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Abstract. This expository text is an invitation to the relation between quan-

tum field theory Feynman integrals and periods. We first describe the relation

between the Feynman parametrization of loop amplitudes and world-line meth-
ods, by explaining that the first Symanzik polynomial is the determinant of

the period matrix of the graph, and the second Symanzik polynomial is ex-

pressed in terms of world-line Green’s functions. We then review the relation
between Feynman graphs and variations of mixed Hodge structures. Finally,

we provide an algorithm for generating the Picard-Fuchs equation satisfied by
the all equal mass banana graphs in a two-dimensional space-time to all loop

orders.
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Amplitudes relations and monodromies

1. Unitarity methods

Constructions and computations of quantum field theory amplitudes have ex-
perienced tremendous progress, leading to powerful methods for evaluating loop
amplitudes [BDK96, Bern92, BDDK94, BCF04]. These methods made com-
putable many unknown amplitudes and provide an increasing knowledge of gauge
theory and gravity amplitudes in various dimensions.

These methods are based on the unitarity properties of the scattering ampli-
tudes in quantum field theory. A quantum field theory amplitude is a multivalued
function presenting branch cuts associated to particle production.

For local and Lorentz invariant quantum field theories, the matrix of diffusion
S is unitary SS† = 1. Therefore the scattering matrix T , defined as S = 1 + iT
satisfies the relation T − T † = iTT †. The perturbative expansion of the scattering
matrix T =

∑
n≥0 g

nAn leads to unitarity relation on the perturbative amplitudes

An. This implies that the imaginary (absorptive) part of the amplitudes An is
expressible as some phase integral of product of lowest order amplitudes through
Cutkosky rules [C60], and dispersion relation are used to reconstruct the full am-
plitude. In general the evaluation of the dispersion relations is difficult.

Fortunately, at one-loop order, in four dimensions, we know a basis of scalar
integral functions {Ir} specified by boxes, triangles, bubbles, tadpoles and rational
terms [BDK96, OPP06, EZ07, EKMZ11]

(1.1) A1−loop
n =

∑
r

cr Ir

where cr are rational functions of the kinematics invariants.
An interesting aspect of this construction is that the scalar integral functions

have distinctive analytic properties across their branch cuts. For instance the mass-
less four-point amplitude can get a contribution from the massless box I4(s, t), the
one-mass triangles I1m

3 (s) and I1m
3 (t), the massive massive bubbles I2(s) and I2(t).

The finite part of these functions contain contributions with distinctive discontinu-
ities that can be isolated by cuts

I4(s, t) ∼ log(−s) log(−t)(1.2)

I1m
3 (s) ∼ log2(−s)(1.3)

I2(s) ∼ log(−s) .(1.4)

Higher-point one-loop amplitudes have dilogarithm functions entering the expres-
sion of the finite part, e.g. Li2(1 − s12s23/(s34s56)). Picking a particular kine-
matic region s12 → ∞, this function reduces to its branch cut behaviour Li2(1 −
s12s23/(s34s56)) ∼ − log(−s12) log(−s23) + . . . which can be isolated by the cut.

It is now enough to look at the discontinuities across the various branch cuts
to extract the coefficients cr in (1.1). The ambiguity has to be a rational function
of the kinematic invariants. There are various methods to fix this ambiguity that
are discussed for instance in [BDK96].

One of the advantages of having a basis of integral functions is that it permits us
to state properties of the amplitudes without having to explicitly compute them, like
the no-triangle property in N = 8 supergravity [BCFIJ07, BBV08a, BBV08b,
ACK08], or in multi-photon QED amplitudes at one-loop [BBBV08].
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We hope that this approach can help to get a between control of the higher-loop
amplitudes contributions in field theory. At higher loop order no basis is known for
the amplitudes although it known that a basis must exist at each loop order [SP10].

Feynman integrals from multi-loop amplitudes in quantum field theory are
multivalued functions. They have monodromy properties around the branch cuts
in the complex energy plane, and satisfy differential equations. This is a strong
motivation for looking at the relation between integrals from amplitudes and periods
of multivalued functions. The relation between Feynman integrals and periods is
described in 4.

2. Monodromy and tree-level amplitude relations

Before considering higher loop integrals we start discussing tree-level ampli-
tudes. Tree-level amplitudes are not periods but they satisfy relations inherited
from to the branch cuts of the integral definition of their string theory ancestor.
This will serve as an illustration of how the monodromy properties can constraint
the structure of quantum field theory amplitudes in Yang-Mills and gravity.

2.1. Gauge theory amplitudes. An n-point tree-level amplitude in (non-
Abelian) gauge theory can be decomposed into color ordered gluon amplitudes

(2.1) Atree
n (1, . . . , n) = gn−2

YM

∑
σ∈Sn/Zn

tr(tσ(1) · · · tσ(n))Atree
n (σ(1, . . . , n)) .

The color stripped amplitudes Atree
n (σ(1, . . . , n)) are gauge invariant quantities. We

are making use of the short hand notation where the entry i is for the polarization
εi and the momenta ki, and Sn/Zn denotes the group of permutations Sn of n
letters modulo cyclic permutations. We will make use of the notation σ(a1, . . . , an)
for the action of the permutation σ on the ai.

The color ordered amplitudes satisfy the following properties

• Flip Symmetry

(2.2) Atree
n (1, . . . , n) = (−1)nAtree

n (n, . . . , 1)

• the photon decoupling identity. There is no coupling between the Abelian
field (photon) and the non-Abelian field (the gluon), therefore for t1 = I,
the identity we have

(2.3)
∑

σ∈Sn−1

Atree
n (1, σ(2, . . . , n)) = 0

These relations show that the color ordered amplitudes are not independent.
The number of independent integrals is easily determined by representing the field
theory tree amplitudes as the infinite tension limit, α′ → 0, limit of the string
amplitudes

(2.4) Atree
n (σ(1, . . . , n)) = lim

α′→0
Atree(σ(1, . . . , n))

where Atree(· · · ) is the ordered string theory integral

(2.5) Atree(σ(1, . . . , n)) :=

∫
∆

f(x1, . . . , xn)
∏

1≤i<j≤n−1

(xi − xj)α
′ki·kj

n−2∏
i=2

dxi .
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In this integral we have made the following choice for three points along the real
axis x1 = 0, xn−1 = 1 and xn = +∞ and the domain of integration is defined by

(2.6) ∆ := {−∞ < xσ(1) < xσ(2) < · · · < xσ(n−1) < +∞} .

The function f(x1, . . . , xn) depends only on the differences xi − xj for i 6= j.
This function has poles in some of the xi − xj but does not have any branch cut.

Since for generic values of the external momenta the scalar products α′ ki ·kj are

real numbers, the factors (xi − xj)α
′ki·kj in the integrand require a determination

of the power xα for x < 0

(2.7) xα = |x|α
{
eiπα Im(x) ≥ 0 ,

e−iπα Im(x) < 0 .

Therefore the different orderings of the external legs, corresponding to different
choices of the permutation σ in (2.5), are affected by choice of the branch cut.
The different orderings are obtained by contour deformation of integrals [KLT85,
BBDV09, St09]. This leads to a monodromy matrix that can simply expressed
in terms of the momentum kernel in string theory [BBDSV10]

(2.8) Sα′ [i1, . . . , ik|j1, . . . , jk]p :=

k∏
t=1

1

πα′
sinα′π

(
p · kit +

k∑
q>t

θ(t, q) kit · kiq
)
,

and its field theory limit when α′ → 0 [BBFS10, BBDFS10a, BBDFS10b]

(2.9) S[i1, . . . , ik|j1, . . . , jk]p =

k∏
t=1

(
p · kit +

k∑
q>t

θ(t, q) kit · kiq
)
,

where θ(it, iq) equals 1 if the ordering of the legs it and iq is opposite in the sets
{i1, . . . , ik} and {j1, . . . , jk}, and 0 if the ordering is the same.

As a consequence of the proprieties of the string theory integral around the
branch points one obtains that the color-ordered amplitudes satisfy the annihilation
relations both in string theory and in the field theory limit

(2.10)
∑

σ∈Sn−2

S[σ(2, . . . , n− 1)|β(2, . . . , n− 1)]1An(n, σ(2, . . . , n− 1), 1) = 0 ,

for all permutations β ∈ Sn−2.
These relations are equivalent to the BCJ relations between tree-level ampli-

tudes [BCJ08], and they imply that the all color-ordered amplitude can be ex-
pressed in a basis of (n− 3)! amplitudes [BBDV09, St09].

2.2. The gravity amplitudes. In the same way one can express the gravity
amplitude by considering string theory amplitudes on the sphere with n marked
points.

