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ABSTRACT. A graph is without solvable orbits if its group of automorphisms
acts on each of its orbits through a non-solvable quotient. We prove that there
is a connected graph without solvable orbits of cyclomatic number c if and only
if ¢ is equal to 6, 8, 10, 11, 15, 16, 19, 20, 21, 22, or is at least 24, and briefly

discuss the geometric consequences.

1. INTRODUCTION

Throughout this paper, by a graph we always mean a finite undirected graph
with or without loops and multiple edges. For such a graph G let V(G) and £(G)
denote its set of vertices and edges, respectively. An automorphism of G is a pair
(71, m2) where 7, m2 is a permutation of V(G) and £(G), respectively such that
a vertex v € V(G) is incident to an edge e € £(G) if and only if 1 (v) is incident
to ma(e). If G is a simple graph, then m; uniquely determines m2. The set of

automorphisms of G forms a group with respect to composition which is denoted
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by Aut(G). We say that G is without solvable orbits if Aut(G) acts on the orbit
of any vertex in V(G) and any edge in £(G) through a non-solvable quotient. A
group I' acts on a graph G if a homomorphism I' — Aut(G) is given. We say
that I' acts on G without solvable orbits if I' acts on the orbit of any vertex in
V(G) and any edge in £(G) through a non-solvable quotient. In that case each
orbit of Aut(G) splits up into orbits of I" and thus G is without solvable orbits,
see [7], Lemma 3.2.

We define the cyclomatic number of a connected graph G as the alternating
sum ¢(G) =1 —|V(G)| + |E(G)| (in the general case the term 1 must be replaced
with the number of connected components of G). Thus, 1 — ¢(G) is the Euler
characteristic of the graph G, viewed as a CW-complex. The topological invariant
¢(@G) equals the arithmetic genus of each projective algebraic curve with ordinary
double points, defined over an algebraically closed field, whose incidence graph is
isomorphic to G and whose irreducible components are all rational curves. The
relevance of connected graphs without solvable orbits in arithmetic geometry has
been made apparent by the second author in [7]: in the above context they yield
to constructions of curves without solvable points. A more precise statement is
given at the end of this paper. A principal motivation for the present work has

been to explore the limitations of that method.

Theorem 1.1. There is a connected graph without solvable orbits of cyclomatic
number c if and only if c is equal to 6, 8, 10, 11, 15, 16, 19, 20, 21, 22, or is at
least 24. The same holds for stable graphs.

A graph G is stable, if it is connected and the degree of any vertex in V(G)
is at least 3. In Proposition 3.4 of [7] it was proved that there is a stable graph
without solvable orbits of cyclomatic number ¢ for every natural number c listed
above except for ¢ equal to 19, 24, 33 and 39. It was pointed out by J. Jahnel
that even the last three numbers can be represented as the cyclomatic number of
certain stable graphs constructed therein. Thus one novelty here is a construction
for the case ¢ = 19.

In the paper quoted above it was also shown (Proposition 3.5) that there is
no connected graph without solvable orbits of cyclomatic number less then 10
and different from 6 or 8. The main theme of the present paper is to show that
there is no connected graph without solvable orbits in the remaining cases, that
is, when ¢ is 12, 13, 14, 17, 18 or 23.
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We organize this paper as follows. In the next section we present the construc-
tions that prove the ‘if” part of Theorem 1.1. In Section 3 we review some tools
from group theory. This is followed by a collection of simple observations that
we will use frequently throughout the rest of the paper. In Section 5 we prove
the solvability of the automorphism group of certain regular graphs. In Section 6
we show how to reduce connected graphs without solvable orbits to stable simple
graphs with the same property, and study what happens to the orbits and the
cyclomatic number of the graph during such a reduction process. This allows us
to split up the proof of the more essential part of Theorem 1.1 into two lemmas
that we prove in Sections 7 and 8, respectively. In the last section we briefly

discuss the geometric implications.

2. CONSTRUCTIONS

To prove the ‘if’ part of Theorem 1.1, for the sake of completeness we briefly
recall the constructions from [7]. For integers n > 5, x > 0, let K,(x) denote
the complete graph K, with = loops attached to each of its n vertices. The
symmetric group S,, acts on K, (z) without solvable orbits. The numbers 6, 11,
16 and 21 arise as the cyclomatic number of the graphs K5(z) for x = 0,1,2 and
3, whereas the graphs Kg(0), K6(3) and Kg(4) have cyclomatic number 10, 28
and 34, respectively.

For integers n,m > 5, z,y > 0, let K, ,,(x,y) denote the complete bipartite
graph K, ,, with x loops attached to each of its n vertices in the first colour class
and with y loops attached to each of its m vertices in the second colour class.
The group S, X S, acts on K, n,(z,y) without solvable orbits. The numbers 20,
25, 26, 30, 31, 32, 35, 36, 37, 38 as well as every integer > 40 can be represented
as ¢(Ks6(z,y)), for suitable values of x and y.

For a prime power ¢ and a natural number x we define the graph P,(x) as
follows. Its vertices are the points p and the lines ¢ of the projective plane of
order ¢, pf is an edge of the graph if and only if the point p is incident to £,
and moreover x loops are attached to each vertex p corresponding to a point on
the projective plane. The group PGL3(g), as well as the group PSLs(q), acts
on P,(z) without solvable orbits, and the graphs P»(0), P»(1), P2(2), P»(3) and
P5(0) have cyclomatic number 8, 15, 22, 29 and 27, respectively.
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So far we have covered all the possible values of ¢ except of 19, 24, 33 and 39.
The last three cases can be handled by the bipartite construction: ¢(K5,7(0,0)) =
24, ¢(K5,5(1,0)) = 33 and ¢(K57(3,0)) = 39. Our new construction for ¢ = 19

goes as follows.

For an integer n > 5 we define the graph K/ . as follows. Its vertices are

= n
1,2,...,2n. For 1 < i <mandn+1 < j < 2n we connect ¢ and j by an
edge ij if and only if j — i # n. Thus, K,’ln is obtained by removing a 1-factor
from the complete graph K, ,,. It is clearly stable, and its cyclomatic number is
c(K, ) =n(n—3)+ 1

The symmetric group S, acts on Kj, ,, as follows. If m € S, is a permutation,
that is, a bijective function 7 : {1,2,...,n} — {1,2,...,n}, we extend it to an
automorphism 7 € Aut(K], ,,) by putting 7(j) = 7(j —n)+n forany n+1 < j <
2n. The vertex set splits up into two orbits {1,2,...,n} and {n+1,n+2,...,2n}
under this action, whereas the action on the edge set is transitive. The action is
clearly faithful on each of the three orbits, and therefore S,, acts on K, ,, without
solvable orbits.

In particular, Ké,f; is a stable graph without solvable orbits of cyclomatic

number 19.

3. SOLVABLE GROUPS

The proof of the ‘only if’ part of Theorem 1.1 heavily depends on the solvability
of groups of certain cardinality. First we recall the following well-known result,

see e.g. [3], pages 221-222.

Theorem 3.1. (Burnside) Let p,q denote primes, a, nonnegative integers.

Then every group of order p®q® is solvable.

To go one step further we will use a rather deep result from the theory of finite
simple groups. A minimal simple group is a simple group of composite order all

of whose proper subgroups are solvable.

Theorem 3.2. (Thompson [10]) Every minimal simple group is isomorphic to
one of the following minimal simple groups:

(i) the projective special linear groups PSL2(2P), p any prime;

(ii) PSL2(3P), p any odd prime;
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(iii) PSLa(p), p any prime exceeding 3 such that p> + 1 =0 (mod 5);
(iv) the Suzuki groups Sz(2P) (also denoted by *Bo(2P)), p any odd prime;
(v) PSL3(3).

Corollary 3.3. Let a, 3 denote positive integers. Then every group whose order
is 223511 or 2%3p, where p is either 13 or 17, is solvable.

Note that there exist minimal simple groups whose order is 23°p for p = 13 and
p = 17: namely |PSL3(3)| = 243213 and |PSLy(17)| = 243217.

