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Abstract: Belinskii, Khalatnikov, and Lifshitz (BKL) conjectured
that the description of the asymptotic behavior of a generic solution
of Einstein equations near a spacelike singularity could be drastically
simplified by considering that the time derivatives of the metric asymp-
totically dominate (except at a sequence of instants, in the ‘chaotic case’)
over the spatial derivatives. We present a precise formulation of the BKL
conjecture (in the chaotic case) that consists of basically three elements:
(i) we parametrize the spatial metric g;; by means of Iwasawa variables
(B*,N%); (ii) we define, at each spatial point, a (chaotic) asymptotic
evolution system made of ordinary differential equations for the Iwa-
sawa variables; and (iii) we characterize the exact Einstein solutions
B, N whose asymptotic behavior is described by a solution (3, N of
the previous evolution system by means of a ‘generalized Fuchsian sys-
tem’ for the differenced variables 3 = 8 — B, N'= N — Ny, and by re-
quiring that 3 and N tend to zero on the singularity. We also show that,
in spite of the apparently chaotic infinite succession of ‘Kasner epochs’
near the singularity, there exists a well-defined asymptotic geometrical
structure on the singularity : it is described by a partially framed flag.
Our treatment encompasses Einstein—matter systems (comprising scalar
and p—forms), and also shows how the use of Iwasawa variables can sim-
plify the usual (‘asymptotically velocity term dominated’) description of

non—chaotic systems.
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1 Introduction

The works [I], 2, [3] of Belinskii, Khalatnikov and Lifshitz (BKL) proposed a description of
the asymptotic behavior of the gravitational field in the vicinity of a spacelike singularity
of a D = 4 spacetime satisfying the vacuum Einstein equations. They also investigated the
D = 5 vacuum Einstein case as well as the D = 4 spacetime with a massless scalar field [4].
Finally, they analyzed more general Einstein—matter systems (e.g. Einstein—Yang-Mills) in
[5]. Extension of the BKL analysis to higher dimensions was addressed within the context
of pure gravity in [0, [7]. It is convenient to express the BKL analysis using Hamiltonian
methods. This leads to considering the motion of a particle in an auxiliary Lorentzian
space submitted to the influence of a linear superposition of exponential potential walls
[1L [8, @ 10, [1T], T2]. This approach allows for a relatively easy generalization of the work of

BKL to any spacetime dimension and with any p—form field content [12].

As argued by BKL, a drastic simplification in the Einstein equations occurs near a spacelike
singularity (located at proper time ¢t = 0) in that the partial differential equations for the
metric can be essentially replaced by ordinary differential equations with respect to time. In
physical terms this corresponds to an effective decoupling of spatial points x1 # z9 ast — 0.
Depending on the specific theory at hand (spacetime dimension, field content, couplings to

the dilatons), the BKL approach leads to expect two possible types of behavior:

e ‘Non—chaotic behavior’ (or Monotonic power law): the spatial scale factors (and the
dilaton fields e? if any), behave at each spatial point in a monotone, power-law fash-
ion in terms of the proper time as one approaches the singularity at ¢t = 0, i.e. at
each spatial point the asymptotic form of the metric looks like a Kasner metric. On
the other hand, the p—form fields A have limits as t — 0. Theories exhibiting this
asymptotic behavior are, for instance, pure gravity in D > 11 [6l [7, [13], and gravity

coupled to a scalar field in any dimensions [4, [14].

e ‘Chaotic behavior’: at each spatial point, the asymptotic behavior is given by a chaotic
succession of an infinite number of increasingly shorter Kasner regimes as one goes to
the singularity. Important examples of theories exhibiting this asymptotic behavior
are pure gravity in D < 10 [6,[7], and the bosonic sector of all supergravities associated

with the low energy limit of string or M-theory [15].

The non—chaotic case has been formulated in rigorous mathematical terms by consider-
ing an auxiliary asymptotic dynamics called the ‘asymptotically velocity term dominated’
(AVTD) system [16]. The AVTD system is obtained by neglecting all the spatial deriva-
tives in the considered Einstein—matter system. Einstein equations then reduce to ordinary
differential equations (ODEs). The solutions of this asymptotic system are precisely given
by Kasner—like metrics. Fuchsian methods [I7] can then be used to prove that, given a

solution of the velocity dominated system, there exists a (geometrically unique) solution of



Einstein’s equations that asymptotically approaches this solution. These Fuchsian methods
have been used to mathematically describe cosmological singularities in various simplified
contexts: Gowdy spacetimes [17], plane symmetric spacetimes with a massless scalar field
[18], polarized and half-polarized U (1) symmetric vacuum spacetimes [19], spacetimes with
collisionless matter and spherical, plane or hyperbolic symmetry [20], and a particular sub-
set of general Gowdy spacetimes [21]. It has also been possible to use Fuchsian methods
to mathematically describe singularities without any symmetries: notably for the Einstein—
scalar system [14], and for many Einstein—matter models including pure gravity in D > 11

dimensions [13].

By contrast, the general inhomogeneous chaotic case has not yet been tackled by rigorous
mathematical methods. The BKL conjectural behavior has been consolidated by recent
Iwasawa—variable based analytical treatments [12] and is also supported by numerous nu-
merical results [22] 23] 241 25| 26 27]. However there exist neither a clear general formulation
of the precise asymptotic behavior advocated in the BKL approach, nor any mathematical
theorems concerning its compatibility with Einstein field equations. The purpose of this pa-
per is to present a mathematically precise formulation of the BKL conjecture in the chaotic
case. In other words, we aim at providing a chaotic analog of the AVTD formulation of the
non—chaotic case. More precisely, we shall describe the asymptotic dynamics of the gravita-
tional field for Einstein—matter systems, at each spatial point, by a well defined asymptotic

evolution system made of ODFEs .

In addition to formulating a precise conjecture for the chaotic BKL behavior, we also ad-
dress the question of whether or not geometrical structures can be defined at the singularity
and what are these asymptotic geometrical structures. According to the billiard picture,
most of the metric variables possess well defined limits at the singularity: the ‘off-diagonal
variables’, i.e. all the variables except the diagonal metric components (and the dilaton.
This means in particular that for these variables, initial data can be assigned at the sin-
gularity. The other variables, i.e. the diagonal variables, have no limit at the singularity.
Although the ‘off-diagonal’ variables have finite limits, they are (co)frame (and gauge) de-
pendent and thereby they do not have a priori a clear geometrical meaning. Nevertheless,
we can wonder whether it is possible to extract some geometrical information from these
asymptotic values. It turns out that this is possible, but that this asymptotic geometrical
structure is less ‘rigid’ in the chaotic case at hand than it was in the non—chaotic case.
In the non—chaotic case, the asymptotic geometrical structure is simple to describe. The
solution is asymptotically given, at each spatial point, by a Kasner—like metric [14, 13]. The

(spatial) Kasner metric is, in d spatial dimensions,

gij(t) = tzpllilj +t2p2mimj + ... +t2pd7’i7‘j, (1)

LA short review of the billiard picture is presented in section



where the p;’s (i = 1,2, 3) are the Kasner exponents subject to the Kasner conditions. [Note
that this metric possesses a curvature singularity at ¢ = 0 and that the distances are no
longer defined at this singularity, since either g;; T OO gij 0.] The Kasner coframes,
i.e. the coframes that diagonalise, at each spatial point, the second fundamental form k;;
with respect to g;; have finite limits at the singularity (up to independent rescalings they
are simply given by w}{ = l;dx?, w%{ = myda?, ..., wﬁl{ = 1;dx') and therefore provide a basis

of preferred directions, i.e. a ‘directional frame’ (and co—frame). See Figure [l
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Figure 1: (a) Non-chaotic behavior : sufficiently close to the singularity, the dynamics of the
gravitational field can be approximated by a Kasner—like metric at each spatial point. Let us focus
on one particular spatial point where asymptotically the metric is given by dsgpatial = (t?P1;1; +
t2p2mimj + ..+ t2pdrirj)daci dz’. When t — 0, the directions for which the Kasner exponent p;
is negative are stretched while the ones with positive exponent are squeezed. At the singularity,
these directions are still defined. (b) Chaotic behavior : now instead of a Kasner-like metric at
each spatial point, there is a never ending chaotic succession of Kasner epochs before reaching the
singularity. Are there still some preferred directions at the singularity? or is some other structure
of the metric preserved asymptotically?

For chaotic systems, we could have expected, from the BKL description of the asymptotic
dynamics of the metric as a never ending chaotic succession of Kasner epochs at each spatial
point, that no privileged directions can be defined at the singularity especially in view of
the effect, discovered in [2], of a ‘rotation’ of Kasner frames between two successive Kasner
epochs. However, we show in section [(] that an asymptotic geometrical structure can be
defined at the singularity. This structure is less precise than a frame but more precise than
a flag and therefore we will call it a partially framed flag. The precise meaning of this notion

is explained in the sequel.

This paper is organised as follows. We first review in section [2] the Iwasawa—variables ‘cos-
mological billiards’ of [12] in order to introduce our notation and stress important features
for our purposes. Then, to gain some intuition for how to define the asymptotic system
of evolution equations parametrizing a ‘generic’ solution of an Einstein—matter system in

the chaotic case, we revisit in section [B] the non—chaotic case treated in [14, 13]. Our



new approach is based on Hamiltonian methods and Iwasawa variables, which simplify the
previously done analysesB More precisely, we define an asymptotic system of evolution
equations and we rewrite the Hamiltonian Einstein—matter evolution equations in terms of
the difference between the solution of the full evolution equations and the solution of this
asymptotic system. Then we argue that the so—obtained ‘differenced system’ of equations
is of the Fuchsian typdl. We also treat the constraints by defining asymptotic constraints
which, when they are satisfied, imply the vanishing of the exact constraints. Next we turn
to our main purpose in section [, that is to give a mathematically precise formulation of
the chaotic BKL behavior. This is achieved by defining again an asymptotic system of
evolution equations which is a system of ordinary differential equations though it is not
necessarily an AVTD system. We then formally rewrite the Hamilton equations in terms of
the difference between the solution of the full evolution equations and the solution of the
asymptotic system. Finally, we argue that a stronger version of the usual Fuchs theorem
is likely to remain valid in the chaotic case. In the last section, we show that for chaotic
systems, partially framed flags are the asymptotic geometrical structures that stay well de-

fined at the singularity.

We mention the recent paper [28] that establishes the relationship between the Iwasawa—
based billiard approach used here and the dynamical systems approach to cosmological

singularities.

2 Appearance of Toda—like walls in Einstein—matter Hamil-

tonians in Iwasawa variables

The general systems considered are of the following form

R(g) — 8u¢8u¢

S[guV7¢7B(p)] = /de\/TD)g

1 1,
3 T g FO | 4 ©
p

Units are chosen such that 167Gy = 1, Gy is Newton’s constant and the spacetime dimen-

sion D = d + 1 is left unspecified. Besides the standard Einstein—Hilbert term the above

Lagrangian contains a dilaton field ¢ and a number of p—form fields B,(fl)...up (for p > 0).

The generalization to any number of dilatons is straightforward. The p—form field strengths
F® = dB® are normalised as

= 8MB<P) + p permutations .

_ (p)
F(p)"upﬂ =+ 1)8[M1B ., B2 ppt1

K- p2eppt1]

2A comparison between the two analyses is done in appendix [C]
3We recall Fuchs’ theorem in appendix Bl



As a convenient common formulation we have adopted the Einstein conformal frame and
normalised the kinetic term of the dilaton ¢ with weight one with respect to the Ricci scalar.
The Einstein metric g, has Lorentz signature (— + - - - 4) and is used to lower or raise the
indices; its determinant is denoted by ®’g. The dots in the action (2)) above indicate
possible modifications of the field strength by additional Yang—Mills or Chapline-Manton-
type couplings [29, 30]. The real parameter )\, measures the strength of the coupling of
B® to the dilaton. In the following, for simplicity, we shall treat the case where there is

no dilaton ¢ and indicate what changes occur when ¢ is present.

2.1 Iwasawa variables

Let us give a schematic review of the Iwasawa—variable cosmological billiards. For a detailed

derivation, we refer to [12].

