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Abstract

The geometry of causal diamonds or Alexandrov open sets whose ini-
tial and final events p and ¢ respectively have a proper-time separation
7 small compared with the curvature scale is a universal. The correc-
tions from flat space are given as a power series in 7 whose coefficients
involve the curvature at the centre of the diamond. We give formulae for
the total 4-volume V of the diamond, the area A of the intersection the
future light cone of p with the past light cone of ¢ and the 3-volume of
the hyper-surface of largest 3-volume bounded by this intersection valid
to O(r*). The formula for the 4-volume agrees with a previous result of
Myrheim. Remarkably, the iso-perimetric ratio % / (ﬁ)% depends only
on the energy density at the centre and is bigger than unity if the energy
density is positive. These results are also shown to hold in all spacetime
dimensions. Formulae are also given, valid to next non-trvial order, for
causal domains in two spacetime dimensions.

We suggest a number of applications, for instance, the directional de-
pendence of the volume allows one to regard the volumes of causal dia-
monds as an observable providing a measurement of the Ricci tensor.



1 Introduction

Causal Diamonds, or Alexandrov open sets, play an increasingly important role
in quantum gravity, for example in the approach via casual sets [1], in discussions
of ‘holography’, and also of the probability of various observations in eternal
inflation models (see [2] for a recent example and references to earlier work).
Curiously, however, not very much of a quantitative nature appears to be known
about them. The purpose of this note is to embark on a remedy of that situation
at least in the case that the diamond is small compared with the curvature scale
of the ambient spacetime. In fact the causal structure and volume measure
are sufficient to fix the spacetime topology, differential structure, and metric
completely [4, 5]. This information can be encoded in a knowledge of the set of
small causal diamonds and their volumes. In particular, it allows one to extract
not only the metric, but the Ricci tensor as well allowing one to formulate the
vacuum Einstein equations in a simple way [6]. The volume of causal diamonds
plays an important role in studies of eternal inflation where one introduces a
single connected Meta-Universe ! and takes the probability for the occurrence
of a ‘pocket’ in the Meta-Universe to be the volume of an appropriate causal
diamond.

2 Causal Diamonds

A causal diamond or Alexandrov open set is a subset of a Lorentzian spacetime
{M, g} of the form

I*(p)nI(q), (1)

where I, I~ denotes chronological future or past respectively. The causal dia-
mond depends only on the conformal class of the Lorentzian metric g but the
4-volume for example

vmwzwwﬂmnrwz/' Vgld' 2)

It(p)nI~(q)

depends upon the metric itself. In Minkowski spacetime E*!, 2 as long as p is

in the chronological past of ¢, there exists a unique straight line, i.e. time-like
geodesic, joining them, and if its proper lengths is 7, then, as pointed out by 't
Hooft [3]

Vipag) = 57" (3)

In a general curved spacetime, if p and ¢ are sufficiently close, there will still

be a unique time-like geodesic (), parametrised by proper time ¢ € [—F, Z].

joining them as long as p remains in the chronological past of q. ’t Hooft’s

lsometimes called a Multiverse
2we use signature — + ++ and MTW/HE curvature conventions throughout



formula (3) will be approximately true but there are corrections involving the
curvature evaluated at the mid point 0 = v(0).

One way of calculating them is to use Riemann normal coordinates z* cen-
tred on 0, in which the metric takes the form

1
Guv = Npv — gRugw— (0)z%z" + ... . (4)
This was done by Myrheim [6] who obtained the result
Vp,q) = 5o (1+ arR(0) + bR, ()T*T" + ...}, (5)

where T* is the time-like vector tangent to the geodesic at the origin v and with
magnitude

G (0)THTY = —72. (6)

The expansion in 7 is thus also expansion in T*#.
Thus (5) may also be written as

Vip,q) = %74 (1 +ar?R(0) + b2 Ry (0) + .. ) : (7)
where Ry;(0) are the time-time components of the Ricci tensor at the origin
evaluated in an orthonormal frame at the origin whose zero leg is aligned with
the tangent vector of the geodesic 7.