Proof. If a finite group is not solvable, then it has a non-abelian simple composi-
tion factor. Either it is a minimal simple group, or has a nonsolvable subgroup.
Iterating this procedure, because of finiteness we eventually obtain a minimal
simple group whose order divides that of the original group. It suffices to prove
that no minimal simple group has an order in the form 2°3°11 or 2%3p, where p
is either 13 or 17. As we have already seen, this is true for PSL3(3).

The order of PSLy(2P) is 2P(2P —1)(2P +1). The three factors involved therein
are pairwise coprime integers > 2, and none of them is equal to either 11, 13 or
17, if p is any prime, hence the claim.

The order of PSLy(3P) is 37(3P — 1)(3P + 1) /2. Note that (37 — 1,37 +1) = 2.
It is not possible that one of 3 —1 and 3P + 1 is a power of 2, whereas the other
is2-11,2-13 or 2-17.

The order of PSLy(p) is p(p — 1)(p 4+ 1)/2. Tt is not possible that one of p — 1
and p + 1 is a power of 2, whereas the other is 2- 11, 2-13 or 2-17. Thus, in a
hypothetical counterexample, p must be 11,13 or 17, whereas one of p — 1 and
p+ 1 is a power of 2, and the other is twice a power of 3. This is only possible
when p = 17, but then |PSLy(17)| = 243217.

Finally, the order of Sz(2P) is 227(2% +1)(2P — 1). The odd factors are again
coprime integers > 2, and none of them is equal to either 11, 13 or 17 when p is

an odd prime. O

Note that one can derive Corollary 3.3 directly from Wales’s classification [11]
of the simple groups of order 2*3°p, see [12, 13] for the particular cases p = 17
and p = 13, respectively. Since these results also depend on Thompson’s theorem,
we preferred the more direct approach.

Assume that the simple graph G has connected components Hy, Hs, ..., Hy,,

all isomorphic to a given simple connected graph H. Aut(H) can be understood
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as a permutation group acting on V(H). Then Aut(G) = Aut(H)S,,, see
[1]. Here we use the terminology of [8] for wreath products. Consequently,
|[Aut(G)| = |Aut(H)|™ - m!. In particular, if m < 4, and the only primes that
divide |Aut(H)| are 2 and 3, then the order of Aut(G) is of the form 2%3°, and
thus it is solvable by Burnside’s theorem. This will apply to every wreath product

that occurs in this paper.

4. PRELIMINARY LEMMAS

Throughout this section we assume that a group I' acts on the graph G, and by
an orbit we always mean an orbit under this specific action. Let G be a simple
graph, and let G denote its complement, then Aut(G) = Aut(G) and in general,
the action of I" on G induces in a natural way an action of I on G such that the
two actions coincide on V(G) = V(G).

Claim 4.1. T acts on G without solvable orbits if and only if ' acts on G without

solvable orbits.

We say that I' acts on a set X without solvable orbits if I' acts on every
orbit in X through a non-solvable quotient. The above claim is an immediate

consequence of the following

Lemma 4.2. IfT acts on V(G) without solvable orbits, then it also acts on E(G)

without solvable orbits.

Proof. Assume that the claim is false and let F be an orbit of edges on which
I" acts through a solvable quotient A. Let H be the subgraph of G whose edge
set is E and whose vertices are the endpoints of the edges in F. Then I' leaves
the subgraph H invariant. Every automorphism in I' which fixes the edges of H
but not all vertices of H must interchange the endpoints of some of the edges in
E. In particular it acts as an involution on H. Therefore I' acts on H through
a quotient = which is the extension of A by an elementary abelian 2-group.
Accordingly, = is solvable, and T" acts on V(H) through a solvable quotient,

which is a contradiction. O

In the sequel let G denote a connected graph, not necessarily simple. For every
vertex v € V(G) let O(v) denote the orbit of v with respect to the action of T'.
For any orbit V' = O(v), all vertices in V' have the same degree, so we can define
the degree of the orbit as d(V') = deg(v).
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Lemma 4.3. Assume that the prime p divides the cardinality of a vertex orbit
V and p > d(U) for every vertex orbit U # V. Then p divides the size of each

vertex orbit.

Proof. Let U be any orbit which has a vertex adjacent to a vertex in V. The
number of edges connecting a vertex in V' to vertices in U is the same because
the action of I" is transitive on V, and similarly the number of edges connecting
a vertex in U to vertices in V is the same. The latter number is not divisible by
p. Double-counting the edges between V and U we find that the cardinality of
U must be divisible by p. Since G is connected, this implies that the cardinality
of each orbit is divisible by p. O

We will also use frequently the following variant, that can be proved along the
same lines. Let U and V be two vertex orbits and assume that e = uv € £(G)
for some u € U,v € V. Then each edge in the orbit of e connects a vertex in U
to a vertex in V. Thus we may say that U and V are connected by an edge orbit

E, and double counting as above gives the following

Lemma 4.4. Assume that the vertex orbits U and V are connected by an edge
orbit E. Then each vertex in U is incident to the same number of edges in F,

and this number is a positive integer multiple of |V'|/(|U|,|V]).

Suppose that the vertex set of the connected graph G splits up into t > 2
orbits V1, Vs, ..., V; of cardinality ni, ns, ..., n:, respectively, a fact we denote by
V[ni,na,...,ns. It follows that

Corollary 4.5. For any 1 < i <t we have

d(V;) > min e

i#i (ni,ng)
Looking at the connections of orbits of the same given cardinality with the

rest of the graph, we obtain the following variant.

Corollary 4.6. Assume that ni,ne,...,n: are not equal to the same number.

For any n € {n1,na,...,n}, there is an index 1 < i <t such that n; = n, and

d(V;) > min e

nj#En (TL, nj) '
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Denote the maximum degree of the graph G by §(G). Suppose that the edge
orbit E is incident to the vertex orbit V. Each vertex in V is incident to the
same number of edges in F, say § of them. If one edge in F is incident to only
one vertex in V, then so is each edge in F, and thus |E| = 6|V|. If on the other
hand each edge in E connects two vertices in V' then |E| = §|V|/2. Since in a
connected graph each vertex orbit is incident to some edge orbit and vice versa,

we have:

Proposition 4.7. Let G be a connected graph. If there is a vertex orbit whose
cardinality is divisible by the odd prime p, then there is also an edge orbit with
the same property. If p divides the cardinality of each vertex orbit, then it also
divides the cardinality of each edge orbit. If p > 6(G) divides the cardinality of
an edge orbit, then there is also a vertex orbit whose cardinality is divisible by p.
If G has an edge orbit whose cardinality is a power of 2, then it also has a vertex

orbit with the same property.

In a stable simple graph G without solvable orbits, let r4 denote the number
of vertices of degree d, thus r; = ro = 0. Note that every permutation group of
degree < 4 is solvable. Since Aut(G), and thus also I' leaves the set of vertices
of degree d invariant for each positive d, the set of vertices of the same degree

splits up into complete vertex orbits. In view of all this we have:

Proposition 4.8. In a stable simple graph G equipped with an action of I' without
solvable orbits, every orbit of T' (vertex and edge alike) has a cardinality > 5.

Moreover, rq > 5 for each d such that rq is non-zero, and the cyclomatic number

c(G)=1 +Z(g - l)rd.

d>3

of G can be written as

In particular, ¢(G) > 4.

Pick a vertex v € V(G) and let X; be the set of vertices connected to v by a
path of length at most ¢. In particular, Xo = {v}. The action of I on G is given
by a homomorphism ¢ : I' — Aut(G). Introduce I' = (I') < Aut(G), and let T;
be the stabilizer of X; in L. Clearly the factor set f/ I'g can be identified with
the orbit of v and I'; 44 is a normal subgroup in I';, and also in 'y, but note that
the latter is not necessarily a normal subgroup in I. Since G is connected, the

group I'; is trivial for a sufficiently large ¢, and we have
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Proposition 4.9. || = |O(v)| T[T : Tiza|.

The quotient group I';/T'; 41 acts faithfully on the set of edges connecting ver-
tices in X;11 \ X; to vertices in X;. Here |Xo| = 1 and |X; \ Xo| = deg(v).
Therefore T'g/T'; is isomorphic to a subgroup of Sgeg(yy. For an i > 1, let
U1, Usg, ..., u; denote the elements of X; \ X;_;. Each vertex u; is connected
by at most deg(u;) — 1 edges to vertices in X;4+1 \ X;, which are permuted among
themselves under the action of I'; /T;+1. Consequently, I'; /T'; 11 can be embedded
into

Sdeg(ur)—1 X Sdeg(us)—1 X + -+ X Sdeg(uz)—15
and in turn also into a direct power of Ss(g)—1. We will frequently refer to this

argument. The following consequences will be particularly useful.

