplitude on the right. Conversely, suppose that the
MHV subamplitude is on the right inside the integral, so that the NMHV subamplitude
Ar1(1, . . . , r−1,W) is on the left. The form (89) of the NMHV amplitude shows that either
W appears only in an MHV subamplitude – in which case we can again proceed as in
the conjugate homogeneous term – or else must appear in a five-point NMHV amplitude
A5

1(1, i, i+ 1, r− 1,W) for some i. Even in this case, the conjugate homogeneous strategy
can be used: The cyclic symmetry of the 5-point NMHV amplitude ensures that it can
always be written so that W is not acted on by H̃, e.g.

A1(1, i, i+ 1, r − 1,W) = H̃i+1,r−1
i A0(1, i+ 1, r − 1,W). (98)

Since H̃ is independent of W it may be brought outside to act on the result of the
remaining integral, and this integral is of the same type as contributed to the NMHV
amplitudes. In all cases we obtain two H̃-operators acting on a sequence of A0 factors,
again demonstrating the similarity between the role of the H̃ operators and the dual
superconformal invariants R of [14, 32,34].

For the conjugate N2MHV amplitudes, the inhomogeneous terms involve subampli-
tudes that are either MHV on the left and conjugate NMHV on the right, or the other
way around. The construction of the conjugate NMHV amplitudes already showed how to
perform the integration when the MHV is on the left, i.e. via the conjugate homogeneous
strategy. When the MHV subamplitude Arr−4(W, n−r+2, . . . , n) is on the right, use (81)

to express it as a sequence of (r− 2) H̃ operators acting on A−1(n− 1,W, n). Since these
operators do not depend on W or Wn, and can be chosen so as not to act on W, they can
be taken out of the integral. The remaining integral is then straightforward to perform
using the standard, homogeneous strategy.

In the examples above, it was convenient to express an n-point NkMHV amplitude in
terms of k H̃-operators (which each contain two Hilbert transforms) acting on (n− 2−k)
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three-point MHV subamplitudes, each of which is an H operator (two Hilbert transforms)
acting on a δ(4|4)-function. This gives a total of 2(n − 2) Hilbert transforms acting on
(n− 2− k) δ(4|4)-functions, decorated by an unspecified number of sgn(〈Wi Wj〉) factors
or sgn([∂i ∂j]) operators. These factors are constructed using the infinity twistor and,
as with the three-point seed amplitudes, their presence indicates a violation of conformal
invariance. We know that tree amplitudes inN = 4 SYM are annihilated by the conformal
algebra (at least away from their singularities), so this violation must again be rather
subtle. Indeed, we have seen ample opportunity for cancellation of the conformal-breaking
signs, and it seems likely that the violation is again entirely because of the need to work
on affine spacetime, rather than conformally compactified spacetime, when discussing
scattering theory.

In general, the existence of at least two δ(4|4)-functions in each amplitude means that
there will always be more than one way to perform the W-integration in the recursion,
and the two strategies that we relied upon in our examples are no doubt not exhaustive.
The arguments so far show that the internal state can in practice be integrated out to
leave expressions in terms of H̃ operators and three point MHV amplitudes, at least up
to the N3MHV and N3MHV amplitudes (i.e., for any amplitude with upto 10 external
states). As in momentum space, our formalism obscures the underlying cyclic symmetries
(though they are encoded in the algebraic relations we have written down). Without
a better understanding of how to manipulate this, one can envisage problems with the
explicit integration of the recursion for N3MHV or N3MHV amplitudes with the strategies
devised so far.

5.6 Some elementary loop amplitudes

The structure of loop amplitudes in twistor space has already been much discussed in [15–
17, 19]). As with the twistor structure of tree amplitudes, these articles typically only
identified the support of the amplitudes, rather than giving explicit twistor formulæ.
There is no problem in principle in obtaining twistor loop amplitudes by taking the
half Fourier transform of the known momentum space expressions. More interesting
would be to translate the generalized unitarity methods – currently the definitive way
of constructing supersymmetric loop amplitudes. In this subsection, we content ourselves
with calculating the half Fourier transform explicitly for the simplest case of the 4-particle,
1 loop amplitude. Via the BDS ansatz [7], now verified up to five loops [9], this one loop
amplitude forms the basis of the all-loop amplitude by exponentiation. At the end of
the subsection, we make some simple comments about some non-supersymmetric 1 loop
amplitudes, in particular calculating the non-supersymmetric all-plus 1 loop amplitude.

In momentum space, the 4-particle, 1 loop amplitude is a multiple of the tree amplitude
given by [58,59]

A1 loop(1, 2, 3, 4) =

[
− 1

ε2

(
µ2

IR

−s

)ε
+

1

ε2

(
µ2

IR

−t

)ε
+

1

2
ln2 s

t

]
Atree(1, 2, 3, 4) +O(ε) (99)

at some renormalization scale µIR, and where s = (p1 + p2)2 and t = (p2 + p3)2. This
naturally divides into the infrared divergent part (the first two terms in the square bracket)
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and a finite part (the 3rd term in the square bracket). On the support of the 4-particle
momentum δ-function, s/t can be expressed entirely in terms of the unprimed spinors:

s

t
=
〈12〉〈34〉
〈14〉〈23〉

. (100)

Since these unprimed spinors do not participate in the half Fourier transform, the finite
part of the twistor amplitude is simply

A1 loop
finite (1, 2, 3, 4) =

1

2
ln2

(
〈12〉〈34〉
〈14〉〈23〉

)
Atree(1, 2, 3, 4) . (101)

To study the superconformal properties of this amplitude, recall that the tree level am-
plitude can be written as

Atree(1, 2, 3, 4) =

∫
da

a

db

b

dc

c

dg

g
δ(4|4)(W2 − aW3 − bW1) δ(4|4)(W4 − cW1 − gW3) . (102)

On the support of the delta functions in (102) one has

〈12〉〈34〉
〈14〉〈23〉

= −ac
bg

(103)

by using the λA components of each of the delta functions to perform the integrals. Hence

A1 loop
finite (1, 2, 3, 4) =

∫
da

a

db

b

dc

c

dg

g

1

2
ln2

(
−ac
bg

)
× δ(4|4)(W2 − aW3 − bW1) δ(4|4)(W4 − cW1 − gW3) (104)

which makes manifest the superconformal invariance of the IR-finite part of the 1 loop
amplitude.

The transform of the IR divergent part is more delicate. A distinction between our
split signature context, and Lorentz signature is that s and t can change sign and there
is some amibuity as to how the functions (−s)ε and (−t)ε should be continued across the
zero set of s and t. Once such a choice is made, the integral for the half Fourier transform
can be reduced to a standard known one as follows: Consider the half Fourier tranform
of (−s)−epsilonAtree (the second term is identical). We can formally replace (−s)−ε by the
pseudo-differential operator (〈12〉[∂1 ∂2])−ε, which then acts on the tree amplitude

〈12〉−ε[∂1 ∂2]−εAtree(1, 2, 3, 4) . (105)

From (236), the tree amplitude Atree(1, 2, 3, 4) can be expresssed in the Poincaré invariant
form

Atree =
〈34〉2

〈12〉〈23〉〈34〉〈41〉
δ(2|4)

(
µ1 + µ3

〈41〉
〈34〉

+ µ4
〈13〉
〈34〉

)
δ(2|4)

(
µ2 + µ3

〈42〉
〈34〉

+ µ4
〈23〉
〈34〉

)
(106)
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The action of (〈12〉[∂1 ∂2])−ε on these delta functions can be understood by translation of
its action on δ(2)(µ1)δ(2)(µ2), which in turn can be understood from its Fourier transform

[∂1 ∂2]−εδ(2)(µ1)δ(2)(µ2) =

∫
d2λ̃1 d2λ̃2 [λ̃1λ̃2]−ε ei[µ1λ̃1]+i[µ2λ̃2] . (107)

By thinking the pair q = (λ̃1, λ̃2) as a 4-vector, dual to the 4-vector y = (µ1, µ2), this can
be reduced to a standard form ∫

d4q (q · q)−ε eiq·y , (108)

but where the quadratic form q · q has signature + +−−. For various choices of quadratic
form q · q, the Fourier transform (108) can be found in the tables at the end of [57].
For example, if for (q · q)−ε we take (q · q + i0)−ε (the analytic continuation through the
upper-half plane) we obtain

−24−2επ2Γ(2− ε)
Γ(ε)

(y · y − i0)−2+ε , (109)

where in our context (y · y − i0)−2+ε = ([µ1 µ2]− i0)−2+ε is understood to be analytically
continued through the lower half plane. Putting this together with the translation, we
obtain the final form

−µ
2ε
IR

ε2
24−2επ2εΓ(2− ε)

Γ(1 + ε)
〈12〉−ε

((
µ1 + µ3

〈41〉
〈34〉

+ µ4
〈13〉
〈34〉

)
·
(
µ2 + µ3

〈42〉
〈34〉

+ µ4
〈23〉
〈34〉

))−2+ε

× 〈34〉2

〈12〉〈23〉〈34〉〈41〉
δ(0|4)

(
χ1 + χ3

〈41〉
〈34〉

+ χ4
〈41〉
〈34〉

)
δ(0|4)

(
χ2 + χ3

〈42〉
〈34〉

+ χ4
〈23〉
〈34〉

)
(110)

for IR divergence in the s-channel. The t-channel divergence follows by cyclic permutation.

