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Abstract: Belinskii, Khalatnikov, and Lifshitz (BKL) conjectured

that the description of the asymptotic behavior of a generic solution

of Einstein equations near a spacelike singularity could be drastically

simplified by considering that the time derivatives of the metric asymp-

totically dominate (except at a sequence of instants, in the ‘chaotic case’)

over the spatial derivatives. We present a precise formulation of the BKL

conjecture (in the chaotic case) that consists of basically three elements:

(i) we parametrize the spatial metric gij by means of Iwasawa variables

(βa,N a
i); (ii) we define, at each spatial point, a (chaotic) asymptotic

evolution system made of ordinary differential equations for the Iwa-

sawa variables; and (iii) we characterize the exact Einstein solutions

β, N whose asymptotic behavior is described by a solution β[0], N[0] of

the previous evolution system by means of a ‘generalized Fuchsian sys-

tem’ for the differenced variables β̄ = β −β[0], N̄ = N −N[0], and by re-

quiring that β̄ and N̄ tend to zero on the singularity. We also show that,

in spite of the apparently chaotic infinite succession of ‘Kasner epochs’

near the singularity, there exists a well–defined asymptotic geometrical

structure on the singularity : it is described by a partially framed flag.

Our treatment encompasses Einstein–matter systems (comprising scalar

and p–forms), and also shows how the use of Iwasawa variables can sim-

plify the usual (‘asymptotically velocity term dominated’) description of

non–chaotic systems.

http://lanl.arXiv.org/abs/0710.5692v1
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1 Introduction

The works [1, 2, 3] of Belinskii, Khalatnikov and Lifshitz (BKL) proposed a description of

the asymptotic behavior of the gravitational field in the vicinity of a spacelike singularity

of a D = 4 spacetime satisfying the vacuum Einstein equations. They also investigated the

D = 5 vacuum Einstein case as well as the D = 4 spacetime with a massless scalar field [4].

Finally, they analyzed more general Einstein–matter systems (e.g. Einstein–Yang–Mills) in

[5]. Extension of the BKL analysis to higher dimensions was addressed within the context

of pure gravity in [6, 7]. It is convenient to express the BKL analysis using Hamiltonian

methods. This leads to considering the motion of a particle in an auxiliary Lorentzian

space submitted to the influence of a linear superposition of exponential potential walls

[1, 8, 9, 10, 11, 12]. This approach allows for a relatively easy generalization of the work of

BKL to any spacetime dimension and with any p–form field content [12].

As argued by BKL, a drastic simplification in the Einstein equations occurs near a spacelike

singularity (located at proper time t = 0) in that the partial differential equations for the

metric can be essentially replaced by ordinary differential equations with respect to time. In

physical terms this corresponds to an effective decoupling of spatial points x1 6= x2 as t → 0.

Depending on the specific theory at hand (spacetime dimension, field content, couplings to

the dilatons), the BKL approach leads to expect two possible types of behavior:

• ‘Non–chaotic behavior’ (or Monotonic power law): the spatial scale factors (and the

dilaton fields eφ if any), behave at each spatial point in a monotone, power-law fash-

ion in terms of the proper time as one approaches the singularity at t = 0, i.e. at

each spatial point the asymptotic form of the metric looks like a Kasner metric. On

the other hand, the p–form fields A have limits as t → 0. Theories exhibiting this

asymptotic behavior are, for instance, pure gravity in D ≥ 11 [6, 7, 13], and gravity

coupled to a scalar field in any dimensions [4, 14].

• ‘Chaotic behavior’ : at each spatial point, the asymptotic behavior is given by a chaotic

succession of an infinite number of increasingly shorter Kasner regimes as one goes to

the singularity. Important examples of theories exhibiting this asymptotic behavior

are pure gravity in D ≤ 10 [6, 7], and the bosonic sector of all supergravities associated

with the low energy limit of string or M-theory [15].

The non–chaotic case has been formulated in rigorous mathematical terms by consider-

ing an auxiliary asymptotic dynamics called the ‘asymptotically velocity term dominated’

(AVTD) system [16]. The AVTD system is obtained by neglecting all the spatial deriva-

tives in the considered Einstein–matter system. Einstein equations then reduce to ordinary

differential equations (ODEs). The solutions of this asymptotic system are precisely given

by Kasner–like metrics. Fuchsian methods [17] can then be used to prove that, given a

solution of the velocity dominated system, there exists a (geometrically unique) solution of
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Einstein’s equations that asymptotically approaches this solution. These Fuchsian methods

have been used to mathematically describe cosmological singularities in various simplified

contexts: Gowdy spacetimes [17], plane symmetric spacetimes with a massless scalar field

[18], polarized and half-polarized U(1) symmetric vacuum spacetimes [19], spacetimes with

collisionless matter and spherical, plane or hyperbolic symmetry [20], and a particular sub-

set of general Gowdy spacetimes [21]. It has also been possible to use Fuchsian methods

to mathematically describe singularities without any symmetries: notably for the Einstein–

scalar system [14], and for many Einstein–matter models including pure gravity in D ≥ 11

dimensions [13].

By contrast, the general inhomogeneous chaotic case has not yet been tackled by rigorous

mathematical methods. The BKL conjectural behavior has been consolidated by recent

Iwasawa–variable based analytical treatments [12] and is also supported by numerous nu-

merical results [22, 23, 24, 25, 26, 27]. However there exist neither a clear general formulation

of the precise asymptotic behavior advocated in the BKL approach, nor any mathematical

theorems concerning its compatibility with Einstein field equations. The purpose of this pa-

per is to present a mathematically precise formulation of the BKL conjecture in the chaotic

case. In other words, we aim at providing a chaotic analog of the AVTD formulation of the

non–chaotic case. More precisely, we shall describe the asymptotic dynamics of the gravita-

tional field for Einstein–matter systems, at each spatial point, by a well defined asymptotic

evolution system made of ODEs .

In addition to formulating a precise conjecture for the chaotic BKL behavior, we also ad-

dress the question of whether or not geometrical structures can be defined at the singularity

and what are these asymptotic geometrical structures. According to the billiard picture,

most of the metric variables possess well defined limits at the singularity: the ‘off–diagonal

variables’, i.e. all the variables except the diagonal metric components (and the dilaton)1.

This means in particular that for these variables, initial data can be assigned at the sin-

gularity. The other variables, i.e. the diagonal variables, have no limit at the singularity.

Although the ‘off–diagonal’ variables have finite limits, they are (co)frame (and gauge) de-

pendent and thereby they do not have a priori a clear geometrical meaning. Nevertheless,

we can wonder whether it is possible to extract some geometrical information from these

asymptotic values. It turns out that this is possible, but that this asymptotic geometrical

structure is less ‘rigid’ in the chaotic case at hand than it was in the non–chaotic case.

In the non–chaotic case, the asymptotic geometrical structure is simple to describe. The

solution is asymptotically given, at each spatial point, by a Kasner–like metric [14, 13]. The

(spatial) Kasner metric is, in d spatial dimensions,

gij(t) = t2p1lilj + t2p2mimj + ... + t2pdrirj , (1)

1A short review of the billiard picture is presented in section 2.
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where the pi’s (i = 1, 2, 3) are the Kasner exponents subject to the Kasner conditions. [Note

that this metric possesses a curvature singularity at t = 0 and that the distances are no

longer defined at this singularity, since either gij →
t→0

∞ or gij →
t→0

0.] The Kasner coframes,

i.e. the coframes that diagonalise, at each spatial point, the second fundamental form kij

with respect to gij have finite limits at the singularity (up to independent rescalings they

are simply given by ω1
K = lidxi, ω2

K = midxi, ..., ωd
K = ridxi) and therefore provide a basis

of preferred directions, i.e. a ‘directional frame’ (and co–frame). See Figure 1.

?
?

?

t = 0 t = 0

(a)

t

(b)

t

Figure 1: (a) Non–chaotic behavior : sufficiently close to the singularity, the dynamics of the

gravitational field can be approximated by a Kasner–like metric at each spatial point. Let us focus

on one particular spatial point where asymptotically the metric is given by ds2

spatial = (t2p1 lilj +

t2p2mimj + ... + t2pdrirj)dxi dxj . When t → 0, the directions for which the Kasner exponent pi

is negative are stretched while the ones with positive exponent are squeezed. At the singularity,

these directions are still defined. (b) Chaotic behavior : now instead of a Kasner–like metric at

each spatial point, there is a never ending chaotic succession of Kasner epochs before reaching the

singularity. Are there still some preferred directions at the singularity? or is some other structure

of the metric preserved asymptotically?

For chaotic systems, we could have expected, from the BKL description of the asymptotic

dynamics of the metric as a never ending chaotic succession of Kasner epochs at each spatial

point, that no privileged directions can be defined at the singularity especially in view of

the effect, discovered in [2], of a ‘rotation’ of Kasner frames between two successive Kasner

epochs. However, we show in section 6 that an asymptotic geometrical structure can be

defined at the singularity. This structure is less precise than a frame but more precise than

a flag and therefore we will call it a partially framed flag. The precise meaning of this notion

is explained in the sequel.

This paper is organised as follows. We first review in section 2 the Iwasawa–variables ‘cos-

mological billiards’ of [12] in order to introduce our notation and stress important features

for our purposes. Then, to gain some intuition for how to define the asymptotic system

of evolution equations parametrizing a ‘generic’ solution of an Einstein–matter system in

the chaotic case, we revisit in section 3 the non–chaotic case treated in [14, 13]. Our
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new approach is based on Hamiltonian methods and Iwasawa variables, which simplify the

previously done analyses.2 More precisely, we define an asymptotic system of evolution

equations and we rewrite the Hamiltonian Einstein–matter evolution equations in terms of

the difference between the solution of the full evolution equations and the solution of this

asymptotic system. Then we argue that the so–obtained ‘differenced system’ of equations

is of the Fuchsian type3. We also treat the constraints by defining asymptotic constraints

which, when they are satisfied, imply the vanishing of the exact constraints. Next we turn

to our main purpose in section 4, that is to give a mathematically precise formulation of

the chaotic BKL behavior. This is achieved by defining again an asymptotic system of

evolution equations which is a system of ordinary differential equations though it is not

necessarily an AVTD system. We then formally rewrite the Hamilton equations in terms of

the difference between the solution of the full evolution equations and the solution of the

asymptotic system. Finally, we argue that a stronger version of the usual Fuchs theorem

is likely to remain valid in the chaotic case. In the last section, we show that for chaotic

systems, partially framed flags are the asymptotic geometrical structures that stay well de-

fined at the singularity.

We mention the recent paper [28] that establishes the relationship between the Iwasawa–

based billiard approach used here and the dynamical systems approach to cosmological

singularities.

2 Appearance of Toda–like walls in Einstein–matter Hamil-

tonians in Iwasawa variables

The general systems considered are of the following form

S[gµν , φ,B(p)] =

∫

dDx
√

−(D)g

[

R(g) − ∂µφ∂µφ

−1

2

∑

p

1

(p + 1)!
eλpφF (p)

µ1···µp+1
F (p) µ1···µp+1

]

+ . . . . (2)

Units are chosen such that 16πGN = 1, GN is Newton’s constant and the spacetime dimen-

sion D ≡ d + 1 is left unspecified. Besides the standard Einstein–Hilbert term the above

Lagrangian contains a dilaton field φ and a number of p–form fields B(p)
µ1···µp (for p ≥ 0).

The generalization to any number of dilatons is straightforward. The p–form field strengths

F (p) = dB(p) are normalised as

F (p)
µ1···µp+1

= (p + 1)∂[µ1
B(p)

µ2···µp+1]
≡ ∂µ1B

(p)
µ2···µp+1

± p permutations .

2A comparison between the two analyses is done in appendix C.
3We recall Fuchs’ theorem in appendix B.
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As a convenient common formulation we have adopted the Einstein conformal frame and

normalised the kinetic term of the dilaton φ with weight one with respect to the Ricci scalar.

The Einstein metric gµν has Lorentz signature (−+ · · ·+) and is used to lower or raise the

indices; its determinant is denoted by (D)g. The dots in the action (2) above indicate

possible modifications of the field strength by additional Yang–Mills or Chapline–Manton-

type couplings [29, 30]. The real parameter λp measures the strength of the coupling of

B(p) to the dilaton. In the following, for simplicity, we shall treat the case where there is

no dilaton φ and indicate what changes occur when φ is present.

2.1 Iwasawa variables

Let us give a schematic review of the Iwasawa–variable cosmological billiards. For a detailed

derivation, we refer to [12].

We choose a slicing of the spacetime we want to construct, MD = Md × R, such that the

singularity occurs at the coordinate time τ = +∞. We shall define the time slicing τ by

requiring that the ‘rescaled lapse’ Ñ = N/
√

g (where g =detgij) is equal to some given

(weight –1) time–independent density µ−1(x) on Md. For simplicity, we take µ−1(x) = 1

in the coframe ωi we use, so that Ñ = 1 ⇐⇒ N =
√

g. In other words our time

coordinate is linked to the ‘proper time’ dt = −Ndτ by dτ = −dt/
√

g. The slicing is

built by use of pseudo–Gaussian coordinates defined by a vanishing shift N i = 0, lapse

N(τ, xi) =
√

g(τ, xi)µ−1(x
i) =

√

g(τ, xi) and metric

ds2 = −(N(τ, xi)dτ)2 + gij(τ, x
i)ωi(xk)ωi(xk) . (3)

Here ωi(x) = ωi
j(x)dxj is a coframe on the given (analytic) spatial manifold Md.

