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Abstract

In this paper we investigate the properties of series of vacua in the string theory
landscape. In particular, we study minima to the flux potential in type IIB compacti-
fications on the mirror quintic. Using geometric transitions, we embed its one dimen-
sional complex structure moduli space in that of another Calabi–Yau with h1,1 = 86
and h2,1 = 2. We then show how to construct infinite series of continuously connected
minima to the mirror quintic potential by moving into this larger moduli space, ap-
plying its monodromies, and moving back. We provide an example of such series, and
discuss their implications for the string theory landscape.
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1 Introduction

Compactifications of string theory on six-dimensional internal manifolds provide four-
dimensional low-energy effective field theories that could describe our world. (See
e.g. [1].) Since these models originate from string theory, there is a consistent way
of completing them into theories of quantum gravity. However, there is an enor-
mous number of such compactifications. Even if we restrict the internal manifold
to be a (conformally) Calabi–Yau threefold the number of possibilities is huge. Fur-
thermore, compactifying string theory on a specific Calabi–Yau leads to a family of
four-dimensional theories, since the moduli of the manifold are unfixed.1 Thus the
size and shape of the manifold can fluctuate both over three-dimensional space and
time. The latter can lead to dynamical problems, such as a rapid decompactification
of the theory.

One way to fix the moduli of the manifold is to introduce fluxes, that pierce certain
non-trivial cycles of the manifold.2 In type IIB these fluxes will create a potential for
the complex structure moduli of the Calabi–Yau [3]. In order to fix the Kähler moduli
we need to take quantum corrections of the theory into account [4, 5]. These effects
trap the moduli in metastable minima of the resulting potential, thus stabilizing the
compactification. The result is a metastable four-dimensional effective field theory,
also known as a string theory vacuum. Each vacuum corresponds to a particular
choice of internal manifold, moduli and fluxes. The large number of such vacua form
the string theory landscape [6].3

A landscape of string theory vacua has many implications for the four-dimensional
physics of our world. Some consequences are universal, such as the non-uniqueness
and metastability of universes. Other consequences for four-dimensional physics de-
pend on the topography of the landscape, i.e. the distribution of vacua in parameter
space, the height and width of potential barriers between vacua, whether the land-
scape is smooth or rough etc. This will determine the probability for tunneling
between vacua, and thus the life-time and evolution of a universe that is described by
one vacuum in the landscape. The topographic properties of the landscape are also
important for the selection of a particular vacuum, and the computability problems
related to this [7, 8, 9].

Mapping out the entire string theory landscape is an enormously difficult task.
The landscape is parametrized by a large number of continuous fields and discrete
fluxes, and it is difficult to find a systematic way to describe the potential between
vacua. However, we can ask ourselves if we can construct models for (parts of) the
landscape, and what we can learn from such models. Examples of such considerations

1Often, when we speak of “a Calabi-Yau threefold”, what we really mean is a family of Calabi-
Yau threefolds. These threefolds are topologically equivalent, but their shapes and sizes differ, as
specified by their complex structure and Kähler moduli.

2See [2] for a nice review on flux compactifications.
3Compactifications of other string theories also yield vacua in the landscape. To be precise, we

should note that introducing branes in the compactifications also yields new vacua.
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include [10, 11, 12, 13]. In particular, in [14], it was found that the potential created
by three-fluxes in type IIB compactifications often has series of minima that are
connected by continuous paths in complex structure moduli space. The construction
of such series was based on the use of monodromy transformations.

More specifically, by moving around singular points in the complex structure mod-
uli space, monodromies transform the three-cycles pierced by fluxes. This is equivalent
to changing the flux and keeping the cycles fixed. Thus it is possible to move contin-
uously between different minima of the potential, corresponding to different discrete
flux values, and still have full control over the potential. Some explicit examples of
such series were computed numerically for the mirror quintic, yielding a complete
picture of the barriers between minima in this model landscape.

However, we cannot resolve the barriers between all minima. Not all flux configu-
rations — and hence not all minima of the potential — are connected by monodromy
transformations. This suggests a subdivision of the landscape into several islands.
Only minima on the same island are connected by continuous paths in complex struc-
ture moduli space.

In the analysis of [14] some questions remained open. The first concerned the
length of the series. Although only finite series of continuously connected minima
were found, there was no general argument as to why infinite series should not exist.4

One way of indirectly proving the existence of infinite connected series, relates to an
interesting mathematical question. The monodromy transformations of the mirror
quintic form a subgroup of Sp(4,Z) so only islands connected by such transforma-
tions can possibly be connected by monodromies. Furthermore, there are infinite
series connected by Sp(4,Z) transformations [14]. This means that if the index of
the monodromy group is finite in Sp(4,Z) — meaning that the number of islands
connected by symplectic transformations are finite — then there are infinite series
connected by monodromy transformations. Unfortunately, it is not known whether
this index is finite or not [15].

Another question was whether these islands in the landscape really exist, or if
they are only an artifact of modeling too small a part of the landscape. In this paper
we introduce a new way of computing potential barriers between string theory vacua.
We follow new paths that take us to other parts of the landscape. These paths go via
topology changing transitions of the internal manifold.

It is well known that many Calabi–Yau manifolds are connected through geometric
transitions [16, 17]. E.g., as we will discuss below, it is reasonable to assume that the
mirror quintic, M(101,1), is connected to a Calabi–Yau threefold with two complex

4Note that we are only studying minima of the potential created by fluxes. When we discuss the
length of the series of minima we disregard the fixing of Kähler moduli, which, in e.g. the KKLT
model [4], depends on the magnitude of the fluxes. For the sake of argument, we will also disregard
questions about back-reaction of the fluxes on the manifold (see e.g. [2] and references therein).
Even though these effects would probably cut off the series of vacua in the string theory landscape
at finite length, we expect the remaining series to be long. Hence there are interesting topographic
features, such as many closely spaced vacua, in the string theory landscape if these infinite series of
minima exist.
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Figure 1: The two moduli spaces near the geometric transition. The intersection of the

two planes represents the moduli space of the singular manifold, which has 86 remaining

Kähler moduli and 1 remaining complex structure modulus. Blowing up two-cycles turns

the singular manifold into a nonsingular mirror quintic, moving it in its Kähler moduli

space. Blowing up three-cycles turns the singular manifold into a nonsingular M(86,2),

moving it in its complex structure moduli space. Note that in particular, we can think of

the complex structure moduli space M(101,1) of the mirror quintic as a submanifold of the

complex structure moduli space M(86,2) of M(86,2).

structure moduli and 86 Kähler moduli, M(86,2), through a so-called conifold, or
geometric, transition. Thus, we can view the complex structure moduli space of
the mirror quintic as a subspace of the moduli space of the other Calabi–Yau. It is
possible to make excursions into this larger space and use its monodromies to find
continuous paths between minima on the mirror quintic.

To reach the singular point where the conifold transition can happen we need to
move in the Kähler moduli space of the mirror quintic, as shown in figure 1. It follows
that the paths between the minima will go through both the Kähler moduli space of
the mirror quintic and the complex structure moduli space of M(86,2). In this way, we
get new continuous paths between minima in our model landscape. If we have a good
description of the potential on both the Kähler and the complex structure moduli
spaces, we get a complete description of the potential barriers between minima.

This paper will probe deeper into the topography of this model landscape, by
extending the complex structure moduli space of the mirror quintic using conifold
transitions as described above. To do this, we first compute the geometric data of
the Calabi–Yau M(86,2) using toric geometry (section 2). In section 3 we compute
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the periods and monodromies of M(86,2) and in section 4 we show how the com-
plex structure moduli space of M(101,1) is embedded in the moduli space of M(86,2).
The geometric transition between M(86,2) and M(101,1), with and without fluxes, is
discussed in section 5. In section 6, we give an explicit example of a continuously
connected series of minima and provide an example of an infinite series. Conventions
and a recapitulation of Calabi–Yau geometry are given in appendix A.

2 Toric description of M(86,2)

In this paper, we are interested in continuous deformations of the periods of the mirror
quintic. In particular, we want to study how these periods depend on the coordinates
of the complex structure moduli space.

The mirror quintic M(101,1), with Hodge numbers h1,1 = 101 and h2,1 = 1, is
related through mirror symmetry [18, 19] to the quintic in P4, which has h1,1 = 1
and h2,1 = 101. The quintic itself is furthermore known to be connected [17, 20] to a
manifold of Hodge numbers h1,1 = 2 and h2,1 = 86 through a geometric transition.5

It is therefore natural to expect that the mirror of this process also occurs6 and that
the mirror quintic has a geometric transition to a Calabi–Yau threefold M(86,2) with
Hodge numbers

h1,1 = 86, h2,1 = 2. (1)

We will see below that mirror symmetry indeed suggests a natural candidate for this
manifold.

We will exploit the above relations between moduli spaces to find very general
continuous deformations of the periods of the mirror quintic. In particular we will
be interested in the behavior of the periods under the geometric transition between
the mirror quintic and the manifold M(86,2). In order to construct the manifold and
calculate the periods and their behavior under these deformations, we will use the
tools of toric geometry.

2.1 Toric Geometry for Calabi–Yau manifolds

It is possible to construct Calabi–Yau manifolds as the common zero locus of a set
of polynomials defined on a toric variety. In this subsection we will briefly review

5When two families of Calabi–Yau manifolds are related by a geometric transition their moduli
spaces are connected through some loci where the manifolds are singular. The geometric transition
can be understood as the shrinking of some three-spheres and the successive blowing up of the
resulting singularities into two-spheres. The simplest example of this behavior is the transition
between resolved and deformed conifolds. See section 5 for a more complete discussion.

