GLOBAL UNIQUENESS OF SMALL REPRESENTATIONS
TOSHIYUKI KOBAYASHI AND GORDAN SAVIN

ABSTRACT. We prove that automorphic representations whose local components are certain
small representations have multiplicity one. The proof is based on the multiplicity-one
theorem for certain functionals of small representations, also proved in this paper.

1. INTRODUCTION

Let k be a field of characteristic 0. Let G be the group of k-points of a simply connected,
absolutely simple algebraic group defined over k, with the Lie algebra g. Let P = M N be
a maximal parabolic subgroup with abelian unipotent radical N such that P is conjugate
to the opposite parabolic subgroup P = M N by an element in G. In this case N and N
admit a structure of simple Jordan algebra J. The Jordan algebra structure sheds light on
the structure of M-orbits on N. More precisely, we have a decomposition

7=0

where €; is the set of elements of “rank j” and r the degree of J. A precise definition is given
in Section 4, but the reader is probably familiar with the following example. If G = Sp,,.(k)
and P is the Siegel maximal parabolic subgroup, then N can be identified with the space
of r X r symmetric matrices, and €2; consist of all symmetric matrices of rank j. Over an
algebraically closed field, M acts transitively on every ;. Over a general field &k, however,
the structure of M-orbits may be complicated.

If k is a local field, then N can be identified with the Pontrjagin dual of N. In particular,
any z € N corresponds to a unitary character ¢, : N — C*. Let w C Q; be an M-orbit
where j < r. We have an irreducible representation 7 of P on the Hilbert space H = L?(w),
defined with respect to a quasi M-invariant measure on w. The action of M on L?*(w) arises
from the geometric action of M on w, while n € N acts on f € L*(w) by

m(n)f(y) = ¥y, (n) f(y).

The small representations in the title of this work are unitary representations of G whose
restriction to P is isomorphic to (m, L*(w)) for some w. If G = Sp,,(k), then small repre-
sentations appear naturally in the stable range of theta correspondences, see [Hol]. For more
general G, we have works of [Sa|, [HKM], [KM], for real groups, and works of [To| and [We]
for p-adic groups.
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Let H™ be the space of G-smooth vectors in H = L?*(w). Since M acts transitively on w,
elements in H> are represented by smooth functions on w. In particular, we can evaluate
f € H*> at any point x € w. The functional

0y H® = C, fr f(x)
is continuous on H> and (N, 1, )-equivariant i.e. for all n € N and f € H™®

0o (m(n)f) = ¢a(n)da(f).

One may ask if any continuous and (V, ¢, )-equivariant functional ¢ is a multiple of §,. We
show that this is indeed the case (Propositions 7.2 and 8.3), under a natural assumption
that g acts on H*> by regular differential operators on w if k is archimedean.

We now explain the key points of the proof. It is not too difficult to see that ¢(f) = 0 for
any function f vanishing in a neighborhood of z. If k is a p-adic field and f;(z) = fo(z), for a
pair of smooth functions, then the difference f; — f5 vanishes in a neighborhood of . Hence
0(f1) = £(f2) and this implies that ¢ is a multiple of 6. However, if k = R, then f(z) = fa(x),
for a pair of smooth functions, does not imply that f; — fo vanishes in a neighborhood of
x. Moreover, a priori, it is not clear that H> contains a single non-zero function vanishing
in a neighborhood of x. For example, K-finite elements in H are represented by analytic
functions on w. In order to prove that ¢ is a multiple of 6, we first prove that C'2°(w), the
space of smooth compactly supported functions on w, is contained in H* and then we reduce
the problem to some standard results in the theory of distributions. A key in proving that
C®(w) C H> is the following analogue of the Sobolev lemma, a general result of independent
interest. Let (m, ) be any unitary representation of G. Let v € H. It defines a continuous
functional on H>°, by the inner product on H. The enveloping algebra U(g) of g acts on
H*> and hence we have a weak dm~> action of U(g) on v. If, for all u € U(g), dm*(u)v
is in H, then v is G-smooth. We remind the reader that the classical Sobolev lemma states
that if all weak derivatives (i.e. derivatives in the sense of distributions) of f € L*(R) are
contained in L?*(R), then f is a smooth function. The analogy is obvious.

Next, following Howe [Ho|, we define a notion of N-rank for smooth representations of
G. A smooth representation 7 has N-rank j if there exists a non-zero, continuous, (N, v, )-
equivariant functional on 7 for some y € €);, but there is no such functional for y in larger
orbits. In particular, the previous discussion can be summarized as follows. A small repre-
sentation has the N-rank j where j is the integer such that w C Q; and, for every y € w, any
(N, 1y, )-equivariant functional is a multiple of §,. Using this information we show that auto-
morphic representations whose local components are small representations have multiplicity
one. More precisely, assume that k is an algebraic number field. Let A be the ring of adelés
over k. The following is the main result of this paper. It is a combination of Theorems 9.4
and 10.1.

Theorem 1.1. Let 7 = ®,7m, be an automorphic representation of G(A) such that w, is a
small representation for every place v. Then the N-rank of m, is independent of v and w has
multiplicity one in the automorphic spectrum.

The paper is organized as follows. Sections 2 and 3 contain a precise description of groups
considered in this paper. Starting with a split group G, we define a structure of simple
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Jordan algebra J on N and N. We show that there is a natural inclusion of groups
Aut(J) — Aut(G) = Aut(g).

Thus, any class ¢ in H'(k, Aut(J)) defines a form J¢ of J and a form G¢ of G, containing
a maximal parabolic subgroup P¢ whose nilpotent radical N¢ has a structure of the Jordan
algebra J¢. This is the Kantor-Koecher—Tits construction [Ja], page 324, from the Galois
cohomology point of view. In Section 4 we discuss the Hasse principle for M-orbits on N.
Section 6 contains the analogue of the Sobolev lemma, described above. Sections 7 and 8
contain proofs of the uniqueness of (N, ,)-equivariant functionals for x € w in the p-adic
and real cases, respectively. In Section 9 we define the notion of N-rank for representations
of G and prove that the local components of an automorphic representation have the same
N-rank. In Section 10 we prove the global multiplicity one statement. In particular, we prove
that the minimal representations appear in the automorphic spectrum with multiplicity one
(Corollary 10.2).

2. JORDAN ALGEBRAS

Let G be as in the introduction. The main purpose of this section is to explain the Jordan
structure on N and N. We shall do this first for split groups. A more general case will be
treated in the next section using Galois descent.