We choose a slicing of the spacetime we want to construct, Mp = My x R, such that the
singularity occurs at the coordinate time 7 = 4+o00. We shall define the time slicing 7 by
requiring that the ‘rescaled lapse’ N = N //9 (where g =detg;;) is equal to some given
(weight —1) time—independent density p—1(x) on My. For simplicity, we take p_q(z) =1
in the coframe w' we use, so that N =1 «— N = V9. In other words our time
coordinate is linked to the ‘proper time’ dt = —Ndr by dr = —dt/\/g. The slicing is
built by use of pseudo-Gaussian coordinates defined by a vanishing shift N* = 0, lapse
N(1,2%) = \/g(r,2)pu_1(2) = \/g(r, 2") and metric

ds® = —(N(7,2")dr)? + gij(r, 2" )’ (2" )" (") . (3)

Here w'(z) = w';(x)dz’ is a coframe on the given (analytic) spatial manifold MdH One of
the useful technical tools we shall employ here consists in replacing the d(d + 1)/2 metric
variables g;;, by a new set of variables: d ‘diagonal degrees of freedom’ 3%, together with
d(d — 1)/2 ‘off-diagonal degrees of freedom’ N'*; where N is restricted to be an upper
triangular matrix (N%; = 0, if ¢ < a) with ones on the diagonal (N*; = 1, if a = i), such
that

d
gij = Z 6_26a./\fai./\/'aj . (4)

a=1

We shall refer to the algebraic decomposition () as the Iwasawa decomposition of the

“Note that in [I2], a coordinate basis is used instead of a general basis w’ but the generalization is

straightforward as long as w’ = w';(2")dz? does not depend on time.



metri. In d = 3, the components of the metric read explicitly,

_ 1 _ 1 _ 1
g11 = 62167 9122/\/126 26, 9132/\/136 2ﬁ,
g2 = (le)ze_zﬁl + 6_2627 g23 =N12N136_2ﬁl + N?3e728
g33 = (./\/13)26_261 + (N23)2e—252 + 6_253 (5)

from which one gets (uniquely)

1 1 11922 — 97
g = —shgn, FF=-sh [M :
2 2 g1
1
= | L | -2
2 911922 — 912 gi1
Nl = 9B 2y 928910 7 12915 (©)
gn 911922 — 9o

In the cosmological context, one could refer to the ‘diagonal metric variables’ e=%* as the
‘scale factors’. In [12] the ’s and the dilaton (when present) were collectively denoted
g = {B% ¢}. In the case considered here (no dilaton), we shall use labels from the
beginning of the latin alphabet (a,b,¢,..,e) to denote the ‘diagonal variables’ 5%. All other

variables are called ‘off-diagonal variables’ and are denoted Q,
Q — { N, B(p)} ,

where B® are the B® expressed in the generalized Iwasawa coframe 62, 0% = N%w/,
e.g. we have By, i, =: No, N ipBasi...ap- Note that, in the Iwasawa coframe, the metric

is diagonal: ghy* = e 2% 4.

2.2 Hamiltonian approach in Iwasawa variables

The Hamiltonian action corresponding to the action (2)) in any pseudo-Gaussian gauge, and

in the temporal gauge for the form fields (Boj,...;,_, = 0), read

S [gw B](f) Jp’ €1) jp] -

/dafjo/ddm (wijgu 'Zﬂ']l ]”B](f o H) (7)

®Indeed, it is linked to the Iwasawa decomposition of the vielbeins V*; € SL(d,R) (such that g;; =
V;V?;) which reads V = KAN where K € SO(d), A is a diagonal matrix and N is a nilpotent matrix. The

Iwasawa variables are uniquely specified by requiring that K € SO(d) be the unit matrix.

5The term 7T¢<]5 should be added (inside the parenthesis) in the action if a dilaton is present.



where the Hamiltonian densityﬁ H iﬁ

H = NH (8)
. 1 o 1 i
Moo= wmy— g+ ) 2p! ) )i
P
1 (p) (p)j1--j
© o B oy e PO ®
P

where R is the spatial curvature scalar. The dynamical equations of motion are obtained
by varying the above action w.r.t. the spatial metric components, the spatial p—form com-

ponents and their conjugate momenta. In addition, there are constraints on the dynamical

variables,
H ~ 0 (“Hamiltonian constraint”), (10)
H; ~ 0 (“momentum constraint”), (11)
cp{;;'jpfl ~ 0 (“Gauss law” for each p-form) (12)
WithH
: ‘ L iy )
M = _2wﬂi|j+zﬁw(p) R (13)
P
Jiedp-1 . _J1dp-1dp
o) = T, (14)

where the subscript |j stands for the spatially covariant derivative.

As shown in [12] (and as we will see explicitly for some of the terms below) the Hamiltonian

density of weight 2, H, expressed in the Iwasawa variables has the following structure:
H[B,Q;m,Pl=K+V, (15)

where

1

K = ZGabT{'aT{'b
= Z CA(Q7 Pa awﬁv a:%ﬁv aQa 82@)6_2WA(5) .

A

Here G% is the inverse of the quadratic form Gy, which is defined by Gg,d3°ds° =

Zzzl(dﬁ“)Q - (Egzl dB*)?. Note the important fact that this metric has a Lorentzian
signature (—,+,...,+). P stands for {P?,, E(C;)'“ap}, where the P?,’s are the momentum

"Note that H is a density of weight 1 while H is a density of weight 2.
81f a dilaton is present, the term %ﬂ'i should be added in K as well as exponential coupling e*?® in front
of the term gFj(lp_),_ij,F’(”)jl”'jp+1 in M and e~ **? in front of ﬁi;j"]pﬁ(p)jl...jp in K.The term gg*/9;¢d;¢

should also be added to M.
91f there are dilatons, the term 740;¢ should be added to H;



conjugate to the N%’s and the Eg)"'a’”s are the WE;')"ip — 4.e. the momentum conjugate
to the B;f _)__ip’s — expressed in the Iwasawa frame. Note that the P’,’s are strictly lower

diagonal (they exist only when ¢ > a and vanish when i < a).

Note the special structure of the (weight 2) Hamiltonian density H with (i) a kinetic term
72 for a ‘point particle’ of coordinates 3% moving in (ii) a sum of ‘exponential walls’ (for
their 3 dependence). We shall refer to them as Toda walls e=2%4(%) where the w4 (3) are
certain linear forms in the ’s. ‘Toda’ refers to the well known Toda models involving such
exponential walls. For instance, the kinetic terms of the off-diagonal degrees of freedom
N in H give, when expressed in Iwasawa variables, terms proportional to e=28°=5%) for
b > a with coefficient proportional to P2. Therefore the kinetic terms for the A’s furnish
the walls wgq, = B° — 4% called ‘symmetry walls’. The kinetic terms of the p—forms in H
yield a sum of terms proportional to e 2% where Weay...ap () = BY + ... + % (‘electric
p—form walls’). The curvature term —gR in H gives terms proportional to e~ 2wabe(B) where
Wabe(B) = B + e tp e(bpey B¢ (‘curvature walls’) and their coefficients, when a # b, a # ¢
and b # c, are given by (Ci,.%.)?. Here, the C.,, are the structure functions of the Iwasawa
coframe 0%, = N;07, d92, = —% Croan®c02 N 6C

iwa iwa iwa iwa*

depend on the N’s and the 9, N ’s.

Note that the structure functions Ci,.

A heuristic analysis of the BKL limit indicates the crucial role played by the linear forms
wA(B). Indeed, in this limit the walls become infinitely sharp and are located at the
hyperplanes given by the linear forms w4 (8) = 0, the motion is then restricted to the
region of J—space defined by the inequalities {w(3) > 0}. The set of dominant walls is
the minimal subset {w4 ()} — the indices A belong to a subset of the indices A — such
that the subset of inequalities w4 () > 0 implies the full set of inequalities w4 (3) > OVA
A crucial consistency condition for these definitions, which is found to be satisfied for all
models, is that the coefficients of the dominant walls be positive: ¢4 > 0.We decompose
the set of indices {A} for the walls into the set of indices for the dominant walls {.A} and
the remaining ones (‘subdominant walls’) {A’}. Moreover, another crucial structure of the

potential is that the dependence of the wall coefficients on spatial derivatives in such that,
V=> ca(Q P,0,Q)e” D + 3 "c0(Q, P,0.3,028,0Q,0°Q)e 4@ (16)
A Al
where the coefficients of the dominant walls are found never to depend on {9,0,923}.

For instance, in the case of pure gravity in d space dimensions, the d dominant walls comprise

(i) d — 1 dominant ‘symmetry’ walls wg,_14(8) = ¢ — 3*"! (a =2, ...,d) and

0The dominant linear forms can be identified in many physically relevant cases with the simple roots of
an hyperbolic Kac-Moody algebra [32], 33 [34].

10



(ii) one curvature wall wy g_14(8) = 28" 4+ B2+ ... + 3972, Note that in d = 3, wy93 = 23
corresponds to the (first of the) famous BKL walls of the form a* + b* + ¢*, where
a=e20 h=e2 =2 .

2.3 Hamilton evolution equations

Let us indicate, in a sketchy manner, the structure of the Hamilton evolution equations
following from (1),

1
aﬂ'ﬁa = §Gabﬂ-b 5

Ormg = Z <2CAwAae_2wA('B)+ax( Oca 6_2U)A(6))_83( Oca 6_2U)A(6))> )

A 00,3 0023
8CA )
0,Q = =5€
” oP
. _8CA —2wy aCA —2wa\ _ 92 aCA —2wp
o ZA< ao¢ T Gag ) %laeg ) 1

where ca = ca(Q, P,0,3,023,0Q,0%Q), wa, denotes the (covariant) components of the
linear forms w4 () = wa,0% The system (7)) is the one that we will analyze in detail in
the sequel.

Let us recall the basic classification of the set of dominant walls: either the fundamental
chamber defined by the dominant inequalities w4(3) > 0 is contained within the future
(Eff:l % > 0) light cone Gg,3%3° = 0, or it is not. The first case define what we call here
chaotic systems, while the second defines non—chaotic systems. For instance, pure gravity
in D = d+ 1 is chaotic for d < 9 , and non—chaotic for d > 9. Note that this classification
does not correspond to the often used asymptotically—velocity—terms—dominated (AVDT)
systems versus non—-AVTD ones. Indeed, there are AVTD systems that are chaotic. For
instance, the Einstein—-Maxwell system (in any dimension D = d + 1) is always chaotic and
we shall see below that its asymptotic chaotic behavior can be described as a naive AVTD
truncation of the full dynamics. Let us also mention that they are non-AVTD chaotic
systems that are equivalent to AVTD chaotic system. For instance, gravity coupled to a
(d — 2)—~form is chaotic and non—AVTD because driven by its magnetic wall. However, by

Hodge duality, it is equivalent to the Einstein—-Maxwell system which is chaotic and AVDT.

As a warm up towards understanding the structure of the evolution equations (7)) we shall

first consider the so—called non—chaotic systems.

3 Iwasawa—variables treatment of non—chaotic systems

In this section, we reformulate the results of [14, [13] by using the Iwasawa variables, within

an Hamiltonian approach. Let us recall that the treatment used in [14) [13] consisted of

11



rewriting Einstein—matter systems into a Fuchsian form, i.e.
Oru— Au=e " f(x,7,u,0,u), (18)

where p > 0 and where the crucial conditions are (i) that the source term f should be
bounded when 7 — oo (while the other variables take their values in a bounded set) and
(ii) that the eigenvalues of the (space and time independent) matrix A be strictly larger
than —pu [35]; see appendix[Bl for precise mathematical conditions. Then the main result of
the Fuchs theorem is that there exists a unique solution u(7,z) of (I8]) which tends to zero
as 7 — 0. Moreover, the exponential decay of the source e 7 imposes a corresponding fast

decay of solution which we shall write as
)y
u=0(e* T,

where () can be any number satisfying 0 < (=) < p [Note that 1) can be as close as

we want to u).

Here we are going to show that the evolution equations in Iwasawa variables given by equa-
tions (I7)) can be rewritten in an alternative Fuchsian form which leads to a streamlined
derivation of the results of [14] 13]. In order to do that, we need to do two things (i) define
an asymptotic evolution system whose solutions {4, T, Qo) P} parametrize the generic
asymptotic exact solutions {3, 7, @, P}, (ii) rewrite the system of equations (I7) in terms
of the differences u between {3,7,Q, P} and {f, 7o), Qs P} such that the system of
equations for u is Fuchsian, and (iii) define asymptotic constraints in such a way that the
exact constraints are satisfied if the asymptotic constraints and the asymptotic equations
of motion are fulfilled. This is done in the sequel and implies by the Fuchs theorem that
there is a unique solution u that vanishes when 7 goes to infinity; the Fuchs theorem also
tells us how u goes to zero as 7 — oo. This result gives a precise sense in which the ap-
proximate solutions {3y, T, Qs Py} parametrize the asymptotic behavior of the exact
solutions {3, 7, Q, P}. If the asymptotic solutions {8, 7o), @), Ploj} are general enough, it
means that we have found the general asymptotic behavior of the gravitational field in the
vicinity of a spacelike singularity. [More precisely, we want here that the solutions of the
asymptotic system together with the associated asymptotic constraints contain the same
number of arbitrary functions which is expected to enter the general solution of the exact
constrained Einstein—matter system.] We will see that our new formulation is significantly

simpler than that of [I4] 13] and is suggestive for approaching of the chaotic case.