6As far as we are aware, there is no mathematical theorem claiming that the mirror of a geometric
transition is again a geometric transition. However, this has been suggested to be true in several
explicit cases, see e. g. [27]. In the present case, we will see explicitly how the complex structure
moduli space of the mirror quintic can be embedded in that of M(86,2).
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how to obtain these equations and the embedding toric variety using polytopes of
lattice points. The data encoded in these points are useful to define a suitable set
of coordinates on the complex structure moduli space, and to compute the periods
of the Calabi–Yau threefold (see section 3). Moreover, the defining equations for
the mirror of a Calabi–Yau can be represented through another polytope related to
the original one, following a method by V. Batyrev [21]. In this subsection we will
state the general procedure and define the basic concepts in order to understand it.
Readers not well-versed in toric geometry might want to consult [22, 23, 24, 25, 26].

A d-dimensional toric variety X can be constructed as a quotient X = (C∗)n−Z

G
,

where G is an m-dimensional group, and d = n −m. It contains the complex torus
(C∗)d as an open subset in such a way that the action of the torus on itself, given by
the group structure, extends to the whole of X.

We can either study the toric variety using a set of affine coordinates {ti, i =
1 . . . d}, corresponding to coordinates on the torus (C∗)d, or with a set of homogeneous
ones {xj, j = 1 . . . n} describing the entire manifold. Using either of these coordinate
sets, we can construct a set of monomials that form the building blocks for the defining
equations of the Calabi–Yau. In this paper, we will mainly use the affine coordinates.

Let us first discuss the case where the Calabi–Yau manifold is defined through
a single equation. A convenient way to encode monomials is by points in a lattice.
Every monomial of the form

d
∏

i=1

tmi

i ≡ tm (2)

is represented by a vector of exponents m in some lattice M ∼= Zd. More generally,
a polytope ∆ ⊂ M describes a set of monomials. The vector space given by all the
linear combinations of such monomials is known as the space of Laurent polynomials
associated to the polytope ∆. A Laurent polynomial belonging to this space therefore
has the form

L({ti}) =
∑

l

alt
ml , ml ∈ ∆. (3)

The set of homogeneous coordinates is defined as follows: given a polytope ∆ ⊂ M ,
we can define its dual, or polar, polytope as

∆◦ = {n ∈ N |〈m,n〉 ≥ −1,∀m ∈ ∆}. (4)

Here, N ∼= Zd is the lattice dual to M . With a simplified notation we can write:

〈∆◦,∆〉 ≥ −1. (5)

To every vertex nj of this polytope we can associate a homogeneous coordinate
xj. The two sets of coordinates are then related by the equations

ti =
d
∏

j=1

x
<ei,nj>

j (6)
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where ei, are the basis vectors of M . Using this relation, starting from the Laurent
monomials we can define the set of monomials in the homogeneous coordinates xj

that are invariant under the group G appearing in the quotient construction of the
toric variety.

As a side remark, we note that the lattice N is often taken as the starting point for
the construction of a toric variety. The fan Σ describing the toric variety is a collection
of cones in Rd ⊃ N . The cones of Σ are spanned by the faces of ∆◦. In particular,
there a one-to-one relation among the one-dimensional cones, the vertices of ∆◦ and
the homogeneous coordinates. Thus, a polytope ∆ contains all the information we
need7 to construct a toric variety, which we therefore denote by X∆.

We have now collected all the ingredients: the zero locus of the Laurent polynomi-
als (or their homogenization through (6)) of ∆ defines a Calabi–Yau manifold8 inside
the toric variety X∆. If ∆ is reflexive, meaning roughly that it contains the origin as
its only interior point, the Laurent polynomials that we can instead obtain from the
dual polytope ∆◦ define its mirror manifold. This result is the mirror construction of
V. Batyrev [21].

Above, we have described a Calabi–Yau manifold as a hypersurface defined by a
single polynomial, but we can also study the complete9 intersection of several hyper-
surfaces. In this case, a refined construction is necessary [29, 30, 31, 32]. Once again,
the data of the manifold are encoded in a lattice polytope, but now this polytope is
appropriately partitioned into a set of sub-polytopes10:

∆ =
∑

k

∆k (7)

Every sub-polytope will encode the data of one of the defining Laurent polynomials
for the Calabi–Yau. This time, its mirror manifold is obtained from a related polytope
and a corresponding partition:

∇ =
∑

k

∇k. (8)

The sub-polytopes ∇k are given by

∇k = Conv({0} ∪ ∃k), 〈∇k ,∆k′〉 ≥ −δk,k′ . (9)

where, the round brackets indicate the convex hull and the ∃k are defined as a partition
of the vertices of the dual polytope ∆◦ for ∆ such that:

∆◦ = Conv(
⋃

k

∃k). (10)

7In fact, to make the variety smooth, in certain cases one needs a triangulation or a refinement
of ∆◦ with additional vertices. We will not go into these details here.

8For the conditions on when the manifold is indeed Calabi–Yau, see e. g. [21].
9The completeness condition is a certain regularity condition; see [28] for details.

10The relevant sum here and in (8) is the Minkowski sum, and the partition must be a so-called
nef partition [31, 32]. The term nef (“numerically effective”) basically means that when shifted
appropriately, the constituent polytopes intersect only in the origin.
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In the next subsection, we will explicitly construct the nef partition {∆k} for the
manifold M(86,2) of our interest. It is evident from the description above that, ∇ and
∆ being mirror to each other, we can start the construction of the mirror pair from
an assigned polytope ∇. In this case we will partition its dual as:

∇◦ = Conv(
⋃

k

Ek), (11)

where 〈∃k, Ek′〉 ≥ −δk,k′ , and from this, just as above, we will obtain:

∆k = Conv({0} ∪ Ek), (12)

which we are eventually interested in.

2.2 Toric data for M(86,2)

In order to obtain and list the data for the manifold M(86,2), it is convenient to start
from those of its mirror, which we denote W(2,86). Therefore, we obtain the polytope
∆ and its nef partition {∆k} relevant for M(86,2), starting form its mirror ∇ and the
nef partition for W(2,86). A useful tool in performing the calculations below is the
package PALP [33].

A well-known way [17, 34] to describe the manifold W(2,86) is as a complete inter-
section of two hypersurfaces given by equations of degree (1, 4) and (1, 1) in P1 × P4.

These equations can be described by the polytope and the nef partition11

∇ = ∇1 + ∇2 (13)

where12

∇1 = Conv

0BBBBBBBBBBBBB�
−1 0 −1 −1 −1
−1 4 −1 −1 −1
−1 0 3 −1 −1
−1 0 −1 3 −1
−1 0 −1 −1 3

0 0 −1 −1 −1
0 4 −1 −1 −1
0 0 3 −1 −1
0 0 −1 3 −1
0 0 −1 −1 3

1CCCCCCCCCCCCCA , ∇2 = Conv

0BBBBBBBBBBBBB�
0 −1 0 0 0
0 0 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 −1 0 0 1
1 −1 0 0 0
1 0 0 0 0
1 −1 1 0 0
1 −1 0 1 0
1 −1 0 0 1

1CCCCCCCCCCCCCA .

and therefore:

∇ = Conv

0BBBBBBBBBBBBB�
−1 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

1 −1 −1 −1 −1
1 4 −1 −1 −1
1 −1 4 −1 −1
1 −1 −1 4 −1
1 −1 −1 −1 4

1CCCCCCCCCCCCCA .

∇1 and ∇2 intersect only in the origin and hence form a nef partition of ∇.

11To describe the equations,we could have taken any shifted version of these polytopes. This
particular choice is made in order to obtain convenient polynomials in the following subsection.

12Convention: the vertices are written as the rows of the matrix.
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The dual polytope of ∇, as explained in the previous subsection, is given by:

∇
◦

= Conv

0BBBBBBB� 1 0 0 0 0
−1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 −1 −1 −1

1CCCCCCCA .

Its vertices are in correspondence with the fan for P1 × P4.13

By looking at formulas (8, 9, 10), we build the nef partition of the polytope related
to the M(86,2). First we subdivide the set E of vertices of ∇◦ in two sets E = E1∪E2:

E1 = {(1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0,−1,−1,−1,−1)}
E2 = {(−1, 0, 0, 0, 0), (0, 1, 0, 0, 0)} . (14)

such that 〈Ek,∇k′〉 ≥ −δk,k′ . The mirror is now constructed by taking the ∆k to be
the convex hulls of Ek ∪ {0}:

∆1 = Conv

0BBBBB� 0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 −1 −1 −1

1CCCCCA , ∆2 = Conv

0� 0 0 0 0 0
−1 0 0 0 0

0 1 0 0 0

1A .

To complete the mirror symmetry circle, one can construct the Minkowski sum
∆ = ∆1 + ∆2 (which is a polytope with 16 vertices) and its dual ∆◦ (which is a
polytope with 19 vertices), which spans the fan for the manifold in which M(86,2) is
a complete intersection. As a consistency check, one can then show that the mirror
of the mirror is the original manifold. In this paper, we will have no need for the
explicit expressions of the further toric data involved, so we omit them here.

2.3 Local equations and Mori generators

As explained previously we can write the defining equation for the complete intersec-
tion in homogeneous or affine coordinates. In terms of the affine coordinates, we can
conveniently relate each lattice point in the ∆i to a monomial, and we simply read
off the equations:

f1 ≡ 1 − g1 = 1 − a1t1 − a2t3 − a3t4 − a4t5 − a5/t2t3t4t5 (15)

f2 ≡ 1 − g2 = 1 − a6/t1 − a7t2, (16)

where we used the convention of scaling the constant term to 1 and giving all other
terms a minus sign. The ai in these equations are adjustable constants. It turns out
that these local equations are enough to determine the periods of the holomorphic
three-form on M(86,2). We do this calculation in section 3.