After fixing the three points z1 = 0, zn−1 = 1 and zn =∞, the n-point closed
string amplitude takes the general form

(2.11) Mn =

(
i

2πα′

)n−3 ∫ ∏
1≤i<j≤n−1

|zj − zi|2α
′ ki·kj f(zi) g(z̄i)

n−2∏
i=2

d2zi ,
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1 2

n-1n-2

i-1 i+1

... ...

i

Figure 1. The nested structure of the contours of integration for
the variable v−i corresponding to the ordering 0 < v+

2 < v+
3 <

· · · < v+
n−2 < 1 of the v+ variables.

where f(zi) and g(z̄i) arise from the operator product expansion of the vertex
operators. They are functions without branch cuts of the differences zi − zj and
z̄i − z̄j with possible poles in these variables. The precise form of these functions
depends on the external states.

Changing variables to zi = v1
i + iv2

i , one can factorize the integral (we refer
to [BBDSV10] for details)

Mn =

(
−1

4πα′

)n−3∫ +∞

−∞

n−2∏
i=2

dv+
i dv

−
i f(v−i ) g(v+

i )

× (v+
i )α

′k1·ki(v−i )α
′k1·ki(v+

i − 1)α
′ kn−1·ki(v−i − 1)α

′ kn−1·ki

×
∏

i<j≤n−2

(
v+
i − v

+
j

)α′ ki·kj(
v−i − v

−
j

)α′ ki·kj
.(2.12)

We now consider the deformations of the contours of integration for the v−i variables
given in figure 1. Because the contours cannot cross each other we need to close
them either to the right, turning around the branch cut at z = 1 by starting with
the rightmost, or close the contours to the left, turning around the branch cut at
z = 0, starting with the leftmost.

There is evidently an arbitrariness in the number of contours that are closed
to the left or to the right. For a given 2 ≤ j ≤ n − 2, we can pull the contours
for the set between 2 and j − 1 to the left, and the set between j and n− 2 to the
right. The independence of the amplitude under this choice is a consequence of the
monodromy relations in eq. (2.10).

To get the full closed string amplitude (2.11) we need to multiply the left-
moving amplitude of the v+ integrations with the right-moving contribution from
the integration over v− and then sum over all orderings to get

(2.13) Mn = (−i/4)
n−3 ×

∑
σ∈Sn−3

∑
γ∈Sj−2

∑
β∈Sn−j−1

Sα′ [γ ◦ σ(2, . . . , j−1)|σ(2, . . . , j−1)]k1Sα′ [β ◦ σ(j, . . . , n−2)|σ(j, . . . , n−2)]kn−1

×An(1, σ(2, . . . , n−2), n−1, n) Ãn(γ◦σ(2, . . . , j−1), 1, n−1, β◦σ(j, . . . , n−2), n) .
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where the amplitudes A(· · · ) (respectively Ã(· · · )) are obtained from integration
over the variables v+

i (respectively v−i ). This provides a general form of the
closed/open string relation between external gauge bosons and gravitons at tree-
level. When restricted to the case of graviton external states the field theory limit
of this expression reduces to the form derived in [BBDFS10a, BBDFS10b].

The choice of contour deformation made by KLT in [KLT85] consists in closing
half of the contours to the left and and the other half to the right. This leads to
the smallest number of terms in the sum (2.13).

For j = n− 1 the field theory gravity amplitude takes a form characteristic of
the expression of gravity amplitudes as a sum of square of Yang-Mills amplitudes

(2.14) Mn = (−1)n−3
∑

σ,γ∈Sn−3

S[γ(2, . . . , n− 2)|σ(2, . . . , n− 2)]k1

×An(1, σ(2, . . . , n− 2), n− 1, n)Ãn(n− 1, n, γ(2, . . . , n− 2), 1) .

The previous construction provided amplitudes relations between massless tree-level
amplitudes in gauge and gravity amplitudes.

This construction does not make any explicit reference to a given space-time
dimension, seeing a massive particle in, say in dimension D = 4, as the dimensional
reduction of a massless particle in higher dimensions, it is immediate that the
amplitude relations formulated with the momentum kernel are valid for massive
external particles. This has been applied to amplitudes between massive matter
field in pure gravity [BBDV13].

This construction made an important use of the multivalueness of the factors∏
1≤i<j≤n(xi−xj)aij with aij = αki · kj ∈ R. Although the tree-level integrals are

not periods, their infinity tension expansion for α′ → 0 is expressible in terms of
multiple zeta values that are periods [Brown13, BSS13, St13, ST14].

Feynman integrals and periods

3. Feynman integral

3.1. The Feynman parametrization. A connected Feynman graph Γ is
determined by the number n of propagators (internal edges), the number l of loops,
and the number v of vertices. The Euler characteristic of the graph relates these
three numbers as l = n−v+1, therefore only the number of loops l and the number
n of propagators are needed.

In a momentum representation an l-loop with n propagators Feynman graph
reads1

(3.1)

IDΓ (pi,mi) :=
(µ2)

∑n
i=1 νi−l

D
2

π
lD
2

∏n
i=1 Γ(νi)

Γ(
∑n
i=1 νi − l

D
2 )

∫
(R1,D−1)l

∏l
i=1 d

D`i∏n
i=1(q2

i −m2
i + iε)νi

where µ2 is a scale of dimension mass squared. Some of the vertices are connected
to external momenta pi with i = 1, . . . , ve with 0 ≤ ve ≤ v. The internal masses are
positive mi ≥ 0 with 1 ≤ i ≤ n. Finally +iε with ε > 0 is the Feynman prescription

1In this text we will consider only graph without numerator factors. A similar discussion can
be extended to this case but will not be considered here.
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for the propagators for a space-time metric of signature (+ − · · ·−), and D is the
space-time dimension, and we set ν :=

∑n
i=1 νi.

Introducing the size l vector of loop momenta Lµ := (`µ1 , . . . , `
µ
l )T corresponding

to the minimal set of linearly independent momenta flowing along the graph. We
introduce as well the size ve vector of external momenta Pµ = (pµ1 , . . . , p

µ
ve)T . Since

we take the convention that all momenta are incoming momentum conservation
implies that

∑ve
i=1 pi = 0.

Putting the momenta qi flowing along the graph in a size n vector qµ :=
(qµ1 , . . . , q

µ
n)T . Momentum conservation at each vertices of the graph gives the

relation

(3.2) qµ = ρ · Lµ + σ · Pµ .

The matrix ρ of size n× l has entries taking values in {−1, 0, 1}, the signs depend
on an orientation of the propagators. (The orientation of the graph and the choice
of basis for the loop momenta will be discussed further in section 3.3.) The matrix
σ of size n× ve has only entries taking values in {0, 1} because have the convention
that all external momenta are incoming.

We introduce the Schwinger proper-times αi conjugated to each internal prop-
agators

(3.3)

IDΓ (pi,mi) =
(µ2)ν−l

D
2

π
lD
2 Γ(ν − lD2 )

∫
(R1,D−1)l

∫
[0,+∞[n

e−
∑n

i=1 αi(q
2
i−m

2
i +iε)

n∏
i=1

dαi

α1−νi
i

l∏
i=1

dD`i .

Setting T =
∑n
i=1 αi and αi = T xi this integral becomes

(3.4)

IDΓ (pi,mi) =
(µ2)ν−l

D
2

π
lD
2 Γ(ν − lD2 )

∫
(R1,D−1)l

∫
[0,+∞[n+1

e−TQδ(

n∑
i=1

xi−1)
dT

T 1−ν

n∏
i=1

dxi

x1−νi
i

l∏
i=1

dD`i ,

where we have defined

(3.5) Q :=

n∑
i=1

xi(q
2
i −m2

i ) .

Introducing the n × n diagonal matrix X = diag(x1, · · · , xn), one rewrites this
expression exhibiting the quadratic form in the loop momenta

(3.6) Q = (Lµ + Ω−1Qµ)T · Ω · (Lµ + Ω−1Qµ)− J − (Qµ)T · Ω−1 ·Qµ ,

where we have defined

(3.7) Ω := ρTXρ, Qµ := ρTXσ Pµ, J := (Pµ)TσTXσPµ +

n∑
i=1

xi(m
2
i − iε)

and we made use of the fact that the square l × l matrix Ω is symmetric and
invertible. Performing the Gaussian integral over the loop momenta Lµ one gets
(3.8)

IDΓ (pi,mi) =
(µ2)ν−l

D
2

Γ(ν − lD2 )

∫
[0,+∞[n+1

e−Tµ
2 F U−1 δ(

∑n
i=1 xi − 1)

U lD2

n∏
i=1

dxi

x1−νi
i

dT

T 1−ν+lD2
.