3.1 Definition of the asymptotic evolution equations

The first step is to define a simplified system of equations that describe the asymptotic
dynamics of the fields. There are, a priori, several choices for defining an asymptotic system

when using Iwasawa variables. For instance, we can either neglect certain terms directly

12



in the Hamiltonian or neglect some terms in the equations of motion. One of these choices
gives a system essentially equivalent to the usually considered AVTD system in [14] [13]. It
would consist in keeping only the symmetry walls in the Hamiltonian (IZ]). Here, we will
consider a technically simpler choice consisting in neglecting all the walls. Concretely, this

means that we define the ‘asymptotic Hamiltonian’ as

1
Ho [ﬁ[o]a Q[o]%ﬂ[o], P[o]] = ZGabW[O] aTob s (19)

the (oy’s refer to the zeroth order approximation of our general solution. The Hamilton

equations corresponding to the Hamiltonian (I9) are

Or B = §Gab7T[OJ b
a'rﬂ'[o] a = 0,
a7'62[0] = 0 9
0;Py = 0. (20)
The solutions of these Hamilton equations are schematically (suppressing indices),
By = PoT + Bo,
Ty = Po,
Q[O] = QO )
P[O] - Po ; (21)

where po, B, @0, P> do not depend on the time but depend on the spatial coordinates :Ei
Note that the metric corresponding to the ‘asymptotic solution’ (2I) does not generically
corresponds to a Kasner—type metric (i.e. a metric of the type (Il)). Indeed, the Iwasawa
‘off-diagonal’ variables N’s of a generic Kasner metric have limits as 7 — oo but are 7
dependent for finite 7, while the N'%;’s corresponding to the solution (2I) are constants [see

paragraph 4.2 of [12] for explicit expression of the Iwasawa variables of a Kasner metric].

3.2 Definition of the asymptotic constraints
As the asymptotic Hamiltonian constraint, it is natural to take the asymptotic Hamiltonian
(@),

1
H[o] = ZGabW[o]aW[o]b, (22)

which has the useful property of being conserved along the asymptotic evolution equations
[20). Concerning the asymptotic momentum constraints, we need to know their structure

in Iwasawa variables to be able to conclude. In view of this, we first express the momentum

1 As is usual when discussing Fuchsian theorems one makes the technical assumption that the spatial

dependence of all the initial data (po(z),Bo(z), ...) is real analytic.
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conjugate to the metric g;; in terms of Iwasawa variables.

Let 7% := NN bjﬂ'ij denote the Iwasawa—frame components of the momentum conju-
gate to the g;;. Using this definition, the effect of the transformation of the configuration

variables {g;;} — {6 N%} on their conjugate momenta is obtained from writing
gijﬂ_ij _ Z 26—26“ ﬁaNa)N_l i lwaca

= 5 o + NFPa

from which we can extract that (we recall that the metric in the Iwasawa—frame is gy =

b
€27 54y s0 that m,.% = e 27 m,.%)
1
Tiwalh = —5m no sum over b,
N7V mbe = §7Dia only for i > a.

In order to invert the above formula and get the 7,,.%, in terms of the 7, and P?,, let us
rewrite the above equation for all 7 and a as follows,

. 1 .
—14 c __ )
N e Mia = 5P + Xy s (23)

where X is a matrix defined by this equation, and where we have added to the various

triangular matrices that appear an index referring to the fact that it is an upper/lower

triangular matrix (+)/(—) or a strictly upper/lower triangular matrix [+]/[—]. We can now
multiply equation (23) by A" = N, and obtain,
b L
Miwa a = 5/\[ i(nP -l-./\/ HX(4) - (24)
Let us decompose the matrix 7.0, into its strictly lower triangular part Wiwaba[,], its di-
agonal part Tiwalp = —%m, and its strictly upper triangular part L (+]- The projection
of both sides of equation (24]) on their strictly lower triangular parts yields an explicit
expression for 7° aiwal_] (for b > a), namely 70 aiwal—] = 1]\/ ]G(b a), where
o(z) ::{ 0 ifz<0
1 ifx>0.

ab

Note now that m,,,° al+), being obtained from the symmetric matrix m,,* = a2 by

lowering an index by the metric gy, qp = €~ 27" dap, can be related to miw.q (1 in the following

way,
_ a_ b
Fiwaba 4] =€ 2B =B )Triwaab[f] . (25)

Finally, we have the following links,

b 1
Miwa'b = —3Mp 1O SUM OVer b,
. 1 .
lfb > a 7Tiwauba - ﬂ-iwaba [-] = §Nbi7)la7
. 1 _ a_ b .
ifa>b Tl = Tulap =5 " CTTINGPY, (26)

2
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Therefore, the m,,,%_; are linear in Pt and N?,, while the m,,.% (+’s depend also on the

B’s though the e=20°=8") with a > b (see equation (28))), i.e. through symmetry walls
—2wg pa(B)
e )

Let us now express the momentum constraints in Iwasawa variables H,. They read

1 b b b d d_ b 1o b
- §HCL = v177-‘-iwa a — 8bﬂ-iwa a + deﬂ-iwa a Fabﬂ-iwa d— 596 gcd,bﬂ- a s

_I_lgal ...apj:'(p)
p!

aay...ap

where the féﬁ)l,,,ap’s are the FZ(Z’; )mip’s expressed in the Iwasawa basis and the I'%,.’s are the

connection coefficients (with ¢ denoting the differentiation index) in the Iwasawa basis,

b

1 a _ b _ c _
IWabc = 5626 (5abe 26 ’C +5ace 28 5b _5606 26 7(1)

1 a c a
+§(_Ciwaabc + 6_2(517_5 )Ciwabac + 6_2(5 _6 )Ciwacab) .

Note that m,,,,% is a tensorial density of weight 1. The C,,. are the structure functions of

the coframes 02 , they are related to the structure functions C' in the coframe w’ by the

iwa?

formula,

1 . 1 ) )
- §Ciwaabc = ON N, — §NaiczjkN_1ij_lkc (27)

Inserting these results in the expression for the momentum constraints gives
1 b c b d c 1 d
- §Ha = O a+ ChnadTa+ CiaacTa — 5(&16 )7Td
aai...ap

1
_’_Hgal---apf@) . (28)

Note that this is the general expression for the momentum constraints expressed in the

Iwasawa variables.

We then define the asymptotic momentum constraints by discarding the 7,,.%, (+] contribu-

tions in the exact constraint (28)):

1 1
- §H[l[0] = [abﬂ-iwaba, [—} - §8a7ra + Ciwaccbﬂ-iwaba [—] + Ciwadacﬂ-iwacd [—}
1 1 1
_§Ciwacca77a - §Ciwadad7rd - §(ﬁﬁ1)ﬂ-d
1
—|——|5a1"'ap.7:é’[’l)1map] 1 , no sum over a, sum over d (29)
p!

2The comma in the expression geq,, denotes the spatial derivative in the Iwasawa frame, i.e. geap =
Ciwa b €i(ged) Where eiwap = €iwap’e; is the Iwasawa frame (dual to the coframe 0%, Oiwa’(€iwaa) = 62) and

where e; = €;79; is the frame dual to the basic coframe w’ = w';dz’ used in equation [@). We will also

sometimes denote gea,p by Opgcd-

15



0] means that one must do the following replacements 7w —

where the overall bracket [ ]
Ty B — By @ — Qpoj, P — Pyy. Finally this definition corresponds (besides the replace-
ment {3, 7,Q, P} — {0, T Quoy> o }) to setting to zero the symmetry walls e~ 286"
(with @ > b) in the full momentum constraints. Along the solution (ZII) of the evolution
equations (20)), the only time dependent term in Hgq is —8aﬂ[%]7r[0]d/ 2 = —7 Ogplnoa/2 so

that we have the following relation,
O0rHapo) = OaHg) modulo equations (20). (30)

From this relation, we conclude that, when the Hamiltonian Hy; = 0 constraint is satisfied,
the momentum constraints are conserved when the asymptotic evolution system (20)) is
satisfied. Finally, it suffices to impose the constraints Hy,; and H, at any fixed moment

to guarantee that they are satisfied for all time.

Similarly, the asymptotic Gauss constraint for each p—form is defined to be the Gauss

constraint with the asymptotic variables @, P instead of @, P:

1 1
ai...ap—1 ai...a a bas...a ap— ai...ba
Ciorio) = g, T — §Ciwa[0] Ybap Top o — e — §Ciwa[0] Py, Mg P
..ap_1b
+ C’iwa [0] o apbﬂ-[()]al p—1 . (31)

These constraints are preserved by the time evolution since the 7® ~* (which are some
of the Py ’s) and the Ciya(g%c (which depend on the N, € Qs via (21)), are constants

according to the asymptotic evolution equations (20]).

3.3 Construction of a Fuchsian system for the ‘differenced variables’

Let us introduce the differences 3, 7, Q, P Vi

B = 5[0]+57
T = T+T,
Q = Qu+0Q,
P = Pg+P, (32)

3where here B0}, 7o), Qo) and Py are given in (ZI)).
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and express the Hamilton equations in term of these variables. This gives
1
87—ﬂ — 57'(' =0

O, = ZCAwAe_QwA(BIO])e—wA(B)

+ 89”(aaﬁcAﬁe_MA(ﬁ[O])e_MA(ﬁ))

Oca
002
3 dca o AB0)) p—wa(B)
— _ w [0] wA
0-Q 8Pe e
> dea o A(Bo)) p—wa(B)
- _ w [0] wA
o, P 5 e e + 0. (

—05(

_ 82( e—2wA(ﬁ[o])e—2wA(5))

dca
00,Q

_2wA(5[o])e—wA(B)) (33)

6—2WA(6[01)6—WA(5))

dcy .
002Q

where ¢4 = ca(Qo + Q. Poy + P, 0x(B0 + ), 03 (B + ), 0(Qpoy + @), 0*(Qpy + Q)). Let
us sketch the proof that this system will be Fuchsian if all the ‘walls’ wa(/3) entering the

equation (B3]) are such that the following conditions hold,
VA, Ve € U, wa(po(x)) >e€>0, (34)

where the p, is the initial datum entering equation (2I) which must also satisfy the con-
straint (22)), i.e. G®poapop = 0, as well as the asymptotic momentum constraints (29).
Here, U denotes some open domain within the analytic d-dimensional manifold, on which
one applies the Fuchs theorem. The fact that the system (33)) is indeed of the form (I8]) for

u = (3,7,Q, P) comes from two separated facts. First the matrix A being

; (35)

o O O O
S O O W=
o O O O
o O O O

is a nilpotent matrix and therefore is (thanks to the recent progress concerning Fuchsian
systems [35]) an allowed matrix A for a Fuchs system (see appendix [B]). Concerning the
source term, let us show why the conditions (B4]) guarantee that the ‘source term f’ —
i.e. the right hand side of the system of equations (B3]) — satisfies the right properties.
Essentially the Fuchsian conditions boil down to requiring that the source term should be
of order O(e™#7) for some p > 0 when {3,7,Q, P, 0,3, 0,7, 0,Q, 0, P,023,02Q} take their
values in a bounded set while 7 € [7,, +00] (see appendix [Bl). The explicit time dependence

of the source has three origins
1. the Toda walls whose (7) time dependence is exponential e 24 Bro)) = g=2wapo)T—2wa(fo)

2. the various space derivatives appearing in the r.h.s. of (B3]) can ‘bring down’, when

operating on e~ 2% (@)™ one (9,) or two (02) powers of 7.
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2. In addition, the dependence of the wall coefficients c4 on 0,08, and 8:%6[0] means that,

for some Wall, the coefficient ¢4 can also involve one or two powers of 7.
Summarising, the r.h.s. of (B3] is a sum of terms of the form
P(T)e—2wA(p0)T ,

where P(7) is a polynomial in 7. If we choose a u strictly smaller than all the quan-
tities 2w (po(x)) > 2¢ > 0 considered for any € U and any type of wall A, we can
conclude that all the source terms in the equations ([33) are of the required order O(e #7)
for 7 € [15,00] and x € U. Therefore we can conclude that there exists a unique solution
{B(r,z),7(1,x),Q(r,x), P(1,2)} of equations (B3] that vanishes when 7 — co. Moreover,
this unique solution satisfies (within the considered spatial domain U) the following estimate

as 7 — +00:

B = O(E_H( )7
T o= 0@,
Q = o),
P = O+,

where 0 < (=) < p (p being strictly smaller than the quantities 2w 4 (po) > 2€).

3.4 Constraints

It remains to show that if the asymptotic equations of motions, and the asymptotic con-
straints (221 29] B1]) are satisfied, then the exact constraints (10} [[T] [[2]) will also be satisfied.

Let us first deal with the Gauss constraints (for notational simplicity, we shall consider the
case of one p = 1-form, i.e. a Maxwell field). We recall, from equation (I2)) that, in this

case, the exact Gauss constraint (in Iwasawa variables) reads,
@ = Vom® = 0,1 + Cialpam® = 0. (36)

This exact constraint is preserved by the exact equations of motions. We also recall that

the asymptotic Gauss constraint (31I]), in our case, read,
- _ b ~
Plo) = va7T[o]a = 8a7T[o]a + Ciwa[()] baW[o]a ~0, (37)

and is conserved modulo the asymptotic equations of motions (20). We impose that the
asymptotic Gauss constraint (B7) hold. Then, the fact that the difference between the exact
and asymptotic Gauss constraints are given by exponential ‘walls’ (entering the differences

between the 7 and 7, etc) implies that the exact constraint (36]) vanishes when 7 — +4o0.

The walls depending on spatial derivatives of 3 are only ‘subdominant’ gravitational walls, see [12].
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Finally, from the obvious fact that an asymptotically vanishing quantity which is constant
must be zero, we can conclude that the exact Gauss constraints are (weakly) fulfilled. In

particular, the relationships V,T*” = 0 are satisfied.