Varying the ai changes the complex structure of our manifold. As can be expected
from the fact that the moduli space has dimension two, not all of the ai are moduli:

13This fan is simply the direct sum of the fans for P1 and P4. It has seven one-dimensional cones:
two for P1 and five for P4.
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only certain combinations of them are. In fact, we will see in the next section that it is
the constant terms in the products gn

1 g
m
2 that determine the moduli. We can expand

every power of g1 and g2, respectively, in Newton binomials, and therefore these
constant terms will be given by those powers lℓ of the monomials tmℓ , mℓ ∈ ∆1 ∪∆2,
in g1, g2 such that

lℓmℓ = 0, ℓ = 1, . . . |∆1 ∪ ∆2|. (17)

where |∆1 ∪ ∆2| is the number of points in ∆1 ∪ ∆2 (excluding the origin).
It is easy to see that the vectors l of the coefficients {lℓ} of these relations form a

vector space. A convenient choice of basis for this space is

(

l(1)

l(2)

)

=

(

1 0 0 0 0 1 0
0 1 1 1 1 0 1

)

. (18)

This basis corresponds to a set of coordinates

φk =
∏

ℓ

a
l
(k)
ℓ

ℓ (19)

for the complex structure moduli space, that are particularly useful for describing
mirror constructions. In our case, in fact, each positive linear combinationml(1)+nl(2)

corresponds to a power of φm
1 φ

n
2 appearing in some product of g1’s and g2’s, where

φ1 = a1a6, φ2 = a2a3a4a5a7. (20)

Thus, the cone14 generated by l(1) and l(2) will play a crucial role in calculating the
periods of the holomorphic three-form. This cone is called the Mori cone, and the l(i)

are called the Mori generators.

3 Periods and monodromies of M(86,2)

In this section we put the machinery of toric geometry to work. Our aim is to cal-
culate the periods and monodromies of M(86,2). The periods are obtained by finding
the solutions to a system of partial differential equations – the Picard–Fuchs (PF)
equations. Studying the asymptotic behavior of the periods yields two monodromy
transformations of M(86,2).

The methods for computing the periods and monodromies are well-known, but
to our knowledge the periods of this particular manifold have not been explicitly
computed before. (See however [35].) A reader familiar with this type of computations
can skip the derivations and read the results in equations (44)-(46).

14That is, the linear combinations of l
(1,2) with non-negative coefficients, corresponding to non-

negative powers of the monomials.
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3.1 The Picard–Fuchs equations

The periods of a Calabi-Yau 3-fold are the “holomorphic volumes ”of a basis of 3-
cycles CI (I = 1, .., 2(h2,1+1)):

ΠI =

∮

CI

Ω(φi), (21)

where Ω(φi) is the holomorphic 3-form on the manifold, which depends on the complex
structure moduli φi.

The periods must satisfy the Picard–Fuchs (PF) equations, as we now explain.
Repeated differentiation of Ω(φi) gives elements in H3 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3.
Since H3 has finite dimension, some combinations of derivatives of Ω(φi) must be
exact. Thus LkΩ(φi) = dη, where Lk are some differential operators. Integrating over
a 3-cycle we find that the periods must fulfill

LkΠI =

∮

CI

LkΩ(φi) =

∮

CI

dη = 0. (22)

These are the Picard–Fuchs (PF) equations. By solving them, we find the periods.
To derive the PF equations we use a method based on toric geometry, described

in [36]. We build a set of differential operators – the generalized hypergeometric
Gel’fand–Kapranov–Zelevinski (GKZ) system– from which, by suitable factorization
[36, 37], we can extract the PF operators. These will be written in terms of the
coordinates φ1, φ2 in equation (20), that were defined starting from the coefficients of
the Laurent polynomials (15,16) and the generators of the Mori cone (18).

The differential operators of the GKZ system are also defined from the generators
l(k) of the Mori cone [37]:

Lk =
r
∏

α=1

(l(k)
α θk)(l

(k)
α θk − 1)...(l(k)

α θk − l(k)
α + 1)

−
s
∏

β=1

(

−
k
∑

i=1

l
(i)
0βθi

)

...

(

−
k
∑

i=1

l
(i)
0βθi − l

(k)
0β + 1

)

φk,

(23)

where θk = φk
∂

∂φk
, r and s are the dimension and the number of the l(k) respectively,

and l
(i)
0β = −∑α l

(i)
α |Eβ

.15 In our example we obtain:

L1 = θ2
1 − (θ1 + θ2)(θ1 + 4θ2)φ1

L2 = θ5
2 − (θ1 + θ2)(θ1 + 4θ2)(θ1 + 4θ2 − 1)(θ1 + 4θ2 − 2)(θ1 + 4θ2 − 3)φ2.

(24)

The periods of M(86,2) are solutions to the equations Lkω = 0, but in general there are
other solutions as well [36]. In fact, the monodromy group does not act irreducibly

15Since we have a nef partition, the sum goes over the l(k) related to the vertices in Eβ . See [37].
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on the solutions of the GKZ system, as it should do on the periods [37]. To get rid
of the false solutions, we factorize [36, 37] the differential operators as

L1 = L1

p1L2 = L2 − p3L1,
(25)

where

L1 = θ2
1 − p1φ1

L2 = −4θ3
2 + 5θ1θ

2
2 + (aθ1 + bθ2)θ

2
1 + p2φ1 + p3φ2

(26)

are the PF operators16 and

p1 = (θ1 + θ2)(θ1 + 4θ2)

p2 = −aθ3
1 − (b+ 5a)θ2

1θ2 − (5b+ 4a+ 5)θ1θ
2
2 − (4b+ 21)θ3

2

p3 = 16(θ1 + 4θ2 − 1)(θ1 + 4θ2 − 2)(θ1 + 4θ2 − 3).

(27)

Note that LkΠ = 0 =⇒ LkΠ = 0, but not vice versa. There are six linearly
independent solutions to the PF equations, corresponding to the six periods of the
M(86,2). To compute the periods we need the classical intersection numbers κijk of
M(86,2). These can be read off from the PF operators as was explained in [37]. The
procedure can be summarized as follows. The numbers are defined as

κijk =

∫

Ji ∧ Jj ∧ Jk. (28)

The Jk’s are (1,1)-forms on M(86,2) that constitute a basis of the Kähler cone that is
dual to the basis of the Mori cone, l(k). To find the intersection numbers one has to
construct the ring of polynomials orthogonal to the ideal generated by limφ→0 Lk(θ, φ).
The top elements of this ring encode the κijk [37]. In our example, we obtain

κ122 = 4, κ222 = 5 (29)

and all other κijk = 0. A non-trivial check of our results is the computation of the
Euler characteristic of M(86,2) [37]:

χ(M(86,2)) = −1

3

2
∑

i,j,k=1

(

2
∑

β=1

l
(i)
0β l

(j)
0β l

(k)
0β +

7
∑

α=1

l(i)α l(j)α l(k)
α

)

κijk = 168, (30)

which agrees with χ = 2(h1,1 − h2,1).

16The solutions to the PF equations are the same for all constants a and b.
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3.2 Periods and monodromies

The fundamental period ω0 is calculated using the Laurent polynomials of the mani-
fold (15,16). We use the formula

ω0 =
1

(2πi)5

∫

γ

1

f1f2

dt1
t1

∧ ... ∧ dt5
t5

(31)

where the contour γ is a product of five circles enclosing ti = 0. We need to find the
residue of the integrand, which is the constant term in 1

f1f2
. This term can be found

using the Mori generators. Using fi = 1 − gi we get

ω0 =
1

(2πi)5

∫

γ

∞
∑

m,n=0

gm
1 g

n
2

dt1
t1

∧ ... ∧ dt5
t5
, (32)

yielding

ω0 =
∑

n1,n2

(n1 + 4n2)!(n1 + n2)!

(n1!)2(n2!)5
φn1

1 φ
n2
2 , (33)

which is convergent near φi = 0. Here φk are the complex structure moduli defined
in equation (20). It is straight-forward to check that ω0 solves the PF equations (26).

This period can also be obtained by the Frobenius method. Applying the PF
operators to the ansatz

ω0 =
∑

n1,n2

c(n1, n2)φ
n1
1 φ

n2
2 , (34)

gives recursion relations for c(n1, n2) that (33) satisfies. Since φi = 0 is a regular
singular point of the PF equations, this is the only power series solution near this
point [38]. All other solutions contain logarithmic singularities; we obtain two periods
with one logarithm, two periods with double logarithms and one period with triple
logarithms. Let

ω(ρ, φ) =
∑

n1,n2

c(n1 + ρ1, n2 + ρ2)φ
n1+ρ1

1 φn2+ρ2

2 . (35)

The periods are then given by [37]

ω0 = ω|ρ=0

ω1 = D
(1)
1 ω ≡ 1

2πi
∂ρ1ω|ρ=0

ω2 = D
(1)
2 ω ≡ 1

2πi
∂ρ2ω|ρ=0

ω3 = D
(2)
1 ω ≡ 1

2(2πi)2
κ1jk∂ρj

∂ρk
ω|ρ=0

ω4 = D
(2)
2 ω ≡ 1

2(2πi)2
κ2jk∂ρj

∂ρk
ω|ρ=0

ω5 = D(3)ω ≡ 1

6(2πi)3
κijk∂ρi

∂ρj
∂ρk

ω|ρ=0.