Lemma 4.10. Let G be a stable simple graph.
(i) If5(G) <5 and G has a vertex v of degree 3 or 4 such that |O(v)| = 223"

for some nonnegative integers a,b, then T is solvable.
(ii) If §(G) < 5 and either r3 or ry is of the form 293° for some nonnegative

integers a,b, then T is solvable.

Proof. The first statement follows from the fact that the cardinality of each
quotient I';/T;41 can be written in the form 29308 with suitable nonnegative
integers «, 8. In view of Proposition 4.9, the same holds for the order of T, hence
it is solvable by Burnside’s theorem.

To prove the second statement, assume that 7; = 223° for some i € {3,4}.
Were there a vertex orbit V' with d(V') = i such that |V| is divisible by a prime
p > 5, Lemma 4.3 would imply that p divides the cardinality of each vertex orbit
of degree 7, and thus also r;, a contradiction. Since r; is not divisible by 5, there
must be a vertex v of degree i such that |O(v)]| is not divisible by 5 either, and

thus the statement follows from (i). O

Lemma 4.11. Let G be a stable simple graph.

(i) If 8(G) < 5 and either r5 or ry is equal to p, 2p or 4p for some prime
number p > 5, then there exist nonnegative integers «, 3, such that |f|
divides 2°38p.

(i) If 6(G) = 3 and |V(G)| = r3 = 2%p for some a € {0,1,2} and a prime
p > 5, then there exists a nonnegative integer o such that |f| divides
2%3p.
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Proof. To prove the first statement, assume that r; = 2%p for some i € {3,4} and
a € {0,1,2}. Were there a vertex orbit V with d(V') = i such that |V] is divisible
by a prime ¢ > 5, ¢ # p, Lemma 4.3 would imply that ¢ divides the cardinality
of each vertex orbit of degree ¢, and thus also r;, a contradiction. If there is a
vertex orbit V with d(V') = ¢ such that the only primes that divide |V'| are 2 and
3, we find that the order of I is of the form 2%37 (see the previous proof).

Hence we may also assume that the cardinality of each vertex orbit V with
d(V) = i is divisible by either 5 or p. Since not all of them can be a multiple
of 5, there is one such orbit whose cardinality is divisible by p. It follows from
Lemma 4.3 that the cardinality of each vertex orbit is divisible by p. If there is
a vertex v of degree i such that |O(v)| = 3p, then it must be a = 2, and then the
remaining vertices of degree i form an orbit of cardinality p. In any case we find
a vertex v of degree i such that |O(v)| = 2°p. Each T';/T';41 (including the case
¢ = 0) can be embedded into a direct power of Sy, and the result follows form
Proposition 4.9.

In case (ii) a similar argument gives that there is a nonnegative integer b and
a vertex v such that |O(v)| € {2° 2%p}. This time the order of T'y/I'; divides
[Ss| = 6, and |T';/T';41] is a power of 2 for every ¢ > 1, hence the result. O

5. REGULAR GRAPHS

For every pair of integers n > 4 and 1 < k < n/2 we define a graph G = Cy,(k)
as follows. Let V(G) = Z/nZ. For i,j € Z/nZ let ij € £(G) if and only if either
i—j==41ori—j==+k. Edges of the first kind form a cycle of length n. Edges
of the second kind will be referred to as edges of length k, they form an n-cycle
if and only if &k is coprime to n, which is always the case if n is a prime number.

The graphs C,, (k) are vertex-transitive circulant graphs, in fact they are Cay-
ley graphs on Z/nZ. It is well-known, that for n odd, the only simple eigenvalue
of such a graph G is the valency of G, see [2, 9]. It is easy to determine the

spectrum of C,,(k), when n is a prime.

Lemma 5.1. Let G = Cy(k), where p is a prime greater than 8, and1 < k < p/2.
The unique simple eigenvalue of G is 4. Apart from this, every eigenvalue of G
has a multiplicity 2, unless k* = —1 (mod p), in which case every non-simple

eigenvalue has a multiplicity 4.
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Proof. The adjacency matrix of G is the circulant 0—1 matrix whose first row is
[ag,a1,a2,...,ap—1], where a; = 1 if and only if ¢ € {1,k,p — k,p — 1}. Accord-

ingly, the eigenvalues of A are
N\ =&t el elehi g =1 (i=0,1,...,p—1),

where € = ¢2™/P ig a primitive pth root of unity, see eg. [2]. Thus, A\ = 4, other-
wise each of the pairwise different four summands of \; is one of €,¢2,...,eP~ 1.
Since these p — 1 numbers constitute a basis for the extension Q(¢)|Q, a coinci-
dence A\; = \; for 0 < ¢,j < p can only occur if
et ekt ek em1) = [T M g7kI I},

Here ¢/ = ¢’ if and only if j = 4, whereas ¢/ = 7% implies § = p — 4, and in
fact Ap—; = A;. Moreover e/ = £ if and only if j = ki (mod p). In this case
e =¢e7k g0 \; = \; if and only if {e,e7} = {7}, Were ¢! = £k it
would imply €* = EkZi, that is, k2 = 1 (mod p), a contradiction. Thus it must be
that e~* = £/ which implies ¢’ = ¢7%/ and also k¥ = —1 (mod p). Note that
such an integer k exists if and only if p = 1 (mod 4), and then there is exactly
one such k satisfying 2 < k < p/2. Conversely, if k2 = —1 (mod p) and j = ki
(mod p), then &/ = ¥ and =% = ", therefore A\; = ;. A similar argument

shows that &/ = ¢k

if and only if j = —ké (mod p), and if this is the case then
again \; = )\; is equivalent with the condition ¥* = —1 (mod p).

In summary, if k% # —1 (mod p), then \; = ), if and only if j =i or j = —i,
and if k> = —1 (mod p), then \; = \; if and only if j =4, j = —i, j = ki
or j = —ki, and all this four cases are pairwise different. Thus the assertion is

proved. O

Let mg < m; < ... < my be the eigenvalue multiplicities of the graph G =
Cp(k). Thus, if k% # —1 (mod p), then t = (p — 1)/2, mp = 1 and my = my =
... =my = 2. Accordingly, Aut(G) is a subgroup of O(1)xO(2) X...xO(2), hence
solvable, since O(1) = Z/2Z, and the only finite subgroups of the orthogonal
group O(2) are either cyclic or dihedral. For more details, see [1, 5].

Corollary 5.2. The automorphism group of the graphs Ci3(k) and Ci7(k) is

solvable for every possible value of k.

Proof. In view of the previous lemma, we only have to prove that Aut(Cy3(5))
and Aut(Ci7(4)) are solvable. Let first G = C13(5). Choose v = 0, and let X;

denote the set of vertices connected to v by a path of length at most ¢, as in
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Section 4. Thus X = {0}, X1\ X = {#1, £5} and X5\ X; = {£2, +3, +4, £6}.
We have X5 = V(G), the edges connecting v to vertices in X7 \ Xy as well as the
edges that connect vertices in X7 \ Xy with vertices in X5\ X; are shown below.

Recall from Section 4, that T's = 1 and T'g/T'; is isomorphic to a subgroup
of S4. Choose an element v € I'y, it leaves the vertices 0,41, £5 fixed. Since
the only neighbor of 2 in X; \ Xp is 1 and 2 is the only neighbor of 1 with this
property, we have v(2) = 2, and v does not move the elements —2,3, —3 either
for similar reasons. Thus v also leaves the sets {4,6} and {—4, —6} fixed, hence
I'1 /Ty =T is a subgroup of S x Sa. It follows from Proposition 4.9 that |Aut(G)|
divides 13-24 -4 = 2°3 - 13, and thus solvable by Corollary 3.3.

Figure 1 The levels of the graph Ci3(5)

Consider now G = Cy7(4), and choose once again v = 0. In this case X; \ X =
{£1,+4}, Xo\ X7 = {£2,43,45,£8} and X3 \ Xo = {£6,£7}. We have
X3 = V(G) and I's = 1. The edges between the consecutive levels of G are

shown on Figure 2.