We finish with the rather more straightforward example the all + helicity amplitude.
This amplitude vanishes in the supersymmetric theory, but in the non-supersymmetric
case it is non-zero at one loop, and given by the rational expression

A1 loop
+ (1, . . . , n) =

−i

48π2
δ(4)

(∑
pi

) ∑
1≤i1<i2<i3<i4≤n

〈i1 i2〉〈i3 i4〉[i2 i3][i4 i1]

〈12〉〈23〉 . . . 〈n1〉
. (111)

This is easily transformed to give

A1 loop
+ (1, . . . , n) =

−i

48π2

∑
1≤i1<i2<i3<i4≤n

〈i1 i2〉〈i3 i4〉[∂i2 ∂i3 ][∂i4 ∂i1 ]AN=0
MHV(1, 2, . . . , n) (112)

where by AN=0
MHV(1, 2, . . . , n) we mean the formula obtained from (34) by replacing δ(2|4) or

δ̃(2|4) by δ(2|0) or δ̃(2|0), respectively. The formula therefore has derivative of delta function
support along a line as predicted in [15].
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6 Twistor Supergravity Amplitudes

In this section, we sketch how the recursion rule works for N = 8 supergravity as far
as the homogeneous term and its conjugate, and find formulæ for the MHV and MHV
amplitudes. The BCFW relation itself is the same:

M(1, . . . , n) =
∑∫

D3|8WML(1, . . . ,W)

× sgn

(
〈W1W〉W1 ·

∂

∂Wn

[
∂

∂W

∂

∂Wn

])
MR(W, . . . ,Wn) , (113)

except that the sum now runs over all ways of partitioning the external legs over the two
subamplitudes, with no cyclicity requirement.

To compute the three-point seed amplitudes we start with the momentum space for-
mulæ

MMHV(1, 2, 3) =
δ(4|16)

(∑3
i=1 |i〉J1‖

)
〈12〉2〈23〉2〈31〉2

MMHV(1, 2, 3) =
δ(4)(p1 + p2 + p3) δ(8)(η1[23] + η2[31] + η3[12])

[12]2[23]2[31]2

(114)

which are simply the squares of the Yang-Mills three-point amplitudes [50], provided one
strips away the momentum conserving delta functions. We will see a somewhat different
structure in twistor space, though the gravitational and Yang-Mills seed amplitudes are
still closely related.

Taking the half Fourier transform, the (dual) twistor form of the 3-point MHV ampli-
tude is

MMHV(W1,W2,W3) =
δ(2|8)(µ1〈23〉+ µ2〈31〉+ µ3〈12〉)

〈12〉2〈23〉2〈31〉2
. (115)

This amplitude has homogeneity +2 in each of its arguments as required for on-shell
N = 8 supermultiplets. We can write (115) as

MMHV(W1,W2,W3) =

∣∣∣∣〈W2W3〉 iW2 ·
∂

∂W1

iW3 ·
∂

∂W1

∣∣∣∣ δ(4|8)(W1)

=

(
〈W2W3〉 iW2 ·

∂

∂W1

iW3 ·
∂

∂W1

)
H1

23 δ
(4|8)(W1)

(116)

in close analogy to the form (39) of the SYM amplitude in terms of the H-operator; in
this formula the sgn-factor in H turns the ordinary differential operator into its formal
modulus. Equivalently, in terms of the N = 8 collinear delta function of equation (17),
this is

MMHV(W1,W2,W3) = |〈W2W3〉| δ̃(2|8)(W1; W2,W3) (117)

The explicit factor of |〈W2W3〉| here breaks SL(4|8,R) invariance, but N = 8 super-
Poincaré invariance is preserved. Although (116) appears to single out state 1, it is clear
from (115) that the amplitude is really symmetric under exchange of any two states.
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The 3-point MHV supergravity amplitude in twistor space is

MMHV(W1,W2,W3) =

∣∣∣∣[ ∂

∂W2

∂

∂W3

]
iW1 ·

∂

∂W2

iW1 ·
∂

∂W3

∣∣∣∣ δ(4|8)
1 (W2) δ

(4|8)
1 (W3)

=

([
∂

∂W2

∂

∂W3

]
iW1 ·

∂

∂W2

iW1 ·
∂

∂W3

)
H̃23

1 δ
(4|8)(W2) δ(4|8)(W3)

(118)
in close analogy to (37) for SYM (again we have used H̃ to formally turn a differential op-
erator into its modulus). Once again, this may be written in terms of weighted projective
delta functions as

MMHV(W1,W2,W3) =

∣∣∣∣[ ∂

∂W2

∂

∂W3

]∣∣∣∣ δ̃(3|8)(W2,W1) δ̃(3|8)(W3,W1) . (119)

6.1 The homogeneous term

The homogeneous term for an NkMHV amplitude again takes the form∑
r 6=1,n

∫
D3|8WMk(1, . . . ,W) sgn (〈1W〉W1 ·∂W [∂W∂n])M−1(W, r, n) (120)

in which the sum over partitions has reduced to a sum over the external state r attached to
the three-point MHV subamplitude on the right (and hence absent fromMk(1, . . . ,W)).
Recalling that

M−1(W, r, n) = |[∂W∂n] Wr ·∂W Wr ·∂n| δ(4|8)(W) δ(4|8)(Wn) , (121)

the factor sgn[∂W∂n] in the recursion relation combines with |[∂W∂n]| in the amplitude to
form the standard differential operator [∂W∂n]. We then integrate by parts so that ∂W

acts on Mk(1, . . . ,W). Since∣∣∣∣Wr ·
∂

∂W

∣∣∣∣ δ(4|8)(W) =

∫
dt

t2
δ(4|8)(W − tWr) = δ̃(3|8)(W,Wr) (122)

the integral is straightforward and leaves us with

−
∑
r 6=1,n

∂

∂µA′r
(Mk(1, . . . , r))

∂

∂µnA′

{
sgn

(
〈1r〉W1 ·

∂

∂Wn

) ∣∣∣∣Wr ·
∂

∂Wn

∣∣∣∣ δ(4|8)(Wn)

}
= −

∑
r 6=1,n

∂

∂µA′r
(Mk(1, . . . , r))

∂

∂µnA′

{
Wr ·

∂

∂Wn

Hn
1r δ

(4|8)(Wn)

}
(123)

In the second line, we have written |W1·∂n| = W1·∂n sgn(W1·∂n) to pull out the operator
Hn
r1. If we introduce the operator

G1
23 := |W2 ·∂1| sgn (〈23〉W3 ·∂1) = W2 ·∂1H1

32 , (124)
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then the homogeneous term can be written more compactly as

−
∑
r 6=1,n

Gnr1 [∂r ∂n] δ(4|8)(Wn)Mk(1, . . . , r) . (125)

For MHV amplitudes, the homogeneous term is the complete recursion, and iteration
of (125) gives

MMHV(1, . . . , n) =
∑

P(2,...,n−1)

(
n∏
r=4

Grr−1,1[∂r, ∂r−1]δ(4|8)(Wr)

)
MMHV(1, 2, 3) (126)

where P(2, . . . , n − 1) denotes the permutations of the labels 2 to n and, because the
terms in the product do not commute, they are ordered to the left in increasing r.

6.2 The conjugate homogeneous term

The conjugate homogeneous term in the decomposition of an Nk+1MHV amplitude is∑
r 6=1,n

∫
D3|8WM0(1, r,W) sgn(〈1W〉W1 ·∂n [∂W∂n])Mk(W, . . . , n) (127)

where

M0(1, r,W) =

∣∣∣∣〈1W〉W· ∂

∂Wr

W1 ·
∂

∂Wr

∣∣∣∣ δ(4|8)(Wr)

=

∣∣∣∣〈1W〉W1 ·
∂

∂Wr

∣∣∣∣ δ̃(3|8)(Wr,W) .

(128)

This δ-function again allows us to perform the integral, setting W = Wr. We are left with
the contribution ∑

r 6=1,n

〈1r〉W1 ·
∂

∂Wr

sgn
(
C̃rn

1

)
Mk(r, . . . , n) . (129)

Again, defining

G̃12
3 = |W3 ·∂2| sgn ([∂1 ∂2] W3 ·∂1) = W3 ·∂2 sgn(C̃12

3 ) (130)

we can write ∑
r 6=1,n

〈1r〉G̃nr1 Mk(r, . . . , n) . (131)

In particular, this is the complete BCFW decomposition for an MHV amplitude, so
we recursively obtain

Mn−4(1, . . . , n) =
∑

P(2,...,n−1)

(
n−1∏
i=3

〈1 i〉G̃ni1

)
M−1(1, 2, n) . (132)
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7 An Ambidextrous Approach

For the most part in this paper we have focussed on transforming amplitudes and their
recursion relations from momentum space to dual twistor space. We could equally have
chosen to transform some particles to twistor space and others to dual twistor space. A
priori, there is no clear rule as to which external particles should be expressed in terms
of twistors and which in terms of dual twistors17, but a choice was recently discovered by
Arkani-Hamed, Cachazo, Cheung & Kaplan [45] that leads to significant simplifications
for the BCFW recursion. In this section we will first discuss the ‘twistor transform’ that
moves from twistor space to dual twistor space, and then use this transform to relate their
formulæ directly to ours.

7.1 Fourier transforms and twistor transforms

Thus far we have taken the half Fourier transform from functions Φ(λ, λ̃) on the split
signature light cone in momentum space to functions on real dual twistor space by Fourier
transforming in the λ̃A′ variable to obtain

f(W ) := f(λ, µ) =

∫
d2λ̃ ei[µλ̃] Φ(λ, λ̃) (133)

as in equation (183). We could just as easily have Fourier transformed in λA to obtain a
function on twistor space

F (Z) = F (ω, π) =

∫
d2λ e−i〈ωλ〉Φ(λ, π) (134)

with coordinates Zα = (ωA, πA′) on twistor space (after relabelling λ̃A′ = πA′). Combining
these two half Fourier transforms, one obtains a map from functions on twistor space to
functions on dual twistor space, given by

f(W ) =
1

(2π)2

∫
d4Z e−iZ·WF (Z) , (135)

where Z ·W = ωAλA + πA′µ
A′ .