(36)
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The factors of 2πi are chosen in order to give integral monodromy matrices. Note
that the intersection numbers (29), related to the leading parts of the PF operators
when φi → 0, determine the linear combinations of ∂ρk

ω|ρ=0 that solve the equations.
Naturally, linear combinations of these periods yield other solutions. For our

purpose of computing the monodromies of M(86,2), it is interesting to find a basis
of periods which has integral and symplectic monodromy matrices. Furthermore, we
would like to find a basis of periods that is symplectic with a canonical symplectic
metric, as described in appendix A.

It was discovered in [36, 37] that such a basis can be constructed, again using
toric geometry. How to do this explicitly is clearly described in [39]. We start by

choosing a basis of Heven(M(86,2),Q): 1, Jk, J
(2)
l , J (3) are forms of degree 0,2,4 and 6

respectively that fulfill

(1, J (3)) =

∫

M(86,2)

1 ∧ J (3) = −1

(Jk, J
(2)
j ) =

∫

M(86,2)

Jk ∧ J (2)
j = δkj.

(37)

A canonical symplectic basis of even forms is then found by shifting Jk → J
(1)
k =

Jk − c2∧Jk

12
, where c2 is the second Chern class of the manifold [39]. This basis is

symplectic with respect to the skew symmetric form

qαβ = 〈α, β〉 =

∫

M(86,2)

α ∧ (−1)pβ ∧ Todd(M(86,2)), (38)

where α and β are 2q- and 2p-forms on M(86,2), respectively. The Todd class for
M(86,2) is given by

Todd(M(86,2)) = 1 + c1 +
1

12
(c21 + c2) +

1

24
c1c2, (39)

where ci is the ith Chern class of M(86,2). Using c1 = 0, it follows that the symplectic
metric for the above basis of even forms is given by

q =

















0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 −1 0 0 0
−1 0 0 0 0 0

















. (40)
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The result of [39] is that the period basis

ξ0 = ω|ρ=0

ξ1 = D
(1)
1 ω

ξ2 = D
(1)
2 ω

ξ3 = D
(2)
1 ω +

1

2πi
A1k∂ρk

ω|ρ=0

ξ4 = D
(2)
2 ω +

1

2πi
A2k∂ρk

ω|ρ=0

ξ5 = D(3)ω − 1

2πi

(c2, Jk)

12
∂ρk

ω|ρ=0.

(41)

is integral and symplectic with respect to the same q. All that is needed to compute
the new basis are the topological numbers Alk and (c2, Jk), defined as [37]

Alk =
1

2
κllk mod Z

(c2, Jk) =

∫

M(86,2)

c2 ∧ Jk =
1

2

∑

i,j

∑

α

(l
(i)
0,αl

(j)
0,α − l(i)α l(j)α )κijk.

(42)

Thus, for M(86,2) we get

A22 =
1

2
, all other Alk = 0

(c2, J1) = 24 and (c2, J2) = 50.
(43)

Carrying out the differentiations described in (41) we then obtain a basis of periods
corresponding to a canonical basis of 3-cycles on M(86,2).

In order to compute the monodromies around the two singular loci φ1 = 0 and
φ2 = 0, we expand ξ near φi = 0. We have

ξ0 ∼ 1

ξ1 ∼
1

2πi
lnφ1

ξ2 ∼
1

2πi
lnφ2

ξ3 ∼ −1 +
2

(2πi)2
ln2 φ2

ξ4 ∼ −25

12
+

1

2(2πi)
lnφ2 +

5

2(2πi)2
ln2 φ2 +

4

(2πi)2
lnφ1 lnφ2

ξ5 ∼
21iζ(3)

π3
− 25

12(2πi)
lnφ2 −

1

2πi
lnφ1 −

1

6(2πi)3

(

5 ln3 φ2 + 12 ln2 φ2 lnφ1

)

.

(44)

The monodromies around φi = 0 are easy to read off from the expansion of the
periods around that point, equation (44). We find that the monodromy around φ1 = 0

14



is given by

t2 =

















1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 4 0 1 0
−2 0 0 −1 0 1

















(45)

and the monodromy around φ2 = 0 is

t0 =

















1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
2 0 4 1 0 0
3 4 5 0 1 0
−5 −2 −2 0 −1 1

















. (46)

We denote the monodromy matrices t0 and t2 in order to conform with the notation
in [14]: see Appendix A.

4 Relating M(86,2) to the mirror quintic

We now set out to find the locus in the moduli space of M(86,2) that corresponds
to the mirror quintic. Expanding the periods calculated in section 3 close to this
locus will enable us to match periods between the two manifolds. In doing this, it is
important to bear in mind that there are periods that vanish on the mirror quintic
locus. To make the matching unique we must make use of the symplectic structure
or, equivalently, of the monodromies around the locus.

Specifically, as we explain more thoroughly in section 5, one three-cycle17 A of
H3(M(86,2),Z) shrinks as we approach the mirror quintic. Its dual B becomes a
three-chain as the two-spheres are blown up. The cycle B transforms nontrivially as
the mirror quintic locus is encircled, and neither A nor B should intersect the cycles
corresponding to the mirror quintic periods.

4.1 The mirror quintic locus

Approaching the mirror quintic locus means sending φ1 → 1 and φ2 → 0 in such a
way that φ2(1−φ1)

−4 → 0 while φ1φ2(1−φ1)
−5 remains finite. To see this, we use the

alternative description of M(86,2) provided in [35], where this locus is determined. If

17See appendix A for notations.
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we eliminate the variables t1 and t2 in favor of t1t2 in the first equation of (15) using
(16), and make the change of variables and coefficients

u1 = t3, u2 = t4, u3 = t5, u4 = t1t2
b0 = 1 − a1a6, b1 = −a2, b2 = −a3, b3 = −a4,
b4 = −a1a7, b5 = −a5a6, b6 = −a5a7

(47)

we obtain

b0 + b1u1 + b2u2 + b3u3 + b4u4 +
b5

u1u2u3u4

+
b6

u1u2u3

= 0. (48)

This is, up to notation, identical to equation (5.13) of [35]. The mirror quintic locus
is b6 = 0. Natural coordinates on moduli space are, from this point of view,

z1 =
b1b2b3b6
b40

=
φ2

(1 − φ1)4
(49)

z2 = −b1b2b3b4b5
b50

=
φ1φ2

(1 − φ1)5
. (50)

In the patch described by these coordinates the mirror quintic locus is z1 = 0. We
now turn to finding expressions for the periods valid close to this locus.

4.2 The fundamental period

Let us begin with the fundamental period for which it is possible to arrive at a very
simple expression in terms of the variables (z1, z2). The period is

ω0 = (1 − φ1)
∑

n1,n2

(n1 + 4n2)!(n1 + n2)!

(n1!)2(n2!)5
φn1

1 φ
n2
2 = (51)

= (1 − φ1)
∑

n2

(4n2)!

(n2!)4 2F1(4n2 + 1, n2 + 1, 1, φ1)φ
n2
2 , (52)

where the prefactor (1 − φ1) has been chosen to make the period finite at the mirror
quintic locus.18 We also introduced the hypergeometric function 2F1.

By expressing ω0 in the variables (z1, z2) we see explicitly that ω0 reduces to the
fundamental period of the mirror quintic as z1 → 0. Using the analytical continuation
of 2F1 given in 15.3.4 of [40] we have

2F1(4n2 + 1, n2 + 1; 1;φ1) = (1 − φ1)
−4n2−1

2F1(4n2 + 1,−n2; 1;
φ1

φ1 − 1
) = (53)

= (1 − φ1)
−4n2−1

n2
∑

m2=0

(4n2 +m2)!n2!

(4n2)!(n2 −m2)!(m2!)2

(

φ1

1 − φ1

)m2

. (54)

18Note that it is always possible to rescale Ω, and hence the periods, by a holomorphic function
of the moduli.
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The expansion of the 2F1 terminates since n2 is a nonnegative integer. Therefore we
can replace n2 in favor of m1 = n2 −m2 in the sum representing ω0, and thus obtain

ω0 =
∞
∑

m1,m2=0

(4m1 + 5m2)!

((m1 +m2)!)3m1!(m2!)2
zm1
1 zm2

2 . (55)

The expansion (55) can be shown to be convergent for at least |zi| < 5−39−3. Taking
z1 → 0 we recover the fundamental period of the mirror quintic [19] with z2 = (5ψ)−5:

ω0(z1 = 0) =
∞
∑

m2=0

(5m2)!

(m2!)5(5ψ)5m2
. (56)

4.3 The other periods

For the other periods it is difficult to find explicit expansions in the variables (z1, z2),
so we just study their values at the mirror quintic locus and their monodromies.
The strategy is to analytically continue the 2F1 from φ1 ∼ 0 to φ1 ∼ 1 using stan-
dard identities. To construct the five additional periods we need the following six
derivatives

∂ρ1ω, ∂ρ2ω, ∂ρ2∂ρ1ω, ∂2
ρ2
ω, ∂2

ρ2
∂ρ1ω, ∂3

ρ2
ω, (57)

with

ω(ρ, φ) = (1 − φ1)
∑

n1,n2

Γ(ñ1 + 4ñ2 + 1)Γ(ñ1 + ñ2 + 1)

Γ2(ñ1 + 1)Γ5(ñ2 + 1)
φñ1

1 φ
ñ2
2 . (58)

For brevity we defined ñi = ni + ρi. Note that ω(0, φ) = ω0(φ)
Let us start with the three derivatives containing ∂ρ1 . Differentiating once, eval-

uating at ρ1 = 0 and using identity 15.3.10 of [40] we obtain

∂ρ1ω(ρ2) = −(1−φ1)
∑

n2=0

Γ2(4ñ2 + 1)

Γ(5ñ2 + 2)Γ3(ñ2 + 1)
2F1(4ñ2 +1, ñ2 +1; 5ñ2 +2; 1−φ1)φ

ñ2
2 .