So we assume that G is split throughout this section. Fix t C g, a maximal split Cartan
subalgebra. Let ® be the root system for (g,t) and, for every a € &, let g, C g be the
corresponding root space. Fix A = {aq,..., o}, a set of simple roots. Now every root can
be written as a sum o = Zli:O m;(a)a for some integers m;(«). Every simple root a; defines

a maximal parabolic subalgebra p = p; = m + n where

m:t@( @ ga)a

m;(a)=0
- @ o
m;(a)>0
Note that mge, = [m,m] is a semi-simple Lie algebra which corresponds to the Dynkin

diagram of A\ {a;}. Let 8 be the highest root. The algebra n is commutative if and only if
m;(B) = 1. Here is the list of all possible pairs (g, m) with n commutative and p conjugate
to the opposite parabolic by an element in G.

g Cn A?n—l D2n E7 Bn+1 Dn—H
Myer Apq Ap1 X Ay Aop_y Es B, D,
dimn || n(n+1)/2 n’ n(2n—1)[27 |2n+1| 2n

r n n n 3 2 2

d 1 2 4 8 (2n—1|2n—-2

The meaning of the integer d will be explained later. The integer r is the cardinality of
any maximal set S = {f,...,,} of strongly orthogonal roots spanning n. (A root « is said
to span n if g, C n.) A set S can be constructed inductively as follows: f; is the highest
root, (B is the highest root amongst the roots spanning n and orthogonal to f3;, etc. For
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every f; € S take an sly-triple (f;, h;, e;) where e; € gg, and f; € g_s,. We normalize the
Killing form &(-,) on g by

"i(f iy ei) =1
for all i. Each triple (f;, hs, €;) lifts to a homomorphism of algebraic groups

©; - SL2—>G

By restricting ¢; to the torus of diagonal matrices in SLy we obtain a homomorphism (a
co-character) x; : G,, = M,

) o=y )

Let T, C M be the torus generated by all x)(t). Any element in 7,.(k) is uniquely written
as a product of x(t;) for some t; € k*. Let y be a generator of the group of characters
Hom (M, G,,) = Z. The kernel of x is Mger, the derived group of M. From the root data it
is easy to check that (for one of the two choices of x)

(2) x(xi' () =t.

Let
f:ifi, h:ihi and e:ie,-.
i—1 i—1 i—1

Since the roots f3; are strongly orthogonal, (f,h,e) is also an sly-triple. The semi-simple
element h preserves the decomposition

g=nomon.

More precisely, [h,z] = —2z for all z € n, [h,z] = 0 for all z € m, and [h, 2] = 2z for all
x € n. The triple (f, h, e) lifts to a homomorphism

p:SLy — G.

0 1
)

normalizes M and conjugates n into n, and vice versa. Explicitly, the action of w on x € n
is given by

The element

w(z) = 34,1,
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2.1. Jordan algebras. Using the sl,-triple (f, h, €) we can define a Jordan algebra structure
on J = n with multiplication o

3 roy= e (f.4l)

Note that e is the identity element. Similarly, we can define a Jordan algebra structure on
n with the multiplication o

voy = s [eu])

In this case —f is the identity element. These two structures are isomorphic under the
conjugation by w. We shall now discuss this structure in more details, working with n.

The elements e; are mutually perpendicular (e; oe; = 0 if ¢ # j) and idempotent (e; 0e; =
e;) elements in J such that e; + --- 4+ e, = e. These idempotent elements give a Pierce

decomposition of J,
J = @ Jii @ @ Jij
1<i<r 1<i<j<r
where
Ji={xeJ|eox=ua}

and

1 1
JZJ:{IEJ|€ZOZE:§$aHd€jOI‘:§$}

The space J;; is one-dimensional and spanned by e;. The space J;; can also be described in
terms of the original root data. It is a span of g, such that

(4) (o, 87) = (o, 8]) = Land (a, ) = 0if L #, j.

Since the Weyl group of M can be used to reorder the elements of S in any way (see [RRS]),
all J;; have the same dimension d, as in the table. With respect to the conjugation action of
M on N, xY () acts on J;; by multiplication by %, on J;; by multiplication by ¢, and trivially
on all other summands in the Pierce decomposition of .J.

Proposition 2.1. Let k be the Killing form on g, normalized so that k(f;,e;) = 1 for all i.
For every pair of indices © # j let Q;; be a quadratic form on J;; defined by

Qi) = 3w(lfi 2], L 1)

Then, for every x € J;j,

rox = Qx)(e; +¢€j).
The quadratic form Q;; is non-degenerate and split, that is, it contains a direct sum of [d/2]
hyperbolic planes. Let

{z,y} = [z, [f.9]] = 2(x o y)

denote the “Jordan bracket”. The quadratic forms Q;; satisfy a composition property: Let
i,j,1 be three distinct indices. For every x € Jy and y € J;;, so {z,y} € Jy,

le({x oy}) = Qal(x) - Qz’j(y>‘
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Proof. We first show that {x,y}, for x,y € J;;, is a multiple of e; + e;. Since J;; is a span of
g, satisfying (4), [fi,y] = 0 for all [ # 4, j. Hence

{z,y} = [, [f,y]] = [, [fi, v]] + [, [f, 0]

Exploiting (4) again, [z, [f;, y]] is contained in a sum of g, such that (o, 3/) = 2. But this
equation holds only for o = ;. Hence [z, [f;,y]] is a multiple of e;, while [z,[f;,y]] is a
multiple of e;. In order to determine the coefficient in front of e; we take the inner product
of [z,[f;,y]] and f;, with respect to the Killing form. By the invariance of the Killing form,
we have

’i(fjﬁ [xv [fz;y“) = ’i([fiax]v [f]vy“) = H;(fia [Iv [f]ay]D

This proves that z o x = Q;;(x)(e; + ¢;), as claimed. We go on to describe the structure of
the quadratic form @;;. On the set of roots a spanning J;; we have an involution

a—a" =0+ 5 —a.

If o is fixed by the involution then 2a = 3; 4+ ;. This is only possible in the cases C,, and
B,11. In both cases there is only one fixed root, a short root. The complement of this line
(if there is such a line) is a sum of hyperbolic planes, g, @ go+ for a # o*. This completes
the proof of the first part of the proposition. The second part, the composition property of
quadratic forms @);;, follows from a beautiful but long computation that we omit. 0

In order to describe the algebra J we need to review some facts from the theory of Jordan
algebras. A Jordan algebra J has degree r if any element = in J satisfies a generic minimal
polynomial

2" —a,_ 2" 4 (=1)"ag =0

where a; € k depend algebraically on x. The coefficients a,_; and ag are the trace T); and
the norm N; of z.

Let D be a composition algebra over k. It is a unital, not necessarily associative, algebra

with a non-degenerate quadratic form Np (the norm) such that Np(uv) = Np(u)Np(v).
The possible dimension of D are 1,2,4 or 8. There is a linear map v — @ on D such that
uv = vu and Np(u) = uw, for all u,v € D. Let Tp(u) = u+ u. It is a linear functional,
called the trace. We shall consider the following three families of Jordan algebras in this
paper.
Special Jordan algebras. Assume that D is associative, i.e. dim D # 8. Let H,.(D) be the
set of hermitian-symmetric 7 X r matrices « with entries in D, i.e. any element in H,.(D) is
equal to its transpose-conjugate, where by conjugation we mean applying the map u +— u to
all entries. If dim D # 8, then H,(D) is a Jordan algebra with respect to the operation

1
xoy=§@w+y@

where zy and yx are the usual multiplication of r x r matrices. The norm N is the reduced
determinant.



GLOBAL UNIQUENESS OF SMALL REPRESENTATIONS 7

Exceptional Jordan algebras (r = 3). Assume that dim D = 8. Then H3(D) is a Jordan
algebra only for » = 3. The norm N of

8
Il
g 2 2
S o
o 8

Ny(z) = abc — aNp(v) — bNp(w) — cNp(u) + Tp(vwu).