Figure 2 The levels of the graph Ci7(4)
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I'y/T; again is isomorphic to a subgroup of S4. Choose an element v € T'y, it
leaves the vertices 0,41, +4 fixed. Since the only neighbor of 2 in X; \ Xj is 1
and 2 is the only neighbor of 1 with this property, we have v(2) = 2, and 7 does
not move the elements —2,8, —8 either for similar reasons. Since 5 is the only
common neighbor of 1 and 4 in X3 \ X3, it is also fixed by v, as well as -5 by
symmetry. Thus 3 and -3 are also fixed, and it follows that I'; /Ty = 1. Since
T’y fixes the vertices +2, 43, it also fixes £6,+7 and thus I'y = I's. It follows
from Proposition 4.9 that |Aut(G)| divides 17 - 24 = 233 - 17, and thus solvable
by Corollary 3.3. (In fact, we could have easily derived the solvability from the

Sylow theorems in this case.) U

We will frequently refer to the solvability of the automorphism group of small

regular simple graphs covered by the following lemma.

Lemma 5.3. Let G be any k-reqular simple graph on 8 vertices, 1 < k < 6, or
on 6 vertices, 1 <k < 4. Then Aut(G) is solvable.

Proof. Assume that G has 8 vertices. Since Aut(G) = Aut(G), it is enough to
prove the statement for £ < 3. If £ = 1, then G is the union of four disjoint edges,
thus Aut(G) = Sa1S4. If k =2, then G is either an 8-cycle, or the union of two
disjoint cycles. Accordingly, Aut(G) is either Dg, D3 x D5, or D4 1Sy, If k = 3
and G is not connected, then G is the union of two disjoint complete graphs,
each on 4 vertices, hence Aut(G) = S41S2. Finally, if G is a connected 3-regular
graph, then the solvability of Aut(G) follows directly from Lemma 4.10. If G has
6 vertices, then a similar argument shows that Aut(G) is either S31Ss3, D3 1S3 or
Ds. O

Since Aut(G) acts on each vertex orbit V through a quotient that is a subgroup
of Aut(H), where H denotes the regular graph induced by G on V, we have the

following consequence for connected graphs.

Corollary 5.4. Let G be a stable graph without solvable orbits such that Aut(G)
has more than one vertex orbit. Then G induces an empty graph on each vertex

orbit of size 6 or 8.

We close this section with the following remark. In Section 8 we encounter
several graphs whose solvability we prove via Lemma 4.11 and Corollary 3.3.

Some of these graphs are 3-regular and are either circulant, thus may be handled



14 GY. KAROLYI AND A. PAL

by the method of his section, or belong to the family of the so-called generalized
Petersen graphs. The automorphism group of such graphs have been completely
determined in [4], and thus could have been used for our purpose. It is also
quite plausible, that even in the remaining cases any reference to Thompson’s
theorem could have been avoided, but not without any undesirable effect on the

complexity of our presentation.

6. BASIC REDUCTION

Assume that the group I' acts on the connected graph H. Each orbit (edge or
vertex) of Aut(H) splits up into complete orbits of I'. In the sequel we refer to

an orbit of I' simply as an orbit. Consider the following five operations on H.

(i) Remove an orbit of loops.

(ii) Unless H is the complete graph on two vertices, remove an orbit V' con-
sisting of degree one vertices, along with the unique edge orbit E incident
to it.

(iii) Unless H is a cycle of length n > 3, remove an orbit V of vertices
of degree 2, along with the edge orbits incident to it, and connect the
two neighbours (which may coincide) of each removed vertex v; by a
new edge e;. More precisely, in the particular case when V' consists of
pairs of adjacent vertices, for each such pair v;1,v;2 the new edge e;
should connect the two neighbours of the set {v;1,v;2} (which again may
coincide).

(iv) Take an orbit E that contains two parallel edges. This orbit can be
partitioned into edge sets E; of the same cardinality such that two edges
are parallel if and only if they are in the same set E; for some i. Replace
each set F; by a single edge e;.

(v) Remove an orbit E of edges that does not contain two parallel edges, but

in which each edge is parallel to some edge in a different orbit.

We say that H is reduced if none of these operations can be performed on H.
H is reduced if and only if H is either a singleton, a K3, a C,, (n > 3), or a
stable simple graph. In the first three cases Aut(H) is either a dihedral group or
of order at most 2, thus solvable. Therefore, if I acts on the reduced graph H
without solvable orbits, then H must be a stable simple graph.
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Lemma 6.1. Assume that the group ' acts on the connected graph H without
solvable orbits, and the graph H' is obtained from H by performing one of the
above operations. Then H' is a connected graph on which I' acts without solvable
orbits. Moreover, for every orbit O in H there is an orbit O’ in H' whose cardi-
nality divides 20|, and for every orbit O’ in H' there is an orbit O in H whose
cardinality is an integer multiple of |O’]/2.

Proof. H' is obviously connected. Assume that we have removed an edge orbit
E consisting of y loops using the first operation. Then y > 5, otherwise I would
act on E through a solvable quotient. The vertices incident to these loops form
an orbit V of = vertices, each incident to the same number of loops, say k. Thus
y = kx. T acts on H’ via its restriction to H'. Each orbit in H’ is at the same
time an orbit of H, so I" acts on H’ without solvable orbits. The second statement
is obvious because V is an orbit of x vertices in H’'. Note that it implies x > 5.
Moreover, ¢(H') = ¢(H) — k.

Assume next that we have performed the second operation: it does not change
the cyclomatic number. I acts on H' via its restriction to H'. Each orbit in H' is
at the same time an orbit of H, so I" acts on H' without solvable orbits. To prove
the second statement, denote by W be the set of vertices adjacent to vertices in
V. Then W is an orbit of x > 5 vertices, it is also an orbit of H’. Each vertex in
W is adjacent to the same number of vertices in V', say k. Then the cardinality
of the removed orbits V and E are alike kz, a multiple of |[W].

Operation (iii) does not change the cyclomatic number. Assume that |V| = z,
then V is either incident to one edge orbit of size 2z, or two edge orbits, each of
size x, or (in the particular case) one edge orbit of size x and another of size x/2.
Let B/ = {e1,e2,...,ey}, where y = x or (in the particular case) y = /2. The
action of I on H’ can be combined from its restriction to V(H')UE(H')\ E' and
its natural transfer from V' to E’. Obviously I' acts then on H' without solvable
orbits. The second statement is clear.

Suppose that operation (iv) was performed. Denote the common cardinality
of the sets F; by k, then |E| = kx for some positive integer z, and ¢(H') =
c¢(H) — (k — 1)z. Again there is a natural way to define the action of T" on H'.
The edge set {e1,ea,...,e;} is then an orbit of T in H’. Since V(H') = V(H),
I' acts on V(H') without solvable orbits. It follows from Lemma 4.2, that I' acts
on H’ without solvable orbits. In particular, we have x > 5, and FE is a multiple
of |E'|.



16 GY. KAROLYI AND A. PAL

When operation (v) is performed, H' again inherits the action of I' on H, in
particular I" acts on H’ without solvable orbits. Assume that |F| = z, then z > 5
and ¢(H") = ¢(H) —x. The endpoints of the edges in F either form a vertex orbit

of size 2z, or two vertex orbits, each of size x, hence the second statement. [

Write 6.(H) = ¢(H)—c(H'). Taking into account the change in the cyclomatic
number and comparing it to the cardinalities of special orbits in H’, introduced

in the previous proof, we find the following supplement to Lemma 6.1.

Lemma 6.2. Assume that the group T' acts on the connected graph H without
solvable orbits, and the graph H' is obtained from H by performing one of the
operations (i)—(v). Then either §.(H) =0, or 6.(H) > 5. Moreover, there is an
orbit O in H', whose cardinality divides 26.(H).