(59)
The above equation is an expansion in (1 − φ1) and φ2, both of which go to zero as
we approach the mirror quintic. Because of the overall factor (1 − φ1) there is no
constant term, and differentiating with respect to ρ2 will not change that. Thus all
the derivatives ∂ρ1ω, ∂ρ2∂ρ1ω and ∂2

ρ2
∂ρ1ω vanish at the mirror quintic locus. These

functions will, however, have monodromies around this locus. This is because each
∂ρ2 that acts on φñ2

2 produces a factor lnφ2 = 5 ln(z1) − 4 ln(z1 + z2). It turns out
that we need only the behavior of ∂ρ2∂ρ1ω. Carrying out the differentiation yields

∂ρ1ω ∼ 0,

∂ρ2∂ρ1ω ∼ lnφ2∂ρ1ω.
(60)

Here all terms off the mirror quintic locus that do not contain logarithms are ignored.
For the three derivatives containing only ∂ρ2 we can take ρ1 = 0 and identify the n1

17



sum as a hypergeometric function exactly as in (52). Then, using 15.3.6 of [40] it is
straightforward to obtain.

ω =
∑

n2

Γ(5ñ2 + 1)

Γ5(ñ2 + 1)
(z1 + z2)

ñ2
2F1(−4ñ2,−ñ2;−5ñ2; 1 − φ1) − f(ρ2)∂ρ1ω, (61)

where

f(ρ2) =
sin(πρ2) sin(4πρ2)

π sin(5πρ2)
. (62)

Differentiated with respect to ρ2 and evaluated at φ1 = 1 and z1 = 0, the first term
of (61) yields exactly the four mirror quintic periods. As before, the second term and
all its derivatives vanish at the mirror quintic locus, but transform nontrivially under
transport around it. Taking the derivatives yields

∂ρ2ω ∼ ∂ρ2ω
MQ,

∂2
ρ2
ω ∼ ∂2

ρ2
ωMQ − 8

5
∂ρ2∂ρ1ω,

∂3
ρ2
ω ∼ ∂3

ρ2
ωMQ − 12

5
∂2

ρ2
∂ρ1ω,

(63)

where ωMQ = ω(ρ1 = 0; z1 = 0). Again, off the locus z1 = 0, only terms that have
monodromies around it are kept. Combining (60) and (63) we get for the basis ξ

ξ0 ∼ ω|ρ=0

ξ1 ∼
1

2πi
∂ρ1ω

ξ2 ∼
1

2πi
∂ρ2ω

MQ

ξ3 ∼
2

(2πi)2
∂2

ρ2
ωMQ − 16

ln z1

2πi
ξ1

ξ4 ∼
5

2(2πi)2
∂2

ρ2
ωMQ +

1

2(2πi)
∂ρ2ω

MQ

ξ5 ∼
5

6(2πi)3
∂3

ρ2
ωMQ − 25

6(2πi)
∂ρ2ω

MQ.

(64)

The terms exhibiting monodromies around z1 = 0 cancel in all basis periods except
for ξ3. As the mirror quintic locus is encircled ξ3 transforms as:

ξ3 → ξ3 − 16ξ1. (65)

We will motivate the appearance of the number 16 in section 5.

4.4 The proper basis

From the analysis in the previous subsection it is clear that the periods corresponding
to the shrinking three-cycles A and its dual B are ξ1 and ξ3, i.e.,

ξ1 =

∮

A

Ω, ξ3 =

∮

B

Ω. (66)
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The other four ξi correspond to integrals over the cycles that remain in the mirror
quintic manifold. By using their asymptotic forms as z2 → 0, it is straightforward to
relate them to the basis for the mirror quintic periods used in [14]:

Π = mξ =

















0 0 0 0 0 1
0 0 −5 0 −1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

















ξ. (67)

Here Π1, . . . ,Π4 correspond to those of [14], meaning that Π5 and Π6 are the new
periods. In the new basis the symplectic metric becomes

Q = mqmT =

















0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

















, (68)

and the monodromy matrices of section 3 become

T0 = mt0m
−1 =

















1 1 3 −5 −2 0
0 1 −5 −8 −4 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 4 2 0 1

















(69)

and

T2 = mt2m
−1 =

















1 0 0 −2 0 −1
0 1 −4 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

















. (70)

The upper four by four corner of T0 precisely coincides with the large complex struc-
ture monodromy for the mirror quintic as given in [14].

Two additional monodromies are the conifold monodromies: one around the mir-
ror quintic conifold locus, and the other around the mirror quintic locus itself. In the
Π-basis, these are

T1 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(71)
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and

TMQ =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −16 1

















. (72)

This concludes our description of the geometry of M(86,2) and how it reduces to the
mirror quintic.

5 Geometric transitions in flux compactifications

We want to take a closer look at geometric transitions in the cases where fluxes
through the relevant cycles are involved. Some of these cases have been well-studied
in the literature; others are less understood.

5.1 Geometric transition: absence of fluxes

Let us first describe in some detail what happens to the homology of the manifold
in the case where we make a geometric transition from M(86,2) to the mirror quintic
M(101,1) without any fluxes on the relevant cycles. This discussion is exactly the
mirror of the more familiar story for the ordinary quintic [17, 35].

In the transition, one three-homology class disappears. However, to obtain the
right Hodge numbers we actually need sixteen three-spheres to shrink. We will denote
these three-spheres by Ai, 1 ≤ i ≤ 16. Since they are all in the same homology class,
there are fifteen homology relations of the form

A1 −A2 = δD1 · · · A15 −A16 = δD15 (73)

where the Di are four-chains with boundary. For symmetry reasons it is useful to
include a sixteenth four-chain D16 = −∑15

i=1 Di in the discussion, so that A16 −A1 =
δD16. Finally, we have also to consider a cycle B in the homology class dual to the
class A that the {Ai}’s belong to. This cycle will intersect the shrinking ones with
intersection number 1:

Ai ∩ B = 1. (74)

We have drawn the different cycles and chains in figure 2a.
In the transition (see figure 2b) all sixteen Ai shrink to points, and then get

blown up into two-spheres ai. These are not homologically independent but form the
boundary of B:

δB =
∑

ai (75)
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Figure 2: The familiar picture of a geometric transition on a single node: the S3 denoted by

Ai shrinks, and the S2 denoted by ai blows up. In our example, sixteen of those transitions

occur simultaneously.

Conversely, the Di lose their boundaries and now become closed:

δDi = 0 1 ≤ i ≤ 16 (76)

Of course, we still have that
∑Di = 0, so the sixteen cycles Di actually represent

fifteen homology classes. The relations (73) now turn into intersection relations:

D1 ∩ a = 1, D1 ∩ a = −1 (77)

D2 ∩ a = 1, . . . (78)

and so on.
Summarizing, we see that we lose two dual three-homology classes A and B,

corresponding to one complex structure modulus, and we gain fifteen two-homology
classes ai and fifteen four-homology classesDi, corresponding to fifteen Kähler moduli.

Finally, the Picard–Lefschetz formula (see for example [41]) says that

B → B +
16
∑

i=1

(B ∩ Ai)Ai = B −
16
∑

i=1

Ai (79)

under transport around the transition locus in moduli space, where the cycles Ai

shrink. Thus, the homology classes transform as B → B − 16A. This explains the
appearance of the number 16 in (65).

5.2 Geometric Transition: presence of fluxes

We now discuss what happens in a geometric transition if we turn on fluxes through
the relevant cycles Ai and B. There are three different cases; in some it is clear what
happens, in others it is less so.

i. Only flux through the Ai-cycles.
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Figure 3: The case with flux through the shrinking Ai-cycles. The green line is the cycle,

the red line is the magnetic flux. As the Ai-cycles shrink the flux line is cut open. When

the two-spheres blow up, five-branes (blue dots) appear, charging the flux. (Note that a

zero-dimensional boundary automatically consists of two points; in the conifold case every

conifold will of course give rise to only one brane.)

This case has been well-studied in the literature [42, 43]. After the geometric transi-
tion, we find branes wrapped on the cycles ai. If we start with a single unit of NS-flux
through Ai, then after the transition we will find a single NS5-brane wrapping each
of the ai and stretching throughout space-time. These branes are now the sources for
the magnetic flux of the three-form field strength. In a lower-dimensional analogue,
we can think of the magnetic field lines as having been “cut open” – see figure 3 for
a cartoon. Similarly, if we start with a single unit of RR-flux through Ai, we end up
with D5-branes on ai.

We encounter a complication when we want to compute the mirror quintic po-
tential for this case, however. When we come back to the mirror quintic side, in the
presence of the five-branes, the closed string moduli are no longer the only moduli
of the system. In particular, as was explained in [44, 45, 46, 47] (see [48] for a good
review), there will be some new open string moduli tα describing the the positions
of the branes in A. These moduli appear in a new period, which is the holomorphic
volume of the chain B with boundary

∑

ai:

ΠB(tα, z2) =

∫

B
Ω, (80)

where the z2 is the closed string modulus. Just like the periods of the closed cycles,
this period contributes to the four-dimensional superpotential:

WB(tα, z2) = NΠB, (81)

where N is the number of five-branes.
Because of this complication, in our explicit calculations we consider the case

where we get no five-branes after the transition. It would of course be very interesting
to extend our calculations to the full case including five-branes.

An interesting possibility of the appearance of five-branes is that we can now
construct domain walls between configurations with and without five-branes. We will
briefly discuss this issue in subsection 5.4.

ii. Only flux through the B-cycle.
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Figure 4: The case with flux through the tearing B-cycle. The green line is the cycle, the

red line is the flux. After the geometric transition the flux goes through a chain. This flux

is possibly charged by one-instantons (blue dots).