Quadratic Jordan algebras (r = 2). Let (V, Q) be a non-degenerate quadratic space ever k,
where V' is a vector space and () is a non-degenerate quadratic form on V. Let

Jo(V) = J(V,Q) = ket @ key & V.

In particular, an element in J5(V') is a triple (a, b, v) where a,b € k and v € V. The Jordan
square in Jo(V') is defined by

(a,b,v) o (a,b,v) = (a® + Q(v),b* + Q(v), av + bv).

Then e; and e are orthogonal idempotents such that e = e; + es is the identity in Jo(V).
The norm N is

Ny(a,b,v) =ab+ Q(v).

Proposition 2.2. If the type of G is Asp_1, Dop or By, and r > 3, then J is isomorphic
to H.(D) where D is a split composition algebra of dimension d = 2,4 or 8, respectively. If
the type of G is Dypy1 or Byy1, the cases when r = 2, then J is isomorphic to Jo(V') where
V = Jio with the quadratic form Q1.

Proof. 1f the type of G is Ay,_1, Ds, or E7, then the forms @);; are isotropic. In particular,
for every i = 2,---,r, there exists uy; € Jy; such that Q;(uy;) = 1. Let w;; = {wyy, ug;}-
Then, by Proposition 2.1, Q);;(u;;) = 1. Hence u;jou;; = e; +¢; for all pairs ¢ # j. We define
a product - on Jis by

z -y = {{z, uas}, {y, us}}.
The composition property of quadratic forms @);;, as in Proposition 2.1, implies that

Quz(z - y) = Qu2(7)Q12(y)

making Ji2 a composition algebra D, with the identity 1p = wuj2. Let E;; denote the
elementary r x r matrix, all entries 0 except (i,7) where the entry is 1. By Jacobson’s
coordinatization theorem [MC, page 101], there is an isomorphism J = H,(D) defined by

e; — Eii; Ujj > Eij + Eji7 and v — ’UElg + 'DEQl, vED.
In the last two cases, D, 11 and B, 1, the algebra J is obviously isomorphic to Jo(Ji2). O

The conditions of Jacobson’s coordinatization theorem can be always satisfied by picking
fi,i=2,...,r, suitably. Indeed, rescaling f; amounts to rescaling (J1;. In particular, we can
easily arrange that all @y; represent 1. For example, if G = Sp,,(k), then we can arrange
J = H, (k). We fix, henceforth, the identification of J with H,(D) or Jo(V).
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3. KANTOR—KOECHER—TITS CONSTRUCTION

We continue with the assumptions and notations from the previous section. In particular,
g is split. Recall that we have an isomorphism of n and n, preserving the Jordan algebra
structure J, given by

n—n, wa(x):—[fa[fJH

Let C' be the centralizer of the triple (f,h,e) in Aut(g). Note that C' acts naturally on
both n and n, preserving the Jordan algebra structure J. In this way we have a natural
homomorphism

t:C — Aut(J).

Proposition 3.1. The map ¢ is an isomorphism of the centralizer C' in Aut(g) of the sls-
triple (f, h,e) and Aut(J), the automorphism group of J.

Proof. The proof is based on the following two lemmas.
Lemma 3.2. We have [n, 0] = m.

Proof. Since h = [e, f] and h spans a complement of mge, in m, it remains to show that
Mger C [, 1], The algebra mye, is spanned by the sly-triples ( fu, ha, €4 ), where a is a root in
m. Now observe that any root a in m is a sum of a root v in n and a root 4 in n. Hence e,
and f,, non-zero multiples of [e., e5] and [f,, f5] respectively, are contained in [n,n]. Since
h is a linear combination of h, and hs, it is also contained in [n, ] O

If ¢ € C is in the kernel of + then ¢ acts trivially on n and n. Since ¢ is an automorphism
of g, it also acts trivially on [n,n] = m. Hence ¢ = 1 and ¢ is injective. We now go on to
prove surjectivity of ¢. Let g € Aut(J). It acts naturally on n and on n. The two actions are
related by the isomorphism w, that is, g(w(z)) = w(gx) for every = € n. We shall see that
this action extends, uniquely, to an automorphism of g fixing the triple (f, h,e). Uniqueness
is clear. Indeed, by Lemma 3.2, any element in m is a equal to a sum [z, w(y)], where
x,y € n, hence g must act on it by

(5) g(lz, wy)])) = gz, w(gy)]

in order to preserve the Lie algebra structure on g. However, it is not clear that this defines
an action of g on m since an element in m can be written as a sum of the brackets in more
than one way. To address this issue we need the following beautiful lemma that expresses
the Lie bracket [m,n] in terms of the Jordan algebra structure.

Lemma 3.3. Let x,y,z € n. Then
[z, w(y)], 2] =2((xoz)oy — (20y)ox — (zoy)o2)

where the left-hand side is computed using the Lie bracket, while the right-hand side is com-
puted using the Jordan multiplication o on n.

Proof. This follows by substituting w(y) = 3[f, [f,y]], using the Jacobi identity, and the
definition of the Jordan multiplication o on n. O
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If > [z, w(y)] = > [u,w(v)] € m then
Z[[mv w(y)l, 2] = Z[[u7w(v)]> z]€n

for all z € n. Acting by ¢ on both sides of this equation, applying the second lemma, and
using that ¢ is an automorphism of J, we have

> gz, w(gy)), 921 = Y llgu, wigv)], 92|

for all z € n. Since m acts faithfully on n, it follows that |9z, w(gy)] = > [gu, w(gv)].
Hence the action of g on m given by the equation (5) is well-defined.

Lemma 3.3 (and an analogue of this lemma for the bracket [m, n]) imply that g, acting on
g, preserves the Lie bracket. Since g fixes e and f, it fixes h = [e, f]. Thus g is in C. This
proves that ¢ is surjective.

O

Thus we have a natural map
H(k,Aut(J)) — H'(k, Aut(g)).

In particular, a class ¢ in H'(k, Aut(J)) gives a form J¢ of J, a form g° of g, and a form G*
of G. Since c fixes the triple (f, h,e), the triple is contained in g¢ and w in G¢. The adjoint
action of h on g¢ gives a decomposition
gC — ﬁC @ mC @ nC

and n¢, with the multiplication given by the equation (3), is the Jordan algebra J¢. On the
level of Lie algebras, this is the Kantor-Koecher—Tits construction. Moreover, the group
G° can be related to Koecher’s construction [Ko|. Koecher considers the group generated
by the birational transformations of J¢ translations ¢,(x) = y + z, for every y € J¢, and
j(z) = —z~1. Note that N°wP¢/P¢ is an open set in the Grassmannian G¢/P¢. The natural
action of G on G/ P¢ by left translations gives a group of birational transformations of N¢
where the action of y € N¢ on N¢ is by ¢,, while the action of w on N¢is by j. In particular,
the group defined by Koecher is the adjoint quotient of G°.

3.1. Our groups. In this paper we shall consider the groups G¢ where the cocycle ¢ arises
as follows: If J = H,(D) then there is a natural map Aut(D) — Aut(J). If J = J5(V) then
there is a natural map Aut(V') — Aut(J), where Aut(V) is the group of automorphisms of
the quadratic space (V,Q). We shall assume that c¢ lies in the image of H'(k, Aut(D)) or
H'(k, Aut(V)), respectively. In particular the resulting Jordan algebra J¢ is isomorphic to
H,(D°) or Jo(V°), respectively. All triples (f;, hi,e;), @ = 1,...,r, are contained in g° and
the torus 7, is contained in G°. The restricted root system with respect to 7T, is of the type

C,.