Let G denote a connected graph without solvable orbits, and fix I' = Aut(G).
Since each operation decreases |V(G)| + |E(G)|, by a repeated application of
the operations (i)—(v) we eventually obtain a reduced graph G on which T' acts
without solvable orbits. We say that R : G =Gy — Gy — ... —» G, = Gisa
reduction sequence if each graph G, is obtained from G; by one of the operations
(i)—(v), and the action of " on G4 is derived from its action on G; as described
in the proof of Lemma 6.1. We also associate the sequence ¢; = 0.(G;) to R,
then

n—1
c(G;) = c(G) + Z C;.
j=i
An immediate consequence of Lemma 6.1 is

Corollary 6.3. Let R: G=Gy — Gy — ... - G, = G be a reduction sequence.
If the odd prime p divides the cardinality of every orbit in é, then it also divides
the size of every orbit in G;, for each 0 < i < n. If, for some 0 <i <n, G; has
an orbit of size 2°7 for some nonnegative integer 3, then G has an orbit of size

2% or 2?7 for some mnonnegative integer c.
This, coupled with Lemmas 6.1 and 6.2 yields

Lemma 6.4. Let R:G=Gy— G, — ... - G, = G be a reduction sequence.
If the odd prime p divides the cardinality of every orbit in é, then it also divides
c; for each 0 < i < m. If there is an indexr 0 < i < n such that ¢; = 20 for

some nonnegative integer 3, then G has an orbit of size 2 for some nonnegative
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integer . If there is an index 0 < i < n such that c; =7, then G has an orbit of

size 2% or 2%7 for some nonnegative integer «.

Now it is clear that the ‘only if’ part of Theorem 1.1 can be reduced to the

following two lemmas.

Lemma 6.5. Let G be a connected graph without solvable orbits such that ¢(G) €
{7,9,12,13,14,17,18,23}. If R: G =Gy — G1 — ... > G, = G is a reduction
sequence, then c(é) #6,8,10,11,15, 16.

Lemma 6.6. There is no stable simple graph G without solvable orbits such that
c(@) € {4,5,7,9,12,13,14,17,18,23}.

7. STABLE SIMPLE GRAPHS WITHOUT SOLVABLE ORBITS

In order to prove Lemma 6.5, in this section first we have a closer look on stable
simple graphs G of cyclomatic number 6, 8, 10, 11, 15 and 16. We assume that
a group I' acts on G without solvable orbits. Recall from Section 4, that we
denote by [ the subgroup of Aut(G) that is actually responsible for this action.

In particular, the group T is not solvable.

Lemma 7.1. Let G be a stable simple graph of cyclomatic number ¢(G) = 6, and
assume that the group T' acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 5.

Proof. Tt follows from Proposition 4.8 that at most r3 and r4 can be non-zero,
and thus 5 = ¢(G) — 1 = r3/2 + r4. Either r4, = 5 and r3 = 0, or r4 = 0 and
r3 = 10. In the first case there is exactly one vertex orbit, whose size is 5. In
the second case there is either one vertex orbit of size 10, or there are two vertex

orbits, each of size 5. g

We note that it is not very difficult to see that the only two stable simple graphs
without solvable orbits of cyclomatic number 6 are K5 and the Petersen graph,

but we will not depend upon this fact.

Lemma 7.2. Let G be a stable simple graph of cyclomatic number ¢(G) = 8, and
assume that the group T' acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 7.
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Proof. Proposition 4.8 implies that at most r3 and r4 can be non-zero, and ac-
cordingly 7 = r3/2 4+ r4. Either r4 = 7 and r3 = 0, or 74 = 0 and r3 = 14. In
the first case there is exactly one vertex orbit of size 7. In the second case there
is either one vertex orbit of size 14, or there are two vertex orbits, each of size
7, otherwise it would be either V[5,9] or V[6,8], and thus I' would be solvable

according to Lemma 4.10. O

Lemma 7.3. Let G be a stable simple graph of cyclomatic number ¢(G) = 10, and
assume that the group T' acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 3.

Proof. Tt follows from Proposition 4.8 that r4 = 0 for d > 6, and thus 9 =
r3/2+ 14+ 3r5/2. If r5 # 0, then 5 = 6 and r3 = r4 = 0, thus there is exactly
one vertex orbit, whose cardinality is 6. There is no other possibility, since in

the remaining cases

r4 91650
r3 0] 68|18

it follows from Lemma 4.10 that T is solvable, contradicting the assumption that
I" acts on G without solvable orbits. O

Lemma 7.4. Let G be a stable simple graph of cyclomatic number ¢(G) = 11, and
assume that the group I' acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 5.

Proof. 1t follows from Proposition 4.8 that r4 = 0 for d > 6, and thus 10 =
r3/2+rg+ 3r5/2. i r5 # 0, then r5 =5, 74 = 0 and r3 = 5, so the cardinality

of each vertex orbit is 5. Of the remaining cases

re |10 7]6] 5|0
r3 || 0 |6|8]10]| 20

the second and the third cannot occur, because I’ would be solvable according
to Lemma 4.10. In the first and the fourth cases we can argue as in the proof
of Lemma 7.1. Assume that we are in the fifth case, and there is a vertex orbit
whose size is not divisible by 5. Were there three vertex orbits, that is, V[5, 6, 9],
V[5,7,8], V[6,6,8] or V[6,7,7], Lemma 4.10 would again yield to contradiction
as well as in the cases of two orbits V[6,14], V[8,12] and V[9,11]. Finally, the
case V[7,13] can be excluded by Lemma 4.4. O
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Lemma 7.5. Let G be a stable simple graph of cyclomatic number ¢(G) = 15,
and assume that the group T' acts on G without solvable orbits. Then there is no

vertex orbit whose cardinality is a power of 2.

Proof. Tt follows from Proposition 4.8 that r4 = 0 for d > 7, and thus 14 =
r3/2 4 rq + 3r5/2 + 2r. If r5 = rg = 0, then the statement follows immediately
from Lemma 4.10. Therefore we only review the possibilities when there exists a
d > 5 with rq # 0.

re || 7]5]0]0| 0|0
rs |0]0|7]6| 6|5
r4 |O[0[0|5] 00
r3 || 0[8|7]0|10] 13

Assume that there is a vertex orbit whose cardinality k is a power of 2. Since
k > 5, it should be k = 8, which can only happen in the second or sixth case,
meaning either VI[5,8] or V[5,5,8]. According to Corollary 4.5, the degree of the

orbit of size 8 would be at least 5, a contradiction. ]

Lemma 7.6. Let G be a stable simple graph of cyclomatic number ¢(G) = 16,
and assume that the group I' acts on G without solvable orbits. Then there is
no vertex orbit whose cardinality is of the form 2% or 2*7 for some nonnegative

nteger o.

Proof. 1If there is a d > 7 such that rq # 0, then it follows from Proposition 4.8
that either G is an 8-regular graph on 5 vertices (nonsense), or a 7-regular graph
on 6 vertices (ditto), or has exactly two vertex orbits, each of size 5, of degree 7
and 3, respectively. In the remaining cases we have 15 = r3 /2414 + 3r5/2 4 2r¢.
If r¢ # 0, then there are only 3 possibilities: either r¢ =73 =6, 15 =14 =0, or
r¢ =14 =95,15 =r3=0,0r rg =5, r5 =ry =0, r3 = 10, and there is indeed no
vertex orbit of cardinality 2% or 2%7. We summarize the remaining cases below.
If r5 # 0, then these are

5 [10][8]7]6[6]5]5
7] 0]0]0[6]05]0
5 |0 6]9]0]12]5]15
LT [elslef«] | |

The cases marked with % cannot occur, because then I would nevertheless be

solvable, according to Lemma 4.10. We will use this convention throughout the
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rest of the paper without any further explanation. The claim is obvious in the
first and sixth cases. In the last case the only possibility to have a vertex orbit of
size 2% or 2%7 would be V[5, 7, 8], which is impossible by Corollary 4.5. If r5 = 0,
that is

rg ||15]12 11|10 9 | 8 | 7|6 | 5|0
r3 || 0| 6| 8 |[10]12| 14| 16| 18|20 | 30

LI [l ] [el=f=fx] [ |

then in each case not excluded by Lemma 4.10, [V(G)] is not divisible by 7. Were
there a vertex orbit whose cardinality is divisible by 7, the size of each orbit
would be divisible by 7 by Lemma 4.3, a contradiction. According to Lemma

4.10, there cannot be an orbit of size 2% either. O

Now it is easy to prove Lemma 6.5. Let R : G =Gy —- Gy — ... = G, = G
be a reduction sequence, then ¢(@) > ¢(G). G is a stable graph on which Aut(G)
acts without solvable orbits. Assume first that ¢(G) is either 6 or 11. In G, the
cardinality of each vertex orbit is divisible by p = 5, according to Lemmas 7.1
and 7.4. It follows from Proposition 4.7 that 5 divides the cardinality of every
orbit in G. According to Lemma 6.4, each ¢; is divisible by 5. Consequently,
¢(@) =1 (mod 5) and thus ¢(G) ¢ {7,9,12,13,14, 17,18, 23}.