One may also express T* in terms of Synge’s World Function Q(p, q) giving
the distance squared between two events p,q and which satisfies

g""0,00,0 = —4Q. (8)
One has
1
TH = 5‘(]“”8"9' 9)

If p is in the past of ¢ one may define 7(p,q) = /Q(p, q) and (8) becomes the
Hamilton-Jacobi equation

g"’ 0,0, T =1. (10)

Myrheim did not give the full details of his calculation in Riemann normal
coordinates. Indeed the derivation is complicated by the need to find the curva-
ture induced deviation of the light cones from their flat space positions. To our
knowledge no other derivation has been given since. Because the coefficients
a and b in Myrheim’s formula are universal, i.e. valid for any spacetime, one
should be able to avoid the use of Riemann normal coordinates altogether, but
rather to determine the coefficients by considering two special cases. This is
what we shall now do. Using the same technique we shall also obtain new re-
sults for the area A(p,q) of the intersection of the past and future light cones,
and for maximal three-volume V3(p, q) of any hypersurface which it bounds.



2.1 The Einstein Static Universe

The metric is
ds? = —dt® + dx? + sin? X(d92 + sin? 0¢2) . (11)

We take p as (—%T, 0,0,0) and q as (%T, 0,0,0). Since the metric is an unwarped
(i.e ultrastatic) product of the unit round three-sphere with time, Ry;(0) = 0
and R = 6, the value for the unit three-sphere.

The past light cone of ¢ is given by ¢ = 5 — x and the future light cone of p
by t = -3 +x.

The volume is easily seen to be

[N

’ dt (/%T_t sin? de)
0

2
- feged

Vp.g)=V(r) = 8r /0
—1). (12)

The small 7 expansion of V(7) then can be obtained to arbitrary order,

art 72
V(T)_ﬂ(l—%+...). (13)
This fixes, in our conventions, the constant a to be
1
=——. 14
‘T 7180 (14)
and agrees up to a sign with the expression given by Myrheim [6].
2.2 de-Sitter spacetime
The metric is
ds? = —dt* + cosh® t(dx2 + sin® x (d6® + sin’ 9¢2)) . (15)

We take p as (t = —%7’, 0,0,0) and q as (t = %7’, 0,0,0) The Ricci scalar R = 12
and since R, = 3¢, then Ry;(0) = —3.
To obtain the past light cone we introduce conformal time 7 by

dt
- 1
di cosht’ (16)

choosing the constant of integration so that at t = 0 , n = 0, one finds that

mm%+9:a. (17)

Further useful relations are

sinht = tann, cosht = (18)



The metric is now

2 _ 2 2, 2 2 | w22
ds® = cos2n(_dn + dx* + sin” x (d6” + sin® 6¢ )) (19)
Define N by
T 1
h- = ——, 20
cosh 3 — (20)

2

then pis at (np = —%N,0,0,0) and ¢ is at (np = %N,0,0,0) The past light cone
of ¢ is given by n = % — x and the future light cone of p by n = —% + x.
The volume is easily seen to be

IN g iN—p
— n . 2
Vir) = 871'/0 P (/0 sin de)

4 N N
= gﬂ'(COSQ 5 21n cos 5~ 1)
4 1
= 3l

V(p,q)

r
21 h—-—-1). 21
coshQ% + 2Incos 5 ) (21)

This function can be expanded to any order in 7. We are however interested in
the first few terms,

Vi) = —rt1-21..). (22)
This gives the value
b= — (23)

for the coefficient b, which agrees, up to a sign convention, with the result of
Myrheim who uses the opposite signature to us. His metric is thus minus our
metric and hence, although his Ricci tensor is the same as ours, his Ricci scalar
has the opposite sign.