4. HASSE PRINCIPLE

Let G be constructed by means of a Jordan algebra J = H,(D) or Jo(V), as in Section
3.1. Thus, D is any composition algebra and V' any non-degenerate quadratic space over k.
In particular, we have a maximal parabolic subgroup P = M N such that N has a structure
of the Jordan algebra J. To be precise, n carries a Jordan algebra structure, however, n is
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canonically isomorphic to N, hence N carries the same Jordan algebra structure. Also, by
an abuse of notation, we shall view e; € n as elements of N. A purpose of this section is
to prove a Hasse principle for M-orbits on N. As N and N are conjugate by the element
w € G preserving the Jordan structures and normalizing M, describing M-orbits on N is
equivalent to describing M-orbits on N. For notational convenience we work with N. First,
we have the following (see [RRS] and [SW]):

Proposition 4.1. Assume that G is split. If the type of G is C,,, in addition, assume that k
1s algebraically closed. Then every Mgae-orbit on N contains precisely one of the following:
er+---+ej, for some j<r, ore +---+e_1+ae., for somea € k*.

In general, when G is not necessarily split but J = H,(D) or J5(V), then we have a

decomposition
N=]T%
7=0

where, for j < r, ), is the set of elements in N in the orbit of e; + - - - 4 ¢; over the algebraic
closure. Informally speaking, €2, consist of elements of rank j. For example, if J = H,(D)
where D is an associative division algebra, then 2, consists of all matrices of rank j.

In general, €2; consists of possibly infinitely many M-orbits. We shall now work towards
a description of M-orbits. The adjoint action of the torus 7T, on g and m gives rise to
(restricted) root systems of type C, and A,_;, respectively. Let {e; —¢; | 1 < i # j <r}
be the standard realization of the root system A,_;. Then, for every root €; — ¢; there is a
unipotent group

Xij C Mder

isomorphic to D, if J = H,(D), or to V, if J = Jo(V). We shall describe X;; on a case by
case basis.

J = H,(D) and dim D # 8. In this case Mge, = SL, (D). Let u € D. Let z;;(u) be an r x r
matrix with 1 on the diagonal, u as (4, j)-entry and 0 elsewhere. Then X;; is the set of all
x;;(u). Note that z;;(u) acts on x € H,(D) by

J = H3(D) and dim D = 8. In this case Mg, is the group of linear transformations of J

preserving the norm N;. Let u € D. Let z;;(u) be a 3 x 3 matrix with 1 on the diagonal, u
as (i, j)-entry and 0 elsewhere. Although D is not associative, it is still true that

(@i (w)w)z;i() = zij(u) (z2;:(w)),
for every x € H3(D). The group Xj; is the set of linear transformations of H3(D) defined by
= x(w)zxy(a).

J = Jo(V,Q). In this case Mg, = Spin(J) where J is considered a quadratic space with

respect to the norm N;. Let B(u,v) be the symmetric bilinear form such that B(v,v) =
2Q(v). The group X;; consists of elements z;;(u), u € V, acting on J by

z12(u)(a, b,v) = (a, b+ aQ(u) + B(u,v),v + au)
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and
xo1(u)(a,b,v) = (a + bQ(u) + B(u,v),b,v + bu).

Now, using the action of X;;, it is a simple exercise to check that any Mge-orbit in J
contains
r=ae; +- -+ are,
for some ay,...,a, € k. If a, = 0 then x,/ (), defined by the equation (1), stabilize x. Since
xX(x)(t)) = t, where y is the generator of Hom(M, G,,), it readily follows that the Mgye-orbit
of x coincides with the M-orbit of . Hence, M-orbits and Mge-orbits in €2; coincide for all
J < r. This observation will prove useful in the proof of the following Hasse principle.

Theorem 4.2. Let k be a number field. Let x,y € Q;(k) where j <r. If x,y belong to the
same M (k,)-orbit for all places v of k, then x,y belong to the same M (k)-orbit.

Proof. We shall prove this statement for Mg (k). If G is split but not of the type C,,, then
there is nothing to prove, in view of Proposition 4.1. Now assume that J = H,(D) where
D is an associative division algebra over k. In this case My, (k) = SL,.(D) and z,y can be
viewed as hermitian forms on D". If two k-rational hermitian forms are equivalent over k,,
for all places v, then they are equivalent over k. This is the classical weak local to global
principle, see Chapter 10 in [Sch]. Of course, the equivalence refers to the action of GL,.(D),
however, for degenerate forms GL, (D)-equivalence is the same as SL,.(D)-equivalence. Hence
the Hasse principle holds in this case.

We shall study the remaining cases using Galois cohomology. Let C' be the stabilizer of
e1 in Myer, in the sense of algebraic groups. Then Mg, (k)-orbits in (k) correspond to the
elements in the kernel of the morphism

H'(k,C) — H'(k, Mye,)

of pointed sets. Recall that NV is an irreducible representation of My, and e; is the highest
weight vector of weight 5. Hence the stabilizer in My, of the line through e; is a parabolic
subgroup LU such that the simple roots of the Levi factor L are the simple roots of My, per-
pendicular to 3. If the type of GG is not C,, or A,,_; then [ is a fundamental weight for My,,.
Thus, in these cases, the stabilizer C' of e; is LgeU. Since H'(k, LaeyU) = H'(k, Lger) (the
Galois cohomology of the unipotent group U is trivial) Mge (k)-orbits in €2 (k) correspond
to the elements in the kernel of the morphism

H1<k7 Lder) — Hl (ka Mder)

of pointed sets. Let S, be the set of archimedean places for k. Since Lgo, and My., are
simply connected, the natural maps

Hl(ka Lder) — H Hl(kva Lder)
VESs
and
Hl(ka Mder) — H Hl(kw Mder)
VESs
are bijections. Thus, if G is not C,, or As, 1, the Hasse principle holds for €2;. In fact, we
have the following, more precise, information.
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o Mye(ky) acts transitively on Q4 (k,) if v is a p-adic place.
e the number of Mg (k)-orbits in Q(k) is equal to the product of the number of
Mger (kv )-orbits in Q4 (k,) over all archimedean places v.

Finally, the case of Qy for H3(D), where dim D = 8. The stabilizer in My, of €1 + €3 is a
connected group whose Levi factor is a simple, simply-connected group of type By, see [CC].
Hence the Hasse principle applies in this case, as well. 0

Corollary 4.3. Assume that k is a p-adic field. Then M (k) acts transitively on Q4 (k) unless
G has type C,, or Ag,_1. In these two cases, when J = H,(D) and dim D =1 or 2, then the
orbits are parameterized by k™ /Np(D*).

Proof. Indeed, by the first bullet above, there is one orbit unless GG has type C,, or As,_1.
In these two cases, by looking at the explicit action of SL, (D) on €, t-e; and u - e; are in
the same orbit if and only if t/u € Np(D>). O

5. SOME PRELIMINARIES

Let H be an algebraic group defined over R. We shall write H in place of H(R). We
assume that H is unimodular and fix an invariant Haar measure throughout this section.
Take a faithful algebraic representation p : H — SL4(R). Then any g € H is represented by
a d x d-matrix (z;;). We set

lgll = |yl
]

A complex function f on H is called of moderate growth if there exists an integer a such that
1£(9)| - lg]|* is a bounded function on H. On the other hand, a complex function f on H is
called rapidly decreasing if, for every integer a, |f(g)| - ||g||* is a bounded function on H.