Next, we discuss the case where we only have flux through the dual cycle B of the
vanishing cycle, but no flux through the vanishing cycle itself. In this case, since
∫

F(3) ∧ H(3) = 0, the flux does not represent any D3-brane charge, so there is no
conservation condition that forces the nucleation of e.g. D3-branes.

Furthermore, as we show in the next subsection, the contribution to the scalar
potential from this kind of flux vanishes at the transition locus. Therefore, we expect
no problems when going through the geometric transition.19

It is possible that the flux remains on the other side of the transition, sourced
by electrically charged D1-instantons or F1-instantons on the blown up two-spheres.
(See [50] for a recent discussion on D1-instantons in geometric transitions.) A cartoon
of this scenario is given in figure 4. When there is no flux through the Ai-cycles (that
is, no D5-branes are present after the transition), these instantons do not contribute
to the (super)potential on the resolved side.

For these reasons, this case is under much more control then the case (i), and it
is the one which we will study in our example in section 6.

iii. Flux through the Ai- and B-cycles.

This is the most complicated scenario. We will not make any rigorous claims about
what happens, but let us discuss some possible outcomes.

First of all, as we mentioned in (i), it is natural to assume that the Ai-fluxes turn
into five-branes around ai. To picture the fate of the fluxes through B, one suggestion
comes from the well-known Klebanov–Strassler setup [51]. In this case, one studies
the deformed conifold, which is a non-compact Calabi–Yau manifold with a compact
three-cycle A that shrinks, and a dual non-compact three-cycle B. There are N
units of RR-flux through the A-cycle, and M units on NS-flux through the B-cycle.
The total D3 charge coming from the three-flux background (

∫

F(3) ∧ H(3)) and the
presence of D3-branes and orientifold three-planes must be conserved and therefore
be equal on the two sides of the transition. In particular, the above mentioned fluxes
piercing the A- and B-cycles give a contribution K = MN to the total charge.

After the transition, the deformed conifold becomes a resolved conifold, which has
a new two-cycle a instead of the three-cycle A. One now finds N D5-branes on a, as

19Indeed, it has been argued [49] that, after the geometric transition, no fluxes or branes whatso-
ever remain. We thank S. Kachru for useful discussions on this case and on the case (iii).
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could be expected from the case (i). Moreover, the contribution to the total charge,
previously coming from the fluxes, now comes from K = MN new D3-branes that
fill the perpendicular space-time.

In our compact case, the sixteen nodes locally look like conifolds, so a first possi-
bility is that the same thing happens: if we have N units of RR-flux through the Ai

and M units of NS-flux through B, we will find N D5-branes on the ai and K = MN
space-time filling D3-branes after the transition, so that the charge conservation con-
dition is satisfied.

With case (ii) in mind one might instead expect that the fluxes remain, charged by
both five-branes and one-instantons. This situation could either be stable, or decay
into the D3-brane configuration described above.

We may also wonder what happens to fluxes that do not contribute to the total
D3-brane charge. For example, we could have some RR-flux through Ai, and some
RR-flux through B as well. As in case (i) the flux through Ai will result in five-
branes. However, no D3-branes will be generated, and as in (ii), we might conjecture
that after the transition, either the fluxes through B completely disappear or remain
charged by one-instantons. It would be interesting to investigate these possibilities
further.

Finally, we note that also in this case, as in (i), there will be new open-string
moduli in the theory after the transition. For this reason, we will not treat this case
in our explicit calculations below.

5.3 The scalar potential

Fluxes piercing the cycles of M(86,2) induce a potential for the two complex structure
moduli. It is important to know the properties of this potential to fully understand
the geometric transition between M(86,2) and the mirror quintic. In particular, we
need to study the behavior of the potential as we approach the transition locus z1 = 0
in the complex structure moduli space of M(86,2).

We expand the periods near z1 = 0 and, with a convenient notation, obtain the
leading order behavior

Π(z1, z2) ∼

















π1(z2) + O(z1)
π2(z2) + O(z1)
π3(z2) + O(z1)
π4(z2) + O(z1)
z1π5(z2) + O(z2

1)
π6(z2) − 16

2πi
z1 ln(z1)π5(z2) + O(z2

1 ln(z1))

















. (82)

The no-scale potential20 is given by

V (z, τ) = eK
(

gīıDiWDı̄W + gτ τ̄DτWDτ̄W
)

(83)

20See Appendix A for notations.
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where W is the superpotential and K is the Kähler potential.
Keeping only the leading terms for z1 → 0, we find that the potential is given by

V = V1 + V2, where:

V1(z1, z2) ≡ eK(g11̄D1WD1̄W )|z1→0 (84)

V2(z2) ≡ eK
(

g22̄D2WD2̄W + gτ τ̄DτWDτ̄W
)

|z1→0. (85)

Note that terms containing g12̄ and g1̄2 are subleading. This potential has different
properties, depending on the presence of fluxes piercing different cycles. In particular:

• if there is flux F6, H6 through the shrinking cycle, the potential has an infinite
spike at the conifold locus. At leading order we obtain:

V1 ∼ ln |z1|
1

|τ − τ̄ | |F6 − τH6|2|π5(z2)|2. (86)

• if there is no F6 nor H6, but flux F5, H5 through B we obtain:

V1 ∼
1

ln |z1|
1

|τ − τ̄ | |F5 − τH5|2|π5(z2)|2 (87)

and this part of the potential goes to zero at the conifold locus.21 This is a
general behavior for all compactifications on Calabi–Yau threefolds which have
conifold singularities, as noted in [14].

This flux dependence of the potential fits well with the expected behavior within
a geometric transition with different fluxes. V2 is the part of the potential that is
created by fluxes wrapping the mirror quintic cycles. Thus it gives the “ordinary”
flux potential for the complex structure modulus z2 on the mirror quintic. V1 captures
the dependence of the flux through the shrinking and torn cycles A and B, giving
different scenarios.

Let us start with the case having flux through the shrinking cycle A in M(86,2), but
not through the torn one B. As discussed in section 5.2, there will be contributions
from five-branes to the potential for the mirror quintic when we go through the
conifold transition. The behavior of the M(86,2) potential agrees with this. Indeed,
if F6 or H6 are non-zero there are non-vanishing terms left in V1, even after setting
z1 = 0. We even find an infinite spike. When moving away from the conifold point
in the Kähler moduli space of the mirror quintic, it is plausible that the new terms
become finite and match the terms coming from a five-brane contribution. As a side
remark, it is tempting to think of the open string moduli of the branes as a remnant
of the complex structure modulus that one loses.

On the other hand, if there is zero flux through the A cycle, but a non-zero one
through the B cycle, the terms that remain as z1 → 0 in the M(86,2) potential match

21If we minimize the potential with respect to the axio-dilaton τ at the conifold locus, we find the
result of [14], i.e. V1 ∼ 1√

Kz1z1

.
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the terms on the mirror quintic side. Assuming that we do not generate other terms
moving in the Kähler moduli space of the mirror quintic, there is no need for extra
branes after the transition.

Finally, when we have fluxes through both A and B, or only through A, we
find terms in V1 which remain finite in the limit z1 → 0. It is natural to assume
that they will also be present after the transition, and will vary in a continuous
manner as a function of the Kähler moduli of the mirror quintic. As mentioned in
the previous subsection, it is not clear what the physical description of the system
after the transition should be, but it would be an interesting test of any proposal for
such a description to see if it reproduces these terms in the appropriate limit.

5.4 Flux on the vanishing cycle: domain walls

If there is a flux on the vanishing three-cycle, our calculations show that the potential
blows up as we approach the mirror quintic locus (see equation (86)). That is, as the
three-spheres contract, the potential grows. Going through the geometric transition,
the vanishing three-spheres are replaced by vanishing two-spheres, and the flux is
replaced by five-branes wrapping the two-cycles, as discussed above.

It is natural to expect that there is a corresponding growth in the potential if
we approach the locus from the side of the mirror quintic, this time due to the
vanishing two-cycles wrapped by five-branes. We therefore conclude that if all effects
from closed and open string moduli are included, there will be a contribution to the
potential on the mirror quintic side that is inversely proportional22 to the volume of
the appropriate two-cycles. The picture we have in mind is that of a spike in the
potential, separating the phase of the mirror quintic with five-branes and the phase
of the M(86,2) with fluxes.

It is interesting to speculate on the possibility of actually penetrating through the
spike separating the two phases. Classically this would be possible if the spike is cut
off at a finite height by effects due to stringy and non-perturbative physics. If this
is indeed what happens, there is a possibility of obtaining domain walls separating
regions with and without wrapped five-branes. (See [50] for a recent discussion on
transitions between phases with and without branes.)

Let us start with the mirror quintic without five-branes, and then move through
the Kähler moduli space toward the appropriate transition locus that takes us to
the M(86,2). Without five-branes there is no prominent barrier that prevents us from
doing this. We then encircle an appropriate locus resulting in a monodromy that
generates flux through the vanishing cycle. The monodromy obtained in (70) is an
example of such a monodromy, as we will see in more detail in the next section.
When we then go back toward the mirror quintic locus, we find a high barrier that we
need to cross. In contrast to the situation we started with, we now have five-branes
extending through space-time and wrapping internal two-cycles.

22It is clear that the potential should grow. For arguments as to why it should grow with the
inverse volume, see [52].
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We can use this idea to construct domain walls. Let us take one space-time
direction, say the x-direction, and put our system in the phase without five-branes
in the region x → −∞, and in the phase with five-branes in the region x → ∞. In
between these regions, the system will change in a continuous manner, which will be
exactly described by our path through moduli space. That is, macroscopically, we
will see a domain wall with five-branes ending on one of its sides. Microscopically,
we have a barrier whose profile is described by the potential as a function of the
continuous path through moduli space.