FEYNMAN INTEGRALS AND PERIODS 9

Introducing the notations for the first Symanzik polynomial

(3.9) U := det(Ω)

and using the adjugate matrix of Adj(Ω) := det Ω Ω−1, we define the second
Symanzik polynomial

(3.10) F :=
−J U + (Qµ)T ·Adj(Ω) ·Qµ

µ2
.

A modern approach to the derivation of these polynomials using graph theory is
given in [BW10]. In section 3.3 we will give an interpretation of these quantities
using the first quantized world-line formalism.

Performing the integration over T , one arrives at the expression for a Feynman
graph given in quantum field theory textbooks like [IZ80]

(3.11) IDΓ (pi,mi) =

∫
[0,+∞[n

Uν−(l+1) D
2

Fν−lD2
δ(

n∑
i=1

xi − 1)

n∏
i=1

xνi−1
i dxi .

• Notice that U and F are independent of the dimension of space-time.
The space-time dimension enters only in the powers of U and F in the
expression for the Feynman graph in (3.11).

• The graph polynomial U is an homogeneous polynomial of degree l in the
Feynman parameters xi. U is linear in each of the xi. This graph polyno-
mial does not depend on the internal masses mi or the external momenta
pi. In section 3.3, we argue that this polynomial is the determinant of the
period matrix of the graph.

• The graph polynomial F is of degree l + 1. This polynomial depends on
the internal masses mi and the kinematic invariants pi · pj . If all internal
masses are vanishing then F is linear in the Feynman parameters xi as is
U .

Since the coordinate scaling (x1, . . . , xn)→ λ(x1, · · · , xn) leaves invariant the inte-
grand and the domain of integration, we can rewrite this integral as

(3.12) IDΓ (pi,mi) =

∫
∆

n∏
i=1

xνi−1
i

Uν−(l+1) D
2

Fν−lD2
ω

where ω is the differential n− 1-form

(3.13) ω :=

n∑
j=1

(−1)j−1 xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

where d̂xj means that dxj is omitting in this sum. The domain of integration D is
defined as

(3.14) ∆ := {[x1, · · · , xn] ∈ Pn−1|xi ∈ R, xi ≥ 0}.
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3.2. Ultraviolet and infrared divergences. The Feynman integrals in (3.1)
and (3.11) evaluated in four dimensions D = 4 have in general ultraviolet and in-
frared divergences. One can work in a space-time dimension around four dimension
by setting D = 4 − 2ε in the expression (3.11) and performing a Laurent series
expansion around ε = 0

(3.15) I
(4−2ε)
Γ (pi,mi) =

∑
k≥−2l

εk I
(k)
Γ (pi,mi) +O(ε) .

At one-loop around four dimensions the structure of the integrals is now very well
understood [BDK97, BCF04, OPP06, BDK96, Bri10, EKMZ11]. General
formulas for all one-loop amplitudes can be found in [EZ07, QCD], some higher-
loop recent considerations can be found in [P14].

In this work we discuss properties of the Feynman integrals valid for any values
of D but when we evaluate Feynman integrals in sections 8—10 we will work with
both ultraviolet and infrared finite integrals. If all the internal masses are positive
mi > 0 for 1 ≤ i ≤ n then the integrals are free of infrared divergences. Working in
D = 2 will make the integrals free of ultraviolet divergences. One can then relate
the expansion around four dimensions to the one around two dimensions using the
dimension shifting relations [T96].

3.3. The word-line formalism. The world-line formalism is a first quantized
approach to amplitude computations. This formalism has the advantage of being
close in spirit to the one followed by string theory perturbation.

Some of the rules for the world-line formalism can be deduced from a field
theory limit infinite tension limit, α′ → 0, of string theory. At one-loop or-
der this leads to the so-called ‘string based rules’ used to compute amplitude in
QCD [BK87, BK90, BK91, BD91, Str92] and in gravity [BDS93, DN94], as
reviewed in [Bern92, Sc01]. One can motivate this construction by taking a field
theory limit of string theory amplitudes as for instance in [FMR99, dVMMLR96,
MPRS13, T13].

At one-loop order, this formalism has the advantage of making obvious some
generic properties of the amplitudes like the no-triangle properties in N = 8 su-
pergravity [BBV08a, BBV08b] or for multi-photon amplitudes in QEDa at one-
loop [BBBV08]. These rules have been extended to higher-loop orders in [ScS94,
RS96, RS97, SaS98]. See for instance [GKW99, GRV08] for a treatment of the
two-loop four-graviton N = 8 supergravity amplitude in various dimensions. This
formalism is compatible with the pure spinor formalism providing a first quantized
approach for the super-particle [Berk01, BB09] that can be applied to amplitude
computations in maximal supergravity [AGV04, BG10, Bj10, CK12].

In this section we will follow a more direct approach to describe the relation be-
tween Feynman graphs and the world-line approach. A more systematic derivation
will be given elsewhere.

First consider an l-loop vacuum graph Γ0 without external momenta with n0

propagators (edges) and v0 = n0 − l + 1 vertices. One needs to assign a labeling
and an orientation of the vacuum graph corresponding to a choice of l independent
loop momenta circulating along the loop, this orientation conditions the signs in
the incidence matrix in (3.2). Label the Schwinger proper-time of each propagator
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by Ti with i = 1, . . . , n0. Therefore the expression for Q in (3.5) becomes

(3.16) Q0 = (Lµ)T · Ω · (Lµ)−
n0∑
i=1

Ti(m
2
i − iε) .

where Ω = ρTdiag(T1, . . . , Tn0
)ρ is the period matrix associated with the graph.

The presentation will follow the one given in [GRV08, section 2.1] for two-loop
graphs. Let choose a basis of oriented closed loops Ci with 1 ≤ i ≤ l for the graph.
In this context the loop number l is the first Betti number of the graph. And let ωi
be the elementary line element along the closed loop Ci. The entries of the matrix
Ω constructed above are given by the oriented circulation of these line elements
along each loop Ci

(3.17) Ωij =

∮
Ci

ωj .

A direct construction of this matrix from graph theory is detailed in [DS06, sec-
tion IV].

We now consider Feynman graphs with external momenta. One can construct
such graphs by starting from a particular vacuum graph Γ0 and adding to it external
momenta.

• One can add external momenta to some vertices of the vacuum graph.
This operation does not modify the numbers of vertices and propagators
of the graph. This will affect external momentum dependence part in the
definition of the existing momenta qi in (3.16). This operation does not
modify definition of the period matrix Ω.

• One can consider adding new vertices with incoming momenta. One ver-
tex attached to external momenta, has to be added on a given internal
edge (propagator) say i∗. Under this operator the number of vertices has
increased by one unit as well as the number of propagators. The num-
ber of loops has not been modified. This operation splits the internal
propagator i∗ into two as depicted

Under this operation the proper-time Ti∗ = x1
i∗

+ x2
i∗

and the momentum

flowing along the edge i∗ is replaced by q1
i∗

= qi∗ and q2
i∗

= q1
i∗

+ P

where P =
∑r
j=1 Pj is the sum of all incoming momenta on the added

vertex. The insertion point of the new vertex is parametrized by x2
i∗

. The
expression for Q in (3.5) then becomes

(3.18) Q =

n∑
i=1
i6=i∗

Ti(q
2
i −m2

i + iε) + x1
i∗((q

1
i∗)

2 −m2
i∗ + iε) + x2

i∗((q
2
i∗)

2 −m2
i∗ + iε) .
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Since x1
i∗

((q1
i∗

)2 −m2
i∗

+ iε) + x2
i∗

((q2
i∗

)2 −m2
i∗

+ iε) = Ti∗((qi∗)
2 −mi∗ +

iε) + 2x2
i∗
qi∗ · P , we conclude that the matrix Ω entering the expressions

for Q in (3.6) for a graph with external momenta is the same as the one
of the associated vacuum graph.

We therefore conclude that in the representation of a Feynman graph Γ in (3.11)
and (3.12) the first Symanzik polynomial U is the determinant of the period matrix
of the vacuum graph Γ0 associated to the graph Γ.

We now turn to the reinterpretation of the second Symanzik polynomial F
in (3.10) using the world-line methods.

Define F̂ := F/U one can rewrite this expression in the following way

(3.19) F̂ = −
n∑
i=1

xi(m
2
i − iε) +

∑
1≤r,s≤m

pr · psG(xr, xs; Ω) .

where we have introduced the Green function

(3.20) G(xr, xs; Ω) = −1

2
d(xr, xs) +

1

2

(∫ xr

xs

ω

)
· Ω−1 ·

(∫ xr

xs

ω

)
,

where ω = (ω1, . . . , ωl)
T the size l vectors of elementary line elements along the

loops, and d(xr, xs) is the distance between the two vertices of coordinates xr and
xs on the graph. This is the expression for the Green function between two points on
the word-line graph constructed in [DS06, section IV]. In section 3.3.2 we provide
a few examples.