Let h be the Lie algebra of H. Every element u in U(h), the enveloping algebra of b,
defines a left H-invariant differential operator acting on smooth functions. Let u - f denote
this action, where f is a smooth function on H. The Schwartz space S(H) is the space of
smooth functions f on H such that u - f is rapidly decreasing for all u € U(h).

5.1. Fréchet spaces. A Fréchet vector space over C is a complete locally convex vector
space V' equipped with a countable family of semi-norms |- |;, ¢ € N. The space V is
metrizable, namely, it is homeomorphic to a complete metric space, e.g. with respect to the
metric defined by

o0

Loyl
2 1+ |z —yl;

Now it is not to difficult to see that a sequence (z;) in V' is Cauchy if and only it is so for
every semi-norm.

For a representation m of H on a Fréchet space, we shall always assume the following. For
every v € V the map G — V', g — 7(g)v is continuous. For every v € V and any semi-norm
| - |; the function g — |7 (g)v|; is of moderate growth.

A prominent example arises as follows. Let 7 be a unitary representation of H on a Hilbert
space ‘H, with the invariant product (-, )3, and the corresponding norm ||-||. Let H> be the
space of all smooth vectors in H. A vector v of V' is smooth if the map G — V', g — 7(g)v

d(z,y) =
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is smooth, or equivalently, for every w € H, g — (7(g)v,w)y is a smooth function. Then
H> is a Fréchet space with respect to a family of the semi-norms

|v]u = [[dm(u)v]]
for every u € U(h), the enveloping algebra of b.

5.2. Integration. Let 7w be a representation of H on a Fréchet space V. Then for every
continuous, rapidly decreasing function a on H we define an operator

m(a): V=V
by
m(a)v = /Ha(ac)ﬂ(x)v dx.

For our working purposes, m(a)v can be defined as the limit, in V, of a sequence of finite
sums, as follows. For every a € N, one can take a sequence of finite sets X, C H, and for
every ¥ € X, a measurable set S¢ containing x such that ||g; " go|| < 27 for any gy, g» € S¢
and such that for every continuous, rapidly decreasing function « the sequence

Z pzov(x)

converges to the integral [, a(x)dz where p, = pg = [¢, dr (< o0). Then, for every v € V,
m(a)v is defined as the limit of the sequence

Vg = Z pea(x)m(z)v.

(EGX(L

For the sake of completeness, we make this precise in the case H = R, essentially the
only case that we shall use in this paper. For every a € N, we take x; = 27% — 207!
(0 <4 < 4%) and divide the interval [—2°71 2%71] into subintervals [x;, z;,1] of lengths 1/2°.
Let Xo = {71,... 740} and S5 = |15, 1441].

Lemma 5.1. For every v € V, the sequence
4(1
Vg = — alx;)m(x;)v, a € N,
5 2 ()7 (z;)

is Cauchy with respect to any semi-norm | - | defining the topology of V.

Proof. Let A > 0 and, for every a, write v, = v:? + v=4 where v<4 is the sum over x;
such that ||z;|| < A. Since a(z) is rapidly decreasing and |r(z)v| is of moderate growth,
|a(x)m(x)v| is rapidly decreasing. Therefore, given € > 0, one can take A large enough so
that [v=4| < €/3 for all a. Using the continuity of 7, one shows that

o5t — vt < e/3

for any a, b large enough. Thus |v, — vy| < € for all a, b large enough. 0J
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Proposition 5.2. Let x : H — C* be a unitary character of H, and £ : V — C a continuous
functional such that ¢(mw(g)v) = x(g)¢(v) for all choices of data. Then, for every o € S(H)
and everyv € V,

(m(a)v) = £(v)a(x)
where &(x) = [, o(x)x(x) d.

Proof. Write 7(a)v as the limit of v, = ) v p.a(x)7(7)v as a tends to infinity. Since £ is
assumed to be continuous,

((m(a)v) = £(lim v,) = all)rglo Z peo(x)l(m(z)v) =

a— o0
zeX,

= lim 3 pal@x @) = () [ al@x(e) de = (w)ata).

:L'GXa

O

5.3. p-adic case. Assume now that k is a p-adic field. In this case S(H) is the space of
locally constant, compactly supported functions on H. If (7, V') is a smooth representation
of H, then the operator 7(«) is defined by

m(a)v = /Ha(x)ﬁ(a:)v dx

where, in this case, the right-hand side is a finite sum. In particular, the analogue of
Proposition 5.2 trivially holds true.

5.4. Fourier Transform. Assume now that k is a local field. Let N be the abelian unipotent
radical of a maximal parabolic subgroup of G, as in Section 3. Let 1 be a unitary, non-trivial
character of k. The Killing form x defines a pairing between N and N by

(6) (n,z) = k(logn,logz).
In particular, every x € N defines a unitary character of N by
Ya(n) = ¢¥((n, z)).
Let S(N) be the space of Schwartz functions on N. In this situation, we have a Fourier

transform F : S(N) — S(N) by

fmmw—mm—/amwmwm

N

where dn is a Haar measure on N. It is well-known that the Fourier transform is a bijection
between the two Schwartz spaces S(NN) and S(IV). We shall need this fact.
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6. AN ANALOGUE OF THE SOBOLEV LEMMA

Let m be a unitary representation of GG on a Hilbert space H, and H> the space of smooth
vectors. Let H™>° be the set of distribution vectors consisting of linear functional on the
Fréchet space H*°. We write

(,):HxH ™ =C
for the natural bilinear map. Then the Lie algebra g acts on H™>° as a contragredient
representation: for X € g,

(w, dr=>(X)v) = —(drn(X)w,v) for w € H* and v € H™°.
We extend dn~>° to a C-algebra homomorphism U(g) — End¢(H ™).
Since H is a Hilbert space with inner product (, )3, we may regard v € H as a distribution
vector by
(w,v) = (w,v)y forw e H™.
This yields an (anti-linear) embedding
(7) H—H,

so that we have a Gelfand triple H* C H C H~°.

In general, for v € H and u € U(g), dr~>°(u)v is defined just as a distribution vector.
However, if dm=>°(u)v belongs to the Hilbert space H which is identified as a subspace of
H~>° by (7), we get a better regularity on v. Here is an analogue of the Sobolev lemma
which we need:

Proposition 6.1. Suppose v € H satisfies
dr~(u)v € H for allu € U(g).

Then v is a smooth vector.
This proposition is a consequence of iterated applications of the following lemma:

Lemma 6.2. Let X € g. Suppose v € H satisfies
dr (X €H and dr =(X*)v € H.

XY —v) converges to dm=°°(X)v in the topology of the Hilbert space H.

Then limy_q ¢ (7 (e
Proof. Take any w € ‘H™, and we set
f(t) == (w, 7))y = (r(e”)w, v)y.