4 One of

the useful technical tools we shall employ here consists in replacing the d(d + 1)/2 metric

variables gij , by a new set of variables: d ‘diagonal degrees of freedom’ βa, together with

d(d − 1)/2 ‘off–diagonal degrees of freedom’ N a
i where N is restricted to be an upper

triangular matrix (N a
i = 0, if i < a) with ones on the diagonal (N a

i = 1, if a = i), such

that

gij =

d
∑

a=1

e−2βaN a
iN a

j . (4)

We shall refer to the algebraic decomposition (4) as the Iwasawa decomposition of the

4Note that in [12], a coordinate basis is used instead of a general basis ωi but the generalization is

straightforward as long as ωi = ωi
j(x

k)dxj does not depend on time.
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metric5. In d = 3, the components of the metric read explicitly,

g11 = e−2β1
, g12 = N 1

2e
−2β1

, g13 = N 1
3e

−2β1
,

g22 = (N 1
2)

2e−2β1
+ e−2β2

, g23 = N 1
2N 1

3e
−2β1

+ N 2
3e

−2β2
,

g33 = (N 1
3)

2e−2β1
+ (N 2

3)
2e−2β2

+ e−2β3
(5)

from which one gets (uniquely)

β1 = −1

2
ln g11, β2 = −1

2
ln

[

g11g22 − g2
12

g11

]

,

β3 = −1

2
ln

[

g

g11g22 − g2
12

]

, N 1
2 =

g12

g11
,

N 1
3 =

g13

g11
, N 2

3 =
g23g11 − g12g13

g11g22 − g2
12

. (6)

In the cosmological context, one could refer to the ‘diagonal metric variables’ e−βa
as the

‘scale factors’. In [12] the β’s and the dilaton (when present) were collectively denoted

βµ = {βa, φ}. In the case considered here (no dilaton), we shall use labels from the

beginning of the latin alphabet (a, b, c, .., e) to denote the ‘diagonal variables’ βa. All other

variables are called ‘off–diagonal variables’ and are denoted Q,

Q = {N , B(p)} ,

where B(p) are the B(p) expressed in the generalized Iwasawa coframe θa
iwa, θa

iwa := N a
jω

j,

e.g. we have Bi1...ip =: N a1
i1 ...N ap

ipBa1...ap. Note that, in the Iwasawa coframe, the metric

is diagonal: giwa
ab = e−2βa

δab.

2.2 Hamiltonian approach in Iwasawa variables

The Hamiltonian action corresponding to the action (2) in any pseudo-Gaussian gauge, and

in the temporal gauge for the form fields (B0i1...ip−1 = 0), reads6

S
[

gij , π
ij , B

(p)
j1···jp

, π
j1···jp

(p)

]

=

∫

dx0

∫

ddx

(

πij ġij +
1

p!

∑

p

π
j1···jp

(p) Ḃ
(p)
j1···jp

− H

)

(7)

5Indeed, it is linked to the Iwasawa decomposition of the vielbeins Va
i ∈ SL(d, R) (such that gij =

Va
iV

a
j) which reads V = KAN where K ∈ SO(d), A is a diagonal matrix and N is a nilpotent matrix. The

Iwasawa variables are uniquely specified by requiring that K ∈ SO(d) be the unit matrix.
6The term πφφ̇ should be added (inside the parenthesis) in the action if a dilaton is present.
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where the Hamiltonian density7 H is8

H ≡ ÑH (8)

H = πijπij −
1

d − 1
πi

iπ
j
j +

∑

p

1

2 p!
π

j1···jp

(p) π(p) j1···jp

− gR +
∑

p

g
1

2 (p + 1)!
F

(p)
j1···jp+1

F (p) j1···jp+1 (9)

where R is the spatial curvature scalar. The dynamical equations of motion are obtained

by varying the above action w.r.t. the spatial metric components, the spatial p–form com-

ponents and their conjugate momenta. In addition, there are constraints on the dynamical

variables,

H ≈ 0 (“Hamiltonian constraint”), (10)

Hi ≈ 0 (“momentum constraint”), (11)

ϕ
j1···jp−1

(p) ≈ 0 (“Gauss law” for each p-form) (12)

with9

Hi := −2πj
i|j +

∑

p

1

p!
π

j1···jp

(p) F
(p)
ij1···jp

(13)

ϕ
j1···jp−1

(p) := π
j1···jp−1jp

(p) |jp

(14)

where the subscript |j stands for the spatially covariant derivative.

As shown in [12] (and as we will see explicitly for some of the terms below) the Hamiltonian

density of weight 2, H, expressed in the Iwasawa variables has the following structure:

H[β,Q;π, P ] = K + V , (15)

where

K =
1

4
Gabπaπb

V =
∑

A

cA(Q,P, ∂xβ, ∂2
xβ, ∂Q, ∂2Q)e−2wA(β) .

Here Gab is the inverse of the quadratic form Gab which is defined by Gabdβadβb :=
∑d

a=1(dβa)2 − (
∑d

a=1 dβa)2. Note the important fact that this metric has a Lorentzian

signature (−,+, ...,+). P stands for {Pi
a, Ea1...ap

(p) }, where the Pi
a’s are the momentum

7Note that H is a density of weight 1 while H is a density of weight 2.
8If a dilaton is present, the term 1

4
π2

φ should be added in K as well as exponential coupling eλpφ in front

of the term g F
(p)
j1···jp+1

F (p) j1···jp+1 in M and e−λpφ in front of π
j1···jp

(p) π(p) j1···jp
in K.The term ggij∂iφ∂jφ

should also be added to M.
9If there are dilatons, the term πφ∂iφ should be added to Hi
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conjugate to the N a
i’s and the Ea1...ap

(p) ’s are the π
i1...ip
(p) — i.e. the momentum conjugate

to the B(p)

i1...ip
’s — expressed in the Iwasawa frame. Note that the Pi

a’s are strictly lower

diagonal (they exist only when i > a and vanish when i ≤ a).

Note the special structure of the (weight 2) Hamiltonian density H with (i) a kinetic term

π2 for a ‘point particle’ of coordinates βa moving in (ii) a sum of ‘exponential walls’ (for

their β dependence). We shall refer to them as Toda walls e−2wA(β) where the wA(β) are

certain linear forms in the β’s. ‘Toda’ refers to the well known Toda models involving such

exponential walls. For instance, the kinetic terms of the off–diagonal degrees of freedom

N in H give, when expressed in Iwasawa variables, terms proportional to e−2(βb−βa) for

b > a with coefficient proportional to P2. Therefore the kinetic terms for the N ’s furnish

the walls wS ab = βb − βa called ‘symmetry walls’. The kinetic terms of the p–forms in H

yield a sum of terms proportional to e−2we(β) where we a1...ap(β) = βa1 + ... + βap (‘electric

p–form walls’). The curvature term −gR in H gives terms proportional to e−2wabc(β) where

wabc(β) = βa +
∑

e 6=b,c(b6=c) βe (‘curvature walls’) and their coefficients, when a 6= b, a 6= c

and b 6= c, are given by (Ciwa
a
bc)

2. Here, the Ciwa are the structure functions of the Iwasawa

coframe θa
iwa = N a

jθ
j, dθa

iwa = −1
2 Ciwa

a
bcθ

b
iwa ∧ θc

iwa. Note that the structure functions Ciwa

depend on the N ’s and the ∂xN ’s.

A heuristic analysis of the BKL limit indicates the crucial role played by the linear forms

wA(β). Indeed, in this limit the walls become infinitely sharp and are located at the

hyperplanes given by the linear forms wA(β) = 0, the motion is then restricted to the

region of β–space defined by the inequalities {wA(β) ≥ 0}. The set of dominant walls is

the minimal subset {wA(β)} — the indices A belong to a subset of the indices A — such

that the subset of inequalities wA(β) ≥ 0 implies the full set of inequalities wA(β) ≥ 0∀A.10

A crucial consistency condition for these definitions, which is found to be satisfied for all

models, is that the coefficients of the dominant walls be positive: cA ≥ 0.We decompose

the set of indices {A} for the walls into the set of indices for the dominant walls {A} and

the remaining ones (‘subdominant walls’) {A′}. Moreover, another crucial structure of the

potential is that the dependence of the wall coefficients on spatial derivatives in such that,

V =
∑

A

cA(Q,P, ∂xQ)e−2wA(β) +
∑

A′

cA′(Q,P, ∂xβ, ∂2
xβ, ∂Q, ∂2Q)e−2wA′ (β) , (16)

where the coefficients of the dominant walls are found never to depend on {∂xβ, ∂2
xβ}.

For instance, in the case of pure gravity in d space dimensions, the d dominant walls comprise

(i) d − 1 dominant ‘symmetry’ walls wS a−1 a(β) = βa − βa−1 (a = 2, ..., d) and

10The dominant linear forms can be identified in many physically relevant cases with the simple roots of

an hyperbolic Kac–Moody algebra [32, 33, 34].
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(ii) one curvature wall w1 d−1 d(β) = 2β1 +β2 + ...+βd−2. Note that in d = 3, w123 = 2β1

corresponds to the (first of the) famous BKL walls of the form a4 + b4 + c4, where

a = e−2β1
, b = e−2β2

, c = e−2β3
[1].

2.3 Hamilton evolution equations

Let us indicate, in a sketchy manner, the structure of the Hamilton evolution equations

following from (15),

∂τβa =
1

2
Gabπb ,

∂τπa =
∑

A

(

2cAwA ae
−2wA(β) + ∂x(

∂cA

∂∂xβa
e−2wA(β)) − ∂2

x(
∂cA

∂∂2
xβa

e−2wA(β))

)

,

∂τQ =
∑

A

∂cA

∂P
e−2wA ,

∂τP =
∑

A

(

−∂cA

∂Q
e−2wA + ∂x(

∂cA

∂∂xQ
e−2wA) − ∂2

x(
∂cA

∂∂2
xQ

e−2wA)

)

, (17)

where cA = cA(Q,P, ∂xβ, ∂2
xβ, ∂Q, ∂2Q), wA a denotes the (covariant) components of the

linear forms wA(β) = wA aβ
a. The system (17) is the one that we will analyze in detail in

the sequel.

Let us recall the basic classification of the set of dominant walls: either the fundamental

chamber defined by the dominant inequalities wA(β) ≥ 0 is contained within the future

(
∑d

a=1 βa > 0) light cone Gabβ
aβb = 0, or it is not. The first case define what we call here

chaotic systems, while the second defines non–chaotic systems. For instance, pure gravity

in D = d + 1 is chaotic for d ≤ 9 , and non–chaotic for d > 9. Note that this classification

does not correspond to the often used asymptotically–velocity–terms–dominated (AVDT)

systems versus non–AVTD ones. Indeed, there are AVTD systems that are chaotic. For

instance, the Einstein–Maxwell system (in any dimension D = d + 1) is always chaotic and

we shall see below that its asymptotic chaotic behavior can be described as a naive AVTD

truncation of the full dynamics. Let us also mention that they are non–AVTD chaotic

systems that are equivalent to AVTD chaotic system. For instance, gravity coupled to a

(d − 2)–form is chaotic and non–AVTD because driven by its magnetic wall. However, by

Hodge duality, it is equivalent to the Einstein–Maxwell system which is chaotic and AVDT.

As a warm up towards understanding the structure of the evolution equations (17) we shall

first consider the so–called non–chaotic systems.

3 Iwasawa–variables treatment of non–chaotic systems

In this section, we reformulate the results of [14, 13] by using the Iwasawa variables, within

an Hamiltonian approach. Let us recall that the treatment used in [14, 13] consisted of

11



rewriting Einstein–matter systems into a Fuchsian form, i.e.

∂τu −Au = e−µτf(x, τ, u, ∂xu) , (18)

where µ > 0 and where the crucial conditions are (i) that the source term f should be

bounded when τ → ∞ (while the other variables take their values in a bounded set) and

(ii) that the eigenvalues of the (space and time independent) matrix A be strictly larger

than −µ [35]; see appendix B for precise mathematical conditions. Then the main result of

the Fuchs theorem is that there exists a unique solution u(τ, x) of (18) which tends to zero

as τ → 0. Moreover, the exponential decay of the source e−µτ imposes a corresponding fast

decay of solution which we shall write as

u = O(e−µ(−)τ ) ,

where µ(−) can be any number satisfying 0 < µ(−) < µ [Note that µ(−) can be as close as

we want to µ].

Here we are going to show that the evolution equations in Iwasawa variables given by equa-

tions (17) can be rewritten in an alternative Fuchsian form which leads to a streamlined

derivation of the results of [14, 13]. In order to do that, we need to do two things (i) define

an asymptotic evolution system whose solutions {β[0], π[0], Q[0], P[0]} parametrize the generic

asymptotic exact solutions {β, π,Q, P}, (ii) rewrite the system of equations (17) in terms

of the differences u between {β, π,Q, P} and {β[0], π[0], Q[0], P[0]} such that the system of

equations for u is Fuchsian, and (iii) define asymptotic constraints in such a way that the

exact constraints are satisfied if the asymptotic constraints and the asymptotic equations

of motion are fulfilled. This is done in the sequel and implies by the Fuchs theorem that

there is a unique solution u that vanishes when τ goes to infinity; the Fuchs theorem also

tells us how u goes to zero as τ → ∞. This result gives a precise sense in which the ap-

proximate solutions {β[0], π[0], Q[0], P[0]} parametrize the asymptotic behavior of the exact

solutions {β, π,Q, P}. If the asymptotic solutions {β[0], π[0], Q[0], P[0]} are general enough, it

means that we have found the general asymptotic behavior of the gravitational field in the

vicinity of a spacelike singularity. [More precisely, we want here that the solutions of the

asymptotic system together with the associated asymptotic constraints contain the same

number of arbitrary functions which is expected to enter the general solution of the exact

constrained Einstein–matter system.] We will see that our new formulation is significantly

simpler than that of [14, 13] and is suggestive for approaching of the chaotic case.

3.1 Definition of the asymptotic evolution equations

The first step is to define a simplified system of equations that describe the asymptotic

dynamics of the fields. There are, a priori, several choices for defining an asymptotic system

when using Iwasawa variables. For instance, we can either neglect certain terms directly

12



in the Hamiltonian or neglect some terms in the equations of motion. One of these choices

gives a system essentially equivalent to the usually considered AVTD system in [14, 13]. It

would consist in keeping only the symmetry walls in the Hamiltonian (15). Here, we will

consider a technically simpler choice consisting in neglecting all the walls. Concretely, this

means that we define the ‘asymptotic Hamiltonian’ as

H◦[β[0], Q[0];π[0], P[0]] =
1

4
Gabπ[0] aπ[0] b , (19)

the [(0)]’s refer to the zeroth order approximation of our general solution. The Hamilton

equations corresponding to the Hamiltonian (19) are

∂τβ
a
[0] =

1

2
Gabπ[0] b

,

∂τπ[0] a = 0 ,

∂τQ[0] = 0 ,

∂τP[0] = 0 . (20)

The solutions of these Hamilton equations are schematically (suppressing indices),

β[0] = p◦τ + β◦ ,

π[0] = p◦ ,

Q[0] = Q◦ ,

P[0] = P◦ , (21)

where p◦, β◦, Q◦, P◦ do not depend on the time but depend on the spatial coordinates xi.11

Note that the metric corresponding to the ‘asymptotic solution’ (21) does not generically

corresponds to a Kasner–type metric (i.e. a metric of the type (1)). Indeed, the Iwasawa

‘off–diagonal’ variables N ’s of a generic Kasner metric have limits as τ → ∞ but are τ

dependent for finite τ , while the N a
i’s corresponding to the solution (21) are constants [see

paragraph 4.2 of [12] for explicit expression of the Iwasawa variables of a Kasner metric].