Let us now consider the Hamiltonian and momentum constraints. To show that they are
satisfied, we will argue that their evolution system is ‘Fuchsian’ in some generalized sense
and therefore that there will be a unique solution of this system that vanishes when 7 — oo.
The Fuchsian system in question turns out to be homogeneous, so that the unique solution
that vanishes when 7 — 400 must be exactly zero. Then we will discuss why the exact
constraints vanish when 7 — +o00 (when the asymptotic constraints are satisfied) and con-

clude that, since they do, they must be the unique vanishing solution, i.e. zero.

Let us first write down the evolution system satisfied by the exact constraints as a conse-

quence of the Bianchi identities and the exact evolution equations. This reads
oM = e 22 (ViH, 23 gEHY),
(&
0-He —V,H = 0, (38)

where the covariant spatial derivatives must take into account the weights of the various
densities: H, has weight 1, and H has weight 2. The ‘source term’, i.e. the r.h.s. of the

evolution equation for H, can be rewritten as,

> e (@, Ha +20% Ha — 23 89).aMa)

where pq(5) = Zb#a 3 is a subdominant curvature wall (it corresponds to the special case
of the curvature walls wgp.(3) with a = b). Therefore, the source term is an allowed one
for the Fuchsian-like system (I8]) with v = (H,H,) and p strictly smaller than all the
quantities 2uq(po(z)) > € > 0 considered for any x € U. However, this homogeneous sys-
tem is not really a Fuchsian system because of the presence of the spatial derivatives term
V. H in the second equation. The references [14], [13] tackled this problem@ essentially by
working with a suitably redefined H constraint, say H = €7 ’H. This redefinition produces
for {H,H,} a Fuchsian system if 0 < n < 2u4(po) (for all @ and for all z € U, po(x) being
as in equation (2I))). However, we think that there might be other ways of dealing with
this problem. First, we expect that a generalization of the Fuchs theorem exists for linear
homogeneous systems of the type (38]), stating that the unique solution that vanishes when

T — +00 is everywhere zero. We then expect that one way to prove such a theorem is to

15See equations (86) and (§7) in appendix [A] These equations were derived in a coordinate basis and
without matter. It is obvious how to get the expression in a general basis. Moreover, we do not have to
consider matter since V,T", = 0 [as a consequence of the Gauss constraints (which are imposed to be
satisfied) and the matter equations of motion]. Therefore, we can just replace in equations (8] and (87) in

appendix [Al the expressions (B0) and (BI]) by their general expressions (I0) and ().
16We translate here the argument used in [14} [I3] in our choice of variables and gauge.

19



work with an extended set of variables {H, H,, G, = 0,H} and use the recent reference [35].
To summarise, the system (B8] is a Fuchsian-like system that possess a unique solution

(which is zero because the system is homogeneous) that vanishes when 7 — +o0.

Moreover (i) as the definition of the asymptotic constraints H (B, T, Qo Fop) and
Ha0)(Biops Tpop> Qroy, Ploy) differs from the exact ones by neglecting some explicit exponen-
tial walls in their mathematical expression, (ii) as # — (g etc tends to zero (essentially as
O(e™#7)) and finally (iii) as we have imposed the asymptotic constraints, we can conclude
that the exact constraints H(3, 7, Q, P) and H, (5,7, Q, P) tend to zero as 7 — +o0.

Finally, the constraints H and H, being uniquely defined as being an asymptotically van-

ishing solution of an homogeneous Fuchsian system, vanish for all times 7.

Summary: An asymptotic solution {B(T,z), 7 (7T, x), Qu (T, ), P (T, 2)} (21) obeying
the asymptotic constraints (22), the asymptotic evolution system (20) and conditions (54),
parametrizes a solution {B(r,z),n(r,x),Q(r,z), P(T,x)} (32) of the full constrained
FEinstein—matter equations (this is pictured in Figure[d). Moreover, the asymptotic closeness

of the two solutions satisfies inequalities of the type,

Blr,a) =B~ PBo = Ole )
Qrr)=Q-Qy = 0@,
A(ra)=m—my = O™,
P(r,o)=P—Py = O™ '7);

(39)

where p is any number strictly smaller Yo € U and YA than the quantities 2w a(po(z)) > 2e,

when T — 400 .

On the generality of the construction

An important fact to notice about the above construction is that the solution of the asymp-
totic equations (2I]) subject to the constraints (22]), (29) and asymptotic Gauss constraints
possesses as many arbitrary functions as one expects to be present in the ‘general solution’
of the constrained Einstein—matter equations. The inequalities ([B4]) impose restrictions on
these arbitrary functions but do not change their number. Let us repeat that this con-
struction applies only in cases where the fundamental chamber in S-space defined by the
inequalities w4 () > 0 extends beyond the light cone Gg,3%3° <0, 3° 3 > 0 as illustrated
in Figure 2
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Figure 2:  Non—chaotic behavior This picture is a schematic drawing of the asymptotic dynamics
of the ‘diagonal variables’ at a given spatial point x, this dynamics is represented in the S-space.
The ‘dashed’ arrow represents the asymptotic solution f,, (which is valid after the last collision
on a wall and corresponds to a free motion of the particle §). The exact solution is sketched as
a continuous curve. The idea is that the approximate solution [, becomes better and better as
T — o0, this is formalised by the Fuchs theorem that tells us precisely how 8 — 5;; — 0 when
T — +00, see the text. Note that here we consider a non—chaotic system and that the ‘fundamental

chamber’ determined by the walls in not contained within the light cone.

Comparison with the asymptotically velocity dominated system

The appendix [Cl compares the velocity dominated system of [14, [13] and our approach. The
essential differences between the two approaches are the following: (i) they do not use the
same asymptotic system, (ii) the use of Iwasawa variables allows for a more transparent
treatment of the ‘source terms’ in the Fuchsian equations (indeed, in Iwasawa variables, it
suffices to read off the exponential terms in equations ([B3])), (iii) the use of Iwasawa vari-
ables avoids the technical problems linked to measuring the ‘difference’ between the exact
and asymptotic metrics by writing (9[6}1 q)% = 0% + t*"vy%, with some carefully chosen a’s

and an asymmetric matrix -.

We should, however, remark that the two methods differ in the extension of the open
regions U where the Fuchsian method can be used to construct the metric. In the method
of [14} [13] one can cover the full analytic manifold by using many small neighborhoods in
which the frame approximately (but analytically) diagonalises the second fundamental form
K. In the Iwasawa approach one can work in large open domains, but there is a problem

connected with the presence of co-dimension 2 submanifolds where two eigenvalues of K
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coincide. This problem is briefly discussed in appendix[Cl More work is needed to extend

the Iwasawa—variable approach so as to be able to cover the full analytic manifold.

4 Iwasawa—variables treatment of chaotic systems

We now turn to our main purpose, which is to give a precise formulation of the asymptotic
BKL behavior in the chaotic case. In this perspective, we follow the same strategy as for

the non—chaotic case:

(i) We first define an asymptotic evolution system, made of ordinary differential equations
(ODEs) that will describe the generic asymptotic unconstrained dynamics of the Iwa-
sawa variables near a spacelike singularity. Of course, the solutions { B, 7o, Qjo1s Pioy }
of the asymptotic system are much more involved than a Kasner-like behavior and

cannot be given in a closed form.

(ii) We then define asymptotic constraints whose vanishing is preserved by the above

defined asymptotic evolution system.

(iii) Next, we construct a ‘generalized Fuchsian system’ that describes the behavior of the
differences f = 3 — By T = T — ), Q=0Q— Qo and P=pP-— Py between an
exact solution {3, 7, Q, P} of the considered Einstein—matter system, and a solution
{ By, T, Qroy, Py} of the asymptotic evolution system. We then argue that, given a
solution {fg, T}, Qros P} of the asymptotic evolution system, there exists a unique

solution {3, 7,Q, P} of the differenced system which goes to zero as 7 — +oo.

(iv) We formally show that, if the asymptotic constraints are satisfied, the full constraints
satisfy a generalized Fuchs system. We then argue that the full constraints will be

satisfied as a consequence of the vanishing of the asymptotic ones.

Finally, our methodology suggests that one can indeed parametrize a solution of the full

constrained Einstein—matter system by a solution of the system of ODEs defined in (i).

Note: we use the same notation for the solution of the asymptotic system of equations,

asymptotic solutions, asymptotic Hamiltonian etc in the chaotic and non—chaotic cases.

4.1 Definition of the asymptotic evolution equations

The billiard picture provides a guide for choosing a suitable asymptotic evolution system
since it gives us an intuitive description of the asymptotic dynamics. In the billiard approxi-
mation, the dynamics of the ‘diagonal variables’ 3’s is described as a free Lorentzian motion
interrupted by reflections upon infinite—potential walls and the ‘off-diagonal variables’ )’s
are frozen. Here, we shall go beyond this simplified ‘sharp wall’ billiard picture and work
with exponential (‘Toda’) potential walls. The asymptotic system should completely deter-

mine the asymptotic dynamics, given some suitable initial data. It is therefore crucial to
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use a system of ordinary differential equations (rather than partial differential equations) to
characterize the asymptotic dynamics, so that we are able to use theorems about existence

and uniqueness of solutions.

Motivated by these reasons, we define (for any chaotic Einstein—-matter system) an asymp-
totic evolution system in the following way: for the ‘diagonal variables’, we keep in the
Einstein—matter equations (I7)) only the dominant exponential walls while for the ‘off—
diagonal variables’, we neglect all the walls in the equations of motion. These prescriptions

define an ‘asymptotic evolution system’ which reads, in sketchy form:

1
aﬂ'ﬁ[()] = 57‘([0]
Ormy) = Z 2c.4(Q, P, 0,Q)w g~ 20AP10)
A
0-Qo = 0
0-Pg = 0. (40)

Here A labels the dominant walls only. As exhibited in equation (I6]) the coefficients c4 of
the dominant Toda walls depend only on the @)’s, P’s and the first spatial derivative of the
Q’s. It is crucial that they do not involve the spatial derivatives of the 3’s. The solutions
of the last two equations in the system Q) are simply Qu = Q(x), Po = P (z).
Considering Qo (x) and P (x) as given data, and replacing them in the other equations of
the system (40), we see that the diagonal variables {8, T}, at each given spatial point z,
satisfy a system of ODEs. It is then easily checked that the latter system of ODEs follows

from the Hamiltonian H:

1

Ho Q0)P(0)] [Bioy; Top] = ZGabW[o] aTo b + Z ca(Poys Quoy, 8aQ(o))€_2wA(ﬁ[o]) . (41)
A

Note that, from [12], the qualitative behavior is T — 400) of the solution for such systems
of equations is as follows: the m’s go to zer and the (,’s behave approximately as in

the sharp billiard picture (free motions ‘p7 + const’ interrupted by collisions against the

‘walls’ e~ 2wa(8)),

4.2 Definition of the asymptotic constraints

It is natural to define the asymptotic Hamiltonian constraint to be
1 _
Hygy = ZGG%IOJ o + Y cal P, Quopy 0aQpoy e 240 (42)
A

Like in the non—chaotic case the asymptotic Hamiltonian constraint (42) coincides with the
asymptotic evolution Hamiltonian (41l), and is therefore preserved by the asymptotic time

evolution. Let us now define the asymptotic momentum constraints as the formal limit of the

17 Actually, this property is guaranteed only if one imposes the constraint HOQ(D) Py = 0.
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‘full’ momentum constraints when 7 — +o0o. We start from the general expression (28]) for
the momentum constraints. In view of what was recalled from [12], 7 — 0 as 7 — +o0 (after
imposing ([42])), so that we can discard the terms linear in 7 in the previously considered
non—chaotic asymptotic momentum constraints ([29) (which neglected exponential walls

that we still formally neglect). We therefore define the asymptotic momentum constraints

as follows,
1 b c b d c
- §Ha[0] = [abﬂ-iwa a[—} + Ciwa cbTiwa a[—] + C’iwa acTliwa d[—}
1
+—|5“1"'ap.7:é§)1map] 0 , nosum over a, sum over d (43)
p!

where the féﬁ)l,,,ap’s are the F((i’)’)(il)m(ip)’s expressed in the Iwasawa basis, where W[O]ba (] is de-
fined as the r.h.s. of the second equation (26]) and where the overall bracket []”) means that
one must do the replacements Q — Qo, P — P,. Note that the momentum constraint (43))
contains only the time-independent quantities N}, 0:Nq), Qo Plo) and therefore is trivially

preserved by the time evolution.

Finally, the asymptotic Gauss constraint for each p—form is defined to be the Gauss con-

straint with the asymptotic variables Q, P instead of @, P, i.e.

1 1
ai...ap—1 ai...a a1 bas...a ap—1 ai...ba
P (0] = aapﬂ'[o] P — §Ciwa[0] ba, 0] P—. = §Ciwa[0] P ba, o) P
..ap—1b
+Oiwa[0]apapbﬂ-[0]a1 o1 . (44)

These constraints are preserved by the asymptotic time evolution since the my,** % (which
is one of the Py’s) and Ciy.j%e (which depends on the Ny € Qs via (27))), are constants

according to the asymptotic evolution equations (40).