Although (135) is clearly implied by the combined half Fourier transforms, it has some
rather puzzling features. The functions f(W ) and F (Z) are homogeneous functions on
(dual) twistor space, with some well-defined weights n and −n− 4 respectively. However,
if F (Z) has negative weight, then (135) diverges at the origin, while if it has positive
weight then (135) diverges at infinity. So the transform appears not to make sense.

To resolve this issue, we must understand equation (135) as a Fourier transform of
distributions. To make this explicit and to obtain projective formulae, we coordinatize

17If one wishes to describe N = 4 SYM using only manifest N = 3 supersymmetry (or explicit N = 7
supersymmetry for N = 8 SG), there are naturally two multiplets, one starting from the lowest helicity
and one from the highest. In this case it is natural to transform one multiplet to twistor space and the
other on dual twistor space. This approach fits in naturally both with twistor diagrams and with the
ambitwistor action [52] at the expense of either losing the economy of dealing with the whole spectrum
in a single supermultiplet, or having a redundant representation.
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R4 by Z = rΘ where r ∈ (−∞,∞) and Θ = Θ(θi) lies on a hemisphere of unit radius on
which the θi are coordinates18. The θi also provide coordinates on RP3. We will not need
to make the coordinatization of RP3 explicit and just denote its volume form by D3Θ.
This is defined so that

d4Z = |r|3dr ∧D3Θ , (136)

where the modulus sign arises from the Jacobian of the coordinate transformation. Such
a choice is not projectively invariant, and two such choices will differ by some scaling
(r,Θ)→ (r′,Θ′) = (ar, a−1Θ) where a = a(Θ).

The r dependence in (135) can now be made explicit. Assuming F (Z) has homogeneity
−n− 4, one finds

f(W ) =
1

(2π)2

∫
sgn(r) r−n−1 eirΘ·W F (Θ) drD3Θ . (137)

The integral for r is a Fourier transform with conjugate variable Θ ·W . For n ≤ 0 this
integral blows up as r → ∞, and for n ≥ 0 it blows up at the origin. These integrals
all have a standard regularization (see e.g. [57] for a detailed exposition): For n < 0 one
obtains ∫

r−n−1sgn(r) eirs dr = 2sni−n(−n− 1)! . (138)

and for n ≥ 0 ∫
r−n−1sgn(r) eirs dr = 2

in+1

n!
sn(log |s| − αn) (139)

where αn = Γ′(1)+
∑n

k=1 1/k. Note that Γ′(1) = −γ, where γ is Euler’s constant19. Thus,
having integrated out the scale of Z, we obtain the projective formulæ

f(W ) =


2i−n(−n− 1)!

(2π)2

∫
D3Z F (Z)(Z ·W )n n ≤ −1

2in+1

(2π)2n!

∫
D3Z F (Z)(Z ·W )n(log |Z ·W | − αn) n ≥ 0

(140)

where D3Z = εαβγδZ
αdZβ ∧ dZγ ∧ dZδ is the canonical top degree form of weight +4 on

projective twistor space.
To check the projective invariance we rescale Z → a(Z)Z. Invariance is obvious when

n < 0, but for n ≥ 0, the rhs changes by an arbitrary polynomial of degree n in W .
While this may seem to violate projective invariance, in fact it is natural to think of a
dual twistor function f(W ) of homogeneity n > 0 as being defined modulo polynomials
of degree n. This is because the X-ray (or Penrose) transform

φA1...An+2(x) =

∫
〈λdλ〉 ∂n+2

∂λA1 · · · ∂λAn+2

f(λB, x
CC′λC) (141)

18These are not quite the usual polar coordinates, because r lies on a complete line, not a half line,
and correspondingly, θi lives on a hemisphere or RP3 rather than a complete sphere.

19This gives an alternative derivation of Penrose’s ‘universal bracket factor’ [60].
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gives a vanishing spacetime field when f(W ) is a degree n polynomial. Thus the constant
αn only contributes such a polynomial to f(W ), and is thus irrelevant here. With this
proviso, equation (140) now respects the homogeneities and is a clear analogue of the
complex version of the twistor transform [38].

We must also consider twistor and dual twistor functions F̃ (Z) and f̃(W ) with ‘wrong
sign’ behaviour as in (12). In this case, integrating out the scale yields the Fourier
transform of r−n−1 without the sgn r factor:

∫
dr eirs r−n−1 =


in+1πsn

n!
sgn(s) n ≥ 0

2π(−i)−n−1δ−n−1(s) n ≤ −1 ,

(142)

where δ−n−1(s) denotes the (|n| − 1)th derivative of δ(s). The projective version of the
twistor transform for wrong sign functions is thus

f̃(W ) =


in+1π

(2π)2n!

∫
D3Z F̃ (Z)(Z ·W )n sgn(Z ·W ) n ≥ 0

in+1

2π

∫
D3Z F̃ (Z) δ−n−1(Z ·W ) n ≤ −1 .

(143)

For n ≤ −1 in this odd-odd case, the twistor transform becomes a radon-like transform
over planes in twistor space. This is possible despite the nonorientability of the planes
(RP2s) because the wrong sign behaviour is what is required to define a density on an
even-dimensional projective space.

7.1.1 Supersymmetric twistor transforms

The positive and negative n formulæ combine to form supersymmetric twistor transforms.
With N supersymmetries, the supertwistor transform is

f(W) =

∫
D3|NZ F (Z) (Z·W )N/2−2 log |Z·W| (144)

where F (Z) and f(W) each have homogeneity N /2− 2 and are of ‘right sign’ type. The
‘wrong sign’ version is

f̃(W) =

∫
D3|NZ F̃ (Z) (Z·W)N/2−2 sgn (Z·W) . (145)

Expanding these transforms in powers of the Grassmann coordinates reproduces the trans-
forms (140) & (143).

7.2 The inner product

In Lorentzian signature, the standard inner product between two massless fields of helicity
h is given by multiplying the momentum space wavefunction Φ2h(λ, λ̃) by the complex
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conjugate of the wavefunction Ψ2h(λ, λ̃), and then integrating over the momentum light-
cone:

(Ψ,Φ) =
i

(2π)4

∫
d3` ΨΦ (146)

where d3` is the standard invariant measure d3` = 〈λdλ〉d2λ̃− [λ̃dλ̃]d2λ. This Lorentzian
inner product is anti-linear in Ψ because of the complex conjugation; in particular Ψ has
helicity −h because the conjugation exchanges λ and λ̃.

On R2,2, complex conjugation does not change particle helicity, so instead of an inner
product we simply have a bi-linear pairing between fields of helicity h and fields of helicity
−h, given by

(Ψ−2h,Φ2h) =
1

(2π)4

∫
d3` Ψ−2hΦ2h . (147)

The corresponding pairing on twistor space is between a twistor function of weight n and
a twistor function of weight −n−4. This pairing is again given by multiplying the twistor
functions and integrating over the real projective twistor space:

(F,G) =

∫
RP3

D3Z Fn(Z)G−n−4(Z) . (148)

Unitarity of the half Fourier transform ensures that the momentum space and twistor
pairings agree. On twistor space, when n ≥ 0 or n ≤ −4 the fact that positive homogeneity
twistor functions are defined modulo polynomials is dual to the fact that for (148) to be
well-defined, the charge integral

Qαβ...γ :=

∫
D3Z ZαZβ · · ·Zγ Fn(Z) (149)

must vanish, where Fn(Z) has homogeneity n ≤ −4 and there are |n| − 4 factors of Z
inserted in the integral. When n = −4 this is the standard twistor charge integral for a
selfdual Maxwell field, and when n = −6 it yields the angular-momentum twistor of the
corresponding linearized gravitational field [61].

Combined with the Fourier/Twistor transform described above, we obtain a pairing
between a twistor function F (Z) and a dual twistor function G(W ) each of homogeneity
degree −n− 4. When F (Z) and G(W ) both have the ‘right sign’ behaviour this pairing

(F,G) =


2i−n(−n− 1)!

(2π)2

∫
D3Z ∧D3W F (Z)G(W )(Z ·W )n n ≤ −1

2in+1

(2π)2n!

∫
D3Z ∧D3W F (Z)G(W )(Z ·W )n log |Z ·W | n ≥ 0 ,

(150)

whereas for ‘wrong sign’ functions F̃ (Z) and G̃(W ) it is

(F̃ , G̃) =


in+1π

(2π)2

∫
D3Z ∧D3W F̃ (Z)G̃(W ) δ−n−1(Z ·W ) n ≤ −1

in+1π

(2π)2n!

∫
D3Z ∧D3W F̃ (Z)G̃(W ) (Z ·W )n sgn(Z ·W ) n ≥ 0 .

(151)
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Once again, these formulæ combine into supersymmetric pairings given by

(F,G) = − i
N
2
−1

(2π)2
(N

2
− 2
)
!

∫
D3|NZ ∧D3|NW F (Z)G(W) (Z·W)

N
2
−2 log |Z·W|

(F̃ , G̃) =
i
N
2
−1π

(2π)2
(N

2
− 2
)
!

∫
D3|NZ ∧D3|NW F̃ (Z)G̃(W) (Z·W)

N
2
−2sgn(Z·W)

(152)

where all the wavefunctions have homogeneity N /2− 2.