Since w is a smooth vector, f(t) is a C*°-function on R. By Taylor’s theorem there exists
0 < 0 < 1 such that

F(t) = £(0) +£0) + = /" (00),
where
f(0) =(w, v)x,
F1(0) =(=dr(X)w,v) = (w,dr">(X)v),
f"(s) =(dn(X)dn(X)m(e*)w, v)y = (7(e*)w, dr=>°(X?)v).
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Since dn~®(X)v € H, we have f'(0) = (w,dr >°(X)v)y. Since dm~>°(X?)v € H, and since
7 is a unitary representation, the remainder term has an upper estimate

()] < Ilwllelldm™= (X*)v]l3.

Thus we have

m(eX)v —wv e t -
(, ()0 < Dflldr= (X
Since H*> is dense in H, the above estimate holds for all w € H. Hence we have shown the
lemma. 0]

7. SMALL REPRESENTATIONS OF p-ADIC GROUPS

Assume that k is a p-adic field. Let G be a group defined over k, as in Section 3. In
particular, we have a maximal parabolic subgroup P = M N with abelian unipotent radical
N. Fix a non-trivial character ¢ of k. Then every y € N defines a unitary character Py
of N, ¥,(n) = ¥({n,y)), where (n,y) is the pairing between N and N defined in (6). Fix
an M-orbit w € N. We shall consider M acting on w from the left. Let dx be a quasi
M-invariant measure on w. Let v : M — C* be a smooth character such that

d(mz) = |v(m)| *dx.
On L?*(w) we have a unitary, irreducible, representation of P where m € M and n € N act
on f € L?(w) by, respectively,
m(m)f(y) = v(m)f(m™'y)

and

m(n)f(y) = ¢y (n) f(y)-

Assume that 7 extends to a unitary representation of GG. Let V' be the space of G-smooth
elements in L?(w). Let £ be a functional on V such that £(m(n)v) = ¥, (n)f(v) for all choices
of data. The main goal of this section is to prove that ¢ = 0 if  does not belong to the
topological closure of w and £(f) = Af(z), for some A € C, if z belongs to w, see Proposition
7.2.

Lemma 7.1. Every M-smooth element in L*(w) is represented, uniquely, by a locally con-
stant function on w.

Proof. Let f be an M-smooth element, i.e. there exists an open compact subgroup K of M
fixing f, not as a function on w, but in the L2-sense. Write

w = Hwi
i
where each w; is an K-orbit. It is an open compact subset of w. In particular, the restriction
of f to w; is well-defined. Let f; be that restriction. Then

Now recall that dim L?(w;)® = 1 by computing the trace of the projection operator, for
example. Hence L?(w;)¥ is spanned by the characteristic function of w;, and f; is represented
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by a constant function on w;. Therefore f is represented by a locally constant function. The
uniqueness is clear. 0

Proposition 7.2. Let x € N. Let { be a functional on 'V such that {(w(n)f) = . (n)l(f)
for all choices of data.

e [f x is not in the topological closure of w then £ = 0.
o [fx € w, then there exists A € C such that ((f) = \f(x) for all f.

Proof. Assume first that x is not in the topological closure of w. Let B, be an open neigh-
borhood of z in N disjoint from the topological closure of w. Let a € S(N) be such that
&(x) = 1 and the support of & is contained in B,. Let f € V. We shall now compute
U(m(c) f) in two ways. The first uses the explicit definition of ,

ﬂmqmnzﬂymwmmmwmwi/Mm%mﬁ@wmzmmﬂwzo

N

since &(y) = 0 for all y € w. Hence ¢(7(a) f) = 0.
The second computation uses the formal property of ¢, as in Proposition 5.2,

amwﬁzanﬂymwmwm=aﬁmwzaﬁ

Thus ¢(f) = 0 for all f € V, by combining the two computations. This proves the first
bullet.

For the second, let V,, C V be the subspace of codimension one consisting of f such that
f(x) = 0. We need to show that ¢(f) = 0 for all f € V,. Fix f € V.. Let B, be a
neighborhood of x in NV such that f vanishes on B, Nw. Let a be such that &(x) = 1 and
the support of & is in B,. With this modifications, the argument used in the proof of the
first bullet implies that ¢(f) = 0. The proposition is proved. O

8. SMALL REPRESENTATIONS OF REAL GROUPS

Let k = R, and fix a character ¢ : R — C*, ¥(z) = e¥~"*. Then any y € N defines a
unitary character of N by
Py(n) = e/ ~1n)

where (n,y) is the pairing between N and N defined in (6). Let dz be a quasi M-invariant
measure on w. Let v: M — C* be a smooth character such that

d(mx) = |v(m)|2dx.
Then, as in the p-adic case, we have an irreducible unitary representation (7, H) of P where
H = L*w)and m € M and n € N act on f € L*(w) by, respectively,
m(m)(f)(y) = v(m)f(m™y)

and

m(n)(F) () = ¢y (n) f(y)-

Now assume that 7 extends to a unitary representation of G. In particular, we assume
that the G-invariant Hilbert space structure is given by the inner product (-, )4 arising from
the L?-norm. Let H*> be the Fréchet space of G-smooth vectors. Let ¢ be a continuous
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functional on H*> such that ¢(mw(n)v) = 1,(n)l(v) for all choices of data. The main goal
of this section is to prove Proposition 8.3 asserting that ¢ = 0 if x does not belong to the
topological closure of w and ¢(f) = Af(z), for some A € C, if x belongs to w, under the
following, natural, assumption on 7.

A regular differential operator D on w is called anti-symmetric if, for any ¢ € C°(w) and

fel>(w),
| po-i==[ D7

Since M acts transitively on w, M-smooth elements in ‘H are represented by smooth functions
on w, see [Po]. In particular, all elements in H* are represented by smooth functions on
w. We assume that g acts on H* by anti-symmetric regular differential operators, that is,
for every X € g there exists an anti-symmetric regular differential operator Dy such that
dr(X)f = Dxf for all f € H>.

Lemma 8.1. With the above assumptions, C2°(w) C H>™.

Proof. Let (-,-) be the natural pairing between H*> and H~>°. Let ¢ € C°(w). Then ¢ is
viewed as an element in H™>° by

<f7 §0> = (fa SO)H
for all f € H>®. For every X € g, let dr~>°(X)p € H™*° be the weak derivative of p € H™>,
that is,

(f,dr™=(X)p) = —(dm(X) [, o)
for all f € H™. Since, by the assumption, dr(X)f = Dxf for an anti-symmetric regular
differential operator Dy, we have

(f,dn==(X)p) = (f, Dx@)n-

It follows that all weak derivatives of ¢ are contained in H. Hence ¢ € H*>, by Proposition
6.1.
O

Lemma 8.2. For every f € L*(w) and o € S(N), m(a)(f) = af, the point-wise product of
a and f.