On the other hand, in both cases the volume has an interesting behavior for
large 7. One has that

V(r) = 377 +0(1) (24)

for de Sitter space-time and

V(r) = 37 +0(1) (25)
for the Einstein Static Universe. Notice that in both cases the leading term
grows much slower than 74.This presumably reflects the fact that both space-

times satisfy the null convergence condition, R, [*1” > 0 for all light-like vectors
.



3 Area

The area A(p, q) of the intersection I+ (p) N I (q) of the future light cone of p,
I*(q) = 8I*(p) with the past light cone of g, I (¢q) = dIT(p) is also given by a
universal formula which to next to lowest order might be expected to depend on
both the Ricci scalar R and Ry, , the time-time component of the Ricci tensor.
In both our examples the intersection is on the surface t = 0 and we have

Alp,q) = 4rx sin2(%N) . (26)
For the Einstein Static Universe one has N = 7 and hence
A(p,q) = 4msin? %
= T2(1—1—1272+...). (27)
For de-Sitter spacetime we have a relation cos(N/2) = 1/ cosh(7/2) and thus
A(p,q) = 4r tanhQ(%)
= 7mri(l- éTz +...) (28)
These imply that in general
A(p,q) = Area(IT(p) N 17 (q)) = n7*(1 - %RTQ +..). (29)

Thus the area A(p,q), unlike the 4-volume V' (p,q), contains no directional
information. Notice, however, that the area is given by different functions (26)
and (28) of 7 in these two cases. This is due to the presence of powers of the
Ricci tensor in the 7 expansion of the area which show up in the higher order
terms.

4 Three-volume

There are infinitely many space-like hypersurfaces having the intersection It (p)N
I~ (q) of the future light cone of p with the past light cone of ¢ as their boundary.
Among them, provided p and ¢ are sufficiently close, there is one with maximal
volume 2. The maximal value of this 3- volume V3(p, ¢) should also be given by
a universal formula.

Our two examples are time symmetric and therefore the hypersurface of
maximal volume has ¢ = 0. Thus

Vs(p,q) = 47r/2 dysin® x
0
= m(N —sinN). (30)

3we remind the reader that spacelike hypersurfaces in Lorentzain spacetimes can have

arbitrarily small volumes and hence the concept of a minimal spacelike hypersurface is not
well defined



Using the already established relations between N and 7 we have that
V3(1) = m(r —sinT) (31)

in the case of the Einstein Universe and

b T
Va(T) =27 (arctan(sinh %) — :;:ﬁ) (32)
2

in the case of de-Sitter space-time. Therefore for the Einstein Static Universe,

T 1
Vs(p,q) = 67'3 (1- 2—072 +...), (33)
while for de-Sitter spacetime
™ 7
‘%(P,Q)ZET3(1—4—OT2+...). (34)
Therefore, in general,
_ Ts(1- L gyl o2
Vslpg) = &7 (1 g+ g oo™ +...)
T3 1 >, 1 v
= —(l-— —R,,T*TY ...).
o7 ( IQORT +40Ru ) (35)
5 Energy Conditions
We have shown that
- T a i v
Vo) = o7 (1+180(Rgu,,+6Ru,,)T T+
_ Ty 4G B o
= o7 (1+ 6T, — 209, )T + ). (36)

In the last line we have used the Einstein equations
1
R, = 871'G(Tu,, — iTgu,,) , (37)
where T),,, is the energy-momentum tensor.

As an illustration rather than a check, one may substitute the energy mo-
mentum tensor of an inflating universe

Tut/ = _V(¢)guu ’ (38)
where V' (¢) is the potential energy of an inflation field ¢ to get
_ T 4y A4nGV(¢) ,
V(p,0) = 557 (1- T2+ ) (39)



which of course agrees with the de-Sitter results if one uses the relations
A =87GV(¢p) =3. (40)

In the presence of a perfect fluid whose velocity is aligned with the time-like
tangent vector of the geodesic y , one finds

T e
v :—4(1 2 (p+ 6P)r2 ) 11
(.0) = 57t (1+ (0 +6P)7 + ) (41)
where p is the energy density and P the pressure of the fluid. If both are
positive, the causal diamond has a larger volume, for fixed proper time duration
7 than it would have in flat spacetime. By contrast for large negative pressures,
as during inflation, the volume is smaller than it would be in flat spacetime.