7.3 BCFW recursion in ambitwistor space

We are now in position to explain the relation of the present paper to that of Arkani-
Hamed et al. [45]. The main awkwardness of the twistor space BCFW formula

M(W1, . . . ,Wn) =
∑∫

D3|NWML(W1, . . . ,W)

× sgn

(
〈W1W〉W1 ·

∂

∂Wn

[
∂

∂W

∂

∂Wn

])
MR(W, . . . ,Wn) (153)

is the presence of the non-local operator sgn(W1·∂n [∂W ∂n]). This can be rendered local by
use of the Fourier/Twistor transforms introduced above. To achieve this, first represent
MR(W, . . . ,Wn) in terms of a (non-projective) Fourier transform ofMR(Z, . . . ,Zn) in its
first and last arguments Z and Zn. Then

sgn

(
W1 ·

∂

∂Wn

[
∂

∂W

∂

∂Wn

])
MR(W, . . . ,Wn)

=
1

(2π)4

∫
d4|NZ d4|NZn eiZ·W eiZn·Wn sgn (Zn ·W1 [Z Zn])MR(Z, . . . ,Zn) , (154)

where we abuse notation by not distinguishing MR from its Fourier transform, and
define [Z Zn] := [π πn] = [λ̃ λ̃n]. (It makes no difference whether or not we similarly
transform the remaining states in MR.) The Fourier transform in Zn may be acco-
modated by likewise Fourier transforming the lhs of the BCFW recursion (153). Since
sgn([Z Zn])MR(Z, . . . ,Zn) has wrong sign behaviour in Z, we obtain the projective form
of ambidextrous BCFW recursion

M(W1, . . . ,Zn) =
∑∫

D3|NZ ∧D3|NW ML(W1, . . . ,W) (Z·W)N/2−2

× sgn (〈W1W〉 Zn ·W1 Z ·W [Z Zn])MR(Z, . . . ,Zn)

(155)
in agreement with Arkani-Hamed et. al. [45]. In this form, the non-local sign operators
have been replaced by multiplication by the local operator

sgn (〈W1W〉 Zn ·W1 Z ·W [Z Zn])
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in N = 4 SYM or
(Z ·W)2 sgn (〈W1W〉 Zn ·W1 Z ·W [Z Zn])

in N = 8 SG, at the expense of introducing a larger integral for the intermediate state.
Comparing the ambitwistorial BCFW recursion (155) to the supersymmetric pairing
(F̃ , G̃) of (152), we again see the close relation between BCFW recursion and the in-
ner product of the wrong sign wavefunctions

ML(. . . ,W) sgn(〈W1W〉) and MR(Z, . . .) sgn([Z Zn]) .

For some purposes, it may be useful to have a form of recursion relation that is
intermediate between the twistorial (153) and ambidextrous (155), and involves the fewest
integrals. Such a form may be obtained from (153) by Fourier transforming Wn → Zn,
but not Fourier transforming the intermediate state. One finds

M(W1, . . . ,Zn) =
∑∫

D3|NW ML(W1, . . . ,W)

× sgn

(
〈W1W〉 Zn ·W1 IZn ·

∂

∂W

)
MR(W, . . . ,Zn)

=
∑∫

dt

t
D3|NW ML(W1, . . . ,W)

× sgn (〈W1W〉 Zn ·W1)MR(W + tIZn, . . . ,Zn) ,

(156)

where IZn := IαβZ
α
n = |n].

7.4 Ambidextrous form of the 3 point amplitudes

To begin the recursion using the ambidextrous form (155), we need the three-point am-
plitudes written in an ambidextrous way. The SYM 3-point amplitudes

AMHV(W1,W2,W3) = sgn

(
〈W2W3〉 iW2 ·

∂

∂W1

iW3 ·
∂

∂W1

)
δ(4|4)(W1)

AMHV(W1,W2,W3) = sgn

([
∂

∂W2

∂

∂W3

]
iW1 ·

∂

∂W2

iW1 ·
∂

∂W3

)
δ(4|4)(W2) δ(4|4)(W3)

(157)
become simply

AMHV(Z1,W2,W3) = sgn (〈W2W3〉Z1 ·W2 Z1 ·W3)

AMHV(W1,Z2,Z3) = sgn ([Z2Z3] Z2 ·W1 Z3 ·W1)
(158)

after representing the delta functions by their Fourier transforms. Similarly, the 3-point
gravity amplitudes are

MMHV(Z1,W2,W3) = |〈W2W3〉(Z1 ·W2)(Z1 ·W3)|
MMHV(W1,Z2,Z3) = |(W1 ·Z2)(W1 ·Z3)[Z2Z3]| .

(159)

Using (158) or (159) and the ambidextrous BCFW relation (155), one can build up
arbitrary tree amplitudes on products of twistor and dual twistor spaces. The amplitudes
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are, in the first instance, expressed as integrals of these 3-point amplitudes, and make
contact with Hodges’ twistor diagrams [39, 42–44]. In the case of SYM, the integrands
are simply products of sgn factors. Further applications of the ambidextrous form of the
recursion relations can be found in [45].

Clearly, there is a direct correspondence between the calculations required to solve the
recursion relations on dual twistor space and those required on ambitwistor space, but
we will not expand on this here. In section 5.1, we showed that on dual twistor space,
an arbitrary n-point NkMHV tree amplitude involves 2(n − 2) Hilbert transforms and
(n − 2 − k) delta functions. Representing each of these (n − 2 − k) delta functions as a
Fourier transform, the Hilbert transforms (and other non-local sign operators) act under
the integrals to yield a local function of the Zis (for i = 1, . . . , n−2−k) and the remaining
Ws. Conversely, it is also possible to transform the result of an ambidextrous calculation
onto (multiple copies of) dual twistor space by the reverse procedure.

8 Conclusions and Outlook

We have shown that the half Fourier tranform provides a practical and coherent scheme for
translating scattering amplitudes for massless field theories into twistor space. The BCFW
recursion relations can be reformulated in a useful form and can in principle be used to
generate the full tree sector of N = 4 super Yang-Mills theory and N = 8 supergravity.
In practice, we have show that the twistor version of BCFW recursion is tractable, and
have solved them for small k NkMHV and googly NkMHV amplitudes. As far as loop
amplitudes are concerned, in principle there is no difficulty expressing them on twistor
space via the half Fourier transform, and we showed that for the four-particle amplitude,
this is actually straightforward. It is likely that the generalized unitarity methods [6–9,14]
that are so successful for constructing loop amplitudes for supersymmetric gauge theories
can also be adapted to provide a generating principle for loop amplitudes on twistor space.

Part of the motivation for this work was to express superconformal invariance more
clearly. In fact, the formalism has made transparent that superconformal invariance is
actually broken by factors of sgn(〈12〉〈23〉〈31〉) and the non-local operator sgn[∂Wi

∂Wj
].

There is complete cancellation of these factors in even-point MHV and MHV amplitudes
(which are therefore conformally invariant), but there is a topological obstruction to
making odd-point MHV amplitudes conformally invariant, even at tree-level. This may
simply be reflecting a basic feature of scattering theory: to define an S-matrix, one must
first choose an asymptotic region in which the particles are free. Indeed, such a choice
is necessary to define sgn(〈12〉〈23〉〈31〉), for example. Choosing a lightcone to remove
from conformally compactified spacetime in order to define the amplitudes is analogous
to choosing a cut of the complex z-plane in order to define

√
z.

It is somewhat awkward to be restricted to considering scattering amplitudes in split
signature. One might wonder whether aspects of our formulation could also have some
meaning in Lorentzian signature. Firstly, the concept of an elemental state (i.e., a twistor
function on real twistor space that has delta function support at a point) does seem
to have some meaning outside of split signature [62]. Secondly, amplitudes have very
different analyticity properties to wavefunctions; massless wavefunctions are arbitrary
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smooth functions on the momentum lightcone, while tree amplitudes are meromorphic
functions on complexified momentum space. Under the half Fourier transform, analytic-
ity in momentum space corresponds to twistor amplitudes that have restricted support.
In Lorentz signature, crossing symmetry requires the amplitudes be well-defined when in-
tegrated against external states of both positive and negative frequency. In twistor space,
Lorentzian wavefunctions of positive and negative frequency are represented by elements

of H1(PT+,O(−2h − 2)) and H1(PT−,O(−2h − 2)), respectively (see e.g. [63]), where

PT+ is the region of complex twistor space for which the SU(2, 2) inner product Z·Z ≥ 0,

while PT− has Z ·Z ≤ 0. In order to be able to pair a scattering amplitude with either

of these, the amplitude’s support must be contained in PN = PT+ ∩ PT−. In particular,
this is satisfied by our (split signature) formulae if we choose an RP3 real slice that lies
inside PN (of which there are many). Thus the formulae we have obtained serve perfectly
well to define amplitudes in Lorentz signature.

However, it is important to note that the topological obstruction identified above can-
not apply in Lorentz signature, because twistor lines are then CP1s rather than RP1s, and
there is no notion of ordering points on a sphere. It is thus possible that the violation
of conformal invariance could be a consequence of our use of split signature. Support for
this point of view comes from the fact that in complex twistor space, spacetime fields
correspond to cohomology classes, rather than by functions. Choosing a Dolbeault repre-
sentation of the fields, the required antisymmetry of the kinematic part of the amplitude
comes naturally from the wedge product of forms, as in the holomorphic Chern-Simons
vertex ∫

CP3|4
D3|4W ∧ tr (A ∧ A ∧ A)

rather than from an explicit factor of sgn(〈12〉〈23〉〈31〉). To adapt this Chern-Simons
vertex (or indeed the complete twistor actions of [25,26,28], that also rely on a Dolbeault
description) to the split signature context, one must choose Dolbeault representatives
defined from the X-ray data, such as those in [64]. These representatives are conformally
invariant, but one must then choose an open cover to reduce the integrals from the full
complex twistor space to overlaps of open sets, and eventually down to the real twistor
space. These choices of open sets will break conformal invariance. Conversely, the presence
of conformal breaking factors in the real twistor space amplitudes is perhaps required in
order for them to have a cohomological form which may be analytically continued to
Lorentz signature.