3.2 Definition of the asymptotic constraints

As the asymptotic Hamiltonian constraint, it is natural to take the asymptotic Hamiltonian

(19),

H[0] =
1

4
Gabπ[0] aπ[0] b , (22)

which has the useful property of being conserved along the asymptotic evolution equations

(20). Concerning the asymptotic momentum constraints, we need to know their structure

in Iwasawa variables to be able to conclude. In view of this, we first express the momentum

11As is usual when discussing Fuchsian theorems one makes the technical assumption that the spatial

dependence of all the initial data (p◦(x), β◦(x), ...) is real analytic.
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conjugate to the metric gij in terms of Iwasawa variables.

Let πiwa
ab := N a

iN b
jπ

ij denote the Iwasawa–frame components of the momentum conju-

gate to the gij . Using this definition, the effect of the transformation of the configuration

variables {gij} → {βa,N a
i} on their conjugate momenta is obtained from writing

ġijπ
ij =

∑

a

2e−2βa

(Ṅ a
i − β̇aN a

i )N−1 i
cπiwa

ca

= β̇aπa + Ṅ a
i Pi

a ,

from which we can extract that (we recall that the metric in the Iwasawa–frame is giwa
ab =

e−2βa
δab so that πiwa

a
b = e−2βb

πiwa
ab)

πiwa
b
b = −1

2
πb no sum over b,

N−1 i
cπiwa

c
a =

1

2
Pi

a only for i > a.

In order to invert the above formula and get the πiwa
c
a in terms of the πa and Pi

a, let us

rewrite the above equation for all i and a as follows,

N−1 i
c (+)πiwa

c
a =

1

2
Pi

a [−] + X(+) , (23)

where X is a matrix defined by this equation, and where we have added to the various

triangular matrices that appear an index referring to the fact that it is an upper/lower

triangular matrix (+)/(−) or a strictly upper/lower triangular matrix [+]/[−]. We can now

multiply equation (23) by N = N(+) and obtain,

πiwa
b
a =

1

2
N b

i (+)Pi
a [−] + N b

i (+)X(+) . (24)

Let us decompose the matrix πiwa
b
a into its strictly lower triangular part πiwa

b
a [−], its di-

agonal part πiwa
b
b = −1

2πb and its strictly upper triangular part πiwa
b
a [+]. The projection

of both sides of equation (24) on their strictly lower triangular parts yields an explicit

expression for πb
a iwa[−] (for b > a), namely πb

a iwa[−] = 1
2N b

i (+)Pi
a [−]θ(b − a), where

θ(x) :=

{

0 if x ≤ 0

1 if x > 0.

Note now that πiwa
b
a [+], being obtained from the symmetric matrix πiwa

ab = πiwa
ba by

lowering an index by the metric giwa ab = e−2βa
δab, can be related to πiwa

b
a [−] in the following

way,

πiwa
b
a [+] = e−2(βa−βb)πiwa

a
b [−] . (25)

Finally, we have the following links,

πiwa
b
b = −1

2
πb no sum over b ,

if b > a πiwa
b
a = πiwa

b
a [−] =

1

2
N b

iPi
a ,

if a > b πiwa
b
a = πiwa

b
a [+] =

1

2
e−2(βa−βb)N a

iPi
b , (26)

14



Therefore, the πiwa
a
b [−] are linear in Pi

a and N i
a, while the πiwa

a
b [+]’s depend also on the

β’s though the e−2(βa−βb) with a > b (see equation (25)), i.e. through symmetry walls

e−2wS ba(β).

Let us now express the momentum constraints in Iwasawa variables Ha. They read,12

− 1

2
Ha = ∇bπiwa

b
a = ∂bπiwa

b
a + Γb

dbπiwa
d
a − Γd

abπiwa
b
d −

1

2
gcdgcd,bπ

b
a ,

+
1

p!
Ea1...apF (p)

aa1...ap
,

where the F (p)
aa1...ap ’s are the F (p)

ii1...ip
’s expressed in the Iwasawa basis and the Γa

bc’s are the

connection coefficients (with c denoting the differentiation index) in the Iwasawa basis,

Γa
bc =

1

2
e2βa

(δabe
−2βb

,c +δace
−2βc

,b −δbce
−2βb

,a )

+
1

2
(−Ciwa

a
bc + e−2(βb−βa)Ciwa

b
ac + e−2(βc−βa)Ciwa

c
ab) .

Note that πiwa
a
b is a tensorial density of weight 1. The Ciwa are the structure functions of

the coframes θa
iwa, they are related to the structure functions C in the coframe ωi by the

formula,

− 1

2
Ciwa

a
bc = ∂cN a

iN−1 i
b −

1

2
N a

iC
i
jkN−1 j

bN−1 k
c (27)

Inserting these results in the expression for the momentum constraints gives

− 1

2
Ha = ∂bπ

b
a + Ciwa

c
cbπ

b
a + Ciwa

d
acπ

c
d −

1

2
(∂aβ

d)πd

+
1

p!
Ea1...apF (p)

aa1...ap
. (28)

Note that this is the general expression for the momentum constraints expressed in the

Iwasawa variables.

We then define the asymptotic momentum constraints by discarding the πiwa
b
a [+] contribu-

tions in the exact constraint (28):

− 1

2
Ha[0] :=

[

∂bπiwa
b
a [−] −

1

2
∂aπa + Ciwa

c
cbπiwa

b
a [−] + Ciwa

d
acπiwa

c
d [−]

−1

2
Ciwa

c
caπa −

1

2
Ciwa

d
adπd −

1

2
(βd

,a)πd

+
1

p!
Ea1...apF (p)

aa1...ap

][0]
, no sum over a, sum over d (29)

12The comma in the expression gcd,b denotes the spatial derivative in the Iwasawa frame, i.e. gcd,b =

eiwa b
iei(gcd) where eiwab = eiwab

iei is the Iwasawa frame (dual to the coframe θb
iwa: θiwa

b(eiwaa) = δb
a) and

where ei = ei
j∂j is the frame dual to the basic coframe ωi = ωi

jdxj used in equation (3). We will also

sometimes denote gcd,b by ∂bgcd.
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where the overall bracket [ ][0] means that one must do the following replacements π →
π[0], β → β[0], Q → Q[0], P → P[0]. Finally this definition corresponds (besides the replace-

ment {β, π,Q, P} → {β[0], π[0], Q[0], P[0]}) to setting to zero the symmetry walls e−2(βa−βb)

(with a > b) in the full momentum constraints. Along the solution (21) of the evolution

equations (20), the only time dependent term in Ha[0] is −∂aβ
d
[0]π[0] d/2 = −τ ∂ap

d
◦π◦d/2 so

that we have the following relation,

∂τHa[0] = ∂aH[0] modulo equations (20). (30)

From this relation, we conclude that, when the Hamiltonian H[0] = 0 constraint is satisfied,

the momentum constraints are conserved when the asymptotic evolution system (20) is

satisfied. Finally, it suffices to impose the constraints H[0] and Ha[0] at any fixed moment

to guarantee that they are satisfied for all time.

Similarly, the asymptotic Gauss constraint for each p–form is defined to be the Gauss

constraint with the asymptotic variables Q[0], P[0] instead of Q, P :

ϕ
a1...ap−1
(p) [0] := ∂apπ[0]

a1...ap − 1

2
Ciwa [0]

a1
bapπ[0]

ba2...ap − ... − 1

2
Ciwa [0]

ap−1
bapπ[0]

a1...bap

+ Ciwa [0]
ap

apbπ[0]
a1...ap−1b . (31)

These constraints are preserved by the time evolution since the π[0]
a1...ap (which are some

of the P[0]’s) and the Ciwa [0]
a
bc (which depend on the N[0] ∈ Q[0]’s via (27)), are constants

according to the asymptotic evolution equations (20).

3.3 Construction of a Fuchsian system for the ‘differenced variables’

Let us introduce the differences β̄, π̄, Q̄, P̄ via13

β = β[0] + β̄ ,

π = π[0] + π̄ ,

Q = Q[0] + Q̄ ,

P = P[0] + P̄ , (32)

13where here β[0], π[0], Q[0] and P[0] are given in (21).

16



and express the Hamilton equations in term of these variables. This gives

∂τ β̄ − 1

2
π̄ = 0

∂τ π̄ = 2cAwAe−2wA(β[0])e−wA(β̄)

+ ∂x(
∂cA

∂∂xβ
e−2wA(β[0])e−2wA(β̄))

− ∂2
x(

∂cA

∂∂2
xβ

e−2wA(β[0])e−2wA(β̄))

∂τ Q̄ =
∂cA

∂P
e−2wA(β[0])e−wA(β̄)

∂τ P̄ = −∂cA

∂Q
e−2wA(β[0])e−wA(β̄) + ∂x(

∂cA

∂∂xQ
e−2wA(β[0])e−wA(β̄))

−∂2
x(

∂cA

∂∂2
xQ

e−2wA(β[0])e−wA(β̄)) (33)

where cA = cA(Q[0] + Q̄, P[0] + P̄ , ∂x(β[0] + β̄), ∂2
x(β[0] + β̄), ∂(Q[0] + Q̄), ∂2(Q[0] + Q̄)). Let

us sketch the proof that this system will be Fuchsian if all the ‘walls’ wA(β) entering the

equation (33) are such that the following conditions hold,

∀A, ∀x ∈ U, wA(p◦(x)) > ǫ > 0 , (34)

where the p◦ is the initial datum entering equation (21) which must also satisfy the con-

straint (22), i.e. Gabp◦ap◦ b = 0, as well as the asymptotic momentum constraints (29).

Here, U denotes some open domain within the analytic d–dimensional manifold, on which

one applies the Fuchs theorem. The fact that the system (33) is indeed of the form (18) for

u = (β̄, π̄, Q̄, P̄ ) comes from two separated facts. First the matrix A being













0 1
2 0 0

0 0 0 0

0 0 0 0

0 0 0 0













, (35)

is a nilpotent matrix and therefore is (thanks to the recent progress concerning Fuchsian

systems [35]) an allowed matrix A for a Fuchs system (see appendix B). Concerning the

source term, let us show why the conditions (34) guarantee that the ‘source term f ’ —

i.e. the right hand side of the system of equations (33) — satisfies the right properties.

Essentially the Fuchsian conditions boil down to requiring that the source term should be

of order O(e−µτ ) for some µ > 0 when {β̄, π̄, Q̄, P̄ , ∂xβ̄, ∂xπ̄, ∂xQ̄, ∂xP̄ , ∂2
xβ̄, ∂2

xQ̄} take their

values in a bounded set while τ ∈ [τ◦,+∞] (see appendix B). The explicit time dependence

of the source has three origins

1. the Toda walls whose (τ) time dependence is exponential e−2wA(β[0]) = e−2wA(p◦)τ−2wA(β◦)

2. the various space derivatives appearing in the r.h.s. of (33) can ‘bring down’, when

operating on e−2wA(p◦(x))τ , one (∂x) or two (∂2
x) powers of τ .
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2. In addition, the dependence of the wall coefficients cA on ∂xβ[0] and ∂2
xβ[0] means that,

for some walls14, the coefficient cA can also involve one or two powers of τ .

Summarising, the r.h.s. of (33) is a sum of terms of the form

P (τ)e−2wA(p◦)τ ,

where P (τ) is a polynomial in τ . If we choose a µ strictly smaller than all the quan-

tities 2wA(p◦(x)) > 2ǫ > 0 considered for any x ∈ U and any type of wall A, we can

conclude that all the source terms in the equations (33) are of the required order O(e−µτ )

for τ ∈ [τ◦,∞] and x ∈ U . Therefore we can conclude that there exists a unique solution

{β̄(τ, x), π̄(τ, x), Q̄(τ, x), P̄ (τ, x)} of equations (33) that vanishes when τ → ∞. Moreover,

this unique solution satisfies (within the considered spatial domain U) the following estimate

as τ → +∞:

β̄ = O(e−µ(−)τ ) ,

π̄ = O(e−µ(−)τ ) ,

Q̄ = O(e−µ(−)τ ) ,

P̄ = O(e−µ(−)τ ) ,

where 0 < µ(−) < µ (µ being strictly smaller than the quantities 2wA(p◦) > 2ǫ).

3.4 Constraints

It remains to show that if the asymptotic equations of motions, and the asymptotic con-

straints (22, 29, 31) are satisfied, then the exact constraints (10, 11, 12) will also be satisfied.

Let us first deal with the Gauss constraints (for notational simplicity, we shall consider the

case of one p = 1–form, i.e. a Maxwell field). We recall, from equation (12) that, in this

case, the exact Gauss constraint (in Iwasawa variables) reads,

ϕ := ∇aπ
a = ∂aπ

a + Ciwa
b
baπ

a ≈ 0 . (36)

This exact constraint is preserved by the exact equations of motions. We also recall that

the asymptotic Gauss constraint (31), in our case, read,

ϕ[0] := ∇aπ[0]
a = ∂aπ[0]

a + Ciwa[0]
b
baπ[0]

a ≈ 0 , (37)

and is conserved modulo the asymptotic equations of motions (20). We impose that the

asymptotic Gauss constraint (37) hold. Then, the fact that the difference between the exact

and asymptotic Gauss constraints are given by exponential ‘walls’ (entering the differences

between the π and π[0] etc) implies that the exact constraint (36) vanishes when τ → +∞.

14The walls depending on spatial derivatives of β are only ‘subdominant’ gravitational walls, see [12].
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Finally, from the obvious fact that an asymptotically vanishing quantity which is constant

must be zero, we can conclude that the exact Gauss constraints are (weakly) fulfilled. In

particular, the relationships ∇µT µν = 0 are satisfied.

Let us now consider the Hamiltonian and momentum constraints. To show that they are

satisfied, we will argue that their evolution system is ‘Fuchsian’ in some generalized sense

and therefore that there will be a unique solution of this system that vanishes when τ → ∞.

The Fuchsian system in question turns out to be homogeneous, so that the unique solution

that vanishes when τ → +∞ must be exactly zero. Then we will discuss why the exact

constraints vanish when τ → +∞ (when the asymptotic constraints are satisfied) and con-

clude that, since they do, they must be the unique vanishing solution, i.e. zero.