One can therefore give an alternative form for the parametric representation
of the Feynman graph Γ, by writing splitting the integration over the parameters
into an integration over the proper-times Ti with 1 ≤ i ≤ n0 of the vacuum graph,
and the insertion points xi with 1 ≤ i ≤ m of the extra vertices carrying external
momenta

(3.21) IDΓ (pi,mi) =

∫
D

1

F̂3(l−1)+m−lD2

m∏
i=1

dxi

∏n0

i=1 dTi

(det Ω)
D
2

.

For the case of ϕ3 vertices, at the loop order l, the number of propagators of vacuum
graph is n0 = 3(l−1) and this formulation leads to a treatment of field theory graphs
in a string theory manner as in [BBV08a, BBV08b, BBBV08, BG10, Bj10].

3.3.1. Examples of period matrices. The construction applies to any kind of
interaction since we never used the details of the valence of the vertices one needs
to consider. We provide a few example based on ϕ3 and ϕ4 scalar theories.

Figure 2. Examples of ϕ3 vacuum graphs at (a) two-loop order,
(b) and (c) at three-loop order.
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For instance for the two-loop and three-loop graphs of figure 2 the period matrix
are given by

Ω2 =

(
T1 + T3 T3

T3 T2 + T3

)
in figure 2(a)(3.22)

Ω3 =

T1 + T2 T2 0
T2 T2 + T3 + T5 + T6 T3

0 T3 T3 + T4

 in figure 2(b)

Ω3 =

T1 + T4 + T5 T5 T4

T5 T2 + T5 + T6 T6

T4 T6 T3 + T4 + T6

 in figure 2(c) .

A list of period matrices for ϕ3 vacuum graphs up to and including four loops can
be found in [BG10, Bj10].

For the banana graphs with n propagators (and n − 1 loops) in figure 3 the
period matrix is given by

(3.23) Ωbanana =


T1 + Tn Tn · · · Tn
Tn T2 + Tn Tn · · · Tn
...

...
Tn · · · Tn Tn−1 + Tn

 .

These graphs will be discussed in detail in section 8

Figure 3. Graph for the banana graph with n propagators.

3.3.2. Example of Green functions. We provide a example of the construction
of the second Symanzik polynomial F̂ using the Green function method.

For the one-loop graph of figure 4(a) the period matrix Ω = T is the length of
the loop. The Green function between the external states with momenta pr and ps
is given by

(3.24) G1−loop(xr, xs;L) = −1

2
|xs − xr|+

1

2

(xr − xs)2

T
.

For massless external states p2
r = 0 for 1 ≤ r ≤ n, the reduced second Symanzik

polynomial F̂1−loop is given by

(3.25) F̂1−loop =
∑

1≤r<s≤n

pr · psG1−loop(xr, xs;L) .
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Figure 4. (a) One-loop n-point graph and (b)-(c) two-loop four-
point graphs.

In the massless case the two-loop Green’s function have been derived in [GRV08,
section 2.1]. If the two external states with momenta pr and ps are on the same
line, say the one of length T1, then

(3.26) G2−loop(xr, xs; Ω2) = −1

2
|xs − xr|+

T2 + T3

2

(xs − xr)2

(T1T2 + T1T3 + T2T3)
,

where we used the two-loop period matrix Ω2 in (3.22) such that det Ω2 = T1T2 +
T1T3 + T2T3. If the external states with momenta pr and ps are on different lines,
say pr is on T1 and ps on T2, then the Green’s function is given by

(3.27) G2−loop(xr, xs; Ω2) = −1

2
(xr + xs) +

T3(xr + xs)
2 + T2x

2
r + T1x

2
s

2(T1T2 + T1T3 + T2T3)
.

With these Green functions the reduced second Symanzik polynomial for the four-
point two-loop graphs in figure 4(b)-(c) read

(3.28) F̂2−loop =
∑

1≤r<s≤4

pr · psG2−loop(xr, xs; Ω2) .

4. Periods

In the survey [KZ01], Kontsevich and Zagier give the following definition of
the ring P of periods: a period is a complex number that can be expressed as an
integral of an algebraic function over an algebraic domain.

In more precise terms z ∈ P is a period if its real part <e(z) and imaginary
part =m(z) are of the form

(4.1)

∫
∆

f(x1, . . . , xn)

g(x1, . . . , xn)

n∏
i=1

dxi ,

where f(x1, . . . , xn) and g(x1, . . . , xn) belong to Z[x1, · · · , xn] and the domain of
integration ∆ is a domain in Rn given by polynomial inequalities with rational
coefficients.

Since sums and products of periods remain periods, therefore the periods form
a ring, and the periods form a sub Q̄-algebra of C (where Q̄ is the set of algebraic
numbers).

Examples of periods represented by single integral

(4.2)
√

2 =

∫
2x2≤1

dx; log(2) =

∫
1≤x≤2

dx

x
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or by a double integral

(4.3) ζ(2) =
π2

6
=

∫
0≤t1≤t2≤1

dt2
t2

dt1
1− t1

.

This example the value at 1 of the dilogarithm Li2 (1) = ζ(2) where

(4.4) Li2 (x) =
∑
n≥1

xn

n2
; for 0 ≤ x < 1 .

In particular, it is familiar to the quantum field theory practitioner that the
finite part of one-loop amplitudes in four dimensions is expressed in terms of dilog-
arithms.

Under change of variables and integration a period can take a form given in (4.1)
or not. One example is π which can be represented by the following two-dimensional
or one-dimensional integrals

(4.5) π =

∫
x2+y2≤1

dxdy = 2

∫ +∞

0

dx

1 + x2
=

∫ 1

−1

dx√
1− x2

or by the following contour integral

(4.6) 2iπ =

∮
dz

z
.

At a first sight, the definition of a period given in (4.1) and the Feynman
representation of the Feynman graph in (3.11) look similar. A relation between these
two objects was remarked in the pioneer work of Broadhurst and Kreimer [BrK95,
BrK96].

We actually need a more general definition of abstract periods given in [KZ01].
Let’s consider X(C) a smooth algebraic variety of dimension n over Q. Con-
sider D ⊂ X a divisor with normal crossings, which means that locally this is
a union of coordinate hyperplanes of dimension n − 1. Let η ∈ Ωn(X), and let
∆ ∈ Hn(X(C), D(C);Q) a singular n-chain on X(C) with boundary on the divisor
D(C). To the quadruple (X,D, ω,∆) we can associate a complex number called
the period of the quadruple

(4.7) P (X,D, ω,∆) =

∫
∆

η .

In order that this definition is compatible with the example of periods given previ-
ously, in particular the behaviour under change of variables one needs to introduce
the notation of equivalence classes of quadruples for periods leading to the same
period (4.7). To this end one defines the space P of effective periods as the Q-vector
space of equivalence classes modulo (a) linearity in η and ∆, (b) under change vari-
ables, (c) and integration by part of Stokes formula. The map from P to the space
of periods P is clearly surjective, and it is conjectured to be injective providing an
isomorphism. We refer to the review article [KZ01] for more details.

5. Mixed Hodge structures for Feynman graph integrals

In this text we are focusing on ultraviolet and infrared finite Feynman graph in-
tegrals. A discussion of logarithmically divergent graphs can be found in [BEK05].
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To a Feynman graph one can associate two graph hyper-surfaces. One de-
fined from the determinant of the vacuum graph period matrix (the first Symanzik
polynomial introduced in section 3.1)

(5.1) X0
Γ := {det Ω = U(xi) = 0|xi ∈ Pn−1(R)} ,

and one graph hyper-surface XΓ defined by the locus for the zeros of the second
Symanzik polynomial F in (3.12)

(5.2) XΓ := {F(xi) = 0|xi ∈ Pn−1(R)} .
The polar part Xη of the Feynman integral in (3.12) is the union of these two
graph hyper-surfaces unless for 2ν = (l + 1)D when it is only given by XΓ or
2ν = lD when it is only given by X0

Γ. Although the integrand η is a closed form
such that η ∈ Hn−1(Pn−1\Xη), in general the domain ∆ has a boundary and
therefore its homology class is not in Hn(Pn−1\Xη). This difficulty will be resolved
by considering the relative cohomology.