Certainly, in order to make the twistor formulation self-contained, one should really
understand how the twistor recursion relations and seed amplitudes presented here can
be obtained from the twistor actions. Since the twistor action for Yang-Mills is itself
conformally invariant, the conformal breaking factors must arise either from gauge fixing
or from a choice of Čech cover to give split signature X-ray representatives. It remains
an open question as to whether one can introduce a twistor action that is itself natu-
rally adapted either to a Čech description of cohomology, or to the split signature X-ray
transform framework used in this paper20.

20Similar questions concern the relation of the twistor diagram approach of Hodges [42–44] and Arkani-
Hamed et al. [45] to the ambitwistor action [52]. Preliminary calculations show that [42–45] are working
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However they are viewed, for us the practical consequence of breaking conformal invari-
ance is simply that the factors of sgn(〈WiWj〉) and particularly the non-local operator
sgn([∂Wi

∂Wj
]) make the twistor BCFW recursion more complicated. It is tempting to

speculate whether there could perhaps be a sense in which they can be discarded, maybe
as a model for a fully complex BCFW recursion. For example, consider the gluing rule

A′(1, . . . , n) =
∑∫

dt

|t|
D3|4WA′L(W1, . . . ,W)A′R(W, . . . ,Wn − tW1) (160)

in real twistor space. Unlike BCFW recursion, this gluing rule is (manifestly) supercon-
formally invariant as well as projective. If we seed (160) by the three-point objects

A′MHV(1, 2, 3) = δ(2|4)(W1,W2,W3)

A′
MHV

(1, 2, 3) = δ(3|4)(W1,W2) δ(3|4)(W1,W3)
(161)

then the recursion procedure is manifestly superconformally invariant21. The output of
this recursion then seems to produce purely geometric sums of products of delta functions,
just as one might obtain by manually removing the conformal-breaking signs from ampli-
tudes and replacing the sgn in the remaining sgn(Wi ·∂j) operators by logs (see footnote
10 in section 3.1.1). Although (160) & (161) have the wrong exchange properties to be
amplitudes, it is perhaps conceivable that the true split signature amplitudes can be re-
covered from this simpler recursion rule by dressing it with conformal-breaking signs once
the recursion has been performed. One might also speculate that a Dolbeault version of
BCFW recursion in complex twistor space bears more resemblance to (160) than to the
actual split signature BCFW rule, with the exchange properties coming from understand-
ing the (seed) amplitudes as forms, rather than (delta-)functions. As with the twistor
actions, the conformal-breaking sign factors in the true split signature BCFW rule might
then arise from choosing representatives for these forms with respect to a cover that is
adapted to real twistor space.

An alternative to making contact with twistor actions is to make contact with twistor-
string theory [1], which again deals with on-shell amplitudes. Here, one possibility is to

with the Feynman rules of the ambitwistor action on “the momentum space of ambitwistor space” rather
than on ambitwistor space itself.

21In split signature, recursion using (160) seeded by (161) corresponds on momentum space to recursion
using the rule

A′(1, . . . , n) =
∑

A′L(1̂, . . . ,−p̂) 1
|p2

L|
A′R(p̂, . . . , n̂) (162)

seeded by the three-point objects

A′MHV(1, 2, 3) =
δ(4|8)

(∑3
i=1 |i〉Ji‖

)
|〈12〉〈23〉〈31〉|

A′
MHV

(1, 2, 3) =
δ(4)
(∑3

i=1 |i〉[i|
)
δ(0|4) (η1〈23〉+ η2〈31〉+ η3〈12〉)

|[12][23][31]|

(163)

where, compared to the usual BCFW relation and amplitudes, the propagator and denominators of the
three-point amplitudes appear inside a modulus sign. This is reminiscent of a similar modulus sign
appearing in the calculations of [2] in the connected prescription of twistor-string theory.
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start from Risager’s shift [53] (or its multiline extensions [54, 55]) and proceed as in this
paper, obtaining a twistor representation of the MHV formalism [3] in split signature.
Perhaps more interesting would be to work in the connected prescription. The connected
prescription computes an NkMHV superamplitude by means of an integral [2] over the
moduli space M0,n(CP3|4, d) of n-pointed, degree d stable maps

f : (Σ; p1, . . . , pn)→ CP3|4 ,

where d = k + 1 (see e.g. [65] for an introduction of the bosonic part of this moduli
space, and [66] for a discussion in the context of twistor-strings). This space has bosonic
dimension 4d+n. If the vertex operators correspond to elemental states, we really require
that f takes each of the marked points pi (insertions of the vertex operators) on Σ to a
specific point Zi ∈ CP3|4. This implies three bosonic constraints per vertex operator, so
the space of such maps has virtual dimension −2n+4d = −2(n−2k−2). The implication
of this virtual dimension being negative is simply that the points Zi cannot be in general
position in CP3, and the amplitude only has support on some algebraic subset. Specifically,
there are 2(n−2k−2) constraints on the locations of the points in twistor space. This fits
in precisely with the counting of bosonic delta functions in section 5.1, where we found
that an NkMHV 4(n−2−k) delta-functions, dressed by 2(n−2) Hilbert transforms, each
of which soaks up a delta function. It would be interesting to see how the corresonding
parametrization of the moduli space arises.

One might then hope to understand the BCFW recursion formula in the context
of the connected prescription by considering the one-parameter family of amplitudes
A(Z1, . . . , Zn−1, Z1 − tZn) where the marked point pn is only required to be mapped
to the line joining Z1 to Zn. The space of such maps has dimension 1 greater than the
support of A(Z1, . . . , Zn−1, Zn), and one could seek a derivation of the twistor BCFW rule
by understanding how this curve interacts with the boundary divisors in M0,n(CP3|4, d),
corresponding to degenerations of (Σ; p1, . . . , pn) to a nodal curve. This would make con-
tact with the work of Vergu [67] on the factorization limits of the connected prescription.
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A Conventions, Notation and Background

For ease of comparison to the scattering theory literature (in which an MHV amplitude
has two negative and an arbitrary number of postive helicity states), we will focus on dual
twistor space. We work throughout with real (dual) twistors, so as to use Witten’s half
Fourier transform, and correspondingly our spacetime signature is (++−−). Dual twistor
space, PT∗ will therefore be a copy of real projective 3-space, RP 3 with homogeneous
coordinates [Wα] = [λA, µ

A′ ], where A and A′ denote anti-selfdual and selfdual two-
component spinor indices, respectively. Twistor space PT has homogeneous coordinates
Zα = (ωA, πA′).

The conformal group in this signature is PSL(4, R) acting linearly on the homogeneous
twistor coordinates. To break the symmetry down to the Poincaré group, we introduce
the infinity twistors Iαβ or Iαβ . These are defined so that for a twistor Zα = (ωA, πA′)
and dual twistor Wα = (λA, µ

A′) we have

Iαβ =
1

2
εαβγδIγδ , ZαIαβ = (0, πA

′
) IαβWβ = (λA, 0) . (164)

The equation IαβWβ = 0 gives the line in dual twistor space corresponding to the point
at infinity in Minkowski space, and the scale of Iαβ fixes the spacetime metric via the
spinor inner products below.

We often use the spinor helicity notation

〈αβ〉 := αAβ
A , [α̃β̃] := α̃A

′
β̃A′ and αAU

AA′ β̃A′ := 〈α|U |β̃] (165)

for inner products of spinors. On twistor space, the Poincaré invariant inner products are

〈W1W2〉 := IαβW1αW2β = λ1Aλ
A
2 = 〈12〉

[Z1Z2] := IαβZ
α
1 Z

β
2 = πA

′

1 π2A′ = [12]
(166)

The null cone p2 = 0 in momentum space may be coordinatized by pAA′ = λAλ̃A′ . In
split signature λA and λ̃A′ are each real, independent, two-component spinors defined up
to the scaling (λA, λ̃A′)→ (rλA, r

−1λ̃A′) for r any non-zero real number. A wavefunction
Φ(λA, λ̃A′) on the lightcone in momentum space can be related to a (dual) twistor function
f(W ) by Witten’s ‘half Fourier transform’

f(W ) =

∫
d2λ̃ eiµA

′
λ̃A′ Φ(λ, λ̃) ; Φ(λ, λ̃) =

1

(2π)2

∫
d2µ e−iµA

′
λ̃A′ f(µ, λ) (167)

which makes sense only when λ̃A′ and µA
′

are real.
In discussing supersymmetric theories, we use on-shell supermultiplets such as the

N = 4 Yang-Mills supermultiplet in the η-representation

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηaΓa(λ, λ̃) + · · ·+ 1

4!
εabcdη

aηbηcηdG−(λ, λ̃) . (168)

Here G± are the on-shell momentum space wavefunctions of the helicity ±1 parts of the
multiplet etc., and ηi are Grassmann coordinates on the on-shell momentum superspace.
A supersymmetric half Fourier transform

f(λ, µ, χ) =

∫
d2λ̃dNη ei(µA

′
λ̃A′+χiη

i) Φ(λ, λ̃, η) (169)
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relates this to a supertwistor multiplet. We often write

Jµλ̃K := µA
′
λ̃A′ + χaη

a , d2|N λ̃ := d2λ̃dNη , d2|Nµ := d2µdNχ (170)

for these commonly occurring supersymmetric combinations. We denote the homogeneous
coordinates on (dual) supertwistor space RP3|N ∗ by W = (Wα, χa) = (λA, µ

A′ , χa).