4.3 Construction of a ‘generalized Fuchsian’ system for the ‘differenced

variables’

We now rewrite equations (I7) in terms of the differences {3, 7, Q, P},

8" = Bay+B",
Mg = Tja+ Ta,
Q = Q[O]+Q7
P = Py+P. (45)
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This gives (when suppressing indices on 3 and 7),
-1
orm = 22wAe_mA(ﬁ[O])(CAe_mA(B) — ca(Qpo), Poy, 02Q101))
A

+ 22CA/U)_A/e_2wA’(6[0])e_2wA/(B)

i Za 8% —2A/(ﬁ[01)e—2wAr(B))

_ Z 82 ac.A/ —2wA/(ﬁ[0])e—2’wA/ (B)))

382
0.0 = %‘3«4 w4 (Bio) g~ 204(3)
86"4/ _21”,4/(5[0]) —2w 4/ (B)
+ Z?P e
o.p — Z 90 coua g (DCA 2B ~2ua(B)
T 2 \Tag 90,
en _ou,, OCH 204y (Bloy) y—20 0 (B)
" ; < Q¢ TG00 ¢ )
aC ’ 2
2 A 2w (B —2w 4/ (B
- Za 862 A( [0])6 .A( )) , (46)

where we recall that A labels the dominant exponential walls (with coefficient ¢4 which
depend only on {P, @, 9,Q}) while A’ labels the subdominant exponential walls (with coef-
ficient ¢4 which depend on {P,Q, 8,Q, 92Q, 0,3,023}). In addition, in all the coefficients
c4q and cy on the r.h.s. of the system (@) one must do the replacements (@3l), so that
for us cq4 = ca(Q + Q, Py + P,0(Q + Q)) and cur = ca(Q + @, Py + P, 9B +
B),02(By + ), 0(Qu + Q). *(Quy + Q).

This system of equations is not a Fuchsian system as defined above. However, it is similar
to such a system. Indeed, it contains a space and time independent matrix A which is
again given by (35]). However, the crucial difference between (46]) and a Fuchsian system
concerns the source term on the r.h.s.. Instead of containing (modulo a bounded term) a
space—independent factor which is exponentially decreasing with 7, e7#7, it contains expo-
nential wall terms e~ 2%4B0) and e~2wa (B) where By (T, x) is a solution of the asymptotic

evolution system (E0]).

Let us qualitatively analyze the behavior of this source term as 7 — 4o00. For that, let
us start by recalling the sketchy time dependence of the solution 3, that would be given
by the billiard picture: namely a succession of Kasner epochs. During each Kasner epoch

the source term is exponential decreasing (in the time coordinate 7), indeed, during the
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‘Kasner free motion’ S, ~ poT + (o so that each exponential wall factor term e 2wa(Bo)
(A = A, A") behaves has e #*)7 with u(z) ~ 2w4(po(x)). However, this exponential de-
crease is interrupted around the instants of collision on the dominant walls, during which
wA(B) in fact vanishes so that e~ 2waBo) would seem to become unity. By contrast the
subdominant terms e 2% (%)) are always exponentially decreasing because the G—particle
generically never hits them, being deflected by a collision on dominant walls before reach-
ing them. [We are here neglecting the measure zero set of trajectories which exactly hit a

‘corner’ of the billiard, where a subdominant wall intersects dominant ones.]

The sharp billiard picture just recalled is only an approximation to the asymptotic dynam-
ics (0). When taking into account the existence of exponential walls in the equations (40])
one can describe more precisely the behavior of (8, mg) and thereby of the crucial ‘source
terms’ o< e~ 24 (Bo)) appearing on the r.h.s. of (4f). Indeed, following the method used in
[12] one can conveniently analyze the dynamics of (53, m) following from the asymptotic
Hamiltonian H, (41), and submitted to the zero—energy constraint ([d2]). When decompos-
ing 3% as * = py® with p? = —GgpF6? and Gy = —1, which correspondingly implies
g =p tm) — TyYa Where 7a (submitted to the constraint 4w, = 0 ) is conjugate to the
‘position’ ¥* on the unit hyperboloid (Gg7%y? = —1), and where 7, is the conjugate to the

variable p, one finds that the Hamiltonian reads

2
H —l(—w2+ﬂ)+v (47)
(0] — 4 p p2 (0] »

where

Vi (p,7) = Z cqe2Pwaly) (48)

The zero—energy constraint can then be written as

1
Z(—W?\ +73) 4+ p Vi =0, (49)

where 7y := pm, is now conjugate to A := Inp. From this constraint one infers (see [12])
that, as 7 — 400 and therefore p — +o00, ) tends to a finite limit say py, and therefore ||
oscillates between py (far from the walls) and 0 (during a ‘collision’). From this result one
also infers that the maximum value of H,y, reached during a ‘collision’ (i.e. when |7, | = 0),
is such that pQV[O] = %ﬂ'i — ip%\ as T — +oo. Finally, one concludes that as 7 — +o0, and
therefore p — +o00 (roughly proportionally to 7) even the maximum values of the domi-
nant exponential potential (reached during the collision) decay like Vi, o p~2. [One also
conclude from 7, = p~! (74 — m\7,) that the components of the 3-conjugate momenta 7,

decay proportionally to p~!.]

Summarising, we conclude that each dominant potential term e~ 2wABo) entering the r.h.s.

of (@6) has the qualitative behavior depicted in Figure B namely an overall exponential
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decay, interrupted by ‘peaks’ (of decreasing magnitude o< p~2) corresponding to collisions.
In addition, (see appendix A of [12]) the 7-time spacing between successive peaks increases
(roughly like Inp ~ In7) as 7 — 4o00. As for the behavior of the subdominant exponential
potential terms e~ 2wA’ (Bror) entering the r.h.s. of (4f)) it is expected to be somewhat similar
to the one depicted in Figure Bl except for the facts that the overall exponential decay
should be faster, and that the peaks should be much rarer (corresponding to a collision
happening nearly in a ‘corner’). [We expect that the faster decay and the rarer occurrence
of peaks also compensates the fact that the presence of (9,3)% and 923 in the coefficient

cu generates a growing behavior oc 72 of the c.]

f(r)

Figure 3: Schematic drawing of the source term of the system of equations (46)).

The system (@8) for {3,7,Q, P} (in which the r.h.s. depends on a solution {B, 7,
Qs P} of the asymptotic system (40)), can be viewed as a generalized Fuchs system.

Note that the structure of this ‘generalized Fuchs system’ is of the form

Oru— Au =Y e 20000 f4(B), 00 B0y, 0By, @, u, Dy, Do) (50)
A

where u is a vector—valued unknown function u(r,z) = (ui(7,z),...,ux(7,)), the linear
forms wa () are the same ones that enter in the system (@) and where the source terms
fa can be read off the system (@@]). In view of the arguments given in [12] (in particular, we
recall that in the appendix A of this reference, it has been argued that the ‘peaks’ in the
source terms pictured in Figure [3] are such that their integrated effect allows u to have a
limit as 7 — +o00) and partially recalled above, we expect that (under the conditions spec-
ified below) there exists a unique solution {3, 7, Q, P} of (@6) tending to zero as 7 — +o00
(and more generally a unique solution u of the system (B0, given suitable conditions on f,

which tends to zero as 7 — +00).

The conditions necessary for this result to hold for (46l are expected to be the following:

e the asymptotic initial data Q.(x), Po(x) must be such that the coefficients c4(Qo(x),
P,(z),0,Qo(x)) of the dominant potential walls remain strictly positive over the con-

sidered domain U,
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e the asymptotic initial data G.(x) = ((71,z), mo(x) = 7(71, ) at some finite time 7

must satisfy the zero—energy constraint Hq (0o, 7o, Qo, Po) = 0.

4.4 Constraints

To complete the story, we need to check that the exact constraints are satisfied (along the
exact equations of motion) once the asymptotic ones are fulfilled (along the asymptotic

equations of motion). The reasoning is the same as in the non—chaotic case:

1. First we treat the Gauss constraints. We impose that the asymptotic Gauss con-
straints (@) hold. It is again obvious that these asymptotic constraints are preserved
by the asymptotic equations of motion ([40). On the other hand, the exact Gauss
constraints (I2]) are preserved by the exact evolution equations. Moreover, they differ
from the asymptotic ones by exponential ‘walls’, and consequently they vanish when
T — 400. As in the non—chaotic case, we can conclude that they are equal to zero

(because they are constant and they tend to zero).

2. We then turn to the Hamiltonian and momentum constraints. Let us require that
the initial data Q,, P, of the asymptotic evolution system satisfy the asymptotic
momentum constraints Hy, = 0, [@3]) in addition to the asymptotic Hamiltonian

constraint H;; = 0. The constraints obey the evolution system (B8] 17 i.e.

o = 3 e 200,y +268%Ha — 20 ) .aHa)
0. H,—VyH = 0. (51)

As in the non—chaotic case, the above system is not Fuchsian due to (i) the term V,H
[however, as we have argued previously, this term should not be a problem], (ii) the
source term (i.e. the r.h.s. of the first equation in the system (&Il)) which is not an
allowed Fuchsian source term (this fact contrasts with the non—chaotic case). However
we have already dealt with this kind of source term in the system (46]). In the present
case, the source term is even ‘better’ than the one of (46]) because it contains only
‘subdominant walls’” which decay faster than the dominant ones and which exhibit
rearer ‘peaks’ (because the ‘peaks’ occur when the ‘ball’ hits a corner) [however these
‘peaks’ contain a factor o< 72] (see discussion in section 3]). Accordingly, the system
(BI) is a ‘generalized Fuchsian’ system in the sense given in section 3] and we con-
sider it likely that it possesses a unique solution that vanishes when 7 — 4+00. On
top of that, the system (51l is homogeneous and this implies that the unique solution

in question is zero.

We can then conclude that the exact Hamiltonian and momentum constraints are

satisfied since (i) they differ from the asymptotic ones, which are imposed to hold,

18See appendix [Al and the discussion in the section about the constraints in the non—chaotic case
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by exponential ‘walls’ (this implies that they decay as 7 — +00), (ii) they obey a
‘generalized Fuchs system’, as just argued, and therefore there exists a unique solution

that vanishes when 7 — “+o0.

Summary: Let us summarise our conjectural results concerning the asymptotic dynamics
of the fields in the vicinity of a spacelike singularity for a chaotic Einstein—matter systems

in the following statement:

Let

e (Qu(x), Pg(x)) be functions of the spatial coordinates such that the coefficients
cA(Qg (), Po(x), 0aQq(x)) nowhere vanish, and that the ‘fundamental chamber’ de-
fined by the inequalities w4 () > 0 is contained within the future lightcone G ,,3%3° =

07 Zaﬁa 2 07

e (B, m) be a solution a the asymptotic system of equations (@0]) with initial condi-
tions (B (x), Ty (z)) given at some finite 7 = 71 which satisfy the asymptotic Hamil-

tonian constraint ([42]), and

e impose that the asymptotic momentum constraints (43]) are satisfied at 7 = 71 as well

as the asymptotic Gauss constraints (44)).

Then there exists a unique solution (8,7, Q, P) of the Iwasawa—variable form of the full
constrained Einstein-matter equations such that the differences = 38— By T =T —g Q=
Q — Qu, P =P — Py} tend to zero as T — +o0.

5 Pure gravity in dimensions 4 < D < 10

To give a more concrete example of the general formulation of the BKL behavior of Einstein—
matter systems discussed here, let us consider the specific example of pure gravity. We
consider spacetime dimensions D such that 4 < D < 10, so that the corresponding behavior
is generically chaotic. For this case, our precise formulation of the BKL conjecture is the

following (we denote by d := D — 1 the space dimension 3 < d < 9):

(i) Initial data Let us give ourselves the following initial data:
d(d — 1)/2 spatial functions Ny,%(z) for a < i,
d(d — 1)/2 spatial functions P, (z) for a < i,
d spatial functions f*(z) and

d spatial functions 74 (z).

(i) Asymptotic Hamiltonian Given these data we define the following asymptotic

Hamiltonian

1
HasSymp (6{0]777[0]) — Z Gab o) a Moy b + V;symp + Vgsymp , (52)
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Figure 4:  Chaotic behavior This picture is a schematic drawing of the asymptotic dynamics of
the ‘diagonal variables’ at a given spatial point x, this dynamics is represented in the g—space. The
dashed curve represents the zeroth order solution ;. The exact solution is sketched as a continuous
curve. The idea is that the approximate solution [3;,; becomes better and better as 7 — +o0, this
is formalised via a ‘generalized Fuchs theorem’, see the text. Note that here we consider a chaotic
system and that the ‘fundamental chamber’ determined by the walls in contained within the light

cone.