6 Isometric Inequalities

In flat Euclidean space E? the 3-ball maximises volume enclosed for fixed surface
area. It is thus of interest to examine the iso-perimetric ratio

3V ALz
prs (E) ' (42)
One has
3Vs(pa) , Alp,a) & Lo 1o o
/() = (1 R g Rar )
1 1

_ _ Hv
_ (1+4O(RW SRy ) T'T +)
_ (1+%TNVT”T”+...), (43)

where in the last line we have used the Einstein equations. Remarkably, the iso-
perimetric ratio involves just the energy density at the origin O of the diamond
and exceeds unity if the Weak Positive Energy Condition holds.

Relation of a similar type which involves the 4-volume V (p, q) is

2y 2Dyt — 1y Lpes ), (14)

As we see the directional part cancels in (44) so that the iso-perimetric ratio
(44), at least at the given order in 7, is direction independent. Whether this
ratio exceeds unity depends only on the sign of the Ricci scalar, similarly to the
iso-perimetric ratio for Euclidean manifolds.



7 Measuring the Ricci and the Riemann tensors

The formula for V' (p, ¢) should be compared with that for the volume V' (r) of a
4-ball of radius r in a Riemannian manifold

’/T2

Vr)= 77"4 (1 - 3—16Rr2 +.. ) . (45)
There is an important difference in that the formula for the volume of a causal
diamond is directional in character since it involves not only the Ricci scalar R,
but the Ricci tensor R,,. By varying the points p and ¢ and hence varying T
one could, if one could measure V(p,q), determine the whole Ricci tensor for
vectors within the light cone. Since it is a bilinear function on tangent vectors, its
value for space-like vectors is then given by continuity and, assuming continuity,
it is thus uniquely determined. be unique.

Indeed, given a causal structure and some measure of volume and proper
time, one could use the formula to define the Ricci tensor. This might be useful
in approaches to quantum gravity based on Causal Sets or Directed Graphs.

The same remarks apply to the three-volume V3(p, ¢). However, as remarked
earlier, the area A(p, q) would only allow one to measure the Ricci scalar R.

The formula (45) can be generalised. Let’s take an n-dimensional cycle ¥,
and consider a tube T'(X,,,r) of radius r in the direction orthogonal to ¥. The
volume of this tube has a small r expansion,

4—n
V(T) = V(B4_n(7“))/ 1+ Cnp Z Rijijr2 +... y (46)
Xn ij=1

where V(By_n(r)) is volume of (4 —n)-dimensional ball of radius r in flat space

and R;ji; = ng,,n?nfn;‘n;, where nf, i = 1.4 —n is a set of orthonor-
mal vectors orthogonal to ¥,. When n = 0 (X is just a point) one has that
>_ij Rijij = R and (46) becomes (45).

In the Lorentzian signature it is straightforward to introduce an analogous
construction of a ‘causal tube’ for cycle ¥, lying entirely in a space-like hyper-
surface. The causal tube then can be defined as the union of causal diamonds of
‘size’ T centered at every point of ¥. The causal structure of the tube is deter-
mined by the field of time-like vectors T* defined everywhere on ¥,,. To leading
order in 7 the volume of this causal tube is a product of volume Vi4_,(7) of

(4 — n)-dimensional causal diamond and the volume of ¥,,,
V(T) = Vig—p) (1) Vol(£,,) .