B The X-ray and half Fourier transforms

In this appendix we will examine the relation of Witten’s half Fourier transform [1]

f(W ) =

∫
d2λ̃ eiµA

′
λ̃A′ Φ(λ, λ̃) . (171)

to the usual Penrose transform [38]

φ(x) =

∮
〈λdλ〉f(W )

∣∣∣∣
µA′=−xAA′λA

(172)

and its generalizations to other helicities.

In much of the twistor literature, spacetime has either the physical, Lorentzian sig-
nature, or has Euclidean signature, or else is treated as complex. For (conformally) flat
spacetimes, twistor space is then complex projective three-space CP3. The half Fourier
transform does not apply in these contexts. Instead, massless fields are canonically related
to cohomology classes (either Čech or Dolbeault) in twistor space via the abstract Penrose
transform [63]. The concrete Penrose integral formula (172) involves a representative f
of this cohomology classes. However, there is gauge freedom inherent in picking such a
representative, and this shows itself in (172) because (in the Čech picture) one can add to
f(W ) any function whose singularities are not separated by the contour without changing
the spacetime field φ(x). In the Dolbeault picture f should be thought of as a (0, 1)-
form and (172) interpreted as an integral over the full Riemann sphere. Again, adding
any ∂̄-exact piece to f does not change φ(x). Furthermore, to even pick a Dolbeault
representatives in the first place one needs to solve a ∂̄-equation, whilst to pick a Čech
representative one must first specify a covering of twistor space. Thus, in Lorentzian or
Euclidean spacetime, the twistor representation is rather subtle.

However, in (+ +−−) signature spacetime, the twistor representation becomes much
simpler: Twistor space is now real projective three-space and fields are represented in
terms of straightforward functions. This simplicity has been our main reason for working
with split signature in this paper. See e.g. [68] for a detailed discussion of twistor theory
in (+ +−−) signature spacetime.

As pointed out by Atiyah in [41], in (+ +−−) signature, the Penrose transform (172)
in its Čech format can be reinterpreted as the ‘X-ray transform’ of Fritz John [40]. The
X-ray transform22 takes a function f on R3 and transforms it to a function φ on the

22It gets its name from X-ray imaging, where f is taken to be the density of the body to be X-rayed,
and the integral of f along lines gives the attenuation of the X-ray as it passes through.
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four-dimensional space of directed lines in R3 given by integration along corresponding
line in R3. It naturally extends to a map from functions on PT = RP3 to the space M̃ of
oriented lines in PT. On dual twistor space (to fit with the scattering theory community)
it can be expressed on PT′∗ = PT∗ − {λA = 0} by

φ(x) :=

∮
Lx

〈λdλ〉 f(W ) , (173)

where Lx is the line in twistor space given by the incidence relation

µA
′
= −xAA′λA (174)

for x in (2,2) signature spacetime M, and f is an arbitrary smooth function on real
twistor space PT. Fritz John showed that φ satisfies the wave equation and that, under
suitable assumptions, the X-ray transform is an isomorphism. There has by now been
much work over the years to understand how the X-ray transform and its relatives fit
into the Penrose transform [64, 69–73] and its nonlinear analogues [25, 74–76]. Early
proofs of invertibility followed by expanding f(Z) in spherical harmonics, where the X-
ray transform integral may be done explicitly, and then using the completeness relations of
the spherical harmonics. Subsequent proofs used complex analysis and adapted versions
of the Penrose transform. We now give an alternative proof that also gives a proof of
Witten’s half Fourier transform.

B.1 Scalar fields

For ease of comparison to the scattering theory literature, we will focus on the transform
from dual twistor space PT∗ = RP3∗ with real coordinates Wα = (λA, µ

A′). The dual
twistor X-ray transform for the scalar wave equation is

φ(x) =

∫
〈λdλ〉 f(λ,−xAA′λA) , (175)

where f(W ) is an arbitrary function of homogeneity −2 (so f(rW ) = r−2f(W )). Dif-
ferentiating under the integral sign, it is easy to check that any scalar field constructed
via (175) automatically obeys the massless field equation 2φ(x) = 0. In fact, it will follow
from the argument below that all such fields may be constructed this way. Hence, the
Fourier transform φ̃(p) satisfies p2 φ̃(p) = 0, and so

φ̃(p) = δ(p2)Φ(λ, λ̃) (176)

for some function Φ(λ, λ̃) defined on the null cone in momentum space, where pAA′ =
λAλ̃A′ .

Combining the X-ray and Fourier transforms, we have

δ(p2)Φ(λ, λ̃) =

∫
d4x e−ip·xφ(x) =

∫
d4x e−ip·x

{∫
〈λ′dλ′〉 f(λ′A,−xAA

′
λ′A)

}
(177)
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where |λ′〉 is a dummy spinor variable. Now, because f depends on x only through
the combination xAA

′
λ′A, half of the x-integrals may be performed directly. To do this,

choose23 a constant spinor |α〉 with 〈αλ′〉 6= 0 and decompose x as

xAA
′
=
µA

′
αA − χA′λ′A

〈αλ′〉
, (178)

where µA
′
= −xAA′λ′A and χA

′
:= xAA

′
αA. (Equation (178) is easily checked by contract-

ing both sides with either |α〉 or |λ′〉.) The measure d4x decomposes as

d4x =
d2µ d2χ

〈αλ′〉2
. (179)

We now integrate out |χ〉 to obtain

δ(p2)Φ(λ, λ̃) =

∫
d4x 〈λ′dλ′〉 e−ip·xf(λ′,−x|λ′〉)

=

∫
d2µ d2χ 〈λ′dλ′〉
〈αλ′〉2

exp

(
−i

[µ|p|α〉 − [χ|p|λ′〉
〈αλ′〉

)
f(λ′, µ)

=

∫
d2µ 〈λ′dλ′〉
〈αλ′〉2

δ2

(
pAA′λ

′A

〈αλ′〉

)
e
−i

[µ|p|α〉
〈αλ′〉 f(λ′, µ) .

(180)

The δ-functions inside the integral may be converted into δ-functions involving the inte-
gration variable λ′ at the expense of a Jacobian

δ2

(
pAA′λ

′A

〈αλ′〉

)
= |〈αλ′〉〈αλ〉| δ(p2)δ(〈λλ′〉) , (181)

where p = λλ̃ on the support of δ(p2). The dλ′ integral may now be performed, yielding
finally

δ(p2)Φ(λ, λ̃) = δ(p2)

∫
d2µ 〈λ′dλ′〉

∣∣∣∣ 〈αλ〉〈αλ′〉

∣∣∣∣ δ(〈λλ′〉) e
−i[µλ̃]

〈αλ〉
〈αλ′〉 f(λ′, µ)

= δ(p2)

∫
d2µ e−i[µλ̃]f(λ, µ)

(182)

which is precisely Witten’s half Fourier transform [1]. Provided Φ is sufficiently well-
behaved, (182) can be inverted by standard Fourier analysis to give

f(λ, µ) =

∫
d2λ̃ ei[µλ̃] Φ(λ, λ̃)

(183)

as is used throughout the text.

23The choice will soon be seen to drop out.
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B.2 Generalization to other helicities

Like the Penrose transform, the X-ray transform may be generalised to fields of helicity
h. Specifically, on-shell massless fields of helicity h are represented on real (dual) twistor
space by functions of homogeneity 2h− 2 and the X-ray transform is either

φAB···D(x) =

∫
〈λ dλ〉λAλB · · ·λD f2h−2(W )

∣∣∣∣
µ=−xλ

(184)

when h < 0, or

φA′B′···D′(x) =

∫
〈λ dλ〉 ∂2h

∂µA′∂µB′ · · · ∂µD′
f2h−2(W )

∣∣∣∣
µ=−xλ

(185)

when h > 0. In particular, when |h| = 1 they represent the anti-self-dual and self-dual
parts of the linearized Yang-Mills field strength

FABA′B′ = εA′B′φAB(x) + εABφA′B′(x) (186)

and when |h| = 2 they likewise represent the self-dual and anti-self-dual parts of the
linearized Weyl curvature

WABCDA′B′C′D′(x) = εA′B′εC′D′φABCD(x) + εABεCDφA′B′C′D′(x) . (187)

Again, differentiating under the integral sign in (184) and (185), one verifies that that
these fields automatically satisfy the linearized Yang-Mills or Einstein equations, which
in spinor form are

∇AA′φAB···D(x) = 0 and ∇AA′φA′B′···D′(x) = 0 . (188)

Since we are dealing with linearized curvatures, these formulæ are all gauge invariant.
For general helicity, the field equations (188) imply that the Fourier transformed fields

obey
pAA

′
φ̃AB···D(p) = 0 , pAA

′
φ̃A′B′···D′(p) = 0. (189)

Away from p2 = 0, pAA
′

is invertible. Hence the Fourier transforms take the form24

φ̃AB···D(p) = i2hδ(p2)λAλB · · ·λD Φ2h(λ, λ̃)

φ̃A′B′···D′(p) = δ(p2) λ̃A′λ̃B′ · · · λ̃D′ Φ2h(λ, λ̃)
(190)

where as before pAA′ = λAλ̃A′ and Φ2h(λ, λ̃) must scale under (λ, λ̃)→ (rλ, r−1λ̃) as

Φ2h(rλ, r
−1λ̃) = r2hΦ2h(λ, λ̃) (191)

so as to balance the scaling of the spinor prefactors (recall that h < 0 for φ̃AB···D).
Equations (190) are fixed purely by kinematics, and hold irrespective of the particular

24The factor of i2h is included for later convenience.
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wavefunction of the on-shell state. The wavefunction itself is determined by a choice of
particular function Φ2h(λ, λ̃).