In general the polar part Xη of the differential form entering the expression of
the Feynman integral in (3.12), intersects the boundary of the domain of integration
∂∆ ∩ Xη 6= ∅. We need to consider a blow-up in Pn−1 of linear space f : P →
Pn−1, such that all the vertices of ∆ lie in P\X where X is the strict transform
of Xη. Let B be the total inverse image of the coordinate simplex {x1x2 · · ·xn =
0|[x1, . . . , xn] ∈ Pn}.

As been explained by Bloch, Esnault and Kreimer in [BEK05] all of this lead
to the mixed Hodge structure associated to the Feynman graph

(5.3) M(Γ) := Hn−1(P\X ,B\B ∩ X ;Q) .

In the second part of this text we will give a description of the motive for particular
Feynman integral. A list of mixed Hodge structures associated with vacuum graphs
can be found in [Bloch08, Schn10].

5.1. Example: The massive one-loop triangle. As an illustration we con-
sider the example of the mixed Hodge structure for the massive one-loop triangle
following [BlochK10, section 13].

The Feynman integral is given by

(5.4) I.(p1, p2, p3) =
µ2

π2

∫
d4`

`2 (`+ p1)2 (`− p3)2
,

with p2
i = m2

i 6= 0 non vanishing external masses and the momentum conservation
constraint p1+p2+p3 = 0. This integral is finite being free of ultraviolet divergences
in four dimensions, and of infrared divergences for non vanishing masses.

A direct application of section 3.1, for the case of a graph at l = 1 loop, with
n = 3 edges in D = 4 dimensions, leads to the Schwinger representation
(5.5)

I.(p1, p2, p3) = µ2

∫
x1,x2,x3≥0

x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

(x1 + x2 + x3)(x1x2m2
3 + x1x3m2

2 + x2x3m2
1)
.

The graph hyper-surfaces are the line X0
Γ = {x1 + x2 + x3 = 0|xi ∈ P2(R)} and

the conic X. := {x1x2m
2
3 + x1x3m

2
2 + x2x3m

2
1 = 0|xi ∈ P2(R)}. The polar part

of the integrand is Xη = X0
Γ ∪X.. The domain of integration is the triangle ∆ =

{x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}. The intersection of the graph polar part and the domain
of integration is given by the three points Xη ∩∆ = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.
Let f : P → P2 the blow-up of the three vertices {(x1 = x2 = 0), (x1 = x3 =
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0), (x2 = x3 = 0)}. Let Ei ⊂ P the exceptional divisors such that Ei lies over
the intersection (xj = xk = 0), with (i, j, k) a permutation of (1, 2, 3). Finally, let
Fi ⊂ P be the strict transform of the locus {xi = 0}. The blown up domain of
integration is the hexagon B := f∗∆ = ∪3

i=1Ei ∪3
i=1 Fi. If we denote by X = L ∪ C

the union of the strict transform L of the line x1 + x2 + x3 = 0 and the strict
transform C of the conic X.. The mixed Hodge structure of the one-loop massive
triangle graph in four dimension is given by (5.3).

6. Variation of mixed Hodge structures

A pure Hodge structure of weight n is an algebraic structure generalizing the
Hodge theory for compact complex manifold. For a compact complex manifold M
the de Rham cohomology groups Hn(M) := Hn(M,R)⊗ C can be decomposed

(6.1) Hn(M) =
⊕
p+q=n

Hp,q(M), with Hp,q(M) = Hq,p(M) .

The Dolbeaut cohomology groups Hp,q(M) are defined as the ∂̄-closed (p, q)-forms
modulo ∂̄Ap,q−1(M) (see [GH78] for a more detailed exposition). By definition
Hn(M) is pure Hodge structure of weight n.

When one does not have a complex structure one defines a pure Hodge structure
from a Hodge filtration. Let consider a finite dimensional Q-vector space H = HQ.
Suppose given a decreasing filtration F •HC on HC := HQ ⊗ C,

(6.2) HC ⊇ · · · ⊇ F p−1HC ⊇ F pHC ⊇ F p+1HC ⊇ · · · ⊇ (0) .

One says that F •HC defines a pure Hodge structure of weight n

(6.3) Hn
C :=

⊕
p+q=n

Hp,q, where Hp,q := F pHC ∩ F qHC

where F qHC is the complex conjugate of F pHC.
Pure Hodge structures are defined for smooth compact manifoldsM, but Feyn-

man graph integrals involve non-compact or non-smooth varieties which require
using the generalizations provided by the mixed Hodge structures introduced by
Deligne [D70].

The only pure Hodge structure of dimension one is the Tate Hodge structure
Q(n) with

(6.4) F pQ(n)C =

{
0 for p > −n
Q(n)C for i ≤ −n .

This means that Q(n)C = H−n,−n(Q(n)C) and Q(n) has weight −2n. Notice that
Q(n)⊗Q(m) = Q(n+m), therefore Q(n) = ⊗nQ(1) for n ∈ Z.

A mixed Hodge structure on H is a pair of (finite, separated, exhaustive)
filtrations: (a) an increasing filtration W•HQ called the weight filtration, (b) a
decreasing filtration, the Hodge filtration F •HC described earlier. The Hodge
structure on H induces a filtration on the graded pieces for the weight filtration
grWn H := WnH/Wn−1H. By definition for a mixed Hodge structure, the filtration
grWn H should be a pure Hodge structure of weight n.
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A mixed Hodge structure H is called mixed Tate if

(6.5) grWn H =

{
0 for n = 2m− 1⊕

Q(−m) for n = 2m.

From mixed Hodge structures one can define a matrix of periods. For a
mixed Tate Hodge structure the weight and the Hodge filtrations are opposite since
F p+1HC ∩W2pHC = (0), and HC =

⊕
p F

pHC ∩W2pHC. We first make a choice

of a basis {ep,pi ∈ F pHC ∩W2pHC} of HC. Then expressing the basis elements {εi}
for W•H in terms of the basis for HC gives a period matrix with columns composed
by the basis elements of F •H. With a proper choice of the basis for W•H one can
ensure that the period matrix is block lower triangular, with the block diagonal ele-
ments corresponding to grWn H given by (2iπ)−n. In the case of the polylogarithms
such a period matrix is given in eq. (6.7).

Finally, we need to introduce the notation of variation of Hodge structure
needed to take into account that Feynman integrals lead to families of Hodge struc-
tures parametrized by the variation of the kinematics invariants. These concepts
have been introduced by Griffiths in [G68] and generalized to mixed Hodge mod-
ules over complex varieties by M. Saito in [S89]. We refer to these works for
details about this, but a particular case of variation of mixed Hodge structure for
polylogarithms is discussed in the next section.

A large class of amplitudes evaluate to (multiple) polylogarithms. In this case
a study of the discontinuities of the amplitude can give access to interesting alge-
braic structures [ABDG14]. As well elliptic integrals arise from multiloop ampli-
tudes [CCLR98, MSWZ11, CHL12, ABW13, BV13, RT13] . One example
is the sunset Feynman integral studied in section 10.2. The value of the integral is
obtained from a variation of mixed Hodge structure when the external momentum
is varying [BV13].

6.1. Polylogarithms. A very clear motivic approach to polylogarithms is
detailed in the article by Beilinson and Deligne [DB94]. We only refer to the main
points needed for the present discussion, for details we refer to the articles [H94,
DB94]. The iterated integral definition of the polylogarithms

Li1 (z) := − log(1− z) =

∫ z

0

dt

1− t

Lik+1 (z) :=

∫ z

0

Lik (z)
dt

t
, k ≥ 1(6.6)

imply that they provide multivalued function on P1\{0, 1,∞}. These multivalued
function have monodromy properties. To this end defined the lower triangular
matrix of size n× n as
(6.7)

A(z) :=


1 0 · · · · · · 0

−Li1 (z) 1 0 · · · · · · 0
−Li2 (z) log z 1 0 · · · · · · 0

−Li3 (z) (log z)2

2! log z 1 0 · · · 0
...

...
. . .

. . .
...

 diag(1, 2iπ, . . . , (2iπ)n) .
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so that A1k(z) = −Lik (z) for 1 ≤ k ≤ n, and Apq(z) = (2iπ)p−1(log z)q−p/(q − p)!
for 2 ≤ p < q ≤ n.

For a fixed value of z this matrix is the period matrix associated with the mixed
Hodge structure for the polylogarithms, the columns are the weight and the lines
are the Hodge degree.