Proof. Recall, from Section 5, that m(a)f is defined as a limit, in L?*(w), of the sequence of
finite sums

fom S peal@)n(a)f

CEEXa,

where Y pi.(x) converges to | n B for every continuous, rapidly decreasing function j
on N. In particular, for every y, the sequence

faly) = Y pea(@)m(@)(f)(y) = Y pec(@)y (@) f(y)

converges to &(y)f(y). Thus the sequence of functions f, converges pointwisely to &f. In
order to show that f, converges to &f in the L?-norm we shall apply Lebesgue’s dominated
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convergence theorem. Using the triangle inequality and |¢),(n)| = 1,

oI < (D palal@)) - 1£ ().
r€X,
Since (3, oy, Helo(z)|) converges to C' = [, |a(z)|dz, it follows that | fo(y)| < (C'+1)|f(y)]
for almost all a. Since |&(y)| < C we also have |(af)(y)| < C|f(y)|. Hence

(fa —af)W)I* < (2C + 1| f(y)I*

Thus, by Lebesgue’s dominated convergence theorem, we can exchange the limit and inte-
gration in the following.

lim/|fa—df]2:/lim |fa — af]* = 0.
a—0o0 w w(l—ﬂ)o
U

Proposition 8.3. Assume that for every X € g there exists an anti-symmelric reqular
differential operator Dx such that dn(X)f = Dxf for all f € H*®. Let x € N. Let { be a
continuous functional on H*> such that {(m(n)f) = Y.(n)l(f) for all choices of data.

e [f x is not in the topological closure of w, then £ = 0.
o Ifx € w, then there exists X € C such that ((f) = \f(x) for all f € H>.

Proof. Assume that x is not in the topological closure of w. Let B, be an open neighborhood
of # in N disjoint from the topological closure of w. Let a € S(N) be such that &(x) = 1
and the support of & is contained in B,. Then 7(«)(f) = 0, for all f, by Lemma 8.2. On
the other hand, by Proposition 5.2,

U(m(a)f) = a(x)e(f) = £(f).

Combining the two gives ¢(f) = 0 for all f. This proves the first bullet.

For the second bullet, note that the same argument proves that £(f) = 0 for any function
f € H™ that vanishes in an open neighborhood of x. Let d be the dimension of w. Since w
is a homogeneous space for M, it is a smooth manifold. Hence we can take vy,...,v4 € N
giving a local chart around x. More precisely, every y € w close to x is identified with a
d-tuple of real numbers y; = (v;,y), ¢ = 1,...,d. In particular, = is identified with the
d-tuple of real numbers x; = (v;, ). Let O, be an open neighborhood of = in w, identified
with

I'={(y,- ya) ERT | |y; — i < ¢}

for some € > 0. Since H*> contains C°(w), by Lemma 8.1, every f € H>™ can be written as
f = f1 + fo where f; vanishes in a neighborhood of x and f5 has support contained in O,.
Since ¢(f1) = 0, it remains to understand the restriction of ¢ to functions supported in O,.

Let f € CX(I) and f, € C*(I), a € N, a sequence of functions supported in a compact
set C' C I, such

lim sup |[Dfa(y) — Df(y)| =0

a—00 yEI

for all partial derivatives D in the variables y;. Using the identification C2°(I) = C*(0,),
consider f and f, as elements in H*>. Then, since g acts as regular differential operators,
the sequence f, converges to f in the topology of H>™. Hence, lim, .. ¢(f,) = ¢(f). It
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follows that ¢ defines a distribution on C2°(I) supported at 0. By the structural theory of
distributions, every such distribution is a finite linear combination of partial derivatives of
the delta function 9,.

Let X; = log(v;) € n and y € N. Using the definition of the pairing (-,-) in (6), we have

(e, y) = K(tXi,logy) =t w(X;, logy) = t{vi,y) = ty,.
Thus
dy(0) = e/
By the equivariance of ¢, for every t € R,

Um (™)) = u(e) - €(f) = /71 0(f).

Since £ is a continuous functional, we can pass to the action dr of the Lie algebra, that is,
we can differentiate with respect to t. This gives

(8) Udm(X5) f) = V=1a; - (f).
On the other hand,

(X)) y) = ¥y () fly) = T f(y).
By passing to the action of dm,

dr(X:)(f)(y) = V=1y; - f(y).

Substituting into (8) yields ¢((y; — x;)f) = 0. Hence £(P - f) = 0 for all f € C°(I) and all
polynomials P in y; vanishing at x. This implies that £ is a scalar multiple of ¢,, as claimed.
O

9. N-RANK

Let ; be the set of elements in N of rank j as defined in Section 4. Note that ; is not
empty by our assumption on the Jordan algebra. Over a local field, the topological closure
of €2 is the union of €; with 7 < j.

9.1. Local rank. Assume that k is a local field. We shall define a notion of N-rank for
any smooth representation (m, V) of N. Recall that, if k£ is archimedean, (7, V') is smooth
representation on a Fréchet space. In this case V* is the space of continuous functionals on
V. If k is p-adic, V* is the space of all functionals on V. Let # € N. Recall that every z
defines a unitary character ¢, of N. Let (V*)N:¥= be the subspace of V* consisting of all ¢
such that

l(m(n)v) = ¥u(n)e(v)

for all choices of data.

Definition 9.1. Let (7, V') be a smooth representation of N. The largest integer j such that
(V)N £ L0}, for some = € Q) is called the local N-rank of V. Let w be an M (k)-orbit
in €;. Suppose that the local rank of V' is j. We say V' has pure rank j relative to w, if
(V¥)Nve = {0} for all z € Q; \ w.
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Proposition 9.2. Assume that the rank of a smooth representation V' of N 1is larger than
j. Then there exists a € S(N) such that the support of & is disjoint from the topological
closure of Q; and 7(a) # 0.

Proof. By the assumption, there exists z € IV, not contained in the topological closure of Q;,
and a non-zero, continuous functional ¢ on V such that ¢(m(n)v) = ¢, (n)l(v), for all choices
of data. Take v € V such that ¢(v) # 0. Clearly, we can take o € S(IV) such that a(z) =1
and the support of & is disjoint from the topological closure of €2;. Then by Proposition 5.2

Um(a)v) = a(x)l(v) = L(v) # 0.
0

9.2. Automorphic representations. Assume that k is a number field. Let k, = k ® R,
and k be the completion of k with respect to all discrete valuations on k. Then A = k x k is
the ring of adeles. Let g be the Lie algebra of G(k ), and U(g) the corresponding enveloping
algebra.
Let A be the space of functions f on G(A) such that
(1) f is left G(k)-invariant.
(2) f is right K s-invariant, where K is an open compact subgroup of G(l%), depending
on f.
(3) For every § € G(k), goo — f(goo, §) is a smooth function. In particular, U(g) acts on
f from the right by left invariant regular differential operators.
(4) The condition (3) assures that v € U(g) acts on f, f — w- f, by a left invariant
regular differential operator. We assume that f is annihilated by an ideal I of finite
index in Z(g), the center of U(g).
(5) f is of uniform moderate growth. This means that there exists an integer d such that
for all u € U(g), the function |u - f(g)| - ||g||? is bounded on G (ku).

Fix K, an open compact subgroup of G(l%), I and d. Let A(K, I, d) be the subspace of A
consisting of f right invariant by K, annihilated by I and of moderate growth controlled by
d as above. Then on A(K, I,d) we have a family of semi-norms

sup [u- f(g)] - [lgll,
9€G (ko)
one for every u € U(g). Then A(K,I,d) is a Fréchet space with a smooth G(k)-action.
The underlying (g, K )-module is of finite length, by an old result of Harish-Chandra.