2
d d
b — 2 1
where G¢ Toja To)b = Z W[O]a Iy <Z o) a> N and where
a=1 a=1

d—1
1 _ a+1_ a i 1
pasymp 5 Z e~ 2B =B ( (oya ,/\f(‘éj; )2, (53)
a=1
(where i = 1,...,d is summed over) and
1
Vgsymp _ 5 e—2a1d71d(5[0])(C(lo)d_ld)2 . (54)

In the last equation, agp.(3) (for b # ¢) denotes the linear form ag.(3) = B +

Y. ¢ (evaluated for a = 1, b = d — 1 and ¢ = d), and C)%. (with b # ¢ and
e#b,c
Cioy"e = —C(y%ep) denote the structure functions (dfp,* = —% Co)%e N H(O)bH(O)C) of

the ‘asymptotic Iwasawa frame’ 0,%(x) = No);%(x) w'. Note that all the coefficients
entering the exponential potential terms (53]) and (54]) depend only on the spatial point
(through P (x), N (x) and 9y N (z) which enters Cy), so that the asymptotic
evolution system for 3 and 7 constitutes, at each point of space, a well-defined system
of ODE’s.

(iii) Asymptotic evolution equations The equations of motion deduced from the Hamil-

tonian (52]) are called the asymptotic evolution equations, they are the ‘chaotic analog’
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of the AVTD evolution system considered in the non-chaotic, monotonic power-law

case. They are of the form:

1
0- ﬁ[%] = 5 Gab Tl b »
8 aSyI1n
Or Toja = 9B [VEY™ (B3 Proys Neoy)
+VE™ By Poys Noys 02 Nioy)] - (55)

(iv) Asymptotic constraints We impose that the initial data satisfy the following asymp-

totic constraints,

HAY™P (B, 7T[0]7/\/(0)7 92 N0y, Pwy) =0,
HGY"P(Nioy, 02 Nioys Proy) = 0, 0

where H*Y™P is the (conserved) quantity defined in equation (52), and where the

definition of Hg>™" is equation (@3] above.

Finally, this leads to the following precise formulation of the:

BKL conjecture in Iwasawa variables. Let, for € U, the spatial functions P N
and C(, be such that the d x—dependent coefficients P(O)ia/\/(o)aﬂi and C(O)ld_ld (whose
squares define the coefficients of the d exponential potential terms (53]) and (54])) do not
vanish in U. Let (By(7, ), mq (7, z), be the unique solution of the asymptotic evolution
system (B5]) with initial conditions By (71,2) = By (x) and g (T, 2) = 7 (z) at some
finite time 7 = 7 and satisfying the asymptotic constraints (B6). Then there exists a unique
solution (B(7,z),n(r,z),N(,z), P(r,z)) of the vacuum Einstein equations (including the
constraints) such that the differences 8(1,z) = B(r,2) — By (7, ), #(1,2) = 7(r,7) —
T (T 2), N(1,2) = N(1,2) — Ny (2), P(7,2) = P(1,2) — Poy(2) tend to zero as z € U is

fixed and 7 — +o0.

6 Asymptotic geometrical structure on cosmological singu-

larities

In the previous sections, we studied in detail the asymptotic dynamics of the gravitational
field in the vicinity of a spacelike singularity in Iwasawa variables. In particular, we have
seen that some of the variables have limits when 7 — 400, i.e. the Q’s and P’s while the
(B’s have no limits. Moreover, we have argued that in the ‘chaotic’ case the m,’s tend chaot-
ically to zero. Of course these Iwasawa variables are dependent on the choice of coframe
w' := w'j(z)dx? used in the equation (3] [where w’ could be simply a coordinate coframe].
This raises the question to know whether the Iwasawa variables, despite their ‘gauge depen-
dence’ capture some well defined geometrical structure at the BKL limit and what is this

structure. In the non—chaotic case, this question has a clear answer. Indeed, the frames that
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diagonalise the second fundamental form with respect to the metric have a well defined limit
at the singularity. They therefore provide a fields of ‘directional frames’ at the singularity,
i.e. a field of frames considered modulo rescalings of each frame vector. In this section, we

will investigate the chaotic case.

Our starting point is the existence of many variables having finite limits at the singularity,
namely the N%;’s and P,’s, (say N%(7,2) — Nio%, (2) Pla(T,2) — Po)la(z) as 7 — +00).
The problem is, however, that the quantities N and P(O)ia do not have, a priori, a clear
geometrical meaning because they depend on the coframe w’ used on M;. One way of
addressing this issue is to act on the coframe w’ with an arbitrary local transformation
A € GL(d,R) to investigate what information is left invariant in N, %(x) and P ()
when ‘rotating’ the coframe by an arbitrary A. We will try to assign canonical values to
the Iwasawa variables N(o%(z) and Py, () at the singularit by means of a suitable A
(e.g. in the non—chaotic case we can find A’s such that: N, %(x) A, 59, and Po)ia() A 0).
If we are able to assign canonical values to all asymptotic values of the Ny ’s and Py,’s,
this would mean that we would have again privileged directions at the singularity like in

the non—chaotic case. We will see that the situation is actually more subtle than this.

A general matrix A € GL(d,R) can be decomposed into three parts (i) a diagonal part, (ii)
an upper triangular matrix (with ones on the diagonal) matrix and (iii) a lower diagonal

matrix (with ones on the diagonal).

(i) The action of the diagonal part of A consists in shifting the values of 3’s. However, as
the #’s have no limit as 7 — +o00 it is not clear how to extract some geometrical meaning
from such shifts of the 3’s.

(ii) Concerning the action of the upper triangular part, let us show that it can be used to
fix the asymptotic values of the N;,%;’s to be §%;. The crucial point is that if we act on the

coframe by an upper triangular matrix, i.e. w'* = Aijwj, since
ds?® = Z e P NUN Wi |
a
must be equal to ds'? = 3, e 2 NN 0 iw'I and since the transformation is defined
by demanding that A/ and N/ be both upper triangular, we easily see that
N = NN, (for upper triangular A only).

This result is actually valid for any 7, and yields, in the limit 7 — 400, N = N[ A.

Now it suffices to perform the transformation with Aij chosen to be the upper triangular

9Note that, in the non-chaotic case, we have access to more information, namely the non-zero limits of

the 7’s.
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matrix A’; = Ng’; to fix the canonical values of the N{’s to be the unit matrix. Note

that after this fixing of the frame (such that N, = d) the frame w'* becomes identical at
the singularity with the limiting Iwasawa frame 0% = N/ %w't = N%w'.

(iii) Let us now consider the effect of the remaining freedom in a general A € GL(d,R),

i.e. a lower triangular matrix, namely,

1 0 0 0 0
A2, 1 0 0 0
A=| A3 A3 .- 0 0
: : . 1 0
A Ay o A

The action of any A (upper or lower triangular) on the frame components of the metric

ds? = g;jwiw! = g’ iw'J is always given by the following linear action,
giy(r) = A Migr(m) ATl (57)

However, the induced action of such a A on the Iwasawa variables 5(7) and N (7) parametriz-
ing g;;(7) is somewhat complicated when A is lower diagonal because it is non linear (con-
trarily to the simpler case just discussed, of an upper triangular matrix whose action was
nicely compatible with the upper triangular nature of A/ and was thereby linear). Let us
then consider the case where the remaining lower triangular matrix A is close to the identity,

say
A = 142X,

with infinitesimal (strictly lower triangular) A. In addition, as we always assume that we
have already used an upper triangular matrix A" to fix MV, (after dropping the primes) to
the identity, we can write that N'(7) is of the form,

N(t) = 1+n(r),

with n(7) — 0 as 7 — 400. As both matrices A\ and AN (7) can be treated as infinitesimal
elements, we will neglect terms of order O(n?) and O(\?). Note also that, as we are near a
situation where N'%; ~ 6%, the distinction between the ‘a’ type indices and ‘i’ type indices
disappear. When replacing the Iwasawa decomposition g;; =), e 2 N N ¢; in equation

(7)), we find at the linear approximation,
'y = i+ A+ 0P,
26" = e_%i(l + 2[n, AJ%) no sum over i . (58)

As the P’s are the canonically conjugate to the N' = 1+ n, the law of transformation of the
P’s is obtained by using the ‘conservation’ of the canonical form PdN +xdS = P'dN'+7'd3'.
We then easily find

Py = P+ NPT = N —a) + 0@ )
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In addition we see from equation (58)) above that the limit n(7) — 0 is invariant under
such a lower triangular transformation A, so that the canonical value N, = §} is left fixed
by such a A. Since at the BKL limit, the exponential ‘symmetry walls’ e~ 28 =B (j >1)
vanish and that, in the chaotic case, the momentum conjugate to the (3’s is going to zero
(after each collision, they are ‘redshifted’ [12]), we obtain the following action of the lower

triangle A = 1 + X on the limiting values of the P’s, i.e. P,’s:
Po''i = Po'i+NPol'- (59)

In view of the strictly lower triangular nature of both A and P it is easily seen that the
transformation law (59)) implies that the elements of P, on the first lower diagonal are left
invariant:
(/O)z‘+1i = Py

Consistently with our general requirement of having non vanishing dominant symmetry wall
coefficients, we assume that all the constants P, *!; are non Vanishing Then it is easily
seen that by choosing a suitable A one can change at will the values of the P, ’s on the
lower diagonals, P, ™™ (n > 2). This proves that there exists a A such that we can fix

Poy to the following canonical form,

0 0 0 0 0
P2 0 0 0

P.o=| 0 P 0o o0 |. (60)
0 0 0 0
Ply 1 0

Let us now study what are the coframe changes that leaves the canonical of Ny, (N = 0)
and Py (P = Po) invariant. We already know that the canonical form N, = 0 fixes the
upper part of A to be unity. As for the lower diagonal part A = 1+ A, the request that P,
be fixed to P, implies, from the equation (B9]), the condition

A\, Po]'; =0. (61)

To analyze the consequences of this constraint, we decompose A into a sum of matrices with
non vanishing elements only on one of its ‘lower’ diagonals, i.e. A = A1 + Ao + ... + Ag_1
where the only non zero elements of A\, are ()\n)“'”i. It is then easily seen that A\; must be
proportional to P,. Then one similarly finds that Ay oc P2 etc... Finally the most general
A =1+ X fixing P, to its canonical value P, is found to be of the form,

A=aPs + Oé2'Po2 + Oég'Pg’ + ..+ ad_ngl_l (62)

for some constants a,.

20Such a nilpotent element Py, is called ‘regular’ in the mathematical literature.
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Let us discuss the geometrical meaning of our findings. We consider again a general A €
GL(d,R), containing both upper and lower triangular parts (for the reasons explained above
we do not consider the diagonal part). If we had been able to define a canonical form whose
‘stabiliser’ in GL(d,R) had been only the unit matrix, this would have meant the existence
of a preferred directional frame (frame modulo rescalings) at each spatial point x ‘on the
singularity’. On the other hand, if the stabilizer had been the full group GL(d,R), this
would have meant that no preferred frame at all remained on the singularity. Actually we
have a intermediate situation, our stabiliser S is a proper subgroup of GL(d,R), { 1} C S C
GL(d,R). It defines an equivalence class of directional frames that we can call a partially
framed ﬂag The elements of our stabiliser S are given at the infinitesimal level by the

formula ([62). Therefore, an element s of S can be written as

s = ea1Po+a2P§+a3P§+...+ad,173g’1 (63)
where oy, ag, as, ..., ag_; are constants. The element s of S acts on the coframe w' as,
W't = shw (64)

It is then easily checked that S is a commutative group of dimension d — 1. More precisely,
in view of the fact that the various powers of the matrix P, commute among themselves,

one finds that the group composition of two elements of S is simply given by
s(ar,ag,...,aq-1)os(al,ah, ..., 1) =s(ag +a,as +ab,...,aq 1 +al_y). (65)

[In mathematical terminology, S is a unipotent abelian subgroup of the Borel subgroup of
GL(d,R).] Explicitly, the matrix elements of s (G3) read as follow,

m
s = > %P(O)"n_l Py (66)
J€(L,e,d=1)[3me{N*[mj=n—i}
For instance in d = 3, the matrix s reads,
1 0 0
5 = 1Py 1 0. (67)
(30% + a2)P)’ 2Pt 1P’ 1
Therefore, in d = 3, the class (defined by the relation (64])) of coframes equivalent to some
given coframe w’? is explicitly given by:
Jo— ot

U.)/2 = w2 +041P(0)21 wl

1
B o= W OqP(O)?’g w? + (50@ + a2)73(0)327;(0)21w1 . (68)

21Let us recall that a (complete) flag can be seen as the equivalence class of ‘directional frames’ with the
following equivalence relations. A ‘directional frame’ given by the directions {v1,...,v4} is equivalent to the
‘directional frames’ {v1, ..., v};} constructed by picking a first direction along the vector v1 (v} o v1), then a
second direction v5 belonging to 2-plane spanned by vi and v2 (v o< v2 + avi), a third direction belonging
to the 3-plane spanned by v1, v2 and vs (v3 o< v3 + Bv2 + Yv1), and so on up to a last direction along a
vector v/, which is an arbitrary vector in R%. In other words, the stabiliser of a flag is the full subgroup of
lower triangular matrices of GL(d,R).
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By duality between frames and coframes (< w', ej >= 5;), one can then easily deduce the

corresponding equivalence classes of frames. The equivalence class of a frame e; is given by
[ei] = {ef = ejs7Y;|s € S}. (69)

For d = 3, we have explicitly,

1
/ 2 2 3 2
61 = e1 — alp(o) 1€2 + (5041 - a2)P(0) 27)(0) 1€3
! 3
€y = €2 — alp(o) 2€3
ey = e3. (70)

Summary: The equivalence class of frames and coframes with respect to which the limiting
values of N, and P, take the canonical values Ny = ¢ and Py, = P, (60) is described
by the relations ([€9) and (64]) which contain d — 1 arbitrary parameters. This equivalence
class defines a privileged geometrical structure at the singularity, which we call a partially
framed flag. For instance, in d = 3 this partially framed flag comprises: (i) one privileged
direction e, which is independent of the basic frame w’, (ii) then the equivalence class of
the vector es must lie in a privileged 2—plane containing es, (iii) finally, after having chosen
a representative e in the class [es] (i.e. g is fixed), the third vector e; must lie in a privi-
leged 2—plane defined by e; — qu(O)Qleg + %Q%P(O)ggp(o)zleg and eg. [This is different from

a flag where e; would have been an arbitrary direction in the full R3.]