The half Fourier transform for non-zero helicity has the same relation to the X-ray
transform as it does for the scalar field treated above. When h < 0, the same steps as in
equations (177)-(182) give

φ̃AB···D(p) = δ(p2)

∫
d2µ e−i[µλ̃] λAλB · · ·λD f2h−2(W ) , (192)

whereas when h > 0, the d2µ integral is done by parts to find similarly

φ̃A′B′···D′(p) = δ(p2)

∫
d2µ e−i[µλ̃] ∂2h

∂µA′∂µB′ · · · ∂µD′
f2h−2(W )

= i2hδ(p2)

∫
d2µ e−i[µλ̃] λ̃A′λ̃B′ · · · λ̃D′ f2h−2(W ) ,

(193)

Both of these are captured by the simple half Fourier transforms

Φ2h(λ, λ̃) =

∫
d2µ e−i[µλ̃] f2h−2(W )

f2h−2(W ) =
1

(2π)2

∫
d2λ̃ ei[µλ̃] Φ2h(λ, λ̃)

. (194)

It is easy to see that (191) implies that f has homogeneity 2h − 2 under Wα → rWα.
This agrees with the well-known fact that massless fields of helicity h on spacetime or
momentum space correspond to homogeneous functions on dual twistor space of weight
2h− 2.

B.3 Supersymmetry

The Penrose transform naturally extends to supersymmetric theories by adjoining N an-
ticommuting variables to the nonprojective twistor space. Supertwistor space is then the
projectivisation of R4|N (or C4|N , in the complex case [77]). The space of RP1s inside pro-
jective supertwistor space is the (conformal compactification of) anti-chiral split signature
superspace with coordinates (xAA

′
− , θ̃aA

′
), while the space of RP1s inside dual projective su-

pertwistor space is chiral superspace25 with coordinates (xAA
′

+ , θAa ). The incidence relation
on dual supertwistor space is

µA
′
= −xAA′+ λA , χa = θAa λA . (195)

Supertwistor space and its dual carry a natural action of the (4:1 cover of the) space-
time superconformal group SL(4|N ; R). Concentrating on the dual twistor space, this
action is generated by the vector fields(

Wα
∂

∂Wβ

− 1

4−N
δ β
α Υ

)
, Wα

∂

∂χb
, χa

∂

∂Wβ

,

(
χa

∂

∂χb
− 1

4−N
δ b
a Υ

)
(196)

25Chiral superspace can also be realised as the space of RP1|N s inside supertwistor space, and similarly
anti-chiral superspace is also the space of RP1|N s in dual supertwistor space, but we will not use this fact
here.
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where (Wα, χa) are homogeneous coordinates on the superspace and

Υ := Wγ
∂

∂Wγ

+ χc
∂

∂χc
(197)

is the Euler homogeneity operator26.

B.3.1 Superfields in twistor space and on-shell momentum space

When N = 4, we can construct a twistor supermultiplet representing an on-shell SYM
multiplet by taking a (Lie algebra-valued) function A(W,χ) of the supertwistors, homo-
geneous of degree 0 as in [77]. Its component expansion is

A(W,χ) = a(W ) + χaψ
a(W ) + · · ·+ 1

4!
εabcdχaχbχcχd g(W ) (198)

where the component fields a, ψa, . . . , g have homogeneities 0,−1, . . . ,−4 corresponding
to on-shell spacetime fields of helicities 1, 1

2
, . . . ,−1 and transform in the appropriate

representation of the SL(4; R) R-symmetry group. We want to understand the relation
between this representation and the on-shell momentum supermultiplet

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηaΓa(λ, λ̃) + · · ·+ 1

4!
εabcdη

aηbηcηdG−(λ, λ̃) (199)

used by e.g. [14, 32–34,47] in the supersymmetric BCFW Yang-Mills recursion relations.
Taking the X-ray transform of the complete supermultiplet (198) gives a chiral super-

field27

φA′B′(x, θ) =

∫
〈λdλ〉 ∂2

∂µA′∂µB′
A(λA,−xAA

′
λA, θ

A
a λA) . (200)

φA′B′(x, θ) is independent of the anti-chiral θ̃s and can be defined without auxiliary fields
precisely because the multiplet is on-shell (see e.g. [78] for a full discussion). By differen-
tiating under the integral sign, we see that

∇AA′φA′B′ = 0 and ∇CC′ ∂

∂θCa
φA′B′ = 0 . (201)

We now take the super-Fourier transform of φA′B′ , i.e.

φ̃A′B′(p, ξ) =

∫
d4|8x exp

(
−ixCC

′
pCC′ − iθCa ξ

a
C

)
φA′B′(x, θ) , (202)

where d4|8x = d4x d8θ is the usual chiral superspace measure and ξaA is conjugate to θAa .
The superfield equations (201) imply that φ̃A′B′(p, ξ) obeys

pAA
′
φ̃A′B′(p, ξ) = 0 and pCC

′
ξaC φ̃A′B′(p, ξ) = 0 . (203)

26For N = 4, SL(4|4) needs to be defined slightly differently as being generated by linear transfor-
mations of R4|4 that have vanishing supertrace – we can no longer use Υ to remove the trace because
str(I) = 0 when N = 4. Instead, Υ may either be considered as a bona fide generator of the group itself,
or else may be omitted, in which case one is dealing with PSL(4|4).

27We henceforth drop the subscript on the chiral coordinate x+.
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As before, the first of these implies that

φ̃A′B′(p, ξ) = δ(p2)λ̃A′λ̃B′Φ(λ, λ̃, ξ) (204)

with pAA′ = λAλ̃A′ on-shell. The second equation in (203) means that Φ(λ, λ̃, ξ) vanishes
when multiplied by λAξaA for any choice of the R-symmetry index. Thus the super-Fourier
transform is a multiple of

δ(0|4)(ξaAλ
A) :=

1

4!
εabcdξ

a
Aξ

b
Bξ

c
Cξ

d
D λ

AλBλCλD . (205)

and the factor δ(p2)δ(0|4)(ξaAλ
A) restricts the support of the super Fourier transform to the

‘super lightcone’ p2 = 0 = ξaAλ
A in momentum superspace. On restriction to this super

lightcone, ξaAλ
Aδ(0|4)(ξbBλ

B) = 0, so we have

ξaAδ
(0|4)(ξbBλ

B) =: ηaλA δ
(0|4)(ξbBλ

B) (206)

for some odd coordinates ηa with opposite weight to λA (the same weight as λ̃A′). Thus
we coordinatize the momentum space super-lightcone by (λA, λ̃A′ , η

a) defined up to the
scaling

(λA, λ̃A′ , η
a) ∼ (rλA, r

−1λ̃A′ , r
−1ηa) , r ∈ R . (207)

On this super lightcone (pAA′ , ξ
a
A) = (λAλ̃A′ , λAη

a) and a wavefunction may be written as

φ̃A′B′(p, ξ) = δ(p2) δ(0|4)(ξaAλ
A) λ̃A′λ̃B′ Φ−2(λ, λ̃, η) . (208)

Combining equations (200) & (202), and following the same argument as before, but now
performing the integral over both the χA

′
of (178) and the ζa of θAa = (νaα

A+ζaλ
′A)/〈αλ〉

yields the extra delta function δ(0|4)(ξaAλ
A). Omitting the details, we obtain the formula

Φ−2(λ, λ̃, η) =
1

(2π)2

∫
d2|4µ e−iJµλ̃KA(W,χ)

(209)

where we use the supersymmetric notation

Jµλ̃K := [µλ̃] + χaη
a . (210)

Thus the on-shell momentum space SYM multiplet (199) is simply the half Fourier trans-
form (taken over both µA

′
and χa) of the twistor supermultiplet.

The same arguments applies for all N , and in particular for an N = 8 supergravity
multiplet: According to the X-ray or Penrose transform, a linearized graviton of helicity
+2 may be represented on dual twistor space by a twistor function h2(W ) of homogeneity
+2, while a graviton of helicity −2 is represented by a twistor function h−6(W ) of weight
−6. For N = 8 supertwistor space, both graviton helicities are contained in the single
twistor supermultiplet

H(W,χ) = h2(W ) + χaγ
a(W ) + · · ·+ (χ)8h−6(W ) . (211)
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The above extends straighforwardly to a proof that this multiplet corresponds to an on-
shell N = 8 supergravity multiplet in momentum space via the half Fourier transform

Φ−4(λ, λ̃, η) =
1

(2π)2

∫
d2|8µ e−iJµλ̃KH(W,χ)

(212)

and again Φ−4(λ, λ̃, η) is the supermultiplet used in the BCFW rules forN = 8 SG [47,49].

We finally remark that the half Fourier transform yields the supersymmetric substi-
tutions

λ̃A′ → i
∂

∂µA′
∂

∂λ̃A′
→ −iµA

′

ηa → i
∂

∂χa
,

∂

∂ηa
→ −iχa

(213)

This relates the dual twistor space superconformal generators of (196) to

QAa = λA
∂

∂ηa
Q̃b
A′ = λ̃A′η

b

SAb = ηb
∂

∂λA
S̃A

′

a =
∂2

∂ηa∂λ̃A′

(214)

together with the R-symmetry generator

Ra
b = ηa

∂

∂ηb
− 1

N
δabη

c ∂

∂ηc
, (215)

on the momentum super lightcone.

C The half Fourier transform of seed amplitudes

In this appendix we explicitly perform the half Fourier transform of the 3-particle MHV
and MHV, and the n-particle MHV SYM amplitudes to (dual) twistor space.