The group G(A) acts on A by right translations. We shall denote this action by R. An
irreducible automorphic representation is a subspace m C A invariant under the action of
G(A) and satisfying the following additional conditions. There is a smooth representation
Too Of G(kso) on a Fréchet space, a smooth representation # of G(k), and a G(A)-intertwining
isomorphism

T: T @7 —mC A
Moreover, for every open compact subgroup K of G(l%), the map 7' is continuous G (ks )-
intertwining map from 7, ® 7K to A(K ,I,d), for some d and I. (Note that the Fréchet
topology on 7., induces a canonical one on 7, ® #K since #K is finite dimensional.) Finally,
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we remark that 7 is a restricted direct product of smooth irreducible representations , of
G(k,) for every finite place v.

9.3. Global rank. Let 7 an irreducible automorphic representation. Fix a character 1 :
K\A — C*. For x € N(k), we define ¢, : N(k)\N(A) — C* by ¢,(n) = ((n,z)). Then
f € m admits a Fourier expansion

flo)=>_ f9)

zeN (k)
where

f(9) = /N(k)\N(A)f(ng)%(n)dn.

The functional
l,:m—C
defined by £,(f) = f.(1) for all f € 7 satisfies

lo(R(n)[f) = ba(n)la(f)

for all n € N(A) and f € 7. It is useful to note, and easy to check, that ¢, = 0 implies
¢, =0 for all y in the M (k)-orbit of .

Definition 9.3. Let m be an irreducible automorphic representation. The largest integer j
such that ¢, # 0 for some x € €, is called the global N-rank of 7. Let w be an M (k)-orbit in
€2;. Suppose that the global rank of 7 is j. We say 7 has pure rank j relative to w, if £, =0
for all z € Q; \ w.

Theorem 9.4. Let m be an irreducible automorphic representation. If the global N-rank of
w is j then, for any finite place v, the local component w, of m has the local N-rank j.

Proof. We fix an isomorphism 7" of m with 7, ® 7. We shall prove that 7., has rank j.
The proof of the statement for the components of 7 is similar and easier, since there are no
topological considerations. We leave this out as an exercise. Let = € §2; such that f,(1) # 0
for some f € m. Let K be an open compact subgroup in G(l;;) such that f is left invariant
under K. Then f lies in the image of mo ® 7. The map f — f.(1) is clearly continuous in
the topology of .A(f( ,I,d). Hence, by composing it with T, it gives a continuous, non-zero,
functional on 7. ® 7%, a finite multiple of 7. Hence the local N-rank of 7 is greater or
equal to 7.

It remains to show that the rank of 7, is not greater than j. By Proposition 9.2, it suffices
to show that m.(a) = 0 for any o € S(No) such that the Fourier transform & is supported
on elements of rank > j. By using the intertwining map 7', it suffices to prove that

R(e)(f) =0

for all f € T(mo ® 7K), for some K, where R denotes the representation of G(ks) on
A(K,I,d), acting by right translations.
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Lemma 9.5. Let f € A(K,I,d), and o € S(Ny). Then

/fgn

Proof. Recall that the operator R(«)(f) is defined as a limit, in the Fréchet topology on
A(K,1,d), of a sequence of functions f,, a € N,

9) =Y pnflgn)a(n)

'H,GX(L

where, X, are finite sets in N, and p, positive real numbers such that for every continuous,
rapidly decreasing function 3 on N, the sequence )\ u,B(n) converges to the integral
of .

The topology of A(K' ,I,d) is given by sup-norms, hence the convergence of f, implies the
convergence of f,(g) for every g € G(A). Since, for every g, the function n — f(gn)a(n) is
rapidly decreasing on N, the sequence f,(g) converges to the integral of f(gn)a(n). This
proves the lemma.

O

Since R(«)(f) is smooth function on G(k)\G(A) and G(k) is dense in G(ky) (see Propo-
sition 7.11 in [PR]), it suffices to prove that R(a)(f) = 0 on G(k). Let § € G(k). Firstly,
we expand R(a)(f)(g) using the Fourier series:

R(@)f(3) = Y (R(a)f)=(d).
€N (k)

We shall now analyze each individual summand. Using the Fubini Theorem, one easily
justifies that

<fuoofnxg>=:/; a(n) fa(gn) dn.

Now observe that g commutes with n € N, and that f,(ng) = ¥.(n)f.(g). Hence

/ an@mdn:/'a@WAmﬁ@wm:@@nxm.

The last term is clearly 0. Indeed, &(z) = 0 if the rank of z is > j and f, = 0 otherwise, by
the assumption on f. This proves the theorem. 0

10. GLOBAL UNIQUENESS OF SMALL REPRESENTATIONS

Let GG be as in Section 3.1, defined over a number field k. Let m be a smooth irreducible
representation of G(A). The multiplicity m(7) of 7 in A, the space of autmorphic functions,
is defined as

m(m) = dim Homg ) (7, A).

Theorem 10.1. Let 7 = ®m, be a smooth irreducible representation of G(A). For every
place v, assume that the representation m, has the N-rank j < r, pure relative to a single
M (k,)-orbit w, in Q;(k,), and

()N 2
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for x € w,. Then m(m) < 1.

Proof. Let T € Homga(m, A), T # 0. The purity of 7, and the Hasse principle for €2,
Theorem 4.2, imply that T'(7), if non-zero, is pure relative to a single M (k)-orbit w in (k).
Fix x € w. For every v € 7, let
lor(v) = fa(1)
where f = T'(v) and f,(1) is the Fourier coefficient of f. Then ¢, 7 is a functional on 7
such that €, p(m(n)v) = ¥z(n)lyr(v) for all v. If T7, T, € Homga) (7, A) and are non-zero,
then, by the uniqueness of the functional at every place, there exist c¢1,co € C* such that
cilym + colym, = 0. Since
Clgx,T1 + C2€x,TQ = '€I,C1T1+CQT27

it follows that €, ¢, 1, 4c,r, = 0. However, for any T' € Homga(, A), €, 7 = 0 for one z € w
implies ¢, 7 = 0 for all y € w. Hence (¢177 + ¢2T3)(7) has the global rank strictly less than
J. In turn, Theorem 9.4 implies that the local components of (¢;T} + coT»)(7) have the rank
strictly less than j. This is only possible if ¢, + c2T5 = 0. Hence Homga) (7, A) is at most
one dimensional. 0J

We now look at the minimal representations. A representation of a real groups is minimal
if the annihilator in U(g) is the Joseph ideal. For the groups considered in this paper,
Theorems A and B in [HKM] imply that the minimal representations satisfy the conditions
of Proposition 8.3. In turn, Proposition 8.3 implies that the minimal representations satisfy
the conditions of Theorem 10.1. On the other hand, a representation of a p-adic group is
minimal if its character, viewed as a distribution around 0 € g, is equal to

/Of+cf(0)

where f is the Fourier transform of f € S (g), and O is a minimal G-orbit in g. (See
IMW] and [GS] for more details.) For the groups considered in this paper, the minimal
representations, when restricted to P, have a realization on L*(w) where w = n N O, see
[To]. Now Proposition 7.2 implies that the minimal representations satisfy the assumptions
of Theorem 10.1. Summarizing, we have the following corollary to Theorem 10.1. (As
conjectured in the introduction of [MS].)

Corollary 10.2. Let 7 = @, be a smooth irreducible representation of G(A) such that any
local component , is minimal. Then m(mw) < 1.
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