It is remarkable that at the ‘chaotic’ BKL limit, we have a such geometrical structure left.
At the singularity, we could have guessed that nothing is left from the metric structure
because of the chaotic character of the asymptotic dynamics. Let us note that our results
have been partially anticipated in [2] where a law of ‘rotation of Kasner axes’ was derived.
This law is somewhat similar to our results (68]) but, actually, it has a different physical
meaning. Indeed, the first Kasner axis [ which is preserved in the law approximatively
derived in [2] is supposed to belong to the ‘growing’ eigen axis p; = p1 < 0, so that it would
be a different axis that would be preserved during further collisions. One would then have
no privileged direction at the singularity. As we have shown here, there exists a well defined
geometrical structure at the singularity: a partially framed flag which is rather ‘rigid’ in the
sense that it depends only on d — 1 arbitrary parameters (while a generic flag would involve

d(d — 1)/2 arbitrary parameters).

7 Conclusion

In this paper, we started by reconsidering the asymptotic dynamics, in the vicinity of a
spacelike singularity, of the fields for ‘non-chaotic’ Einstein—matter systems. We have out-
lined a new proof that gives this asymptotic dynamics (which is essentially given, at each

spatial point, by a monotone power—law solution in terms of the proper time). Our method
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is based on the Iwasawa decomposition of the spatial metric and on the Hamiltonian for-
mulation of Einstein—matter systems. As in references [14] [13], we have used the Fuchs
theorem to conclude. More precisely, we have defined an asymptotic system of equations
which is a system of ODEs and we have also defined asymptotic constraints. Next, we have
shown that the ‘differenced variables’ (i.e. the differences between the solution of the exact
Einstein—matter constrained equations and the solution of the asymptotic Einstein—matter
constrained equations) obey a Fuchsian system. A solution of the constrained asymptotic
system, together with initial data, can thus be used to parametrize an exact constrained
solution. The advantages of our formulation is that it is shorter, more transparent (the
neglected terms are walls / subdominant walls) and that we avoid the problem of the sym-
metry of the metric encountered in [I4], 13]. In appendix [C, we discuss the spatial domain
on which a Fuchsian analysis can be applied in this context and point out that our method
cannot be used in some zero-measure co—dimension 2 submanifolds (in reference [14], [13],
there is a quite involved construction to deal with these submanifolds). We also showed
that this problem originates in the ‘spinorial’ nature of the eigenvectors of the second fun-

damental form around the submanifold where 2 (or more) eigenvalues coincide.

We next turned to the ‘chaotic’ Einstein—matter systems and formulated a precise statement
for the chaotic BKL behavior. This is achieved along the same lines as our formulation of
the non—chaotic case. We parametrize, at each spatial point, the generic solution of the
asymptotic behavior of the fields close to a spacelike singularity in terms of a constrained
system of ODEs (and some initial data). Then we argue that the difference between the so-
lution of the exact ‘chaotic’ constrained Einstein—matter system and the asymptotic system
just defined satisfies a ’generalized Fuchs system’. We leave to others the task of proving
that such ‘generalized Fuchsian systems’ admit a unique, asymptotical vanishing, solution.
Our purpose here was mainly to formulate, in precise mathematical and physical terms,

this asymptotic characterization of ‘chaotic’ solutions of FKinstein—matter systems.

Finally, we addressed the question of the existence of some asymptotic geometrical structure
defined at the singularity for a chaotic system. We knew that some of the metric variables
had finite limits at the singularity and it was therefore natural to wonder whether we could
extract some geometrical structure from these limiting values. A first slight, we could
expect that the chaotic nature of the asymptotic dynamics would destroy any structure at
the singularity. We showed that it is not the case: partially framed flags can be defined at
the singularity. These partially framed flags are, as their name indicate, more ‘rigid’ than

flags and less ‘rigid’ than frames.
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A Evolution equations of the Hamiltonian and momentum

constraints

The purpose of this appendix is to obtain the evolution equations for the exact Hamiltonian
constraint H (I0) and exact momentum constraints (III) in our gauge choices. Here we do
not consider matter for simplicity and we work in a coordinate basis. These evolution equa-
tions can be derived from the Bianchi identities and the evolution equations for the spatial
metric. In this perspective, we have to know what are the evolution equations in the gauge

we are interested in.

The first order action of pure gravity in D = d + 1 spacetime dimensions S[g;;, 7 N, N q

reads,

Its variation with respect to 7% can be understood as the definition of the m;; in terms of
gij, the variations with respect to g;;, N, Nt giving respectively the equations of motion,
the Hamiltonian constraint and the momentum constraints Note that the dot means a
derivation with respect to 2°. Let us now use the Einstein-Hilbert action, i dPz \/TD)g(D)R
in the so—called Palatini formalism (i.e. the Christoffel symbols F’,fp are considered to be
independent of the metric elements g,,) to determine the link between the Hamiltonian

equations of motion 0.5/0g;; = 0 and the usual Einstein equations ”’G,,, = 0. The variation

22We recall the following relationships,

k 72 1 N7
@, _ [ NeN"=N7g N; > v _ [ T NZg N2g
Guv N; - g = N gij NN )

91 N2g N2g

where = (0,4) and v = (0, j).
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of the Einstein—Hilbert—Palatini action gives,
0SEup = /dD V=Prg(=PI G §g,, + g (6T iy — 5Fu)\u)
N / V=07 @b, — (V=99" ) — 05(9" V=9)2)0T%, ), (72)

where (P)g denotes the determinant of the spactime metric, (”’G,,, is the Einstein tensor and
the second equality is obtained by integration by parts (we neglect the boundary terms).
For simplicity, let us assume that N* = 0 on-shell (but keeping 6N? # 0), and that most of

the usual relations between I'*,, and the derivatives of g, are constrained to hold, namely

1 N
0 = §%+WJO
My = 10— 18 Na
29
Too = 5N%g7g;+9g"NNg
My = %gl (91,6 + Gikj — Gjk,i) - (73)

Moreover we require that Fojk is related to the IV, = IVq, via IVg, = g¢?'T%;,. We can
then verify that the terms in dI' can be ignored to compute the functional derivative of .S
with respect to g;;, N and N' (the coefficient in front of these variation in (72) vanish). It

is then straightforward to derive the following relations,

0SEmP _ Ng(_(D)Gz'j+N2g(D)Googij)+O(Nk) (74)
59ij

5SE{{P _ 2(D)G00N292+0(Nk) (75)
ON

I 5NgPG + O(N). (76)

Note that we did not write explicitly the terms proportional to IV; because we will work in
the gauge V; = 0. On the other hand, we have,

59 . _0H

= —79_N + O(N* 77
500 500 (NF) (77)
Wy (78)
SN
58 ;
W, = —H (79)

When identifying §Sggp with 65, one obtains,
~ 2
H = —2g°N? G+ O(NF) = == G + O(N), (80)

H' = 2gN PGP 4 O(N*) = —%gUGOj + O(N*). (81)
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On the other hand, the equations of motion §5/dg;; = 0 are found to be equivalent to the

equations
g 1 g
WG = —Hg" + O(N"). (82)
g

Note that our result (82) is linked to our choice of ‘rescaled lapse’ N as basic lapse variable.

The result would be different if we were using the usual lapse N.

Let us now use the Bianchi identities B, := V,,’”’G", = 0 to derive the evolution equations

for the constraints. We use the equality,

B — au(\/—(D)g(D)GVu) _ 1(9 g ﬁ(D)Gaﬁ'

H /_(D)g 2 pIo
When inserting in the expression of B the relationship between H, H; and the components
of the Einstein tensor (80, BIl) as well as the equations of motion (82)), we obtain the

evolution equation for H,

(83)

%&H - %v% — (V;N)H! + O(N*) =0. (84)

Note that H; = ginj and that it is a tensorial density of weight 1 while N is a scalar density
of weight —1. The covariant derivatives V*H; and VZ-N must take into account these weights:
for instance ViH; = V/H' = 9;(¢"H;) (in a coordinate frame) and V;N = 8Z(N\/§)/\/§
From B; = 0, we get

1 87—7_(1 k\
25~ Vi) + o) =0. (85)

Note that H is a scalar density of weight 2 so that V;H = gd;(H/g). In our gauge choices,
i.e. N =1and N’ =0, the equations (84) and (85) read,

OH = gV'Hi+gH, (86)
OHi—ViH = 0. (87)

B Fuchsian Systems

B.1 Fuchs Theorem

The general form of a Fuchsian system ([31], 17, B5] and references therein) for a vector—
valued unknown function u(t, z) = (uq (¢, x), ..., uk(t, z)), defined on an open subset of R xR"
with values in R*, is

towu+ A(x)u =tHf(t, z,u, Oyu), (88)

where 0,u denotes a finite number of derivatives of u with respect to the variables x (they
are not restricted to be of first order); the function f is defined on (0, 7] x Uy x Uz (where
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U, is an open subset of R™ and Us is an open subset of Rk+"k) and takes values in R¥; and
w > 0. Ais an analytic £ x k matrix-valued function defined on U;. The system (88) is
said to be Fuchsian if the matrix A(x) and the function f fulfill the following conditions,

e condition on A : the matrix A(x) is required to satisfy some lower boundedness
condition. One sufficient condition, that has been used in several works [14, 13], is
that there is a constant e such that Real(\) > € > 0, for each eigenvalue \ of A at
any point. Recently, this condition has been relaxed to requiring that there exists
an 0 < a < u such that |o[*c® be bounded for ¢ varying in the interval 0 < o < 1
[35]. Essentially, this condition means that the real part of the eigenvalues of A are
everywhere strictly larger than —u. This is of particular interest for us, since the
matrix A relevant in our case is nilpotent so that |04 grows like a power of log o as

o — 0 (so that we can simply use any « in the interval 0 < a < p).

e condition on f : the ‘source term’ f (after having factored ) is required to be
‘regular’, i.e. f must possess an analytic continuation in z, u and J,u and, as a

function of ¢, must be continuous on [0, t,] for some finite time ¢,.

For more precise conditions on A and f, we refer to [I4] and references therein.

Fuchs Theorem: 1f the system (88)) satisfies the above conditions to be Fuchsian, then it

possesses a unique solution u that vanishes as t — 40 (see e.g [14], 35]).

Note : After the change of variable ¢t = e~7 (such that the singularity is now located at

T — +00), a Fuchsian system reads,
Oru — A(x)u = e f(1,2,u, 0pu), (89)

where, essentially, f must be analytic in z, u, O;u and bounded in 7 as 7 — +o00. This is

the form we shall use in the text.

B.2 Shift of the eigenvalues of A

One may wonder if it is possible to have a more precise description of how fast the solution
u of the Fuchsian system (88]) goes to zero when ¢ goes to zero. To answer this question,

let us rewrite the system (88]) in terms of the variable @ defined as follows,
=t u, 0< A< p. (90)
Inserting (@0) in the system (88]), it is straightforward to obtain

tou + A(x)u = tF f(t, 2,1, 0,10) , (91)



where

A = A+ 21, = — A\
f = f(t,a;,t)‘u,t)‘axu).

If f is regular, then f is regular. Note that the eigenvalues of A have been shifted by
A > 0 compared to those of A, so that if A satisfies the lower boundedness conditions
eigenvalues(A)> —pu, so does A (with the corresponding i = y— )). Therefore the ‘shifted’
system ([@I)) is again Fuchsian and we know that it admits a unique solution @ that vanishes
when ¢ — +0. This tells us that the unique solution of the Fuchsian system (88) that

vanishes as t — +0 actually vanishes as u = t’ i with @ = o(1), i.e. as o(t*) for any A\ < p.

Summary : the ‘shift’ of u allows us to gain a more precise information about how the
unique (asymptotically vanishing) solution u of the system (88]) decays as ¢ — +0. If the
r.h.s. of the Fuchsian system (88]) decays as t*f then w is a O(t#~¢) for any € > 0. When
using the 7 variable, this essentially means that a source term decaying as e #” corresponds

to a unique, asymptotically vanishing, solution decaying as e #-" for any 0 < pu_ < pu.