The higher order in 7 corrections then involve components of the Riemann tensor
in the directions orthogonal to ¥, similar to (46),

3—n

V(T) = V(4—n) (7') / 1+ Z (anRi]-ij + bnRiOiO)T2 +...]. (47)
x

n i,7=0



The set of vectors n;, @ = 0..(3—n) orthogonal to ¥,, includes the time-like vector
ng = 77 1T#. The exact values of coefficients a,, and b,, are to be determined.
Obviously, using these tubes one could measure components of the Riemann
tensor including those in the space-like directions.
In order to check the formula (46) let us consider the Euclidean Schwarzschild
metric and take horizon sphere as the cycle, n = 2 in this case. The Schwarzschild

metric can be brought to the form
ds® = dp® + g(p)d¢® + r*(p)dw?, (48)

where coordinate ¢ has period 27 and functions g(p) and r(p) are given by
expansion

1
@94 +0(p°),
p* 4
() = a+L o0, (49)

glp) = p°—

where a is radius of the horizon.
The volume of tube T of radius r (in the direction orthogonal to horizon )
is given by expression

V) = ana2n [ do /a0 o)

2

= qarfArea(X)(1 + # +...). (50)

Taking into account that for the Schwarzschild metric one has 2 = 1 377 | Ryjij,
where the curvature components are calculated at the horizon, we find that

1
V(T) :m~2/E 1+E;Riﬂjr2+... , (51)
in agreement with general formula (46). Combining (45) and (51) it seems that
value of coefficient ¢,, = 2251 fits nicely both cases.

8 Higher Order Results

In this section we obtain the formula for the volume, or area, of a causal diamond

in a two-dimensional spacetime which are valid to order 6. We start with a

two-dimensional metric in general conformally flat form

ds* = a*(x,n)(—dn® + dz?). (52)
The volume of causal diamond in this metric takes the form
N/2 S-n
Ve = [ [ ddda @) + @ Ge, ). (53)
0 n—%

10



where N should be related to proper time 7 measured along the time-like
geodesic.
We consider several simple particular cases.

Case 1. The function a(x,7) is function of only time, a(n). Then we can
change the time variable to ¢t = [ dna(n) that measures the proper time along
the time-like geodesic so that

5= i
T/2 (L

The volume (53) is symmetric function of 7, i.e. V(—7) = V(7), so that only
even powers of 7 appear in the expansion of V(7) in powers of 7. The integral
over z in (53) may be evaluated to give

N/2
V(N) = / dn(N — 2m)[a®(n) + a®(—n)]. (54)

The 7-derivative of volume can be expressed in terms of functions of ¢ only, not
involving coordinate 7,

9,V (r) = ;[a( L ]/ldta (55)

Since only even powers of 7 will appear in the expansion of the volume anyway,
let us consider a(t) to be even function of ¢ given by a small ¢ expansion

a(t) =14 a1t® + agt + ...
Substituting this expansion into equation (55) we find that
0.V =2(0) ~ san(D) + 50 - Sasl(5) + .. (56)
The scalar curvature of metric (52) has the following expansion
R(t) = 4a; + (24az — 4a)t* + ... (57)
The terms in the expansion of the volume then can be expressed in terms of
curvature and its derivatives evaluated in the center of the diamond,

Vir) =25 - R + (B~ SRS+ (58)

where we have used the fact that in the center of the diamond R}, = Ry, .

Case 2. Function a(n, z) depends only on coordinate 2 and does not depend
on time 7). Normalising a(z = 0) = 1 in the center of the diamond, we have that
N =7 and we find

T/2 n+7/2
V(r) =2 / dn / dr o (z) (59)
0 T/2

11



for the volume. Representing function a(z) in the vicinity of the center of the
diamond in terms of expansion

a(x) =14 b2® + bozt + ...
we find the following

oy Ty, 2

3 (2) 15(21)24-1)2)( )+ (60)

V() =25+
expansion for the volume. The scalar curvature this time has expansion
R(z) = —4by + (—24bs + 2002)z% + . .. (61)

so that the coefficients in expansion (60) can be expressed in terms of values of
the curvature and its derivatives in the center of the diamond,

V(r) = 25) - SR + (B = SRS+ (62)

In principle, we can not exclude the appearance of the term R%’x in the 76
term. The presence of this term can not be detected from the above two cases.
So that we need to consider one more case.