Let us first write down the evolution system satisfied by the exact constraints as a conse-

quence of the Bianchi identities and the exact evolution equations. This reads,15

∂τH = e−2
P

b βb

(∇aHa − 2
∑

c

βc
,aHa) ,

∂τHa −∇aH = 0 , (38)

where the covariant spatial derivatives must take into account the weights of the various

densities: Ha has weight 1, and H has weight 2. The ‘source term’, i.e. the r.h.s. of the

evolution equation for H, can be rewritten as,

∑

a

e−2µa(β)(∂aHa + 2βa
,aHa − 2(

∑

c

βc),aHa) ,

where µa(β) =
∑

b6=a βb is a subdominant curvature wall (it corresponds to the special case

of the curvature walls wabc(β) with a = b). Therefore, the source term is an allowed one

for the Fuchsian–like system (18) with u = (H,Ha) and µ strictly smaller than all the

quantities 2µa(p◦(x)) > ǫ̃ > 0 considered for any x ∈ U . However, this homogeneous sys-

tem is not really a Fuchsian system because of the presence of the spatial derivatives term

∇aH in the second equation. The references [14, 13] tackled this problem16 essentially by

working with a suitably redefined H constraint, say H̄ = eητH. This redefinition produces

for {H̄,Ha} a Fuchsian system if 0 < η < 2µa(p◦) (for all a and for all x ∈ U , p◦(x) being

as in equation (21)). However, we think that there might be other ways of dealing with

this problem. First, we expect that a generalization of the Fuchs theorem exists for linear

homogeneous systems of the type (38), stating that the unique solution that vanishes when

τ → +∞ is everywhere zero. We then expect that one way to prove such a theorem is to

15See equations (86) and (87) in appendix A. These equations were derived in a coordinate basis and

without matter. It is obvious how to get the expression in a general basis. Moreover, we do not have to

consider matter since ∇µT µ
ν = 0 [as a consequence of the Gauss constraints (which are imposed to be

satisfied) and the matter equations of motion]. Therefore, we can just replace in equations (86) and (87) in

appendix A the expressions (80) and (81) by their general expressions (10) and (11).
16We translate here the argument used in [14, 13] in our choice of variables and gauge.
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work with an extended set of variables {H,Ha,Ga = ∂aH} and use the recent reference [35].

To summarise, the system (38) is a Fuchsian–like system that possess a unique solution

(which is zero because the system is homogeneous) that vanishes when τ → +∞.

Moreover (i) as the definition of the asymptotic constraints H[0](β[0], π[0], Q[0], P[0]) and

Ha [0](β[0], π[0], Q[0], P[0]) differs from the exact ones by neglecting some explicit exponen-

tial walls in their mathematical expression, (ii) as β − β[0] etc tends to zero (essentially as

O(e−µτ )) and finally (iii) as we have imposed the asymptotic constraints, we can conclude

that the exact constraints H(β, π,Q, P ) and Ha(β, π,Q, P ) tend to zero as τ → +∞.

Finally, the constraints H and Ha being uniquely defined as being an asymptotically van-

ishing solution of an homogeneous Fuchsian system, vanish for all times τ .

Summary: An asymptotic solution {β[0](τ, x), π[0](τ, x), Q[0](τ, x), P[0](τ, x)} (21) obeying

the asymptotic constraints (22), the asymptotic evolution system (20) and conditions (34),

parametrizes a solution {β(τ, x), π(τ, x), Q(τ, x), P (τ, x)} (32) of the full constrained

Einstein–matter equations (this is pictured in Figure 2). Moreover, the asymptotic closeness

of the two solutions satisfies inequalities of the type,

β̄(τ, x) = β − β[0] = O(e−µ(−)τ ) ,

Q̄(τ, x) = Q − Q[0] = O(e−µ(−)τ ) ,

π̄(τ, x) = π − π[0] = O(e−µ(−)τ ) ,

P̄ (τ, x) = P − P[0] = O(e−µ(−)τ ) ;

(39)

where µ is any number strictly smaller ∀x ∈ U and ∀A than the quantities 2wA(p◦(x)) > 2ǫ,

when τ → +∞ .

On the generality of the construction

An important fact to notice about the above construction is that the solution of the asymp-

totic equations (21) subject to the constraints (22), (29) and asymptotic Gauss constraints

possesses as many arbitrary functions as one expects to be present in the ‘general solution’

of the constrained Einstein–matter equations. The inequalities (34) impose restrictions on

these arbitrary functions but do not change their number. Let us repeat that this con-

struction applies only in cases where the fundamental chamber in β–space defined by the

inequalities wA(β) ≥ 0 extends beyond the light cone Gabβ
aβb ≤ 0,

∑

β > 0 as illustrated

in Figure 2.
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Figure 2: Non–chaotic behavior This picture is a schematic drawing of the asymptotic dynamics

of the ‘diagonal variables’ at a given spatial point x, this dynamics is represented in the β–space.

The ‘dashed’ arrow represents the asymptotic solution β[0] (which is valid after the last collision

on a wall and corresponds to a free motion of the particle β). The exact solution is sketched as

a continuous curve. The idea is that the approximate solution β[0] becomes better and better as

τ → +∞, this is formalised by the Fuchs theorem that tells us precisely how β − β[0] → 0 when

τ → +∞, see the text. Note that here we consider a non–chaotic system and that the ‘fundamental

chamber’ determined by the walls in not contained within the light cone.

Comparison with the asymptotically velocity dominated system

The appendix C compares the velocity dominated system of [14, 13] and our approach. The

essential differences between the two approaches are the following: (i) they do not use the

same asymptotic system, (ii) the use of Iwasawa variables allows for a more transparent

treatment of the ‘source terms’ in the Fuchsian equations (indeed, in Iwasawa variables, it

suffices to read off the exponential terms in equations (33)), (iii) the use of Iwasawa vari-

ables avoids the technical problems linked to measuring the ‘difference’ between the exact

and asymptotic metrics by writing (g−1
[0] g)ab = δa

b + tα
a

bγa
b with some carefully chosen α’s

and an asymmetric matrix γ.

We should, however, remark that the two methods differ in the extension of the open

regions U where the Fuchsian method can be used to construct the metric. In the method

of [14, 13] one can cover the full analytic manifold by using many small neighborhoods in

which the frame approximately (but analytically) diagonalises the second fundamental form

K. In the Iwasawa approach one can work in large open domains, but there is a problem

connected with the presence of co–dimension 2 submanifolds where two eigenvalues of K
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coincide. This problem is briefly discussed in appendix C. More work is needed to extend

the Iwasawa–variable approach so as to be able to cover the full analytic manifold.

4 Iwasawa–variables treatment of chaotic systems

We now turn to our main purpose, which is to give a precise formulation of the asymptotic

BKL behavior in the chaotic case. In this perspective, we follow the same strategy as for

the non–chaotic case:

(i) We first define an asymptotic evolution system, made of ordinary differential equations

(ODEs) that will describe the generic asymptotic unconstrained dynamics of the Iwa-

sawa variables near a spacelike singularity. Of course, the solutions {β[0], π[0], Q[0], P[0]}
of the asymptotic system are much more involved than a Kasner–like behavior and

cannot be given in a closed form.

(ii) We then define asymptotic constraints whose vanishing is preserved by the above

defined asymptotic evolution system.

(iii) Next, we construct a ‘generalized Fuchsian system’ that describes the behavior of the

differences β̄ = β − β[0], π̄ = π − π[0], Q̄ = Q − Q[0] and P̄ = P − P[0] between an

exact solution {β, π,Q, P} of the considered Einstein–matter system, and a solution

{β[0], π[0], Q[0], P[0]} of the asymptotic evolution system. We then argue that, given a

solution {β[0], π[0], Q[0], P[0]} of the asymptotic evolution system, there exists a unique

solution {β̄, π̄, Q̄, P̄} of the differenced system which goes to zero as τ → +∞.

(iv) We formally show that, if the asymptotic constraints are satisfied, the full constraints

satisfy a generalized Fuchs system. We then argue that the full constraints will be

satisfied as a consequence of the vanishing of the asymptotic ones.

Finally, our methodology suggests that one can indeed parametrize a solution of the full

constrained Einstein–matter system by a solution of the system of ODEs defined in (i).

Note: we use the same notation for the solution of the asymptotic system of equations,

asymptotic solutions, asymptotic Hamiltonian etc in the chaotic and non–chaotic cases.

4.1 Definition of the asymptotic evolution equations

The billiard picture provides a guide for choosing a suitable asymptotic evolution system

since it gives us an intuitive description of the asymptotic dynamics. In the billiard approxi-

mation, the dynamics of the ‘diagonal variables’ β’s is described as a free Lorentzian motion

interrupted by reflections upon infinite–potential walls and the ‘off–diagonal variables’ Q’s

are frozen. Here, we shall go beyond this simplified ‘sharp wall’ billiard picture and work

with exponential (‘Toda’) potential walls. The asymptotic system should completely deter-

mine the asymptotic dynamics, given some suitable initial data. It is therefore crucial to
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use a system of ordinary differential equations (rather than partial differential equations) to

characterize the asymptotic dynamics, so that we are able to use theorems about existence

and uniqueness of solutions.

Motivated by these reasons, we define (for any chaotic Einstein–matter system) an asymp-

totic evolution system in the following way: for the ‘diagonal variables’, we keep in the

Einstein–matter equations (17) only the dominant exponential walls while for the ‘off–

diagonal variables’, we neglect all the walls in the equations of motion. These prescriptions

define an ‘asymptotic evolution system’ which reads, in sketchy form:

∂τβ[0] =
1

2
π[0]

∂τπ[0] =
∑

A

2cA(Q,P, ∂xQ)wAe−2wA(β[0])

∂τQ[0] = 0

∂τP[0] = 0 . (40)

Here A labels the dominant walls only. As exhibited in equation (16) the coefficients cA of

the dominant Toda walls depend only on the Q’s, P ’s and the first spatial derivative of the

Q’s. It is crucial that they do not involve the spatial derivatives of the β’s. The solutions

of the last two equations in the system (40) are simply Q[0] = Q(0)(x), P[0] = P(0)(x).

Considering Q(0)(x) and P(0)(x) as given data, and replacing them in the other equations of

the system (40), we see that the diagonal variables {β[0], π[0]}, at each given spatial point x,

satisfy a system of ODEs. It is then easily checked that the latter system of ODEs follows

from the Hamiltonian H◦:

H◦Q(0),P(0)]
[β[0];π[0]] =

1

4
Gabπ[0] aπ[0] b +

∑

A

cA(P(0), Q(0), ∂aQ(0))e
−2wA(β[0]) . (41)

Note that, from [12], the qualitative behavior (as τ → +∞) of the solution for such systems

of equations is as follows: the π[0]’s go to zero17 and the β[0]’s behave approximately as in

the sharp billiard picture (free motions ‘pτ + const’ interrupted by collisions against the

‘walls’ e−2wA(β)).

4.2 Definition of the asymptotic constraints

It is natural to define the asymptotic Hamiltonian constraint to be

H[0] :=
1

4
Gabπ[0] aπ[0] b +

∑

A

cA(P[0], Q[0], ∂aQ[0])e
−2wA(β[0]) . (42)

Like in the non–chaotic case the asymptotic Hamiltonian constraint (42) coincides with the

asymptotic evolution Hamiltonian (41), and is therefore preserved by the asymptotic time

evolution. Let us now define the asymptotic momentum constraints as the formal limit of the

17Actually, this property is guaranteed only if one imposes the constraint H◦Q(0)P(0)
= 0.
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‘full’ momentum constraints when τ → +∞. We start from the general expression (28) for

the momentum constraints. In view of what was recalled from [12], π → 0 as τ → +∞ (after

imposing (42)), so that we can discard the terms linear in π in the previously considered

non–chaotic asymptotic momentum constraints (29) (which neglected exponential walls

that we still formally neglect). We therefore define the asymptotic momentum constraints

as follows,

− 1

2
Ha[0] :=

[

∂bπiwa
b
a [−] + Ciwa

c
cbπiwa

b
a [−] + Ciwa

d
acπiwa

c
d [−]

+
1

p!
Ea1...apF (p)

aa1...ap

][0]
, no sum over a, sum over d (43)

where the F (p)
aa1...ap ’s are the F (p)

(i)(i1)...(ip)’s expressed in the Iwasawa basis, where π[0]
b
a [−] is de-

fined as the r.h.s. of the second equation (26) and where the overall bracket [ ][0] means that

one must do the replacements Q → Q[0], P → P[0]. Note that the momentum constraint (43)

contains only the time–independent quantities N[0], ∂xN[0], Q[0], P[0] and therefore is trivially

preserved by the time evolution.

Finally, the asymptotic Gauss constraint for each p–form is defined to be the Gauss con-

straint with the asymptotic variables Q[0], P[0] instead of Q, P , i.e.

ϕ
a1...ap−1
(p) [0] := ∂apπ[0]

a1...ap − 1

2
Ciwa[0]

a1
bapπ[0]

ba2...ap − ... − 1

2
Ciwa[0]

ap−1
bapπ[0]

a1...bap

+Ciwa[0]
ap

apbπ[0]
a1...ap−1b . (44)

These constraints are preserved by the asymptotic time evolution since the π[0]
a1...ap (which

is one of the P[0]’s) and Ciwa[0]
a
bc (which depends on the N[0] ∈ Q[0]’s via (27)), are constants

according to the asymptotic evolution equations (40).