If ¢(G) = 8, then it follows from Lemma 7.2 along the same lines that ¢(G) =1

(mod 7) and thus ¢(G) ¢ {7,9,12,13,14,17,18,23}. If ¢(G) = 10, then based

on Lemma 7.3 we have ¢(G) = 1 (mod 3). Note that if ¢(G) # ¢(G), then

(@) > ¢(G) 4 5. Thus once again, ¢(G) & {7,9,12,13,14,17, 18, 23}.

Assume finally that c(é) = 15 or 16, and ¢(G) € {7,9,12,13,14,17,18,23}.
The only possibility is ¢(G) = 23. In the first case there is an index 0 <i <n-—1
such that ¢; = 8 and all the other ¢; are zero. It follows from Lemma 6.4 that G
has an orbit of size 2° for some nonnegative integer 3. According to Proposition
4.7, there is a vertex orbit whose size is 2% for some nonnegative integer «,
contradicting Lemma 7.5. In the second case there is an index 0 < ¢ < n —1
such that ¢; = 7 and all the other ¢; are zero. In this case we find by a similar
argument that there is a vertex orbit in G whose size is 2 or 297 for some

nonnegative integer o, which contradicts Lemma 7.6.
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8. THE CASE ANALYSIS

In order to prove Lemma 6.6, we assume that G is a stable simple graph without
solvable orbits such that ¢(G) € {4,5,7,9,12,13,14,17,18,23}. In most cases we
will arrive at a contradiction by concluding that Aut(G) is solvable. Note that
throughout this section we will always apply Lemmas 4.10 and 4.11 under the
assumption that I' = ' = Aut(Q).

If ¢(G) <9, then at most 73 and 74 can be non-zero. Lemma 4.10 applies to

all the seven possible cases:

(@ [a]5[7[7[9]9[9]
s J0]0]6]0]8]5]0
rs ||6]8[0[12]0]6]16

It follows that G cannot be without solvable orbits.

When ¢(G) = 12, the equation 11 = ) (d/2 — 1)rq immediately implies that

rq = 0 for d > 5 and leaves us with the following possibilities.

s [5]0]0]0[0]0]0
|0 1187650
rs | 7] 0 6]8]10] 122
L7 [l s ][ |

In the first case we get into contradiction with Lemma 4.3 when it is applied
with the prime number p = 7. This we marked with the number 7 in the last
row of the table. We will also apply this convention later on without any further
explanation. Whenever Lemma 4.3 can be applied in a similar way with a specific
prime number p, it will appear in the bottom line.

In the second and in the last case it follows from Lemma 4.11 that |Aut(G)|
divides 2¥37 - 11 for some nonnegative integers «, 3, and thus solvable either by

Burnside’s theorem, or by Corollary 3.3.

Assume next that ¢(G) = 13. The relation 12 = > (d/2 — 1)r4 again implies
that r4 = 0 for d > 5. The complete list of possibilities

5 [8]6]5]0]0[0]0]0]0]0
r |0]0]0[12]9]8] 76|50
s |0]6]9] 0 |6]8|10]12]14]24
LI [elef e[ 7]x[5]x]
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reveals that, apart from the first case, either Lemma 4.10 or Lemma 4.3 can be

applied. In the missing case it follows from Lemma 5.3 that Aut(G) is solvable.

Turning to the case ¢(G) = 14, it follows from Proposition 4.8 that r4 = 0 for
d > 6, unless r¢ = 5, r5 = r4 = 0 and r3 = 6, which is not possible according to
Lemma 4.3 (p = 5). Therefore 13 = r3/2 + 14+ 3r5/2, and we have the following

cases:

5[ 7]6[5]0]0]0]0][0]0]0]0
7|00 0 |13[10]9[8[7]6]5]0
v5 | 58| 11| 0] 6 [8]10]12|14]16]26
L7l T [efefsfel=fx] |

In the third and in the last case it follows from Lemma 4.11 that |Aut(G)| either
divides 2737 .11 or 2%3- 13 for some nonnegative integers o, 3, and thus solvable
either by Burnside’s theorem, or by Corollary 3.3. In the fourth case Aut(G)
acts transitively on the vertices, otherwise we would have V[5, 8] or V[6, 7] which,
according to Lemma 4.4, cannot occur. In particular, the order of Aut(G) is
divisible by 13, and thus there is a 7 € Aut(G) of order 13. This automorphism
permutes the vertices of G cyclically. Since 13 is a prime, the orbit of any edge
with respect to the subgroup I' = (7) generated by 7 is a cycle of length 13. A
suitable power of 7 then shifts the vertices by 1 along this cycle. Consider any
edge e not contained in this cycle, its length is k for some 2 < k < 6. The orbit
of e under the action of I' is the set of all edges of length k, thus G is the graph

C13(k), whose group of automorphisms is solvable according to Corollary 5.2.

When ¢(G) = 17, it follows from Proposition 4.8 that r4 = 0 for d > 7, unless
r7 = 5 and r3 = 7 (and every other r; is zero), which nevertheless contradicts
Lemma 4.3. We have 16 = r3/2 + r4 + 3r5/2 + 2r¢ otherwise. It is then easy to

overview the cases when rg = r5 = 0:

re |16 131211110 9 |8 | 7|6 ]| 5|0
r3|| 0| 6 |8 |10]12 |14 |16 |18 |20| 22| 32

I ENEIENEEENENENEREN EEEN

The reason why we could indeed refer to Lemma 4.3 in the fourth case is that
either there is one orbit of degree 3 vertices (of size 10), or there are two such

orbits, each of size 5. The remaining cases are
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7 [8]6]5]5]0]0]0]0]0]0[0]0
75 |0]0[0]0[9][8]7[6]6][5]5|5
74 |0]0]6]0]0]0]0]7]0]6|5]0
5 |0]8]0]12[5]8|11][0|14][5]7]|17

L L[ [5[5] [«[7[7[7[5[5[5]

The explanation for the case marked with 7x is the following. Either there is a
vertex orbit of degree 3 whose cardinality is divisible by 7, contradicting Lemma
4.3, or there is a vertex orbit of degree 3 whose cardinality is of the form 2¢3°,
and thus Aut(G) is solvable by Lemma 4.10. This convention will be also used
later without any explanation.

The first case can be excluded by Lemma 5.3. In the second case we have
V[6,8]. According to Corollary 5.4, each vertex orbit is an independent set.
Thus, there are 36 edges connecting V7 to V5 and 24 edges connecting V5 to Vi, a
contradiction. In the fifth case we have V[5,9], and we arrive at a contradiction
with Lemma 4.4.

Assume next that ¢(G) = 18. It follows from Proposition 4.8 that r4 = 0
for d > 7, unless or r; = 5 and r3 = 9, which case can be excluded by an
application of Lemma 4.3 with p = 5. In the remaining cases we have 17 =
r3/2+ 14+ 3r5/2 + 2r6. First we overview the cases when at least one of r5 and

r¢ 1S nonzero.

7 [7]6]6]5[5]0[0]0]0]0][0[0]0][0][0]0
75 |0]0] 00| 09|88 7]|6|6|6|5]5]5]|5
7 |0]5][0]7[0]0][5]0]0]8][5[0][7]6[5]0
75 | 6]0]10]0]14]7]0]10]13|0]6]16]|5]7]9]19
L7l [ P55 7] [ [7[«]«[«]5]«[+][5]

In the first missing case each degree 4 vertex should be incident to at least 6 edges
by Lemma 4.4, which is not possible. The third missing case can be excluded
by a similar argument. In the fourth missing case we use Corollary 4.6, when it
is V[5,5, 8] to find a degree 3 vertex incident to at least 8 edges. Otherwise it
is V[8,10], and it follows from Lemma 4.4 that each degree 3 vertex is incident
to at least 8/(8,10) = 4 edges, which is again impossible. In the second missing
case it is either V[6,10] or V[5, 5, 6].