We can also speculate on the possibility of tunneling from one side to the other.
This would be relevant for tunneling between minima connected by paths in moduli
space going through the geometric transition. It is interesting to note that a rough
estimate of the tunneling amplitude gives the result

e−
R √

gV (φ) = e−
R φi
0

√
ln φ ln φ ∼ finite (88)

even without a regularization of the singular point φ = 0. Assuming that there is no
dramatic difference on the Kähler side of the spike we see that there is good reason
to expect a finite tunneling amplitude.

In the next section we return to the more solid ground of the case with no flux on
the vanishing cycle.

6 Infinite series of minima

As discussed in the introduction, monodromy transformations create continuous paths
between minima of the flux-induced potential in Calabi–Yau compactifications [14].
The transformations take us between minima corresponding to different fluxes. Here
we investigate the length of such series of minima. We would like to understand
if infinite series of continuously connected minima are a topographic feature of our
model of the string theory landscape.23

In [14], it was found that infinite series of minima do exist in compactifications on
the mirror quintic, but it was unclear if these series can be connected by monodromy
transformations. We now use geometric transitions to reach the moduli space of
M(86,2). In this way, we obtain new monodromies, creating new continuous paths
between minima. As we now explain, these new transformations yield infinite series
of continuously connected minima.

23As discussed in the introduction, we are only studying minima of the potential created by
fluxes. These will be vacua in the string theory landscape if the Kähler moduli are stabilized and
the back-reaction of the fluxes on the manifold can be neglected.
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6.1 General considerations

In order to find a series of minima we are interested in monodromies T such that the
vector of flux quanta24 transforms as

Fn = F0T
n = F0 + nFL, (89)

which is achieved using a monodromy matrix of the form

T = 1 + Θ, (90)

where Θ2 = 0 and F0Θ = FL. For simplicity we will impose

Hn = HL, (91)

with HLΘ = 0. If there is a minimum to the potential induced by the flux vectors FL

and HL, it follows that a series of fluxes Fn and HL provide us with an infinite series
of minima that asymptotes to the minimum given by FL and HL [14].

As is well-known, the total charge on a compact manifold M must be zero. The
three-form-fluxes, F(3) andH(3), yield a three-brane charge, that must be compensated
by charges from three-branes and orientifold planes [53]:

∫

M

F(3) ∧H(3) +QD3 −QO3 = 0. (92)

If the fluxes are changed in a way that alters
∫

M F(3) ∧ H(3) = F · Q · H ≡ F ∧ H,
the number of three-branes and orientifold planes must adjust in order to keep this
tadpole condition satisfied. This requires the use of new physics, e.g. the nucleation
of branes.

On the other hand, if we demand that FL∧HL = 0, the series of minima will have
a constant Fn∧Hn leaving the tadpole condition unchanged. Thus, in this case, there
is no need to nucleate branes. This was the situation studied in [14] and is what we
will focus on here.

Let us study the properties of the monodromy matrix T = 1 + Θ. Assume that
the rank of Θ is r. We can then write

Θ =
r
∑

i=1

Θ(i) (93)

where
Θ

(i)
kl = b

(i)
k a

(i)
l , (94)

with
{

b(i)
}

and
{

a(i)
}

each being a set of r linearly independent vectors. It follows
from Θ2 = 0 that

b(i) · a(j) = 0 ∀ i, j = 1..r, (95)

24Our notation is explained in appendix A.
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and we see from

F0Θ =
r
∑

i=1

(

F0 · b(i)
)

a(i) = FL, (96)

that FL necessarily lies is in the r-dimensional subspace spanned by
{

a(i)
}

. If the
dimensionality of the flux space is 2d, it is obvious that we must have r 6 d.

The difficult part is now to find a monodromy T = 1 + Θ such that the space
{

a(i)
}

actually does contain flux vectors giving rise to a minimum. In [14], for the case
of the mirror quintic, we were able to find transformations with the right property
but unable to show that they were monodromies. Let us now examine whether the
extension of the moduli space to the M(86,2) changes the situation.

6.2 Series of minima in mirror quintic compactifications

In section 4 we generalized the action of the two independent monodromies on periods
for the mirror quintic to periods of the M(86,2). We also found two new monodromies.
Interestingly, our new monodromies are precisely of the form discussed in the previous
subsection. For T2 = 1 + Θ2 we find the rank three matrix

Θ2 =

















0 0 0 −2 0 −1
0 0 −4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

















, (97)

consistent with

a(1) = (0, 0, 0,−2, 0,−1) b(1) = (1, 0, 0, 0, 0, 0)
a(2) = (0, 0,−4, 0, 0, 0) b(2) = (0, 1, 0, 0, 0, 0)
a(3) = (0, 0, 1, 0, 0, 0) b(3) = (0, 0, 0, 1, 0, 0) .

(98)

In addition to the conditions (95) it is easy to check that also

a(i) ∧ a(j) = 0 ∀ i, j = 0..3 (99)

b(i) ∧ b(j) = 0 ∀ i, j = 0..3. (100)

The first of these statements makes sure that FL ∧HL = 0 is automatic if FL and HL

lie in the space spanned by the a(i).
We now need to find FL ∈

{

a(i)
}

and HL ∈
{

a(i)
}

such that when we restrict the
flux vectors to the four dimensional mirror quintic flux space, there is a minimum of
the potential. If we can achieve this we have found an infinite series of continuously
connected minima, even though we have to make geometric transitions to M(86,2) and
back again when we pass from one minimum to the next.

We have not been able to find any minima using the T2 = 1+Θ2 above. However,
by the use of the monodromy matrices T0 and T1, we can rotate the space spanned
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Figure 5: The flux-induced potential V plotted on the complex structure moduli space

of the mirror quintic. The plot shows V (z, τ(z)), which is already minimized with respect

to the axio-dilaton τ . The complex structure modulus of the mirror quintic is z = 5−5z2,

where z2 is a complex structure modulus of M(86,2). The flux vectors are examples of fluxes

obtained by applying the monodromy T̃ = 1 + Θ̃ many times. This minimum proves that

there exist infinite series of continuously connected minima.

by
{

a(i)
}

in such a way that minima are possible to find. A particular example is
provided through the conjugation

Θ̃ = T−1
2 T1T0T1Θ2T

−1
1 T−1

0 T−1
1 T2 (101)

(102)

=

















2 10 −4 4 20 6
0 4 −4 4 8 4
−4 −2 −4 10 −4 3
2 4 0 −2 8 1
1 −3 4 −6 −6 −4
−8 −4 −8 20 −8 6

















(103)

It is straightforward to see that any FL obtained from Θ̃ must be of the form

FL =
(

f1, f2, f3, −3f1 + f2, 2f2,
−f1+f2−f3

2

)

, (104)
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and correspondingly for HL. We can choose the initial flux as

F0 =
(

−f1

2
+ f2

3
+ f3

3
, f1 − f2

2
− 3f3

4
, −f1

2
+ f2

6
+ f3

6
, 0, 0, 0

)

, (105)

to obtain such a flux vector.
Our numerical investigations show that it is easy to find minima with flux vectors

of the form (104). However, if we want to make sure that we can easily go through the
geometric transition, there are further restrictions on the flux. The flux that pierces
the shrinking cycle induces a potential barrier at the transition locus, as discussed
in subsection 5.3. This corresponds to the generation of five-branes in the geometric
transition. Thus, in order to have a potential that is under full control, the flux
through the shrinking cycle must vanish. This implies that the last component of the
flux vector, that is −f1 + f2 − f3, is zero, and correspondingly for HL.

Even with this restriction it is possible to find minima. One example is shown
in figure 5. The potential in the figure was computed numerically, as described
in appendix A. The flux configurations, FL = (1, 1, 0,−2) and HL = (5, 7, 2,−8),
correspond to limiting fluxes obtained after many transformations with T̃ = 1 + Θ̃.
Since acting with T̃ on these fluxes produces a new minimum, we conclude that
infinite series of continuously connected minima do exist for our model of the string
theory landscape.

7 Conclusions

This work was originally triggered by a question left open in a previous investigation
on the topography of the string landscape [14]. There, the focus was on determining
the existence of families of string vacua (possibly metastable) connected through con-
tinuous paths in the landscape. The results of that work indicated that the landscape
consists of a set of separate “islands”, such that minima on the same island are con-
nected continuously, but another island could be reached only through disconnected
“jumps”. What we have shown in the present paper is how to enlarge the kind of
transformations acting on the periods and fluxes of a particular theory, and possibly
continuously connect islands that were not connected within the original setting.

The presence of these new transformations follows from the interconnections among
different models represented by geometric transitions, and represents a natural char-
acteristic of the landscape. In particular, it leads to the discovery of infinite series of
continuously connected minima for type IIB string theory in the mirror quintic. An
example of these results can be found in section 6. As we have discussed, we expect
effects due in particular to the stabilization of the Kähler moduli, which we do not
investigate, that will shorten these series and make them finite. Nevertheless, the
existence of long series of many closely spaced vacua is an interesting topographic
feature of the landscape.
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The possibility of reaching all different islands in the landscape through the use of
mirror quintic monodromy transformations, is connected with the unresolved problem
of the finiteness of the index of the monodromy subgroup in Sp(4,Z). Our analysis has
shown that there exists continuous transformations that connect minima in infinite
series if we make use of geometric transitions into a moduli space of larger dimension.
The question of whether such transformations can be found in the original setting
remains unanswered.

The picture of the interconnections between different models, that we have ex-
ploited in order to investigate the series of minima, represents an interesting result
in itself. To our knowledge, the complete relation between two models related by
geometric transitions has not been made explicit before at the level we do it here. We
were able to find the precise map between the complex structure moduli spaces of the
mirror quintic and the manifold M(86,2) by analysing the behavior of the periods of
the latter. This embedding is fully explicit, including the reduction of the monodromy
transformations.