4.3 Construction of a ‘generalized Fuchsian’ system for the ‘differenced

variables’

We now rewrite equations (17) in terms of the differences {β̄, π̄, Q̄, P̄},

βa = βa
[0] + β̄a ,

πa = π[0] a + π̄a ,

Q = Q[0] + Q̄ ,

P = P[0] + P̄ . (45)
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This gives (when suppressing indices on β̄ and π̄),

∂τ β̄ − 1

2
π̄ = 0

∂τ π̄ = 2
∑

A

wAe−2wA(β[0])(cAe−2wA(β̄) − cA(Q[0], P[0], ∂xQ[0]))

+ 2
∑

A
′

cA
′wA

′e−2w
A
′ (β[0])e−2w

A
′ (β̄)

+
∑

A
′

∂x(
∂cA

′

∂∂xβ
e−2

A
′ (β[0])e−2w

A
′ (β̄))

−
∑

A
′

∂2
x(

∂cA
′

∂∂2
xβ

e−2w
A
′ (β[0])e−2w

A
′ (β̄)))

∂τ Q̄ =
∑

A

∂cA
∂P

e−2wA(β[0])e−2wA(β̄)

+
∑

A′

∂cA′

∂P
e−2wA′ (β[0])e−2wA′ (β̄)

∂τ P̄ =
∑

A

(

−∂cA
∂Q

e−2wA + ∂x(
∂cA

∂∂xQ
e−2wA(β[0])e−2wA(β̄))

)

+
∑

A′

(

−∂cA′

∂Q
e−2w

A′ + ∂x(
∂cA′

∂∂xQ
e−2w

A′ (β[0])e−2w
A′ (β̄))

)

−
∑

A′

∂2
x(

∂cA′

∂∂2
xQ

e−2wA′ (β[0])e−2wA′ (β̄)) , (46)

where we recall that A labels the dominant exponential walls (with coefficient cA which

depend only on {P,Q, ∂aQ}) while A′ labels the subdominant exponential walls (with coef-

ficient cA′ which depend on {P,Q, ∂aQ, ∂2
aQ, ∂aβ, ∂2

aβ}). In addition, in all the coefficients

cA and cA′ on the r.h.s. of the system (46) one must do the replacements (45), so that

for us cA = cA(Q[0] + Q̄, P[0] + P̄ , ∂(Q[0] + Q̄)) and cA′ = cA′(Q[0] + Q̄, P[0] + P̄ , ∂x(β[0] +

β̄), ∂2
x(β[0] + β̄), ∂(Q[0] + Q̄), ∂2(Q[0] + Q̄)).

This system of equations is not a Fuchsian system as defined above. However, it is similar

to such a system. Indeed, it contains a space and time independent matrix A which is

again given by (35). However, the crucial difference between (46) and a Fuchsian system

concerns the source term on the r.h.s.. Instead of containing (modulo a bounded term) a

space–independent factor which is exponentially decreasing with τ , e−µτ , it contains expo-

nential wall terms e−2wA(β[0]) and e−2wA′ (β[0]) where β[0](τ, x) is a solution of the asymptotic

evolution system (40).

Let us qualitatively analyze the behavior of this source term as τ → +∞. For that, let

us start by recalling the sketchy time dependence of the solution β[0] that would be given

by the billiard picture: namely a succession of Kasner epochs. During each Kasner epoch

the source term is exponential decreasing (in the time coordinate τ), indeed, during the
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‘Kasner free motion’ β[0] ≈ p◦τ + β◦ so that each exponential wall factor term e−2wA(β[0])

(A = A,A′) behaves has e−µ(x)τ with µ(x) ≈ 2wA(p◦(x)). However, this exponential de-

crease is interrupted around the instants of collision on the dominant walls, during which

wA(β[0]) in fact vanishes so that e−2wA(β[0]) would seem to become unity. By contrast the

subdominant terms e−2wA′ (β[0]) are always exponentially decreasing because the β–particle

generically never hits them, being deflected by a collision on dominant walls before reach-

ing them. [We are here neglecting the measure zero set of trajectories which exactly hit a

‘corner’ of the billiard, where a subdominant wall intersects dominant ones.]

The sharp billiard picture just recalled is only an approximation to the asymptotic dynam-

ics (40). When taking into account the existence of exponential walls in the equations (40)

one can describe more precisely the behavior of (β[0], π[0]) and thereby of the crucial ‘source

terms’ ∝ e−2wA(β[0]) appearing on the r.h.s. of (46). Indeed, following the method used in

[12] one can conveniently analyze the dynamics of (β[0], π[0]) following from the asymptotic

Hamiltonian H[0] (41), and submitted to the zero–energy constraint (42). When decompos-

ing βa as βa = ργa with ρ2 = −Gabβ
aβb and Gabγ

aγb = −1, which correspondingly implies

πa = ρ−1 πγ
a − πργa where πγ

a (submitted to the constraint γaπγ
a = 0 ) is conjugate to the

‘position’ γa on the unit hyperboloid (Gabγ
aγb = −1), and where πρ is the conjugate to the

variable ρ, one finds that the Hamiltonian reads

H[0] =
1

4
(−π2

ρ +
π2

γ

ρ2
) + V[0] , (47)

where

V[0](ρ, γ) :=
∑

cAe−2ρwA(γ) . (48)

The zero–energy constraint can then be written as

1

4
(−π2

λ + π2
γ) + ρ2V[0] = 0 , (49)

where πλ := ρπρ is now conjugate to λ := ln ρ. From this constraint one infers (see [12])

that, as τ → +∞ and therefore ρ → +∞, πλ tends to a finite limit say pλ, and therefore |πγ |
oscillates between pλ (far from the walls) and 0 (during a ‘collision’). From this result one

also infers that the maximum value of H[0], reached during a ‘collision’ (i.e. when |πγ | = 0),

is such that ρ2V[0] = 1
4π2

λ → 1
4p2

λ as τ → +∞. Finally, one concludes that as τ → +∞, and

therefore ρ → +∞ (roughly proportionally to τ) even the maximum values of the domi-

nant exponential potential (reached during the collision) decay like V[0] ∝ ρ−2. [One also

conclude from πa = ρ−1 (πγ
a − πλγa) that the components of the β–conjugate momenta πa

decay proportionally to ρ−1.]

Summarising, we conclude that each dominant potential term e−2wA(β[0]) entering the r.h.s.

of (46) has the qualitative behavior depicted in Figure 3, namely an overall exponential
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decay, interrupted by ‘peaks’ (of decreasing magnitude ∝ ρ−2) corresponding to collisions.

In addition, (see appendix A of [12]) the τ–time spacing between successive peaks increases

(roughly like ln ρ ∼ ln τ) as τ → +∞. As for the behavior of the subdominant exponential

potential terms e−2wA′ (β[0]) entering the r.h.s. of (46) it is expected to be somewhat similar

to the one depicted in Figure 3, except for the facts that the overall exponential decay

should be faster, and that the peaks should be much rarer (corresponding to a collision

happening nearly in a ‘corner’). [We expect that the faster decay and the rarer occurrence

of peaks also compensates the fact that the presence of (∂xβ)2 and ∂2
xβ in the coefficient

cA′ generates a growing behavior ∝ τ2 of the cA′ .]

τ

f(τ)

Figure 3: Schematic drawing of the source term of the system of equations (46).

The system (46) for {β̄, π̄, Q̄, P̄} (in which the r.h.s. depends on a solution {β[0], π[0],

Q[0], P[0]} of the asymptotic system (40)), can be viewed as a generalized Fuchs system.

Note that the structure of this ‘generalized Fuchs system’ is of the form

∂τu −Au =
∑

A

e−2wA(β[0])fA(β[0], ∂xβ[0], ∂
2
xβ[0], x, u, ∂xu, ∂2

xu) , (50)

where u is a vector–valued unknown function u(τ, x) = (u1(τ, x), ..., uk(τ, x)), the linear

forms wA(β) are the same ones that enter in the system (46) and where the source terms

fA can be read off the system (46). In view of the arguments given in [12] (in particular, we

recall that in the appendix A of this reference, it has been argued that the ‘peaks’ in the

source terms pictured in Figure 3 are such that their integrated effect allows u to have a

limit as τ → +∞) and partially recalled above, we expect that (under the conditions spec-

ified below) there exists a unique solution {β̄, π̄, Q̄, P̄} of (46) tending to zero as τ → +∞
(and more generally a unique solution u of the system (50), given suitable conditions on f ,

which tends to zero as τ → +∞).

The conditions necessary for this result to hold for (46) are expected to be the following:

• the asymptotic initial data Q◦(x), P◦(x) must be such that the coefficients cA(Q◦(x),

P◦(x), ∂xQ◦(x)) of the dominant potential walls remain strictly positive over the con-

sidered domain U ,
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• the asymptotic initial data β◦(x) = β(τ1, x), π◦(x) = π(τ1, x) at some finite time τ1

must satisfy the zero–energy constraint H[0](β◦, π◦, Q◦, P◦) = 0.

4.4 Constraints

To complete the story, we need to check that the exact constraints are satisfied (along the

exact equations of motion) once the asymptotic ones are fulfilled (along the asymptotic

equations of motion). The reasoning is the same as in the non–chaotic case:

1. First we treat the Gauss constraints. We impose that the asymptotic Gauss con-

straints (44) hold. It is again obvious that these asymptotic constraints are preserved

by the asymptotic equations of motion (40). On the other hand, the exact Gauss

constraints (12) are preserved by the exact evolution equations. Moreover, they differ

from the asymptotic ones by exponential ‘walls’, and consequently they vanish when

τ → +∞. As in the non–chaotic case, we can conclude that they are equal to zero

(because they are constant and they tend to zero).

2. We then turn to the Hamiltonian and momentum constraints. Let us require that

the initial data Q◦, P◦ of the asymptotic evolution system satisfy the asymptotic

momentum constraints H[0]a = 0, (43) in addition to the asymptotic Hamiltonian

constraint H[0] = 0. The constraints obey the evolution system (38),18 i.e.

∂τH =
∑

a

e−2µa(β)(∂aHa + 2βa
,aHa − 2(

∑

c

βc),aHa) ,

∂τHa −∇aH = 0 . (51)

As in the non–chaotic case, the above system is not Fuchsian due to (i) the term ∇aH
[however, as we have argued previously, this term should not be a problem], (ii) the

source term (i.e. the r.h.s. of the first equation in the system (51)) which is not an

allowed Fuchsian source term (this fact contrasts with the non–chaotic case). However

we have already dealt with this kind of source term in the system (46). In the present

case, the source term is even ‘better’ than the one of (46) because it contains only

‘subdominant walls’ which decay faster than the dominant ones and which exhibit

rearer ‘peaks’ (because the ‘peaks’ occur when the ‘ball’ hits a corner) [however these

‘peaks’ contain a factor ∝ τ2] (see discussion in section 4.3). Accordingly, the system

(51) is a ‘generalized Fuchsian’ system in the sense given in section 4.3 and we con-

sider it likely that it possesses a unique solution that vanishes when τ → +∞. On

top of that, the system (51) is homogeneous and this implies that the unique solution

in question is zero.

We can then conclude that the exact Hamiltonian and momentum constraints are

satisfied since (i) they differ from the asymptotic ones, which are imposed to hold,

18See appendix A and the discussion in the section about the constraints in the non–chaotic case
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by exponential ‘walls’ (this implies that they decay as τ → +∞), (ii) they obey a

‘generalized Fuchs system’, as just argued, and therefore there exists a unique solution

that vanishes when τ → +∞.

Summary : Let us summarise our conjectural results concerning the asymptotic dynamics

of the fields in the vicinity of a spacelike singularity for a chaotic Einstein–matter systems

in the following statement:

Let

• (Q[0](x), P[0](x)) be functions of the spatial coordinates such that the coefficients

cA(Q[0](x), P[0](x), ∂aQ[0](x)) nowhere vanish, and that the ‘fundamental chamber’ de-

fined by the inequalities wA(β) ≥ 0 is contained within the future lightcone Gabβ
aβb =

0,
∑

a βa ≥ 0,

• (β[0], π[0]) be a solution a the asymptotic system of equations (40) with initial condi-

tions (β[0](x), π[0](x)) given at some finite τ = τ1 which satisfy the asymptotic Hamil-

tonian constraint (42), and

• impose that the asymptotic momentum constraints (43) are satisfied at τ = τ1 as well

as the asymptotic Gauss constraints (44).

Then there exists a unique solution (β, π,Q, P ) of the Iwasawa–variable form of the full

constrained Einstein–matter equations such that the differences β̄ = β−β[0] π̄ = π−π[0] Q̄ =

Q − Q[0], P̄ = P − P[0]} tend to zero as τ → +∞.

5 Pure gravity in dimensions 4 ≤ D ≤ 10

To give a more concrete example of the general formulation of the BKL behavior of Einstein–

matter systems discussed here, let us consider the specific example of pure gravity. We

consider spacetime dimensions D such that 4 ≤ D ≤ 10, so that the corresponding behavior

is generically chaotic. For this case, our precise formulation of the BKL conjecture is the

following (we denote by d := D − 1 the space dimension 3 ≤ d ≤ 9):

(i) Initial data Let us give ourselves the following initial data:

d(d − 1)/2 spatial functions N(0)
a
i(x) for a < i,

d(d − 1)/2 spatial functions P(0)
i
a(x) for a < i,

d spatial functions β(0)
a(x) and

d spatial functions π(0) a(x).

(ii) Asymptotic Hamiltonian Given these data we define the following asymptotic

Hamiltonian

Hasymp(β[0], π[0]) =
1

4
Gab π[0] a π[0] b + Vasymp

S + Vasymp
G , (52)
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Figure 4: Chaotic behavior This picture is a schematic drawing of the asymptotic dynamics of

the ‘diagonal variables’ at a given spatial point x, this dynamics is represented in the β–space. The

dashed curve represents the zeroth order solution β[0]. The exact solution is sketched as a continuous

curve. The idea is that the approximate solution β[0] becomes better and better as τ → +∞, this

is formalised via a ‘generalized Fuchs theorem’, see the text. Note that here we consider a chaotic

system and that the ‘fundamental chamber’ determined by the walls in contained within the light

cone.

where Gab π[0] a π[0] b :=
d
∑

a=1
π2

[0] a − 1
d−1

(

d
∑

a=1
π[0] a

)2

, and where

Vasymp
S =

1

2

d−1
∑

a=1

e−2(β[0]
a+1−β[0]

a)(Pi
(0)a N a+1

(0)i )2 , (53)

(where i = 1, . . . , d is summed over) and

Vasymp
G =

1

2
e−2α1d−1d(β[0])(C1

(0)d−1d)
2 . (54)

In the last equation, αabc(β) (for b 6= c) denotes the linear form αabc(β) = βa +
∑

e 6=b,c

βe (evaluated for a = 1, b = d − 1 and c = d), and C(0)
a
bc (with b 6= c and

C(0)
a
bc = −C(0)

a
cb) denote the structure functions (dθ(0)

a = −1
2 C(0)

a
bc ∧ θ(0)

b θ(0)
c) of

the ‘asymptotic Iwasawa frame’ θ(0)
a(x) = N(0) i

a(x)ωi. Note that all the coefficients

entering the exponential potential terms (53) and (54) depend only on the spatial point

(through P(0)(x), N(0)(x) and ∂x N(0)(x) which enters C(0)), so that the asymptotic

evolution system for β and π constitutes, at each point of space, a well-defined system

of ODE’s.