A determination of this matrix A(z) depends on the path γ in P1\{0, 1,∞}
and a point z ∈]0, 1[. For a counterclockwise path γ0 around 0 or γ1 around 1 the
determination of A(z) is changed as

(6.8) Aγγi(z) = Aγ(z) exp(ei); i = 0, 1

where ei are the nilpotent matrices

(6.9) e0 :=


0 0 · · · · · · 0
0 1 · · · · · · 0
0 0 1 · · · 0

0 · · · 0
. . . 0

 ; e1 :=

0 0 · · · 0
1 0 · · · 0

0 · · ·
. . . · · ·

 .

The matrix A(z) satisfies the differential equation

(6.10) dA(z) = (e0 d log(z) + e1d log(z − 1)) A(z) .

This differential equation defined over C\{0, 1} defined the nth polylogarithm lo-
cal system. This local system underlies a good variation of mixed Hodge structure
whose weight graded quotients are canonically isomorphic to Q,Q(1), . . . ,Q(n) [H94,
theorem 7.1].

One can define single-valued real analytic function on P1(C)\{0, 1,∞}, and
continuous on P1(C). The first important example is the Bloch-Wigner dilogarithm
defined as [Bloch00, Z03]

(6.11) D(z) := =m (Li2 (z) + log |z| log(1− z)) .

The Bloch-Wigner dilogarithm function satisfies the following functional equations

D(z) = −D(z̄) = D(1− z−1) = D((1− z)−1)
= −D(z−1) = −D(1− z) = −D(−z(1− z)−1) .(6.12)

The differential of the Bloch-Wigner dilogarithm D(z) is given by

(6.13) dD(z) = log |z|d arg(1− z)− log |1− z|d arg(z) .

At higher-order there is no unique form for the real analytic version of the poly-
logarithm. A particularly nice version with respect to Hodge structure provided by
Beilinson and Deligne in [DB94] is given by

(6.14) Lm(z) :=

m−1∑
k=0

Bk
k!

(log(zz̄))k ×

{
<e(Lim−k (z)) for m = 1 mod 2

=m(Lim−k (z)) for m = 0 mod 2 .

where Bk are Bernoulli numbers x/(ex − 1) =
∑
k≥0Bk x

k/k!.

A dilogarithm Hodge structure, relevant to one-loop amplitudes in four dimen-
sions, has been defined in [BlochK10] as a mixed Tate Hodge structure such that
for some integer n, grW2pH = (0) for p 6= n, n+ 1, n+ 2.
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6.2. Polylogarithms and Feynman integrals. The construction of the
mixed Hodge structure of the massive triangle in section 5.1 was shown in [BEK05,
BlochK10] to correspond to the dilogarithm Hodge structure describe above.

Are all the Feynman integral expressible as polylogarithms or multiple polylog-
arithms in several variables? It is conjectured in [Henn13] that using integration
by parts one could always express Feynman integrals as a combination of a finite
set of master integrals satisfying the differential equation (6.10), therefore leading
to multiple polylogarithm functions. Various high-loop graphs have been shown to
evaluate to multiple polylogarithms [HSS13, HS13, CHH14, ABDG14, P14].

Counter-examples leading to elliptic functions are known in the massless case [BS12,
CHL12, NPSV13] or the massive case by the sunset graph [LR04, MSWZ11,
ABW13, ABW14] and three-loop banana graph with all equal internal masses [BKV14].
The banana graphs with all equal internal masses, discussed in section 8, lead to
elliptic polylogarithms discussed below.

Different functions are expected from other classes of Feynman graphs. Deter-
mining and evaluating Feynman integrals are open and difficult questions, where
one can hope that mixed Hodge structures or motivic methods be useful.

7. Elliptic polylogarithms

In this section we recall the main properties of the elliptic polylogarithms fol-
lowing [Bloch00, Z90, GZ00, L97, BL94].

Let E(C) be an elliptic curve over C. The elliptic curve can be viewed either as
the complex plane modded by a two-dimensional lattice E(C) ∼= C/(Z$1 + Z$2).
A point z ∈ C/(Z$1 + Z$2) is associated to a point P := (℘(z), ℘′(z)) on E(C)
where ℘(z) = z−2 +

∑
(m,n)6=(0,0)

(
(z +m$1 + n$2)−2 − (m$1 + n$2)−2

)
is the

Weierstraß function and q := exp(2iπτ) with τ = $2/$1 the period ratio in the
upper-half plane H = {τ |<e(τ) ∈ R,=m(τ) > 0}. Or we can see the elliptic curve
as E(C) ∼= C×/qZ. A point P on the elliptic curve is then mapped to x := e2iπz.

One defines an elliptic polylogarithm LEn : E(C)→ R as the average of the real
unvalued version of the polylogarithms

(7.1) LEm(P ) :=
∑
n∈Z
Lm(x qn)

where q := exp(2iπτ) with τ ∈ h := {τ |<e(τ) ∈ R,=m(τ) > 0}. This series con-
verges absolutely with exponential decay and is invariant under the transformation
x 7→ qx and x 7→ q−1x.

If we have a collection of points Pr on the elliptic curve one can consider a
linear combination of the elliptic polylogarithms. Such objects play an important
role when computing regulators for elliptic curves, and in the so-call Beilinson
conjecture relating the value of the regulator map to the value of L-function of the
elliptic curve [Beilinson85, Den97, Bloch00, Soule86, Bru07].

Interestingly, as explained in [BV13], elliptic polylogarithms from Feynman
graphs differ from (7.1). A simple physical reason is that the Feynman integral is
a multivalued function therefore cannot be build from a real analytic version of the
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polylogarithms. For the examples discussed in section 8 we will need the following
sums of the elliptic dilogarithms

(7.2)

nr∑
r=1

cr
∑
n≥0

Li2 (qnzr)

where zr is a finite set of points on the elliptic curve and cr are rational numbers.
This expression is invariant under z 7→ qz and z 7→ q−1z only for a very special
choice of set of points depending on the (algebraic) geometry of the graph. A more
precise definition of the quantity appearing from the two-loop sunset Feynman
graph is given in equation (10.9).

7.1. Mahler measure. A logarithmic Mahler measure is defined by

(7.3) µ(F ) :=

∮
|x1|=···=|xn|=1

log |F (x1, . . . , xn)|
n∏
i=1

dxi
2iπxi

,

and the Mahler measure is defined by M(F ) := exp(µ(F )). In the definition
F (x1, . . . , xn) is a Laurent polynomial in xi.

Numerical experimentations by Boyd [Bo98] pointed out to a relation between
the logarithmic Mahler measure for certain Laurent polynomials F and values of
L-functions of the projective plane curve CF : F (x1, . . . , xn) = 0

(7.4) µ(F ) = Q× L′(ZF , 0) .

In [RV99] (see as well [BRV02, BRVD03]) Rodrigez-Villegas showed that
the logarithmic Mahler measure is given by evaluating the Bloch regulator leading
to expressions given by the Bloch-Wigner dilogarithm. The relation in (7.4) is then
a consequence of the conjectures by Bloch [Bloch00] and Beilinson [Beilinson85]
relating regulators for elliptic curves to the values of L-functions (see [Soule86,
Bru07] for some review on these conjectures).

Let consider the logarithmic Mahler measure defined using the second Symanzik
polynomial F2(x, y; t) = (1+x+y)(x+y+xy)− txy for the two-loop n = 3 banana
graph of figure 3

(7.5) µ�(t) =
1

(2iπ)2

∫
|x|=|y|=1

log(|F2(x, y; t)|)dxdy
xy

.

The Mahler measure associated with this polynomial has been studied by Stien-
stra [Stien05a, Stien05b] and Lalin-Rogers in [LR06].

Consider the field F = Q(E�) where E� = {(x, y) ∈ P2|F2(x, y; t) = 0} is the

sunset elliptic curve, and consider a Néron Ê� model of E� over Z. The regulator

map is an application from the higher regulator K2(Ê�) to H1(E�,R) [Bloch00].
The regulator map is defined by

r : K2(E�) → H1(E�,R)

{x, y} 7→ {γ →
∫
γ

η(x, y)} ,(7.6)

where

(7.7) η(x, y) = log |x|d arg(y)− log |y|d arg x .

Notice that η(x, 1− x) = dD(x) the differential of the Bloch-Wigner dilogarithm.



22 PIERRE VANHOVE

If x and y are non-constant function on E� with divisors (x) =
∑
i xi(ai) and

(y) =
∑
i ni(bi) one associates the quantity (x) � (y) =

∑
i,jmini(ai − bj)

A theorem by Beilinson states that if ω ∈ Ω1(E�) then

(7.8)

∫
E�(C)

ω ∧ η(x, y) = $r Rτ ((x) � (y))

where Rτ (z) is the Kronecker-Eisenstein series [Weil76, Bloch00] defined as

(7.9) Rτ (e2iπ(a+bτ)) :=
=m(τ)2

π2

∑
(p,q)6=(0,0)

e2iπ(aq−pb)

(p+ qτ)2(p+ qτ̄)
.