Note : For completeness, let us define the notations O and o. A function F(t,z,p) defined
on (0,Tp] x Uy x Uy, where Uy, U; are open subsets of R and RY respectively, is said to be
O(G(t)) if there is a constant C' such that

[E(t,2,p)| < CIGR)] for t € (0,t0], (z,p) € K.

The notation F' = o(G(t)) is used to indicate that F//G tends to zero uniformly on compact
subsets of Uy x Uy as t — 0.

C Subtleties occurring when some of the eigenvalues of the

second fundamental form coincide in the non—chaotic case

The usual AVTD approach uses a rather complicated construction to deal with the neigh-
borhoods of points where some eigenvalues of the second fundamental form k;; coincide
[14], 13]. Such a complication is needed because the frame vectors that diagonalise k;; with
respect to g;; are not analytic in x near such points. Here we consider the behavior of
Iwasawa variables in these regions. For a full comparison one should carefully analyze the
different slicing hypersurfaces in the two approaches: gaussian slicing N = 1 in AVTD vs

pseudo—gaussian slicing N = 1 in our case.

As a simple example, let us consider gravity in D = 4 coupled to a dilaton. Let us consider

for simplicity the (generic) case where two of the eigenvalues coincide on some submanifold.
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We choose as one of the frame vectors, the (analytic) eigenvector eg corresponding to the
third eigenvalue (which is supposed to stay away from the other two). The two other
analytic frame vectors are chosen to be orthogonal to es and to each other (they are linear
combinations of the eigenvectors corresponding to the nearly degenerate eigenvalue). In
this orthonormal basis (or dreibein), the coefficients of the metric are g,y = dq4p, while the
coefficient of the second fundamental form are given by a matrix K which is of the following

form,

a+tc b 0
K = b —a+c 0 ,
0 0 d

where a, b, c and d depend analytically on the spatial coordinates. The eigenvalues of K are
c(x)£+/a(x)? + b(x)? and d(x). Therefore, two eigenvalues will coincide when a(z)? +b(x)?
vanishes, which means that both a(x) and b(z) must vanish. This happens generically on a
line in the three dimensional space since it gives us two conditions a(z') = 0 and b(z*) = 0.
If we were in d spatial dimensions, the submanifold £ where two eigenvalues coincide would
again be defined by the vanishing of some a(z)? + b(x)? and therefore be a codimension 2
submanifold. For convenience, let us replace the quantities a(z*) and b(x?) by p(z*) and 6(z*)
such that a(z') = p(z?) cos 0(z*) and b(x?) = p(x?)sinO(z?). Since a and b have generically

their values between -co and +o0o, we have p € [0,00] and 0 € [0,27[. Let us consider the

Kasner metric, expressed in the time 7 = —Int, gy (7, 2) = e 57 (see [14}, [13]). We have
e“T (cosh p7 + cos 0 sinh p7) €7 sin f sinh pr 0
G = € sin 0 sinh p1 €T (cosh pr — cos @ sinh pr) 0 . (92)
0 0 edr

To compute the Iwasawa variables corresponding to the metric ([O2]), we use the following

explicit formulas (@),

1 1 1 0 1-— 0
glo= —5CT - §IH(¥GPT+ %e_m)
1 1 1 0 1-— 0
3 = —g5eT + 3 In (#em + %e‘m)
# = dr
Ny — sinf(ef™ — e~PT)
(1 +cosf)er” 4 (1 —cos@)e=rT
ng = 0
N% = 0 (93)

The crucial point is that the co—dimension 1 submanifold ¥ defined by the equation 1 +
cos § = 0 plays a singular role in the formulas (93]). Indeed, the exponential growing term e””
always appears in the combination (1+cos 8)e””. Therefore, in the open domain 14+cos # 0
and p = +va2 + b2 > 0, we have the generic Iwasawa behavior that the A”’s have a finite
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limit as 7 — +00, namely

T 1 _ sinf
Nooo = TETOON 2(7) = 1+ cosf
while the 3’s have the following asymptotic behavior,
1 1 1 0
B~ =5 let )= 5 (=),
1 1 1
§ o= p)r+ 5 In(F0),
B =dr. (94)

Note also that, because p > 0, we have the usual asymptotic ordering 3' < 2. How-
ever, we see that the asymptotic limit N 12(0), which depends only on spatial variables,
becomes singular on ¥ (codimension 1 submanifold (with boundary) where cosf = —1)
which is, in our d = 3 case, a half-membrane ending on the line a = b = 0, where the
eigenvalues of K coincide. More precisely, N/ 12(0) tends to +o0o0 as § — w1 and tends to

—o0 as # — 7. Correlatively the behavior of the 3’s become singular on ¥. We have the

asymptotic behavior 3%(7,2") ~ p2(z') + B2(a') where, e.g. Bl(2") = —§In (14522) and
B2(2") = 3 1n(5%) both become singular on ¥, while pt = —3(c + p), p? = —3(c — p)
[we recall that p(z?) = ++/a2(x?) + b2(2?)]. Note also that, if one sits on ¥, one has the
asymptotic behavior N'lo(7,2') = 0 and B'(7,z!) = —%(c — p)1, B(1,2%) = —%(c +p)T

where the signs of the p terms in #' and ($? are exchanged compared to the asymptotic
behavior outside of ¥. In particular, on ¥ we have, asymptotically, 8! (r,2?) > 32(r, %),
which contrasts with the generic result that asymptotically 3! < $2. This unusual behavior
is the sign that the coefficient of the e~ 2088 symmetry wall vanishes on X. As said above,
in our treatment we neglected this possibility on the account that it is non generic (as the
coefficient in question is a square). We see now that this non generic behavior necessar-
ily occurs on some codimension 1 submanifolds ending on the codimension 2 submanifolds

where 2 eigenvalues of K coincide.

However, let us emphasize that the location of the singular codimension 1 submanifold X
is not geometrically fixed, but is somewhat arbitrary apart from the fact that it necessarily
ends on the codimension 2 submanifold £ where 2 eigenvalues coincide. Indeed, let us
show that, by using a suitable, z—dependent local SO(2,R) transformation, one can move
> around £, in a manner similar to an ordinary-life flag moving around its pole. More
precisely, let us perform the following (spatially dependent) rotation of the first two vectors

e1 and eg of our orthonormal frame,

ey cosa  sina 0 e1
e | = —sina cosa 0 e | - (95)
e 0 0 1 es
One now finds
cos 0 sin (2a) — sin 6 cos (2a) sin (20 — 0)

Nllz (0) (xl) ) (96)

" 1+sin (2cr) sin @ + cos (2ar) cos @ " 1+ cos (2a —0)
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which shows that the new singular surface Y’ corresponding to the rotated basis is now
located at 0(x') — 2a(z?) = +m. This shows that ¥ is similar to a ‘Dirac string’ singularity:
it is a gauge dependent singular submanifold, whose location can be shuffled around by
using a gauge transformation. The non-analytic (actually singular) N/ — oo, ... behavior
of the Iwasawa variables on Y is evidently problematic within a Fuchsian system approach,
because it obliges us to work in an open region U of R? which does not contain ¥. The fact
we just showed that the location of ¥ can be moved around means that we can essentially
bypass this technical problem by using simultaneously two separate Fuchsian systems, cor-
responding to different choices of underlying frames (w?, e;) in the analytic spatial manifold
My, yielding finite values Iwasawa variables in two complementary open regions U and U’.
Such a construction bypasses the analyticity problems near ¥ and Y’. However, the codi-
mension 2 submanifold £ (where two eigenvalues coincide) remains excluded from these
two complementary Fuch analyses. In other words, the present Iwasawa variables—based
approach discussed here cannot cover in an analytic manner the measure—zero submani-
folds of My where 2 (or more generally n > 2) eigenvalues coincide. We leave this technical

problem to further analyses.

In this respect let us remark that the root of the problems linked, either in the AVTD
or the Iwasawa approaches, to coinciding eigenvalues of k;; admits a simple geometrical
interpretation. The crucial point is that the eigenvectors of K, considered as functions
of the auxiliary angle 6 introduced above (a = pcosf, b = psinf) depend on 6 in the
same manner as a spinor would transform under a SO(3) rotation of angle €. Indeed, the
diagonalisation of the matrix K is easily checked to yield the following eigenvectors (with

respect to the orthonormal basis ej, ey, e3 in which K is expressed),
0 0
v1 = COS 561 + sin 562 with eigenvaluec + p = ¢ + Va2 + b?,

0 0
vy = sin 561 — COS 562 with eigenvaluec — p = ¢ — Va2 + b?,

vy = e3 with eigenvalue d . (97)
Note the appearance of the half angle /2 in v; and vy. This appearance means that if we
follow the evolution of a diagonalising frame vq, vo, v3 along a closed loop in space around £
(assuming the Jacobian of a(z) and b(x) never vanishes), the eigenvectors vy (z*) and vy (z*)
will, upon their return to the same spatial point 2 (which corresponds to the same values
of a(z') and b(z?), but to an angle § = 2 instead of § = 0), take final values opposite to

their initial ones:
1)1(9 = 271') = —1)1(9 = O), 02(9 = 27‘(’) = —1)2(9 = O), 1)3(9 = 271') = 1)3(9 = O) . (98)

This phenomenon explains why, in the Iwasawa approach, the presence of a ‘line’ £ makes
itself felt far away from L (i.e. on the ‘singular’ half-membrane 3): indeed there is a

non—trivial holonomy of Kasner frames around £

ZEvidently, one could discuss the richer case where there are several independent codimension 2 manifolds
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D An illustrative Fuchsian toy model

The aim of this appendix is to see, on a concrete example, the relationship between the
structure of the source term and that of a solution of a Fuchsian system. The aim is not to
sketch mathematical proofs (for which we refer to [14} 13} [35]) but to build some physical
intuition. In this perspective, we study a toy model which is the most drastic simplification
of the system (B3]) one could consider. We want to show that the unique solution of the
system that goes to zero goes to zero like the source and not less fast than the source. To
handle this, we use an iterative method. Finally, we also investigate a sligtly more involved

toy model that is supposed to mimick the effect of the spatial gradients appearing in the
system (33]).
D.1 A first toy model
The first toy model we consider is the following,
ﬁ. -nmT = 07
o= e w8, (99)
If we consider the asymptotic system to be
B[o] — Moy = 0,
7.1'[0] = 0. (100)
The order zero solution is 7, = v and By = v7+ . Rewriting the equations (9)) in terms
of 3=~ B and T = T — 7y gives
B_ To= 07
e—2w(v7’+ﬁo)e—2w(3) . (101)

=T

The idea is that § and 7 go to zero as 7 — +o00. We can try to solve the system by iteration
assuming that (3 is small. The first iteration is obtained by replacing /3, in the source term

of equations (I01]), by its first order estimate which is zero, i.e. replacing e=20(B) py 1

5[1] -7y = 0,
ﬁ.[l] — 6—211}(1)7'"1‘50) . (102)
The solution of this system is 7 = _2wve_2“’(w+5°) and (B = We_m”(”ﬂrﬁ") (note

that we did not add integration constants since we search solutions that go to zero when
T — +00). The next step consists in replacing 3 in the source term by its first order

estimate,

B[z] — T = 0,
Ty = e 2w(vT+80) o —2w(Bp)) e—2w(vT+ﬁo)(1 _ Qw(ﬁm))_ (103)

of the type of L, together with more exceptional submanifolds where more eigenvalues coincide.
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e—2w(UT—|—,Bo) _ 2w 6_4w(6[0]) and

The solution of this system is given by 7y = —— S0 (02 (—Fw (@)

—2w(vT+Lo 2w —4w
(& 2 ( +B)—We (6[0]). Etc.

By = (2131))2

—€T

Therefore, the solution that vanishes goes to zero like the source. We do not lose a e™“" and
we conclude that the Fuchs theorem is too strong in this situation. For this very simple toy

model, the exact solution of the system (@9) can be written as follows,

d
T = / b , (104)
\/2E — Le—2wh
where F is a constant of integration and this integral gives explicitly,
ﬂ 1 e—2wp
T=——t ——In(1+4/1- +C, 105
V2E  wV2E ( 2Ew) (105)

where C' is a constant of integration.

D.2 The effect of spatial gradients

Let us now consider a less primitive toy model, mimicking walls with coefficients depending

explicitly on the spatial derivatives of 3,

B =,
o= Oy(e 2Py, (106)
As asymptotic system, we take the same as in the previous example (I00). The order zero
solution is 7w = v(x) and By = v(z)T + Bo(z). Rewriting equations (I06) in terms of
/B = /8 - 5[0] and m =7 — 0] giVeS
B =,
= —2w(0,vT + 00, + 8965)6—21”(”*‘50)6—2@0(5) )

=T

The first iteration is again obtained by putting 3 is the left hand side to zero,
Oz Bo N 20,v

w(v)  2w?

) 4+ am'U 7_6_21”(6[()]) (107)

ﬁ-[l] = 6_2w(6[0])( w(v)

By is also of the form e~ 2w(B [01)(a + b7). Higher order iterations will give higher powers of
7 which are multiplied by increasing powers of the ‘walls’ e 2001 see [36] for the structure
of an all-order iterative example of such a Fuchsian system. Therefore, we can suspect that

in this case, the solution decreases less quickly than the source by a polynomial in 7.
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