(iii) Asymptotic evolution equations The equations of motion deduced from the Hamil-

tonian (52) are called the asymptotic evolution equations, they are the ‘chaotic analog’
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of the AVTD evolution system considered in the non-chaotic, monotonic power-law

case. They are of the form:

∂τ βa
[0] =

1

2
Gab π[0] b ,

∂τ π[0] a = − ∂

∂ β[0]
a

[

Vasymp
S (β[0];P(0),N(0))

+Vasymp
G (β[0];P(0),N(0), ∂x N(0))

]

. (55)

(iv) Asymptotic constraints We impose that the initial data satisfy the following asymp-

totic constraints,

Hasymp(β[0], π[0],N(0), ∂x N(0),P(0)) = 0 ,

Hasymp
a (N(0), ∂x N(0),P(0)) = 0 , (56)

where Hasymp is the (conserved) quantity defined in equation (52), and where the

definition of Hasymp
a is equation (43) above.

Finally, this leads to the following precise formulation of the:

BKL conjecture in Iwasawa variables. Let, for x ∈ U , the spatial functions P(0) N(0)

and C(0) be such that the d x–dependent coefficients P(0)
i
aN(0)

a+1
i and C(0)

1
d−1 d (whose

squares define the coefficients of the d exponential potential terms (53) and (54)) do not

vanish in U . Let (β[0](τ, x), π[0](τ, x), be the unique solution of the asymptotic evolution

system (55) with initial conditions β[0](τ1, x) = β(0)(x) and π[0](τ1, x) = π(0)(x) at some

finite time τ = τ1 and satisfying the asymptotic constraints (56). Then there exists a unique

solution (β(τ, x), π(τ, x),N (τ, x), P(τ, x)) of the vacuum Einstein equations (including the

constraints) such that the differences β̄(τ, x) ≡ β(τ, x) − β[0](τ, x), π̄(τ, x) ≡ π(τ, x) −
π[0](τ, x), N̄ (τ, x) ≡ N (τ, x) −N(0)(x), P̄(τ, x) ≡ P(τ, x) − P(0)(x) tend to zero as x ∈ U is

fixed and τ → +∞.

6 Asymptotic geometrical structure on cosmological singu-

larities

In the previous sections, we studied in detail the asymptotic dynamics of the gravitational

field in the vicinity of a spacelike singularity in Iwasawa variables. In particular, we have

seen that some of the variables have limits when τ → +∞, i.e. the Q’s and P ’s while the

β’s have no limits. Moreover, we have argued that in the ‘chaotic’ case the πa’s tend chaot-

ically to zero. Of course these Iwasawa variables are dependent on the choice of coframe

ωi := ωi
j(x)dxj used in the equation (3) [where ωi could be simply a coordinate coframe].

This raises the question to know whether the Iwasawa variables, despite their ‘gauge depen-

dence’ capture some well defined geometrical structure at the BKL limit and what is this

structure. In the non–chaotic case, this question has a clear answer. Indeed, the frames that
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diagonalise the second fundamental form with respect to the metric have a well defined limit

at the singularity. They therefore provide a fields of ‘directional frames’ at the singularity,

i.e. a field of frames considered modulo rescalings of each frame vector. In this section, we

will investigate the chaotic case.

Our starting point is the existence of many variables having finite limits at the singularity,

namely the N a
i’s and Pi

a’s, (say N a
i(τ, x) → N(0)

a
i, (x)Pi

a(τ, x) → P(0)
i
a(x) as τ → +∞).

The problem is, however, that the quantities N(0)
a
i and P(0)

i
a do not have, a priori, a clear

geometrical meaning because they depend on the coframe ωi used on Md. One way of

addressing this issue is to act on the coframe ωi with an arbitrary local transformation

Λ ∈ GL(d, R) to investigate what information is left invariant in N(0)
a
i(x) and P(0)

i
a(x)

when ‘rotating’ the coframe by an arbitrary Λ. We will try to assign canonical values to

the Iwasawa variables N(0)
a
i(x) and P(0)

i
a(x) at the singularity19 by means of a suitable Λ

(e.g. in the non–chaotic case we can find Λ’s such that: N(0)
a
i(x)

Λ→ δa
i and P(0)

i
a(x)

Λ→ 0).

If we are able to assign canonical values to all asymptotic values of the N(0)’s and P(0)’s,

this would mean that we would have again privileged directions at the singularity like in

the non–chaotic case. We will see that the situation is actually more subtle than this.

A general matrix Λ ∈ GL(d, R) can be decomposed into three parts (i) a diagonal part, (ii)

an upper triangular matrix (with ones on the diagonal) matrix and (iii) a lower diagonal

matrix (with ones on the diagonal).

(i) The action of the diagonal part of Λ consists in shifting the values of β’s. However, as

the β’s have no limit as τ → +∞ it is not clear how to extract some geometrical meaning

from such shifts of the β’s.

(ii) Concerning the action of the upper triangular part, let us show that it can be used to

fix the asymptotic values of the N(0)
a
i’s to be δa

i. The crucial point is that if we act on the

coframe by an upper triangular matrix, i.e. ω′ i = Λi
jω

j, since

ds2 =
∑

a

e−2βaN a
iN a

jω
iωj ,

must be equal to ds′ 2 =
∑

a e−2β′ aN ′ a
iN ′a

jω
′ iω′ j and since the transformation is defined

by demanding that N and N ′ be both upper triangular, we easily see that

N a
i = N ′a

jΛ
j
i (for upper triangular Λ only).

This result is actually valid for any τ , and yields, in the limit τ → +∞, N(0) = N ′
(0)Λ.

Now it suffices to perform the transformation with Λi
j chosen to be the upper triangular

19Note that, in the non–chaotic case, we have access to more information, namely the non–zero limits of

the π’s.
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matrix Λi
j = N(0)

i
j to fix the canonical values of the N ′

(0)’s to be the unit matrix. Note

that after this fixing of the frame (such that N ′
(0) = δ) the frame ω′ i becomes identical at

the singularity with the limiting Iwasawa frame θa = N ′a
iω

′ i = N a
iω

i.

(iii) Let us now consider the effect of the remaining freedom in a general Λ ∈ GL(d, R),

i.e. a lower triangular matrix, namely,

Λ =



















1 0 0 0 0

Λ2
1 1 0 0 0

Λ3
1 Λ3

2 · · · 0 0
...

...
. . . 1 0

Λd
1 Λd

2 . . . Λd
d−1 1



















.

The action of any Λ (upper or lower triangular) on the frame components of the metric

ds2 = gijω
iωj = g′ijω

′ iω′ j is always given by the following linear action,

g′ij(τ) = Λ−1k
igkl(τ)Λ−1l

j . (57)

However, the induced action of such a Λ on the Iwasawa variables β(τ) and N (τ) parametriz-

ing gij(τ) is somewhat complicated when Λ is lower diagonal because it is non linear (con-

trarily to the simpler case just discussed, of an upper triangular matrix whose action was

nicely compatible with the upper triangular nature of N and was thereby linear). Let us

then consider the case where the remaining lower triangular matrix Λ is close to the identity,

say

Λ = 1 + λ ,

with infinitesimal (strictly lower triangular) λ. In addition, as we always assume that we

have already used an upper triangular matrix Λ+ to fix N(0) (after dropping the primes) to

the identity, we can write that N (τ) is of the form,

N (τ) = 1 + n(τ) ,

with n(τ) → 0 as τ → +∞. As both matrices λ and N (τ) can be treated as infinitesimal

elements, we will neglect terms of order O(n2) and O(λ2). Note also that, as we are near a

situation where N a
i ∼ δa

i , the distinction between the ‘a’ type indices and ‘i’ type indices

disappear. When replacing the Iwasawa decomposition gij =
∑

a e−2βaN a
iN a

j in equation

(57), we find at the linear approximation,

n′i
j = ni

j + [n, λ]ij + O(e−2(βj−βi)) ,

e−2β′i

= e−2βi

(1 + 2[n, λ]ii) no sum over i . (58)

As the P’s are the canonically conjugate to the N = 1+n, the law of transformation of the

P’s is obtained by using the ‘conservation’ of the canonical form PdN+πdβ = P ′dN ′+π′dβ′.

We then easily find

Pi
j = P ′i

j + [λ,P ′]ij − λi
j(π

′j − π′i) + O(e−2(βj−βi))
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In addition we see from equation (58) above that the limit n(τ) → 0 is invariant under

such a lower triangular transformation λ, so that the canonical value N(0) = δi
a is left fixed

by such a Λ. Since at the BKL limit, the exponential ‘symmetry walls’ e−2(βj−βi) (j > i)

vanish and that, in the chaotic case, the momentum conjugate to the β’s is going to zero

(after each collision, they are ‘redshifted’ [12]), we obtain the following action of the lower

triangle Λ = 1 + λ on the limiting values of the P’s, i.e. P(0)’s:

P(0)
′ i

j = P(0)
i
j + [λ,P(0)]

i
j . (59)

In view of the strictly lower triangular nature of both λ and P it is easily seen that the

transformation law (59) implies that the elements of P(0) on the first lower diagonal are left

invariant:

P ′
(0)

i+1
i = P(0)

i+1
i .

Consistently with our general requirement of having non vanishing dominant symmetry wall

coefficients, we assume that all the constants P(0)
i+1

i are non vanishing.20 Then it is easily

seen that by choosing a suitable λ one can change at will the values of the P(0)’s on the

lower diagonals, P(0)
i+n

i (n ≥ 2). This proves that there exists a Λ such that we can fix

P(0) to the following canonical form,

P◦ =



















0 0 0 0 0

P2
1 0 0 0 0

0 P3
2 · · · 0 0

0 0
. . . 0 0

0 0 . . . Pd
d−1 0



















. (60)

Let us now study what are the coframe changes that leaves the canonical of N(0) (N(0) = δ)

and P(0) (P(0) = P◦) invariant. We already know that the canonical form N(0) = δ fixes the

upper part of Λ to be unity. As for the lower diagonal part Λ = 1 +λ, the request that P(0)

be fixed to P◦ implies, from the equation (59), the condition

[λ,P◦]
i
j = 0 . (61)

To analyze the consequences of this constraint, we decompose λ into a sum of matrices with

non vanishing elements only on one of its ‘lower’ diagonals, i.e. λ = λ1 + λ2 + ... + λd−1

where the only non zero elements of λn are (λn)i+n
i. It is then easily seen that λ1 must be

proportional to P◦. Then one similarly finds that λ2 ∝ P2
◦ etc... Finally the most general

Λ = 1 + λ fixing P(0) to its canonical value P◦ is found to be of the form,

λ = α1P◦ + α2P2
◦ + α3P3

◦ + ... + αd−1Pd−1
◦ (62)

for some constants αn.

20Such a nilpotent element P(0) is called ‘regular’ in the mathematical literature.
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Let us discuss the geometrical meaning of our findings. We consider again a general Λ ∈
GL(d, R), containing both upper and lower triangular parts (for the reasons explained above

we do not consider the diagonal part). If we had been able to define a canonical form whose

‘stabiliser’ in GL(d, R) had been only the unit matrix, this would have meant the existence

of a preferred directional frame (frame modulo rescalings) at each spatial point x ‘on the

singularity’. On the other hand, if the stabilizer had been the full group GL(d, R), this

would have meant that no preferred frame at all remained on the singularity. Actually we

have a intermediate situation, our stabiliser S is a proper subgroup of GL(d, R), { 1l} ⊂ S ⊂
GL(d, R). It defines an equivalence class of directional frames that we can call a partially

framed flag.21 The elements of our stabiliser S are given at the infinitesimal level by the

formula (62). Therefore, an element s of S can be written as

s = eα1P◦+α2P2
◦+α3P3

◦+...+αd−1P
d−1
◦ (63)

where α1, α2, α3, ..., αd−1 are constants. The element s of S acts on the coframe ωi as,

ω′ i = si
jω

j . (64)

It is then easily checked that S is a commutative group of dimension d− 1. More precisely,

in view of the fact that the various powers of the matrix P◦ commute among themselves,

one finds that the group composition of two elements of S is simply given by

s(α1, α2, . . . , αd−1) ◦ s(α′
1, α

′
2, . . . , α

′
d−1) = s(α1 + α′

1, α2 + α′
2, . . . , αd−1 + α′

d−1) . (65)

[In mathematical terminology, S is a unipotent abelian subgroup of the Borel subgroup of

GL(d, R).] Explicitly, the matrix elements of s (63) read as follow,

sn
i =

∑

j∈(1,...,d−1)|∃m∈{N⋆|mj=n−i}

αm
j

m!
P(0)

n
n−1 . . .P(0)

i+1
i . (66)

For instance in d = 3, the matrix s reads,

s =







1 0 0

α1P(0)
2
1 1 0

(1
2α2

1 + α2)P(0)
3
2P(0)

2
1 α1P(0)

3
2 1






. (67)

Therefore, in d = 3, the class (defined by the relation (64)) of coframes equivalent to some

given coframe ω′ i is explicitly given by:

ω′ 1 = ω1

ω′ 2 = ω2 + α1P(0)
2
1 ω1

ω′ 3 = ω3 + α1P(0)
3
2 ω2 + (

1

2
α2

1 + α2)P(0)
3
2P(0)

2
1ω

1 . (68)

21Let us recall that a (complete) flag can be seen as the equivalence class of ‘directional frames’ with the

following equivalence relations. A ‘directional frame’ given by the directions {v1, ..., vd} is equivalent to the

‘directional frames’ {v′
1, ..., v

′
d} constructed by picking a first direction along the vector v1 (v′

1 ∝ v1), then a

second direction v′
2 belonging to 2–plane spanned by v1 and v2 (v′

2 ∝ v2 + αv1), a third direction belonging

to the 3–plane spanned by v1, v2 and v3 (v′
3 ∝ v3 + βv2 + γv1), and so on up to a last direction along a

vector v′
n which is an arbitrary vector in R

d. In other words, the stabiliser of a flag is the full subgroup of

lower triangular matrices of GL(d, R).
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By duality between frames and coframes (< ωi, ej >= δi
j), one can then easily deduce the

corresponding equivalence classes of frames. The equivalence class of a frame ei is given by

[ei] = {e′i = ejs
−1j

i|s ∈ S} . (69)

For d = 3, we have explicitly,

e′1 = e1 − α1P(0)
2
1e2 + (

1

2
α2

1 − α2)P(0)
3
2P(0)

2
1e3

e′2 = e2 − α1P(0)
3
2e3

e′3 = e3 . (70)

Summary : The equivalence class of frames and coframes with respect to which the limiting

values of N(0) and P(0) take the canonical values N(0) = δ and P(0) = P◦ (60) is described

by the relations (69) and (64) which contain d − 1 arbitrary parameters. This equivalence

class defines a privileged geometrical structure at the singularity, which we call a partially

framed flag. For instance, in d = 3 this partially framed flag comprises: (i) one privileged

direction e3, which is independent of the basic frame ωi, (ii) then the equivalence class of

the vector e2 must lie in a privileged 2–plane containing e3, (iii) finally, after having chosen

a representative e2 in the class [e2] (i.e. α1 is fixed), the third vector e1 must lie in a privi-

leged 2–plane defined by e1 −α1P(0)
2
1e2 + 1

2α2
1P(0)

3
2P(0)

2
1e3 and e3. [This is different from

a flag where e1 would have been an arbitrary direction in the full R
3.]