Suppose that we have V[6,10]. According to Lemma 4.4, each vertex in V;
is connected to 5 vertices in Va, each vertex in V5 is connected to 3 vertices in

Vi, Vo is an independent set and G induces a 1-regular graph H on Vj. This
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contradicts Corollary 5.4. The possibility of V[5,5, 6] can be easily excluded by
Corollary 4.6. It remains to study the cases when r4 = 0 for d > 5. These are

rg |17114 (131211 (10| 9 | 8 | 7| 6 | 5 |0
r3 || 0| 6 |8 |10]12 (14|16 |18 |20|22 |24 |34

I ENEREN ENEEES EN EAENEN B

In the last case it follows from Lemma 4.11 that |Aut(G)| divides 2%3 - 17 for
some nonnegative integer o, and thus solvable either by Burnside’s theorem, or by
Corollary 3.3. In the first case Aut(G) acts transitively on the vertices, otherwise
we would have V[5,12], V[6,11], V[7,10], V[8,9], VI[5,5,7] or V[5,6, 6], neither of
which can occur according to Lemma 4.4 and Corollary 4.5. In particular, the
order of Aut(G) is divisible by 17, and thus there is a 7 € Aut(G) of order 17.
This automorphism permutes the vertices of G cyclically. Since 17 is a prime,
the orbit of any edge with respect to the subgroup I' = () generated by 7 is a
cycle of length 17. A suitable power of 7 then shifts the vertices by 1 along this
cycle. Consider any edge e not contained in this cycle, its length is k for some
2 < k < 8. The orbit of e under the action of I is the set of all edges of length £,
thus G is the graph Ci7(k), whose group of automorphisms is solvable according

to Corollary 5.2.

We investigate finally the most complicated case, when ¢(G) = 23. It is easily
seen from Proposition 4.8 that r; = 0 for d > 8, except for the following four
possibilities: either rg = 5andrg =9,orrgs =6andrg =8,orrg =5and ry =7,
or rg = 5 and r3 = 14. In the first, third and fourth cases Lemma 4.3 can be
applied with p = 5. In the second case it is V[6, 8] and it follows from Corollary
5.4 that both V4 and V5, are independent sets. Accordingly, 48 edges leaves
for V5, whereas there are only 24 edges leaving V> for Vi, a contradiction.

In the sequel we may assume that ry = 0 for d > 8, and accordingly 22 =
r3/2+ 714+ 3r5/2+ 2rg + 5r7/2. First we discuss the cases when rq = 0 for d > 5:

re ||22119 (18| 17|16 15|14 1312|1110 9
r3|| 0| 6 |8 |10]12|14| 16|18 |20| 22|24 |26

I EIEREI EN I ENEN RN EN

ra|| 817165 ]0
r3 || 28 |30 | 32|34 |44

L [«T7]«15] |
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In each of the missing cases it follows from Lemma 4.11 that |Aut(G)| divides
2237.11 for some nonnegative integers o, 3, and thus solvable either by Burnside’s
theorem, or by Corollary 3.3.

Next we consider the cases when ry = 0 for d > 6 and r5 # 0, then 22 =
r3/24+r4+3r5/2. It is not possible that each r; is divisible by 5, so we immediately
get into a contradiction by Lemma 4.3 when r; = 5. The cases when r5 = 7 can

be excluded in similar way. We have the following cases when r5 = 6:

r5|| 6 |6 (6] 6|6]|6]|6]|6
rg ||13]1019] 8 | 7|6 | 5|0
r3 || 0| 6 |8]|10 12|14 |16 |26

I EEIE ENENENEN R

In the first case it is either V[5,6,8], V[6,6,7] or V[6,13], each contradicting
Corollary 4.5. In the last case the cardinality of each orbit of degree 3 must be
in the form 2?3%5¢, otherwise we get a contradiction with Lemma 4.3. Since not
all of them can be divisible by 5, Lemma 4.10 implies that Aut(G) is solvable.

The cases with r5 > 8 are

rs [ 1312 11]10]10]9]9] 9 | 8 [8]8] 8 ]38
7 0] 0|0 7]0[6]|5]/0]10]7]6]5]0
rs | 5 | 8 |11 0 |14]5]7[17]0 |6]8]10]20

L T [rfmefs7] | [«l«[ [ |

Of the missing cases, in the first one it is either VI[5,5,8], V[5,6,7] or V[5,13],
each contradicting Corollary 4.6. In the second case it follows from Lemma 4.11
that |Aut(G)| divides 2#37 - 11 for some nonnegative integers a, 3, and thus
solvable either by Burnside’s theorem, or by Corollary 3.3. Consider now the
third case. If there is an orbit of degree 3 whose cardinality is either 6,8 or 12,
then we are done by Lemma 4.10. Otherwise it is either V[9,17], V[7,9,10] or
V[5,5,7,9], each of which contradicts Corollary 4.5. In the fifth case we can
exclude V[5,5,5,8] immediately by Corollary 4.6, and if it is V[5,8,10], then
by Lemma 4.4, neither V3 nor V3 can be connected to Vo, contradicting the
assumption that G is connected.

The fourth case is more delicate. VI[5,5, 8] can be excluded by Corollary 4.6,
so it must be V[8,10]. Tt follows from Lemma 4.4 that each vertex in V; is
connected to 5 vertices in V5, each vertex in V5 is connected to 4 vertices in V7,
and both Vi and V, are independent sets, thus it is a bipartite graph. Aut(G)
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acts on V; through a quotient I' that we can identify with a transitive subgroup
of the symmetric group acting on V3. We define a graph H on V; as follows:
we connect u,v € Vi with an edge for each common neighbour of v and v in
V5. Since |Va| = 10 and each vertex of V5 is connected to 4 vertices in V7, the
non-simple graph H has 60 edges. By transitivity, each vertex of H has a degree
15. For 1 < < 15, let H; be the subgraph of H such that £(H;) consists of the
edges whose multiplicity is 4; most of these graphs are of course empty. Let H/
be the simple graph underlying H; on the vertex set Vi, Then Aut(H]) can be
viewed as a subgroup of the symmetric group acting on Vi, it contains I' as a
subgroup. H{ is a k;-regular graph for some 0 < k; < 7. Since the numbers ik;
add up to 15, not all of them are divisible by 7. Therefore the solvability of T"
follows immediately from Lemma 5.3.

In the sixth case the cardinality of each orbit of degree 3 must be in the form
203%5¢, otherwise we get a contradiction with Lemma 4.3. In view of Lemma
4.10 we may assume that the cardinality of each such orbit is divisible by 5. The
orbit of the 8 degree 5 vertices must be connected to at least one of them, thus
we immediately get into contradiction with Lemma 4.4, unless it is V[8,20]. Tt
then follows from Lemma 4.4 that each vertex in V; is connected to 5 vertices in
V5, each vertex in V5 is connected to 2 vertices in V7, and V; is an independent
set. Define a graph H on V7, as in the previous case. This time H has 20 edges,
thus it is 5-regular. The solvability of I' follows as in the previous case.

Next we consider the cases when ry = 0 for d > 7 and r¢ # 0, then 22 =
r3/24 14+ 3r5/2 4 2r¢. It is not possible that each r; is divisible by 5, so we can
apply Lemma 4.3 when 7¢ = 5 and r5 = 0. The cases when r¢ = 7 and r5 = 0

can be excluded in similar way. The remaining cases are

7 11] 9 |88 [6]6]6]6]6][6[5]5]5
75 0] 0 0] 05|00 0]0]0[8]6]5
7| 0060|0107 6]5]0[0]0]0
75 0] 8 |0 ]12] 5|06 8 |10[20][0]6 ]9

L J@[®)[@Q[@][E@[O[7[@[M[O]E][&[O]

Cases (b) and (j) can be excluded by Lemma 4.4, whereas in cases (e) and (1) we
get a contradiction to Corollary 4.6. In case (k) the orbit V; of degree 3 cannot
be connected to the orbit V5 of degree 6 in view of Lemma 4.4. Thus V5 must

be connected to the orbit V3 of degree 5, and another application of Lemma 4.4
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gives that in that case each vertex in V3 must send 5 edges to Va, hence cannot
connect to V1, contradicting the assumption that G is connected.