The logarithmic Mahler measure for the sunset graph is expressed as a sum of
elliptic-dilogarithm evaluated at torsion points on the elliptic curve

(7.10) µ�(t) = −3=m
(
Rτ (ζ6) +Rτ (ζ2

6 )
)

with ζ6 = exp(iπ/3) is a sixth root of unity and τ = $2/$1 is the period ratio of
the elliptic curve. This relation is true for t large enough so that the elliptic curve
E� does not intersect the torus T2 = {|x| = |y| = 1}.

The Beilinson conjecture [Beilinson85, Soule86, Bru07] implies that the
Mahler measure is rationally related to the value of the Hasse-Weil L-function for
the sunset elliptic curve evaluated at s = 2

(7.11) µ�(t) = Q× L(E�(t), 2) .

which can be easily numerically checked using [sage].
Differentiating the Mahler measure with respect to t gives

(7.12) g1(t) := −tdµ�(t)

dt
=

1

(2iπ)2

∮
|x|=1

∮
|y|=1

t dxdy

F2(x, y; t)
.

This quantity is actually a period of the elliptic curve [Stien05a] since we are

integrating the two-form ω = t dxdy
F2(x,y;t) over a two-cycle given by the torus T2 =

{|x| = 1, |y| = 1} (for t large enough so that the elliptic curve does not intersect
the torus).

The banana integrals in two dimensions

In this section we will discuss the two-point n − 1-loop all equal mass banana
graphs in two dimensions.

We first provide an algorithm for determining the differential equation satisfied
by these amplitudes to all loop order, and present the solution for the one-loop
banana (bubble) graph and the two-loop banana (sunset) graph given in [BV13].
The solution to the three-loop banana graph will appear in [BKV14].

8. Schwinger representation

We look at the n−1-loop banana graph of figure 3 evaluated in D = 2 euclidean
dimensions

(8.1) I2
n(m1, . . . ,mn;K) =

∫
R2n

∏n
i=1 d

2`iδ
(2)(
∑n
i=1 `i = K)∏n

i=1(`2i +m2
i )

,
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where `i for 1 ≤ i ≤ n are the momenta of each propagator. The steps described
in section 3.1 lead to the following representation of the banana integrals in two
dimensions

(8.2) I2
n =

∫
xi≥0

δ(xn = 1)

Fn

n∏
i=1

dxi

with

(8.3) Fn = (

n∑
i=1

xim
2
i )Un −K2

n∏
i=1

xi

where Un is the determinant of the period matrix Ω given in (3.23)

(8.4) Un =

n∏
i=1

xi

(
n∑
i=1

1

xi

)
.

In order to determine the differential equation satisfied by the all equal mass banana
graphs we provide an alternative expression for the banana integrals. For K2 <
(
∑n
i=1mi)

2, one can perform a series expansion

I2
n =

∫
[0,+∞[n−1

δ(xn = 1)∑n
i=1m

2
ixi
∑n
i=1 x

−1
i − t

n−1∏
i=1

dxi
xi

=
∑
k≥0

tk
∫

[0,+∞[n−1

δ(xn = 1)

(
∑n
i=1m

2
ixi)

k+1(
∑n
i=1 x

−1
i )k+1

n∏
i=1

dxi
xi

.(8.5)

Exponentiating the denominators
(8.6)

I2
n =

∑
k≥0

tk

k!2

∫
[0,+∞[n+1

δ(xn = 1) e−u(
∑n

i=1m
2
ixi)−v(

∑n
i=1 x

−1
i ) dudv

u−kv−k

n∏
i=1

dxi
xi

.

Using the integral representation for the K0 Bessel function

(8.7)

∫ +∞

0

e−um
2x− v

x
dx

x
= 2K0(2m

√
uv)

one gets

(8.8) I2
n = 2n−1

∑
k≥0

tk

k!2

n−1∏
i=1

K0(2mi

√
uv)

∫
[0,+∞[2

e−um
2
n−v ukvkdudv .

Now setting uv = (x/2)2, the integral over v gives a K0 Bessel function with the
result

(8.9) I2
n = 2n−1

∫
[0,+∞[

∑
k≥0

(√
tx

2

)2k
1

k!2

n∏
i=1

K0(mix)dx .

Using the series expansion of the I0 Bessel function

(8.10) I0(x) =
∑
k≥0

(x
2

)2k 1

k!2
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we get the following representation for the banana graph (see [BBBG08] for a
previous appearance of this formula at the special values K2 = m2 and all equal
masses mi = m)

(8.11) I2
n = 2n−1

∫ +∞

0

x I0(
√
K2x)

n∏
i=1

K0(mix) dx .

9. The differential equation for the banana graphs at all loop orders

We derive a differential equation for the n−1-loop all equal mass banana graphs

(9.1) I2
n(t) := 2n−1

∫ ∞
0

x I0(
√
tx)K0(x)ndx .

This will generalize to all loop order the differential equations given for the two loops
case in [LR04, MSWZ11, ABW13] We first prove the existence of a differential
equation for the integral. In [BS07] it is proven that the Bessel function K0(x)
satisfies the differential equation

(9.2) Ln+1K0(x)n = 0

where Ln+1 is a degree n+ 1 differential operator expressed as a polynomial in the
differential operator θx = x d

dx of the form Ln+1 = θn+1
x +

∑n
k=0 pk(x2)θkx. This

operator is obtained by the recursion given in [BS07]

L1 = θx(9.3)

Lk+1 = θxLk − x2k(n+ 1− k)Lk−1, 1 ≤ k ≤ n .(9.4)

Setting θt := t ddt we have the following relations

2θtI0(
√
tx) = θxI0(

√
tx);(9.5)

θ2
t I0(
√
tx) = t

(x
2

)2

I0(
√
tx);(9.6)

(θ3
t − θ2

t )I0(
√
tx) =

tx2

8
θx(I0(

√
tx)) ,(9.7)

and integrating by parts, one can convert the differential (9.2) into a differential

equation for L̂n+1I
2
n(t) = 0 for the banana integral I2

n(t). Since

(9.8)

∫
xkf(x)θxg(x) dx = −(k + 1)

∫
xkf(x)g(x)−

∫
xkf(x)g(x) dx .

The polynomial coefficients pk(x) in (9.2) are polynomials in x2 such that pk(0) =

0 [BS07]. Therefore the differential operator L̂n+1 = θ2
t L̃n−1 where L̃n−1 is a

differential operator of at most degree n−1. We conclude that the integral satisfies
the differential equation

(9.9) L̃n−1I
2
n(t) = Sn + S̃n log(t) .

where Sn and S̃n are constants. It is easy to check that I2
n(t) has a finite value of

t = 0. Therefore S̃n = 0 and the n − 1-loop banana integral satisfy a differential
equation of order n− 1 with a constant inhomogeneous term.

The differential operator acting on the integral I2
n(t) is given by

(9.10) L̃n−1 =

n−1∑
k=0

qk(t)
dk

dtk
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with the coefficient qk(t) polynomials of degree k + 1 for 0 ≤ k ≤ n − 1. The top
degree and lowest-degree polynomial are given by

qn−1(t) = tb
n
2 c+η(n)

bn
2 c∏
i=0

(t− (n− 2i)2)(9.11)

qn−2(t) =
n− 1

2

dqn−1(t)

dt
(9.12)

q0(t) = t− n .(9.13)

with η(n) = 0 if n ≡ 1 mod 2 and 1 if n ≡ 0 mod 2. The inhomogeneous term Sn
is a constant given by

(9.14) Sn =

∫ ∞
0

2n−1 x

bn
2 c−η(n)∑
k=0

qk(0)
(x

2

)2k

 K0(x)ndx

Numerical evaluations for various loop orders give that Sn = −n!.

In section 9.1 we provide Maple codes for generating the differential equations
for the all equal mass banana integrals

(9.15)

(
n−1∑
k=0

qk(t)
dk

dtk

)
I2
n(t) = −n! .