Case 3. Choose function a(z,n) in the form
a(z,n) =1+ cz’n. (63)

Time-like curve £ = 0 is still a geodesic in this case so that n measures the
proper time along this geodesic, and we have that N = 7. The Ricci scalar has
expansion

R=12cnxz+ ...
in this case so that R;, = 12c.
We find that volume
n+7/2 T 2
—2/ dn/ s dra®( n):2(§)2+630(2)10+... (64)

has expansion with vanishing term 7¢. This indicates that term R, does not
appear in this order.

Combining all these cases the expansion of the volume can be presented in
the following covariant form

Vir) =25 — SR+t l-g0sR? +

1 o T
5 =0 10as V2R = VoV R)ITT7 ()", (65)

4

where we have used that V2R = =R} + R/, in the center of the diamond.

12



In the two-dimensional case it is straightforward to calculate the volume
(length) of the maximal space-like hypersurface that bounds the intersection of
the future light cone of p with the past light cone of q. This volume, Vi (p, q) is
the two-dimensional analog of V3(p, ¢) considered above. We omit the details of
this calculation that follows same lines as the above calculation of the volume
of the causal domain. Here is the final result valid up 7° order,

Vilpa) =7 — SR+ o [—gus B + 2 (005V R~ VoV B) 717 (D)7 (66)
6 "2 192 5 2

The formulae (65) and (66) give us an idea on how complicated can be the
next to non-trivial order terms in higher dimensions where the number of pos-
sible combinations built out of curvature and its derivatives is larger than in
two-dimensions. This also allows us to guess the possible structure of such
terms in higher dimensions. The direct calculation of the higher order terms in
four spacetime dimensions, however, requires more efforts and will be reported
elsewhere.

9 Higher Dimensions

In this section we give some results valid in arbitrary dimension d. We follow the
strategy outlined in the first part of the paper: consider two particular cases of
the d-dimensional Einstein Static Universe and d-dimensional de-Sitter space-
time. These two cases help us to fix the coefficients in the small 7 expansion for
the volume of the causal daimond just in the same way as it was demonstrated
earlier in this paper for dimension d = 4.

The metric of d-dimensional Einstein Static Universe is

ds® = —dt* + dx* + sin® degdfz (67)
and the metric of d-dimensional de-Sitter spacetime is
ds®> = —dt® + cosh® t(dx? + sin® degd_2) , (68)
where dw?, _ is standard metric on d-dimensional sphere of unite radius.

The volume of the causal diamond. For metric (67) the volume of the causal
diamond is given by

T/2 T/2—t
VEinst = 2Vol(Sd,2)/ dt(/ sin?~2 xdx) , (69)
0 0

where Vol(Sq-2) is volume of d-sphere of unite radius. The volume in the case
of de Sitter spacetime is given by expression

Vis = 2Vol N _dn NPT e
as = 2Vol(Sq—2) — sin® xdx) , (70)
0 COS 77 0

13



the time-like coordinate 7 is defined by relation cosn = 1/ cosht.
Expanding in both cases the volume in powers of 7 and taking into account
that N = 7(1 — 5772 +...) in the case of de Sitter spacetime we find that

_ dd-1)(d-2) ,
Viinst =  Vaat(7) <1 - mT + .. ) : (71)
Vas: = Vaau(7) <1 - %TZ’ + .. ) ; (72)
where ,
VRae(T) = Vol(Sd,g)—(Z)mwz

2n+1)(n+1) 2

is volume of the causal diamond in d-dimensional flat spacetime.