In case (a), if there are two vertex orbits, then it must be V[5, 6]. According to
Lemma 4.4, each vertex in V5 is connected to 5 vertices in Vj, thus G induces a

1-factor on V3, in contradiction with Corollary 5.4. Otherwise Aut(G) = Aut(G)
has only one vertex orbit, on which Aut(G) acts transitively. Consequently, all
connected components of G have the same cardinality, thus G is a connected
4-regular graph on 11 vertices. Therefore ¢(G) = 12 and G cannot be without
solvable orbits, contradicting Claim 4.1.

In cases (f) and (h), except of the orbit V of 6 degree 6 vertices, the size of
every orbit is either 5 or 10, so it follows from Corollary 4.5 that each vertex of
V sends 5 edges to one of them and G induces a 1-factor on V', contradicting
Corollary 5.4. In case (c) it is V[6,8], so in view of Lemma 4.4, G induces a
3-regular graph on V5 whose automorphism group is solvable by Lemma 5.3. In
case (d) it cannot be VI[5,7,8] or V[6, 6, 8] by corollaries 4.5 and 4.6, so it must
be V[8,12]. But then G would induce a 3-regular graph on Vi, just like in case
(c). In case (g) it is V[6, 6, 8], where V7 is the orbit of degree 6 vertices. It follows
from Corollary 5.4 that each orbit is an independent set. V5 cannot be connected
to V3 in view of Lemma 4.4, so V3 must be connected to Vi, meaning that each
vertex of V; is connected to 4 vertices in V3. Thus each vertex of V7 must be
connected to exactly 2 vertices in V5, and vice versa. Consequently, G induces a
2-factor on V5, a contradiction.

It remains to discuss case (i). We get a contradiction with Lemma 4.3, unless
the cardinality of each orbit is of the form 2¢3°5¢. If each orbit of degree 3
vertices has a cardinality divisible by 5, then it follows from Corollary 4.5 that
G induces a 1-factor on the orbit of 6 degree 6 vertices, contradicting Corollary
5.4. So it must be either VI[6,5,6,9], V[6,6,6,8] or V[6,8,12], where V; stands
for the orbit of degree 6, of which the first case can be immediately excluded
by Lemma 4.5. If it is V[6,6,6,8], then it follows from Corollary 5.4 that G
induces an independent set on each orbit. According to Lemma 4.4, V; can only
be connected to Vi, each vertex in V; sending 4 edges to V4. The only possibility
then is that each vertex in V; is connected to exactly 1 vertex both in V5 and in
V3, and the orbits V5, V3 form the colour classes of a 2-regular bipartite graph H.
The graph H can be easily understood, and it follows that Aut(G) acts on Vs
through a quotient that is a subgroup of either S91S3, So x D4, D31Ss or Dg, thus
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solvable. In the third case V[6,8,12] G must induce an independent set on V;
and on V5. According to Lemma 4.4, each vertex of V7 is connected to 4 vertices
in V5 and thus to 2 vertices in V3. Consequently, each vertex in V3 sends exactly
1 edge to V4 and G induces a 2-regular graph H on V3. Thus Aut(G) acts on V3
through a quotient, which is a subgroup of Aut(H), but the latter must be one
of D3 1S4, (D318S2) x Dg, D3 x Dy x D5, Dy 1S3, D3 X Dg, Dy x Dg, D5 x Dr,
Dg 1S3, or Dis, thus solvable.

Finally we assume that 77 # 0. We have 5 possibilities (rg = r5 = 0 in each of
them):

7 [7]6]6[5]5
P [0]7[0]5]0
rs |90 14919
L7 [ [5[5]

In the missing cases, it is either V[6,7], V[5,6,9], V[6,7,7], V6,6, 8], or V|6, 14].
The first three possibilities contradict Corollary 4.6. Assume it is V[6, 6, 8], where
the vertices of degree 7 are in Vi, each orbit is an independent set by Corollary
5.4. The orbit V3 cannot be connected to V5 by Lemma 4.4, thus it is connected to
V1. Another application of Lemma 4.4 reveals, that each vertex in V] is connected
to 4 vertices in V3. Since the independent set V5 must be connected to Vi, it
follows from Lemma 4.4 that each vertex in V; sends exactly 3 edges to V5 and
vice versa. Let H be the graph induced by G on Vi U V,. Aut(G) acts on H
without solvable orbits, and thus H itself is a graph without solvable orbits. If
H is connected, then ¢(H) = 7, but we have already proved that such graphs do
not exist. It follows that H is the union of two disjoint copies of K3 3, but then
Aut(H) = (S3052) 1 Sa, thus |[Aut(H)| = 237, hence Aut(H) is solvable.

It only remains to exclude the case V[6,14]. According to Lemma 4.4, each
vertex in V; is connected to 7 vertices in V5, each vertex in V5 is connected to
3 vertices in Vi, and both V; and V4 are independent sets. Aut(G) acts on V;
through a quotient, which is a subgroup of Sg. This quotient, being non-solvable,
must contain an element of order 5. Thus there is a 7 € Aut(G) that cyclically
permutes 5 elements of V; and leaves the sixth element v fixed. It must leave
the set W of 7 neighbours of v in V5 fixed. If the order of 7|y is divisible by 5,
then 72 leaves two elements of W fixed. Otherwise the cycle decomposition of
7|w reveals that 712 fixes every element of W. In any case, there is an element

w € W such that 7'2(w) = w. Thus 772 also leaves the 3 neighbours of w in
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V1 fixed, which is not possible, since the restriction of 772 to V; has an order
5/(5,72) = 5.

9. PROJECTIVE ALGEBRAIC CURVES WITHOUT SOLVABLE POINTS

In this section we formulate the strongest version of one of the main results of
[7] which can be derived using the methods of the above cited paper, taking into
account the new constructions and the non-existence results presented in this
article, for the convenience of the reader.

We say that a finite extension of a field K is solvable if it is separable and the
Galois group of its normal closure over K is solvable. Let X be a quasi-projective
variety over a field K. We say that P is a solvable point of X over K if P is a

rational point of X defined over a finite solvable extension of K.

Theorem 9.1. Let K be a field complete with respect to a discrete valuation.
Assume that the absolute Galois group of the residue field of K has quotients
isomorphic to S5 X S7, Sy x Sg, PGL3(2), and PGL3(3). Then there is a smooth,
projective, geometrically irreducible curve over K without solvable points over K
whose genus is equal to 6, 8, 10, 11, 15, 16, 19, 20, 21, 22 or it is at least 24.

The derivation of the above theorem is the same as that of the corresponding
result in [7]. There we pointed out that S5 acts transitively on the six-element set.
Hence S5 acts without solvable orbits on Kgq , Ks(n), Ke(n), and Ks¢(n,m)
for every pair of natural numbers n and m. Therefore there is an action of the
absolute Galois group of the residue field of K on each graph appearing in Section
2 without solvable orbits, which is the condition for the argument of [7] to work.
Of course we have some freedom in choosing the groups listed in the theorem
above. For example we may use projective special linear groups instead of the
corresponding general linear groups.

The assumptions of the theorem on the field K are quite general. For example
it is satisfied by the Laurent series ring F'((¢)) where F' is any field such that every
finite group appears as a Galois group of a finite Galois extension over F'. The
latter condition holds for the rational function field L(x) over every algebraically
closed field L by Harbater’s theorem (see [6]), and it is conjectured to be true
for example for every number field. On the other hand the list of groups in the
theorem above only consists of finitely many groups of small order hence it is

possible to verify numerically that they are Galois groups for a given field.
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It was proved in [7] that every smooth, projective, and geometrically irre-
ducible curve whose genus is equal to 0, 2, 3 or 4 over any field K has a solvable
point over K. It is an interesting question whether there is a natural number g
not covered by Theorem 9.1 such that there is a smooth, projective, and geomet-
rically irreducible curve over some field K without solvable points over K whose

genus is equal to g.
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