It is remarkable that at the ‘chaotic’ BKL limit, we have a such geometrical structure left.

At the singularity, we could have guessed that nothing is left from the metric structure

because of the chaotic character of the asymptotic dynamics. Let us note that our results

have been partially anticipated in [2] where a law of ‘rotation of Kasner axes’ was derived.

This law is somewhat similar to our results (68) but, actually, it has a different physical

meaning. Indeed, the first Kasner axis l which is preserved in the law approximatively

derived in [2] is supposed to belong to the ‘growing’ eigen axis pl = p1 < 0, so that it would

be a different axis that would be preserved during further collisions. One would then have

no privileged direction at the singularity. As we have shown here, there exists a well defined

geometrical structure at the singularity: a partially framed flag which is rather ‘rigid’ in the

sense that it depends only on d− 1 arbitrary parameters (while a generic flag would involve

d(d − 1)/2 arbitrary parameters).

7 Conclusion

In this paper, we started by reconsidering the asymptotic dynamics, in the vicinity of a

spacelike singularity, of the fields for ‘non-chaotic’ Einstein–matter systems. We have out-

lined a new proof that gives this asymptotic dynamics (which is essentially given, at each

spatial point, by a monotone power–law solution in terms of the proper time). Our method
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is based on the Iwasawa decomposition of the spatial metric and on the Hamiltonian for-

mulation of Einstein–matter systems. As in references [14, 13], we have used the Fuchs

theorem to conclude. More precisely, we have defined an asymptotic system of equations

which is a system of ODEs and we have also defined asymptotic constraints. Next, we have

shown that the ‘differenced variables’ (i.e. the differences between the solution of the exact

Einstein–matter constrained equations and the solution of the asymptotic Einstein–matter

constrained equations) obey a Fuchsian system. A solution of the constrained asymptotic

system, together with initial data, can thus be used to parametrize an exact constrained

solution. The advantages of our formulation is that it is shorter, more transparent (the

neglected terms are walls / subdominant walls) and that we avoid the problem of the sym-

metry of the metric encountered in [14, 13]. In appendix C, we discuss the spatial domain

on which a Fuchsian analysis can be applied in this context and point out that our method

cannot be used in some zero–measure co–dimension 2 submanifolds (in reference [14, 13],

there is a quite involved construction to deal with these submanifolds). We also showed

that this problem originates in the ‘spinorial’ nature of the eigenvectors of the second fun-

damental form around the submanifold where 2 (or more) eigenvalues coincide.

We next turned to the ‘chaotic’ Einstein–matter systems and formulated a precise statement

for the chaotic BKL behavior. This is achieved along the same lines as our formulation of

the non–chaotic case. We parametrize, at each spatial point, the generic solution of the

asymptotic behavior of the fields close to a spacelike singularity in terms of a constrained

system of ODEs (and some initial data). Then we argue that the difference between the so-

lution of the exact ‘chaotic’ constrained Einstein–matter system and the asymptotic system

just defined satisfies a ’generalized Fuchs system’. We leave to others the task of proving

that such ‘generalized Fuchsian systems’ admit a unique, asymptotical vanishing, solution.

Our purpose here was mainly to formulate, in precise mathematical and physical terms,

this asymptotic characterization of ‘chaotic’ solutions of Einstein–matter systems.

Finally, we addressed the question of the existence of some asymptotic geometrical structure

defined at the singularity for a chaotic system. We knew that some of the metric variables

had finite limits at the singularity and it was therefore natural to wonder whether we could

extract some geometrical structure from these limiting values. A first slight, we could

expect that the chaotic nature of the asymptotic dynamics would destroy any structure at

the singularity. We showed that it is not the case: partially framed flags can be defined at

the singularity. These partially framed flags are, as their name indicate, more ‘rigid’ than

flags and less ‘rigid’ than frames.
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A Evolution equations of the Hamiltonian and momentum

constraints

The purpose of this appendix is to obtain the evolution equations for the exact Hamiltonian

constraint H (10) and exact momentum constraints (11) in our gauge choices. Here we do

not consider matter for simplicity and we work in a coordinate basis. These evolution equa-

tions can be derived from the Bianchi identities and the evolution equations for the spatial

metric. In this perspective, we have to know what are the evolution equations in the gauge

we are interested in.

The first order action of pure gravity in D = d + 1 spacetime dimensions S[gij , π
ij , Ñ ,N i]

reads,

S[gij , π
ij , Ñ ,N i] =

∫

dx0ddx(ġijπ
ij − ÑH− N iHi) . (71)

Its variation with respect to πij can be understood as the definition of the πij in terms of

ġij , the variations with respect to gij , Ñ , N i giving respectively the equations of motion,

the Hamiltonian constraint and the momentum constraints.22 Note that the dot means a

derivation with respect to x0. Let us now use the Einstein–Hilbert action,
∫

dDx
√−(D)g

(D)
R

in the so–called Palatini formalism (i.e. the Christoffel symbols Γµ
νρ are considered to be

independent of the metric elements gµν) to determine the link between the Hamiltonian

equations of motion δS/δgij = 0 and the usual Einstein equations (D)Gµν = 0. The variation

22We recall the following relationships,

(D)
gµν =

 

NkNk − Ñ2g Nj

Ni gij

!

(D)
g

µν =

 

− 1

Ñ2g

Nj

Ñ2g

Ni

Ñ2g
gij − NiNj

Ñ2g

!

,

where µ = (0, i) and ν = (0, j).
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of the Einstein–Hilbert–Palatini action gives,

δSEHP =

∫

dDx
√

−(D)g(−(D)Gµνδgµν + gµν(δΓλ
µν;λ − δΓλ

µλ;ν)

=

∫

dDx(−
√

−(D)g
(D)

Gµνδgµν − ((
√−ggµν);ρ − δν

ρ (gµλ
√−g);λ)δΓρ

µν) , (72)

where (D)g denotes the determinant of the spactime metric, (D)Gµν is the Einstein tensor and

the second equality is obtained by integration by parts (we neglect the boundary terms).

For simplicity, let us assume that N i = 0 on–shell (but keeping δN i 6= 0), and that most of

the usual relations between Γµ
νρ and the derivatives of gµν are constrained to hold, namely

Γ0
00 =

1

2

g,0

g
+

Ñ,0

Ñ

Γ0
0i = Γ0

i0 =
1

2

g,i

g
+

Ñ,i

Ñ

Γi
00 =

1

2
Ñ2gijg,j + gijÑÑ,jg

Γi
jk =

1

2
gil(glj,k + glk,j − gjk,l) . (73)

Moreover we require that Γ0
jk is related to the Γj

k0 = Γj
0k via Γj

0k = ggjiΓ0
ik. We can

then verify that the terms in δΓ can be ignored to compute the functional derivative of S

with respect to gij , Ñ and N i (the coefficient in front of these variation in (72) vanish). It

is then straightforward to derive the following relations,

δSEHP

δgij
= Ñg(−(D)Gij + Ñ2g(D)G00gij) + O(Nk) (74)

δSEHP

δÑ
= 2(D)G00Ñ2g2 + O(Nk) (75)

δSEHP

δN i
= −2Ñg

(D)
Gi0 + O(Nk) . (76)

Note that we did not write explicitly the terms proportional to Ni because we will work in

the gauge Ni = 0. On the other hand, we have,

δS

δgij
= −π̇ij − Ñ

δH
δgij

+ O(Nk) (77)

δS

δÑ
= −H (78)

δS

δNi
= −Hi (79)

When identifying δSEHP with δS, one obtains,

H = −2g2Ñ2 (D)G00 + O(Nk) = − 2

Ñ2
G00 + O(Nk) , (80)

Hi = 2gÑ (D)Gi0 + O(Nk) = − 2

Ñ
gijG0j + O(Nk) . (81)
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On the other hand, the equations of motion δS/δgij = 0 are found to be equivalent to the

equations

(D)Gij =
1

2g
Hgij + O(Nk) . (82)

Note that our result (82) is linked to our choice of ‘rescaled lapse’ Ñ as basic lapse variable.

The result would be different if we were using the usual lapse N .

Let us now use the Bianchi identities Bµ := ∇ν
(D)Gν

µ ≡ 0 to derive the evolution equations

for the constraints. We use the equality,

Bµ =
∂ν(

√−(D)g(D)Gν
µ)√−(D)g

− 1

2
∂µgαβ

(D)Gαβ . (83)

When inserting in the expression of B0 the relationship between H, Hi and the components

of the Einstein tensor (80, 81) as well as the equations of motion (82), we obtain the

evolution equation for H,

1

2g
∂τH− Ñ

2
∇iHi − (∇iÑ)Hi + O(Nk) = 0 . (84)

Note that Hi = gijHj and that it is a tensorial density of weight 1 while Ñ is a scalar density

of weight –1. The covariant derivatives ∇iHi and ∇iÑ must take into account these weights:

for instance ∇iHi = ∇iHi = ∂i(g
ijHj) (in a coordinate frame) and ∇iÑ = ∂i(Ñ

√
g)/

√
g.

From Bi = 0, we get

1

2g
(
∂τHi

Ñ
−∇iH) + O(Nk) = 0 . (85)

Note that H is a scalar density of weight 2 so that ∇iH = g∂i(H/g). In our gauge choices,

i.e. Ñ = 1 and N i = 0, the equations (84) and (85) read,

∂τH = g∇iHi + g,iHi , (86)

∂τHi −∇iH = 0 . (87)

B Fuchsian Systems

B.1 Fuchs Theorem

The general form of a Fuchsian system ([31, 17, 35] and references therein) for a vector–

valued unknown function u(t, x) = (u1(t, x), ..., uk(t, x)), defined on an open subset of R×R
n

with values in R
k, is

t ∂tu + A(x)u = tµf(t, x, u, ∂xu), (88)

where ∂xu denotes a finite number of derivatives of u with respect to the variables x (they

are not restricted to be of first order); the function f is defined on (0, T0]×U1 ×U2 (where
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U1 is an open subset of R
n and U2 is an open subset of R

k+nk) and takes values in R
k; and

µ > 0. A is an analytic k × k matrix-valued function defined on U1. The system (88) is

said to be Fuchsian if the matrix A(x) and the function f fulfill the following conditions,

• condition on A : the matrix A(x) is required to satisfy some lower boundedness

condition. One sufficient condition, that has been used in several works [14, 13], is

that there is a constant ǫ such that Real(λ) > ǫ > 0, for each eigenvalue λ of A at

any point. Recently, this condition has been relaxed to requiring that there exists

an 0 ≤ α ≤ µ such that |σ|Aσα be bounded for σ varying in the interval 0 ≤ σ ≤ 1

[35]. Essentially, this condition means that the real part of the eigenvalues of A are

everywhere strictly larger than −µ. This is of particular interest for us, since the

matrix A relevant in our case is nilpotent so that |σ|A grows like a power of log σ as

σ → 0 (so that we can simply use any α in the interval 0 < α < µ).

• condition on f : the ‘source term’ f (after having factored tµ) is required to be

‘regular’, i.e. f must possess an analytic continuation in x, u and ∂xu and, as a

function of t, must be continuous on [0, t◦] for some finite time t◦.

For more precise conditions on A and f , we refer to [14] and references therein.

Fuchs Theorem: If the system (88) satisfies the above conditions to be Fuchsian, then it

possesses a unique solution u that vanishes as t → +0 (see e.g [14, 35]).

Note : After the change of variable t = e−τ (such that the singularity is now located at

τ → +∞), a Fuchsian system reads,

∂τu −A(x)u = e−µτ f̄(τ, x, u, ∂xu), (89)

where, essentially, f̄ must be analytic in x, u, ∂xu and bounded in τ as τ → +∞. This is

the form we shall use in the text.

B.2 Shift of the eigenvalues of A

One may wonder if it is possible to have a more precise description of how fast the solution

u of the Fuchsian system (88) goes to zero when t goes to zero. To answer this question,

let us rewrite the system (88) in terms of the variable ū defined as follows,

ū = t−λu , 0 < λ < µ. (90)

Inserting (90) in the system (88), it is straightforward to obtain

t ∂tū + Ā(x)u = tµ̄f̄(t, x, ū, ∂xū) , (91)
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where

Ā = A + λ 1l , µ̄ = µ − λ

f̄ = f(t, x, tλu, tλ∂xu) .

If f is regular, then f̄ is regular. Note that the eigenvalues of Ā have been shifted by

λ > 0 compared to those of A, so that if A satisfies the lower boundedness conditions

eigenvalues(A)> −µ, so does Ā (with the corresponding µ̄ = µ−λ). Therefore the ‘shifted’

system (91) is again Fuchsian and we know that it admits a unique solution ū that vanishes

when t → +0. This tells us that the unique solution of the Fuchsian system (88) that

vanishes as t → +0 actually vanishes as u = tλū with ū = o(1), i.e. as o(tλ) for any λ < µ.

Summary : the ‘shift’ of u allows us to gain a more precise information about how the

unique (asymptotically vanishing) solution u of the system (88) decays as t → +0. If the

r.h.s. of the Fuchsian system (88) decays as tµf then u is a O(tµ−ǫ) for any ǫ > 0. When

using the τ variable, this essentially means that a source term decaying as e−µτ corresponds

to a unique, asymptotically vanishing, solution decaying as e−µ−τ for any 0 < µ− < µ.