The analysis was performed neglecting issues regarding Kähler moduli and backre-
action on the geometry, but took into account, even if in some cases at a speculative
level, the presence of all possible flux configurations. On the side of the manifold
M(86,2), we are in full control of the scalar potential of the theory, and we can effec-
tively study its behavior in certain limits. When we relate it to the potential of the
mirror quintic, though, issues regarding the behavior of the fluxes arise.

The geometric transition between the two manifolds involves the shrinking of 16
three-cycles on the M(86,2) side and the blowing up of the same number of two-cycles
on the mirror quintic one. If no flux pierces any of these cycles, we have a complete
and fully understood picture of the result of the transformation on the mirror quintic
side. If we instead have fluxes piercing the shrinking cycles and/or the three-cycle
that intersect them, then the picture is more complicated.

Having fluxes only on the shrinking cycles will lead to the appearance of D5-branes
or NS5-branes wrapping the blown-up two-cycles on the mirror quintic side [42, 43]. If
the flux pierces only the intersecting cycle, the outcome is less clear. Our results show
that, at the mirror quintic locus in the complex structure moduli space of M(86,2), the
contribution to the (super)potential depending on those fluxes vanishes. Therefore,
the transition is not hindered by having such flux. In both the above cases we have
no change in the tadpole condition on the mirror quintic, so no D3-branes need to be
nucleated in the transition.

Instead if the fluxes pierce both the shrinking cycles and the intersecting one, the
tadpole condition will in general change with the nucleation of D3-branes as a result.
It is not clear exactly what happens in the present compact case, but it is possible
that a similar nucleation of D3-branes as the one happening in the Klebanov–Strassler
setup will take place.

Different minima imply the presence of domain walls separating them in space. As
analyzed in [14], the appearance of different islands for the mirror quintic leads to the
conjecture that two different kinds of domain walls exist. One kind separates fluxes
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that could be connected through a monodromy transformation for which a profile
depending on the complex structure moduli can be derived. The other separates
islands that cannot be continuously connected and therefore corresponds to branes.

In the setup of the present work, we make use of the embedding of the mirror
quintic moduli space into the moduli space of M(86,2) in order to derive profiles of a
larger set of domain walls. What happens is that the moduli change when we cross a
domain wall; we leave the mirror quintic moduli space through a geometric transition
to the M(86,2), and at the end we come back through another geometric transition to
the mirror quintic. With no fluxes on the shrinking cycle we have complete control
over the domain wall. When there is a flux through the shrinking cycle the situation
is less clear. If the potential barrier at the geometric transition generated by the flux
through the shrinking cycle is regulated by stringy corrections, then one can expect
to obtain domain walls separating volumes of space time with different number of
five-branes.

What happens to fluxes through a geometric transition is a very interesting open
question. It leaves open new possibilities for finding minima and analysing domain
walls through the new terms in the scalar potential generated by the presence of
the fluxes. It clearly deserves further investigation, together with the analysis of the
dynamics of Kähler moduli and backreaction on the geometry, in order to have a
complete picture.

Our results and the techniques employed lead to interesting possibilities for future
research. First of all, the topographic features of the landscape that we have found
(namely long series of closely spaced vacua) represent a good setting for chain inflation
[54, 55] and for the resonance tunneling [56]. The techniques we have employed, and
further refinements of them, give hope to obtain a quantitative understanding of
these phenomena. The same techniques can also be used for quantitative study of
the domain walls between different minima.
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A Notation and numerics

This appendix explains our notational conventions for the Calabi-Yau geometry and
how the numerical computations of the scalar potential are performed.
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A.1 Geometry

Denote by M a Calabi–Yau manifold with complex structure moduli space M . The
periods of M are the “holomorphic volumes” of a basis of 3-cycles:

ΠI =

∮

CI

Ω =

∮

M
CI ∧ Ω. (106)

Here Ω is the holomorphic 3-form and CI denotes a basis of H3(M). Note that
CI denotes both the cycles and their Poincaré duals. The index I runs from 1 to
2h1,2(M) + 2 ≡ N . The intersection matrix Q = (QIJ) is defined as

QIJ =

∮

CI

CJ =

∮

M
CI ∧ CJ . (107)

We will callQIJ canonical if the cycles CI , CJ intersect only pairwise, with intersection
number ±1.

Denoting the cycles corresponding to the Π-basis of section 4 by CI , the cycle
that vanishes on the mirror quintic locus is C5 and its dual is C6. We also refer
to these cycles by the conventional A and B. The cycle that shrinks at the locus
intersecting the mirror quintic moduli space in the conifold point of the latter is C1.
It is intersected by the cycle C4.

It is customary and convenient to collect the periods into a vector

Π(φ) =











Π1(φ)
Π2(φ)

...
ΠN(φ)











, (108)

where φ is an (N/2 − 1)-dimensional (complex) coordinate on M .
The periods are subject to monodromies:

Π → T · Π, (109)

where T is a matrix that preserves the symplectic structure Q. All possible mon-
odromy matrices constitute a subgroup of Sp(N,Z).

In our example M(86,2) we choose a notation for the monodromies that coincides
with the one used in [14] when reducing to the mirror quintic.25 Thus T0 corresponds
to encircling z2 = 0 always staying at the locus z1 = 0.

A.2 The scalar potential

Given the periods one can compute the N = 1 scalar potential for given flux quanta.
The standard form of the scalar potential is

V (φ, τ) = eK
(

gi̄DiWD̄W̄ + gτ τ̄DτWDτ̄W̄ + gρρ̄DρWDρ̄W̄ − 3|W |2
)

, (110)

25However, to get a clearer notation, we index the monodromy matrices as Ti instead of T [i] in
this paper.
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where, as usual, the matrix gAB̄ = (∂A∂B̄K)−1 and DA = ∂A + ∂AK. In this paper
we focus on the no-scale case, where the contributions of gρρ̄DρWDρ̄W̄ and −3|W |2
cancel:

V (φ, τ) = eK
(

gi̄DiWD̄W̄ + gτ τ̄DτWDτ̄W̄
)

. (111)

To compute V all that is needed are expressions for the superpotential W and the
Kähler potential K. We collect the flux quanta in row vectors26 F and H according
to F(3) = −∑I FICI = −F ·C and H(3) = −∑I HICI = −H ·C. The superpotential
is then given by

W =

∫

M

Ω ∧ (F(3) − τH(3)) = F · Π − τH · Π. (112)

The Kähler potential is

K = − ln (−i(τ − τ̄)) +Kcs

(

φ, φ̄
)

− 3 ln (−i(ρ− ρ̄)) . (113)

Kcs is the Kähler potential for the complex structure moduli, and is given by

Kcs = − ln



−i
∫

M

e−4AΩ ∧ Ω̄



 . (114)

Neglecting warping we have

Kcs = − ln
(

−iΠ ·Q−1 · Π
)

. (115)

Using (112), (113) and (115) the scalar potential can be computed numerically once
the periods and their derivatives are known.

A.3 Numerics on the mirror quintic

Let us use the coordinate z = 55z2 on the mirror quintic moduli space. To find
minima of the scalar potential (111) on the mirror quintic for given fluxes, we start
by solving for τ in the equation

∂τV (z, τ) = 0 (116)

to obtain27 V (z) = V (z, τ(z)). This function has a minimum exactly when V (z, τ)
does. We compute the periods Π1(z), . . . ,Π4(z) and their derivatives on a grid in
moduli space M using the Maple software package. We use the Meijer-G functions

26Note that, with this notation, having e.g., F1 6= 0 does not mean that we have fluxes around
C1. Instead it means having fluxes through the intersecting cycle C4. More generally

∫

CI

F(3) =

−
∫

CI

∑

J FJCJ =
∑

J FJQJI = (F · Q)I 6= FI .
27We suppress the dependence of V and τ on z̄ to simplify the notation.
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as explained in [57]. We repeat the formulas here for the reader’s convenience. In
Maple notation we define

U−
0 (z) = MeijerG([[4/5, 3/5, 2/5, 1/5], []], [[0], [0, 0, 0]],−z)

U−
1 (z) =

1

2πi
MeijerG([[4/5, 3/5, 2/5, 1/5], []], [[0, 0], [0, 0]], z)

U−
2 (z) =

1

(2πi)2
MeijerG([[4/5, 3/5, 2/5, 1/5], []], [[0, 0, 0], [0]],−z)

U−
3 (z) =

1

(2πi)3
MeijerG([[4/5, 3/5, 2/5, 1/5], []], [[0, 0, 0, 0], []], z),

(117)

and

U+
0 (z) = U−

0 (z)

U+
1 (z) = U−

1 (z) + U−
0 (z)

U+
2 (z) = U−

2 (z)

U+
3 (z) = U−

3 (z) + U−
2 (z).

(118)

A basis Uj(z) for the mirror quintic periods is then defined by Uj(z) = U−
j (z) for

Im(z) < 0 and Uj(z) = U+
j (z) for Im(z) > 0. The basis Uj is related to the basis Π

by Π = LU with

L =
8iπ3

125









0 5 0 5
0 3 −5 0
0 −1 0 0
1 0 0 0









. (119)

The derivatives of the periods ∂zΠ needed for computing e.g. DzW = ∂zW+(∂zK)W
and Kzz̄ can also be obtained as Meijer-G functions and calculated in the same way.

Equipped with Π(z) and ∂zΠ(z) on a grid in moduli space we use Matlab to
efficiently compute the potential for a large number of flux vectors. In this way the
example of section 6 was found.
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