C.1 The 3-point MHV amplitude

The three-particle MHV amplitude in on-shell momentum superspace is

AMHV(p1, p2, p3) =
δ(4|8)

(∑3
i=1 |i〉Ji‖

)
〈12〉〈23〉〈31〉

(216)

where again Ji‖ = ([i|, ηi). We will re-express the momentum δ-functions as spinor δ-
functions to expedite the half Fourier transforms. For the three-point MHV amplitude
we may assume 〈12〉 6= 0 and so can expand unprimed spinors in the basis {|1〉, |2〉}. This
gives

3∑
i=1

|i〉Ji‖ = |1〉
(

J1‖+
〈32〉
〈12〉

J3‖
)

+ |2〉
(

J2‖+
〈13〉
〈12〉

J3‖
)

(217)
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and since |1〉 and |2〉 are linearly independent, the δ-function becomes

δ(4|8)

(
3∑
i=1

|i〉Ji‖

)
= 〈12〉2 δ(2|4)

(
J1‖+

〈32〉
〈12〉

J3‖
)
δ(2|4)

(
J2‖+

〈13〉
〈12〉

J3‖
)

(218)

The half Fourier transform of states 1 and 2 can be done straightforwardly using these
δ-functions, yielding

AMHV(W1,W2,W3) =
δ(2|4)(µ1〈23〉+ µ2〈31〉+ µ3〈12〉)

〈12〉〈23〉〈31〉
, (219)

as in equation (7). This has homogeneity degree zero in each of the three supertwistors, as
required. It has support precisely where W1, W2 and W3 are collinear and is appropriately
antisymmetric under permutations of 1, 2, 3.

We can elucidate the behaviour of (219) under conformal transformation by relating
it to the superconformally invariant δ̃-function

δ̃(2|4)(W1; W2,W3) =

∫
ds

s

dt

t
δ(4|4)(W1 − sW2 − tW3) (220)

Notice that this δ̃-function is manifestly symmetric under the exchange 2↔ 3. By using
the |λ〉 spinor components to perform the integrals we obtain∫

ds

s

dt

t
δ(2)(λ1 − sλ2 − tλ3) =

|〈23〉|
〈12〉〈31〉

; s =
〈31〉
〈21〉

, t =
〈21〉
〈32〉

, (221)

where the modulus sign arises from a Jacobian in the delta functions, generalizing the stan-
dard scaling δ(ax) = |a|−1δ(x). Combining this with the ‖µK components of δ̃(2|4)(W1,W2,W3)
yields

δ̃(2|4)(W1,W2,W3) = sgn(〈23〉)δ
(2|4)(µ1〈23〉+ µ2〈31〉+ µ3〈12〉)

〈12〉〈23〉〈31〉
. (222)

Thus we see that

AMHV(W1,W2,W3) = sgn(〈W2W3〉) δ̃(2|4)(W1; W2,W3)
(223)

as in equation (33).

C.2 The 3-point MHV amplitude

The three-particle MHV amplitude for N = 4 SYM in on-shell momentum superspace is
given by [33]

AMHV(p1, p2, p3) =
δ(4)(p1 + p2 + p3) δ(4)(η1[23] + η2[31] + η3[12])

[12][23][31]
. (224)
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Momentum conservation here implies proportionality of the unprimed spinors, so to con-
struct a basis for this space we must introduce an arbitrary independent spinor |α〉 with
〈1α〉 6= 0. We then express |2〉 and |3〉, say, in the {|1〉, |α〉} basis, leading to

δ(4)(p1 + p2 + p3) =
1

〈1α〉2
δ(2)

(
|1] + |2]

〈2α〉
〈1α〉

+ |3]
〈3α〉
〈1α〉

)
δ(2)

(
|2]
〈21〉
〈α1〉

+ |3]
〈31〉
〈α1〉

)
=

1

|[23]|
δ(2)

(
|1] + |2]

〈2α〉
〈1α〉

+ |3]
〈3α〉
〈1α〉

)
δ(〈12〉) δ(〈13〉) ,

(225)

The second line follows from the fact that |2] and |3] are linearly independent in the MHV
amplitude and the prefactors 1/〈1α〉2 in the first line and 1/|[23]| in the second come from
Jacobians. The modulus sign in the second Jacobian again arises from the scaling relation
δ(ax) = |a|−1δ(x) for the standard 1-dimensional δ-function. On the support of the δ(2)-
functions for |1], the remaining unprimed spinor factors in (224) become

δ(4)(η1[23] + η2[31] + η3[12])

[12][23][31]
=

[23]〈1α〉2

〈2α〉〈3α〉
δ(4)

(
η1 + η2

〈2α〉
〈1α〉

+ η3
〈3α〉
〈1α〉

)
. (226)

Notice that the factor of [23] in the numerator here cancels the overall Jacobian in (225)
only upto its sign.

The twistor MHV amplitude is the Fourier transform

AMHV(W1,W2,W3) = δ(〈12〉) δ(〈13〉) 〈1α〉
2

〈2α〉〈3α〉

×
∫ 3∏

j=1

d2|4λ̃j eiJµj λ̃jK sgn([23]) δ(2|4)

(
J1‖+ J2‖〈2α〉

〈1α〉
+ J3‖〈3α〉

〈1α〉

)
(227)

The d2|4λ̃1 integral may be done immediately using the delta functions, yielding∫ ∏
j=2,3

{
d2|4λ̃j eiJµj λ̃jK−i

〈jα〉
〈1α〉 Jµ1λ̃jK δ(〈1j〉)〈1α〉

〈jα〉

}
sgn[23]

=

∫ ∏
j=2,3

{
d2|4µ′j d2|4λ̃j eiJµiλ̃iK−iJµ′iλ̃iK δ(2|4)

(
µ1 − µ′j

〈1α〉
〈jα〉

)
〈jα〉
〈1α〉

δ(〈1j〉)
}

sgn[23] . (228)

In the second line here, we have introduced integrals over dummy variables µ′j together

with weighted δ functions which re-enforce µ′j = 〈jα〉
〈1α〉µ1. The virtue of this step is that,

since we can also write

〈jα〉
〈1α〉

δ(〈1j〉) =

∫ ∞
−∞

dt

t
δ(2)(|1〉 − t|j〉) , (229)

the δ-functions combine into our superconformally invariant, but tilded δ-functions

δ(2|4)

(
µ1 − µ′j

〈1α〉
〈jα〉

)
〈jα〉
〈1α〉

δ(〈1j〉) =

∫
dt

t
δ(4|4)(W1 − tW′

j) =: δ̃(3|4)(W1,W
′
j) , (230)
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where W′
j is the supertwistor (λj, µ

′
j, χ

′
j) for j = 2, 3.

As in the BCFW recursion relations, we now replace the factor sgn[23] by the formal
operator

sgn[23] = sgn

[
∂

∂µ′2

∂

∂µ′3

]
= sgn

[
∂

∂W′
2

∂

∂W′
3

]
(231)

acting inside the d2|4λ̃jd
2|4µ′j integrals. Performing these integrals then simply replaces

W′
j by Wj. Overall, the dual twistor form of the three-point MHV superamplitude in

N = 4 SYM is

AMHV(W1,W2,W3) = sgn

([
∂

∂W2

∂

∂W3

])
δ̃(3|4)(W1,W2) δ̃(3|4)(W1,W3)

(232)

as in equation (37). In fact, it is easy to show that AMHV(W1,W2,W3) is given by the
explicit formula

AMHV(W1,W2,W3) =
λ2

1

λ2 λ3

δ(〈12〉) δ(〈13〉) ×

δ′
((
µA

′

2 −
λ2

λ1

µA
′

1

)(
µ3A′ −

λ3

λ1

µ1A′

))
δ(0|4)

(
χ2 −

λ2

λ1

χ1

)
δ(0|4)

(
χ3 −

λ3

λ1

χ1

)
, (233)

where the ratios λ2/λ1 and λ3/λ1 are meaningful on the support of δ(〈12〉) δ(〈13〉).

C.3 The n-point MHV amplitude

The n-point Parke-Taylor superamplitude is

AMHV(p1, . . . , pn) =
δ(4|8)(

∑n
i=1 |i〉Ji‖)

〈12〉〈23〉 · · · 〈n1〉
. (234)

To transform (234) to dual twistor space, we use a straightforward extension of (218) for
the momentum δ-function, using the unprimed spin basis {|1〉, |2〉} to rewrite it as

δ(4|8)

(
n∑
i=1

|i〉Ji‖

)
= 〈12〉2 δ(2|4)

(
J1‖+

n∑
i=3

〈i2〉
〈12〉

Ji‖

)
δ(2|4)

(
J2‖+

n∑
i=3

〈i1〉
〈21〉

Ji‖

)
. (235)

Insert this into the the half Fourier transform and immediately performing the J1‖ and
J2‖ integrals one obtains

AMHV(W1, . . . ,Wn) =
〈12〉
〈n1〉

n∏
i=3

1

〈i− 1 i〉
δ(2|4)

(
µi +

〈i1〉
〈12〉

µ2 −
〈i2〉
〈12〉

µ1

)
=
〈12〉
〈n1〉

n∏
i=3

1

〈i− 1 i〉〈12〉2
δ(2|4) (µ1〈2i〉+ µ2〈i1〉+ µi〈12〉)

(236)
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Using the identity

δ(2|4) (µ1〈2i〉+ µ2〈i1〉+ µi〈12〉) δ(2|4) (µ1〈2j〉+ µ2〈j1〉+ µj〈12〉)

=
〈12〉2

〈1i〉2
δ(2|4) (µ1〈2i〉+ µ2〈i1〉+ µi〈12〉) δ(2|4) (µ1〈ij〉+ µi〈j1〉+ µj〈1i〉) , (237)

one can show

AMHV(W1, . . . ,Wn) = (−1)n−3

n∏
i=3

AMHV(W1,Wi−1,Wi)

(238)

as in equation (34).
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