We have to take into account that R = (d — 1)(d — 2) and Rgp = 0 in the
case of metric (67) and R = d(d — 1) and Rgp = —(d — 1) in the case of metric
(68). Combined with this the equations (71) and (72) are presented in the form

d
A(d+1)(d+2)

d
A(d+1

V = Vaa (1) (1 -3 R + 5 )R60T2 +.. > ) (73)
This gives us a formula for the volume of the causal diamond valid for any
dimension d.

Volume of the mazximal spacelike hypersurface. The volume of the spacelike
hypersurface (at ¢ = 0) for both spacetimes is

N

Va_1(1) =Vol(Sq—2) / ’ dy sin?=2 y (74)

0

where N = 7 for the Einstein Static Universe and N = 7(1 — 5;72 +...) for de
Sitter spacetime. The calculation is straightforward and here is the result

Veinse = Voo (1) <1 - %T2 " ) , i
Vas = Vﬂ(;itil)(T) <1 - %T2 - ) , 7o

where V{7 (1) = 2= Vol(Sq_)(5)* L.
These two expressions help us to determine the coefficients in the expansion
of the (d — 1)-volume

Vi=U(r) = Vﬁ(:t_l)(T) (1 - mRT2 + %ROO"J +.. > - (77

14



The Area. The area A(p, q) of the intersection It (p)N I (¢) is given by expres-
sion

N
A =Vol(S4_s)sin? 2 oR (78)

where N = 7 for the Einstein Static Universe and N = 7(1 — 21—47'2 +...) for de
Sitter spacetime. Thus, we get the expansion

AEinst(T) = Aﬂat(T) <1 - %72 +.. ) , (79)

Ags(t) = Afag(7) <1 — %72 +.. ) , (80)

where Agat(T) = Vol(Sq—2)(5)%2, so that we have in terms of the curvature

1 —4
R + (d )

40 = Ana (1= =" + 3=y

Room? + .. ) . (81)

Notice that the directional component in the expansion disappears only in di-
mension d = 4.

The iso-perimetric ratios. The iso-perimetric ratio can be now calculated,

d—1 d—1
Via—1)/AT2 (A2 [Vi4_1))fat

1 1
=1+-— R+ — 24
HE D e O D [ E S
1 1
=14+———(R,, — =g R)THTY + ...
*a— s Fer ~ g9 b) +
221G
=14+—T,,THT" + ... 2
M PR + (82)

This extends the results obtained earlier in this paper for d = 4 to arbitrary
dimension and demonstrates that the iso-perimetric ratio always involves the
energy density in the center of the causal diamond. It may be that this depen-
dence is a consequence of the Raychaudhuri equation. It would be interesting
to investigate this possibility further *.

The other iso-perimetric ratio involves the d-volume of the causal diamond
and the maximal (d-1)-volume

d
d+1)(d—1)(d+2)

Vil VET (VET [Vi)ar = (1+ < Rr? +> L (83)

This indicates that the directional component vanishes in this ratio universally
in any dimension d.

4The first author thanks Thibault Damour for suggesting that this result on the isoperi-
metric ratio might be dimension independent.
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10 Conclusion

In this paper we have provided universal formulae for the volume and other
geometric quantities of small causal diamonds in terms of the local values of
the Ricci tensor and its derivatives correcting the ’t Hooft’s flat space values.
In all spacetime dimensions, our corrections are valid to quadratic order in the
duration 7 of the causal diamond. In two spacetime dimensions we are able to
work to quartic order in 7. Going to fourth order and beyond in higher than
two spacetime dimensions appears be rather more challenging because of the
number of allowed terms that may contribute.

In general the geometry of causal diamonds turns out to be related to the
distribution of energy and momentum in a non-obvious and in general directional
fashion. However some general trends may be observed. For instance, one
striking result was the behaviour of one of the the isoperimetric ratios which
depends on just the local energy density in all spacetime dimensions. In the
case of the the other isoperimetric ratio there is no directional behaviour in
all spacetime dimensions. It is hoped that these results will contribute to a
more quantitative understanding of holography and of probabilities in eternal
inflationary models.
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