Note : For completeness, let us define the notations O and o. A function F (t, x, p) defined

on (0, T0]×U1 ×U2, where U1, U2 are open subsets of R
n and R

N respectively, is said to be

O(G(t)) if there is a constant C such that

|F (t, x, p)| ≤ C|G(t)| for t ∈ (0, t0], (x, p) ∈ K.

The notation F = o(G(t)) is used to indicate that F/G tends to zero uniformly on compact

subsets of U1 × U2 as t → 0.

C Subtleties occurring when some of the eigenvalues of the

second fundamental form coincide in the non–chaotic case

The usual AVTD approach uses a rather complicated construction to deal with the neigh-

borhoods of points where some eigenvalues of the second fundamental form kij coincide

[14, 13]. Such a complication is needed because the frame vectors that diagonalise kij with

respect to gij are not analytic in x near such points. Here we consider the behavior of

Iwasawa variables in these regions. For a full comparison one should carefully analyze the

different slicing hypersurfaces in the two approaches: gaussian slicing N = 1 in AVTD vs

pseudo–gaussian slicing Ñ = 1 in our case.

As a simple example, let us consider gravity in D = 4 coupled to a dilaton. Let us consider

for simplicity the (generic) case where two of the eigenvalues coincide on some submanifold.
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We choose as one of the frame vectors, the (analytic) eigenvector e3 corresponding to the

third eigenvalue (which is supposed to stay away from the other two). The two other

analytic frame vectors are chosen to be orthogonal to e3 and to each other (they are linear

combinations of the eigenvectors corresponding to the nearly degenerate eigenvalue). In

this orthonormal basis (or dreibein), the coefficients of the metric are gab = δab, while the

coefficient of the second fundamental form are given by a matrix K which is of the following

form,

K =







a + c b 0

b −a + c 0

0 0 d






,

where a, b, c and d depend analytically on the spatial coordinates. The eigenvalues of K are

c(x)±
√

a(x)2 + b(x)2 and d(x). Therefore, two eigenvalues will coincide when a(x)2 +b(x)2

vanishes, which means that both a(x) and b(x) must vanish. This happens generically on a

line in the three dimensional space since it gives us two conditions a(xi) = 0 and b(xi) = 0.

If we were in d spatial dimensions, the submanifold L where two eigenvalues coincide would

again be defined by the vanishing of some a(x)2 + b(x)2 and therefore be a codimension 2

submanifold. For convenience, let us replace the quantities a(xi) and b(xi) by ρ(xi) and θ(xi)

such that a(xi) = ρ(xi) cos θ(xi) and b(xi) = ρ(xi) sin θ(xi). Since a and b have generically

their values between -∞ and +∞, we have ρ ∈ [0,∞] and θ ∈ [0, 2π[. Let us consider the

Kasner metric, expressed in the time τ = − ln t, g[0](τ, x
i) = e−Kτ (see [14, 13]). We have

g[0] =







ecτ (cosh ρτ + cos θ sinh ρτ) ecτ sin θ sinh ρτ 0

ecτ sin θ sinh ρτ ecτ (cosh ρτ − cos θ sinh ρτ) 0

0 0 edτ






. (92)

To compute the Iwasawa variables corresponding to the metric (92), we use the following

explicit formulas (6),

β1 = −1

2
cτ − 1

2
ln (

1 + cos θ

2
eρτ +

1 − cos θ

2
e−ρτ )

β2 = −1

2
cτ +

1

2
ln (

1 + cos θ

2
eρτ +

1 − cos θ

2
e−ρτ )

β3 = dτ

N 1
2 =

sin θ(eρτ − e−ρτ )

(1 + cos θ)eρτ + (1 − cos θ)e−ρτ

N 1
3 = 0

N 2
3 = 0 (93)

The crucial point is that the co–dimension 1 submanifold Σ defined by the equation 1 +

cos θ = 0 plays a singular role in the formulas (93). Indeed, the exponential growing term eρτ

always appears in the combination (1+cos θ)eρτ . Therefore, in the open domain 1+cos θ 6= 0

and ρ = +
√

a2 + b2 > 0, we have the generic Iwasawa behavior that the N ’s have a finite
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limit as τ → +∞, namely

N 1
2 (0) = lim

τ→+∞
N 1

2(τ) =
sin θ

1 + cos θ

while the β’s have the following asymptotic behavior,

β1 ∼ −1

2
(c + ρ)τ − 1

2
ln (

1 + cos θ

2
) ,

β2 ∼ −1

2
(c − ρ)τ +

1

2
ln (

1 + cos θ

2
) ,

β3 = dτ . (94)

Note also that, because ρ > 0, we have the usual asymptotic ordering β1 ≤ β2. How-

ever, we see that the asymptotic limit N 1
2 (0), which depends only on spatial variables,

becomes singular on Σ (codimension 1 submanifold (with boundary) where cos θ = −1)

which is, in our d = 3 case, a half–membrane ending on the line a = b = 0, where the

eigenvalues of K coincide. More precisely, N 1
2 (0) tends to +∞ as θ → π+ and tends to

−∞ as θ → π−. Correlatively the behavior of the β’s become singular on Σ. We have the

asymptotic behavior βa(τ, xi) ∼ pa
◦(x

i)τ + βa
◦ (xi) where, e.g. β1

◦(x
i) = −1

2 ln (1+cos θ
2 ) and

β2
◦(x

i) = 1
2 ln (1+cos θ

2 ) both become singular on Σ, while p1
◦ = −1

2(c + ρ), p2
◦ = −1

2(c − ρ)

[we recall that ρ(xi) = +
√

a2(xi) + b2(xi)]. Note also that, if one sits on Σ, one has the

asymptotic behavior N 1
2(τ, x

i) = 0 and β1(τ, xi) = −1
2(c − ρ)τ, β2(τ, xi) = −1

2(c + ρ)τ

where the signs of the ρ terms in β1 and β2 are exchanged compared to the asymptotic

behavior outside of Σ. In particular, on Σ we have, asymptotically, β1(τ, xi) > β2(τ, xi),

which contrasts with the generic result that asymptotically β1 ≤ β2. This unusual behavior

is the sign that the coefficient of the e−2(β2−β1) symmetry wall vanishes on Σ. As said above,

in our treatment we neglected this possibility on the account that it is non generic (as the

coefficient in question is a square). We see now that this non generic behavior necessar-

ily occurs on some codimension 1 submanifolds ending on the codimension 2 submanifolds

where 2 eigenvalues of K coincide.

However, let us emphasize that the location of the singular codimension 1 submanifold Σ

is not geometrically fixed, but is somewhat arbitrary apart from the fact that it necessarily

ends on the codimension 2 submanifold L where 2 eigenvalues coincide. Indeed, let us

show that, by using a suitable, x–dependent local SO(2, R) transformation, one can move

Σ around L, in a manner similar to an ordinary–life flag moving around its pole. More

precisely, let us perform the following (spatially dependent) rotation of the first two vectors

e1 and e2 of our orthonormal frame,






e′1
e′2
e′3






=







cos α sin α 0

− sin α cos α 0

0 0 1













e1

e2

e3






. (95)

One now finds

N ′1
2 (0)(x

i) =
cos θ sin (2α) − sin θ cos (2α)

1 + sin (2α) sin θ + cos (2α) cos θ
=

sin (2α − θ)

1 + cos (2α − θ)
, (96)
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which shows that the new singular surface Σ′ corresponding to the rotated basis is now

located at θ(xi)− 2α(xi) = +π. This shows that Σ is similar to a ‘Dirac string’ singularity:

it is a gauge dependent singular submanifold, whose location can be shuffled around by

using a gauge transformation. The non–analytic (actually singular) N → ∞, ... behavior

of the Iwasawa variables on Σ is evidently problematic within a Fuchsian system approach,

because it obliges us to work in an open region U of R
3 which does not contain Σ. The fact

we just showed that the location of Σ can be moved around means that we can essentially

bypass this technical problem by using simultaneously two separate Fuchsian systems, cor-

responding to different choices of underlying frames (ωi, ei) in the analytic spatial manifold

Md, yielding finite values Iwasawa variables in two complementary open regions U and U ′.

Such a construction bypasses the analyticity problems near Σ and Σ′. However, the codi-

mension 2 submanifold L (where two eigenvalues coincide) remains excluded from these

two complementary Fuch analyses. In other words, the present Iwasawa variables–based

approach discussed here cannot cover in an analytic manner the measure–zero submani-

folds of Md where 2 (or more generally n ≥ 2) eigenvalues coincide. We leave this technical

problem to further analyses.

In this respect let us remark that the root of the problems linked, either in the AVTD

or the Iwasawa approaches, to coinciding eigenvalues of kij admits a simple geometrical

interpretation. The crucial point is that the eigenvectors of K, considered as functions

of the auxiliary angle θ introduced above (a = ρ cos θ, b = ρ sin θ) depend on θ in the

same manner as a spinor would transform under a SO(3) rotation of angle θ. Indeed, the

diagonalisation of the matrix K is easily checked to yield the following eigenvectors (with

respect to the orthonormal basis e1, e2, e3 in which K is expressed),

v1 = cos
θ

2
e1 + sin

θ

2
e2 with eigenvalue c + ρ = c +

√

a2 + b2 ,

v2 = sin
θ

2
e1 − cos

θ

2
e2 with eigenvalue c − ρ = c −

√

a2 + b2 ,

v3 = e3 with eigenvalue d . (97)

Note the appearance of the half angle θ/2 in v1 and v2. This appearance means that if we

follow the evolution of a diagonalising frame v1, v2, v3 along a closed loop in space around L
(assuming the Jacobian of a(x) and b(x) never vanishes), the eigenvectors v1(x

i) and v2(x
i)

will, upon their return to the same spatial point x (which corresponds to the same values

of a(xi) and b(xi), but to an angle θ = 2π instead of θ = 0), take final values opposite to

their initial ones:

v1(θ = 2π) = −v1(θ = 0), v2(θ = 2π) = −v2(θ = 0), v3(θ = 2π) = v3(θ = 0) . (98)

This phenomenon explains why, in the Iwasawa approach, the presence of a ‘line’ L makes

itself felt far away from L (i.e. on the ‘singular’ half–membrane Σ): indeed there is a

non–trivial holonomy of Kasner frames around L.23

23Evidently, one could discuss the richer case where there are several independent codimension 2 manifolds
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D An illustrative Fuchsian toy model

The aim of this appendix is to see, on a concrete example, the relationship between the

structure of the source term and that of a solution of a Fuchsian system. The aim is not to

sketch mathematical proofs (for which we refer to [14, 13, 35]) but to build some physical

intuition. In this perspective, we study a toy model which is the most drastic simplification

of the system (33) one could consider. We want to show that the unique solution of the

system that goes to zero goes to zero like the source and not less fast than the source. To

handle this, we use an iterative method. Finally, we also investigate a sligtly more involved

toy model that is supposed to mimick the effect of the spatial gradients appearing in the

system (33).

D.1 A first toy model

The first toy model we consider is the following,

β̇ − π = 0 ,

π̇ = e−2wβ . (99)

If we consider the asymptotic system to be

β̇[0] − π[0] = 0 ,

π̇[0] = 0 . (100)

The order zero solution is π[0] = v and β[0] = vτ +β◦. Rewriting the equations (99) in terms

of β̄ = β − β[0] and π = π̄ − π[0] gives

˙̄β − π̄ = 0 ,

˙̄π = e−2w(vτ+β◦)e−2w(β̄) . (101)

The idea is that β̄ and π̄ go to zero as τ → +∞. We can try to solve the system by iteration

assuming that β̄ is small. The first iteration is obtained by replacing β̄, in the source term

of equations (101), by its first order estimate which is zero, i.e. replacing e−2w(β̄) by 1:

˙̄β[1] − π̄[1] = 0 ,

˙̄π[1] = e−2w(vτ+β◦) . (102)

The solution of this system is π̄[1] = 1
−2wv

e−2w(vτ+β◦) and β̄[1] = 1
(2wv)2

e−2w(vτ+β◦) (note

that we did not add integration constants since we search solutions that go to zero when

τ → +∞). The next step consists in replacing β̄ in the source term by its first order

estimate,

˙̄β[2] − π̄[2] = 0 ,

˙̄π[2] = e−2w(vτ+β◦)e−2w(β[1]) ∼ e−2w(vτ+β◦)(1 − 2w(β̄[1])) . (103)

of the type of L, together with more exceptional submanifolds where more eigenvalues coincide.
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The solution of this system is given by π̄[2] = 1
−2wv

e−2w(vτ+β◦) − 2w
2w(v)2(−4w(v))

e−4w(β[0]) and

β̄[2] = 1
(2wv)2

e−2w(vτ+β◦) − 2w
2w(v)2(4w(v))2

e−4w(β[0]). Etc.

Therefore, the solution that vanishes goes to zero like the source. We do not lose a e−ǫτ and

we conclude that the Fuchs theorem is too strong in this situation. For this very simple toy

model, the exact solution of the system (99) can be written as follows,

τ =

∫

dβ
√

2E − 1
w

e−2wβ
, (104)

where E is a constant of integration and this integral gives explicitly,

τ =
β√
2E

+
1

w
√

2E
ln (1 +

√

1 − e−2wβ

2Ew
) + C , (105)

where C is a constant of integration.

D.2 The effect of spatial gradients

Let us now consider a less primitive toy model, mimicking walls with coefficients depending

explicitly on the spatial derivatives of β,

β̇ = π ,

π̇ = ∂x(e−2wβ) . (106)

As asymptotic system, we take the same as in the previous example (100). The order zero

solution is π[0] = v(x) and β[0] = v(x)τ + β◦(x). Rewriting equations (106) in terms of

β̄ = β − β[0] and π = π̄ − π[0] gives

˙̄β = π̄ ,

˙̄π = −2w(∂xvτ + ∂xβ◦ + ∂xβ̄)e−2w(vτ+β◦)e−2w(β̄) .

The first iteration is again obtained by putting β̄ is the left hand side to zero,

π̄[1] = e−2w(β[0])(
∂xβ◦

w(v)
+

2∂xv

2w2
) +

∂xv

w(v)
τe−2w(β[0]) (107)

β[1] is also of the form e−2w(β[0])(a + bτ). Higher order iterations will give higher powers of

τ which are multiplied by increasing powers of the ‘walls’ e−2β[0] , see [36] for the structure

of an all–order iterative example of such a Fuchsian system. Therefore, we can suspect that

in this case, the solution decreases less quickly than the source by a polynomial in τ .
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