# loops= n− 1 differential equation

n = 2 (t− 2) f (t) + t(t− 4) f (1)(t) = −2!

n = 3 (t− 3) f (t) +
(
3 t2 − 20 t+ 9

)
f (1)(t) + t(t− 1)(t− 9)f (2)(t) = −3!

n = 4 (t− 4) f (t) +
(
7 t2 − 68 t+ 64

)
f (1)(t) +

(
6 t3 − 90 t2 + 192 t

)
f (2)(t)

+t2(t− 4)(t− 16)f (3)(t) = −4!

n = 5 (t− 5) f (t) + (3t− 5)(5t− 57)f (1)(t) +
(
25 t3 − 518 t2 + 1839 t− 450

)
f (2)(t)

+
(
10 t4 − 280 t3 + 1554 t2 − 900 t

)
f (3)(t) + t2(t− 25)(t− 1)(t− 9)f (4)(t) = −5!

n = 6 (t− 6) f (t) +
(
31 t2 − 516 t+ 1020

)
f (1)(t) +

(
90 t3 − 2436 t2 + 12468 t− 6912

)
f (2)(t)

+
(
65 t4 − 2408 t3 + 19836 t2 − 27648 t

)
f (3)(t)

+
(
15 t5 − 700 t4 + 7840 t3 − 17280 t2

)
f (4)(t) + t3(t− 36)(t− 4)(t− 16)f (5)(t) = −6!

Table 1. Examples of the differential equations satisfied by the
all equal mass n − 1-loop banana graph up to n = 6 generated
with the Maple code of section 9.1. We made use of the notation

f (n)(t) := dnf(t)
dtn .

9.1. Maple codes for the differential equations. A derivation of the dif-
ferential equations for the banana graph can be obtained using Maple and the
routines compute Q and rec Q from the paper [BS07] together with the package
gfun [SZ94].

For t < n2 the integral converges and we can perform the series expansion

(9.16) I2
n(t) =

∑
k≥0

tk Jkn ,
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where we have introduced the Bessel moments

(9.17) Jkn =
2n

Γ(k + 1)2

∫ +∞

0

(x
2

)2k+1

K0(x)n dx .

Using the result of [BS07] on the recursion relations satisfied by these Bessel
moment cn,2k+1 = 22k+1−nΓ(k + 1)2 Jkn we deduce that these moments satisfy a
recursion relation for k ≥ 0

(9.18) (k + 1)n−1 Jkn +
∑

1≤`≤bn
2 c
Pn,2`(k) Jk+`

n = 0

A first step is to construct the recursion relations satisfied by the coefficients
Jkn . For this we use the routines from [BS07]

compute_Q:=proc(n,theta,t)

local k, L;

L[0]:=1; L[1]:=theta;

for k to n do

L[k+1]:=expand(series(

t*diff(L[k],t)+L[k]*theta-k*(n-k+1)*t^2*L[k-1],

theta,infinity))

od;

series(convert(L[n+1],polynom),t,infinity)

end:

rec_c:=proc(c::name,n::posint,k::name)

local Q,theta,t,j;

Q:=compute_Q(n,theta,t);

add(factor(subs(theta=-1-k-j,coeff(Q,t,j)))*c(n,k+j),j=0..n+1)=0

end:

The recursion relation (9.18), for the Jkn in eq. (9.17), is then obtained by the
routine

Brec:=proc(n::posint) local e1,e2,Jnktmp,vtmp,itmp;

Jnktmp:= (n, k) -> 2^(-n+2*k+1)*factorial(k)^2*J(k):

e1 := subs([k = 2*K+1], rec_c(c, n, k)):

e2 := subs([c(n, 2*K+1) = Jnktmp(n, K)], e1):

for itmp from 1 to ceil(n/2) do

e2:=subs([c(n,2*K+1+2*itmp)=Inktmp(n,K+itmp)],e2) od:

vtmp:=seq(j(K+i),i=0..ceil(n/2)):

collect(simplify((-1)^(n-1)*e2/(4^(K+1)*factorial(K+1)^2)),{vtmp},factor)

end:

Then the differential equation is obtained from the previous recursion relation
using the command rectodiffeq from the package gfun [SZ94]

with(gfun):

rectodiffeq({Brec(n),seq(J(k)=j(n,k),k=0..floor(n/2)-1+(n mod 2))},J(K),f(t));

9.2. The Picard-Fuchs equation of Feynman graphs. Feynman graph
hyper-surfaces lead to Calabi-Yau geometries. It is therefore not surprising that
the Picard-Fuchs operators acting on the Feynman integrals are similar to the one
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arising in the context of open mirror symmetry discussed in [MW09, JW13] for
instance. The inhomogeneous term is however different because Feynman integrals
lead to different extensions of mixed Hodge structure than the one encountered in
the mirror symmetry case.

For the banana graphs we give a formal solution to the Picard-Fuchs equations
given in the previous section. Let {y1(t), . . . , yn−1(t)} solutions of the homogeneous

Picard-Fuchs equation L̃n(t)yi(t) = 0 with 1 ≤ i ≤ n − 1 of equation (9.10), and
the generalized Wronskian

(9.19) W (x, t) = det


y1(x) y2(x) · · · yn−1(x)
y′1(x) y′2(x) · · · y′n−1(x)

... · · ·
...

y
(n−3)
1 (x) y

(n−3)
2 (x) · · · y

(n−3)
n−1 (x)

y1(t) y2(t) · · · yn−1(t)


Clearly ∂it W (x, t)|x=t = 0 for 0 ≤ i ≤ n−2, and ∂n−1

t W (x, t)|x=t = exp(−
∫ t
qn−2(x)/qn−1(x)dx) =

W0/q
n−1
2

n−1 (t) is the Wronskian of the differential Picard-Fuchs operator L̃n(t) in (9.10).
With a convenient choice of homogeneous solutions one can set the constant of in-
tegration W0 = 1. A formal solution to the banana Picard-Fuchs reads

(9.20) I2
n(t) =

n−1∑
i=1

αi yi(t)− n!

∫ t

0

W (x, t) q
n−3
2

n−1 (x) dx ,

where αi are constant of integrations. This method has been used [BV13, BKV14]
to solve the differential equation for n = 2 and n = 3. In the following we describe
the solution of the lowest order banana graphs at one- and two-loop orders. For a
detailed discussion of the three-loop banana graphs we refer to [BKV14].

10. Some explicit solutions for the all equal masses banana graphs

In [B13] Broadhurst provided a mixture of proofs and numerical evidences that
up to and including four loops the special values t = K2/m2 = 1 for the all equal
mass banana graphs are given by values of L-functions.

For generic values of t = K2/m2 ∈ [0, (n+1)2], the solution is expressible as an
elliptic dilogarithm at n = 2 loops order [BV13] and elliptic trilogarithm at n = 3
loops order [BKV14]. The situation at higher-order is not completely clear.

In the following we present the one- and two-loop order solutions.

10.1. The massive one-loop bubble. In D = 2 dimensions the one-loop
banana graph, is the massive bubble, which evaluates to

(10.1) I2
2 (m1,m2,K

2) =
log(z+)− log(z−)√

∆

where

z± = (K2 −m2
1 −m2

2 ±
√

∆)/(2m2
1)

∆◦ = (K2)2 +m4
1 +m4

2 − 2(K2m2
1 +K2m2

2 +m2
1m

2
2)(10.2)

where ∆◦ is the discriminant of the equation

(10.3) (m2
1x+m2

2)(1 + x)−K2x = m2
1(x− z+)(x− z−) = 0
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In the single mass case m1 = m2 = m3 = 1 the integral reads

(10.4) I2
2 (t) = −4

log
(√
t+
√
t− 4

)
+ log 2√

t(t− 4)
.

This expression satisfies the differential equation for n = 2 in table 1.

Figure 5. After blowup, the coordinate triangle becomes a
hexagon in P with three new divisors Di. The elliptic curve
X� = {F2(x, y; t) = 0} now meets each of the six divisors in one
point.

10.2. The sunset integral. The domain of integration for the sunset is the
triangle ∆ = {[x, y, z] ∈ P2|x, y, z ≥ 0} and the second Symanzik polynomial
F2(x, y, z; t) = (x+ y + z)(xy + xz + yz)− txyz. The integral is given by

(10.5) I2
3 (t) =

∫
∆

zdx ∧ dy + xdy ∧ dz − ydx ∧ dz
F2(x, y, z; t)

.

This integral is very similar to the period integral in equation (7.12) for the elliptic
curve E� := {F2(x, y; t) = 0}. The only difference between these two integrals is the
domain of integration. In the case of the period integral in (7.12) on integrates over
a two-cycle and, for well chosen values of t, the elliptic curve has no intersection
with the domain of integration, and therefore is a period of a pure Hodge structure.
In the case of the Feynman integral the domain of integration has a boundary, so
it is not a cycle, and for all values of t the elliptic curve intersects the domain of
integration. This is precisely because the domain of integration of Feynman graph
integral is given as in (3.14) that Feynman integrals lead to period of mixed Hodge
structures.

As explained in section 5 one needs to blow-up the points where the elliptic
curve E� := {F2(x, y, z; t) = 0} (the graph polar part) intersects the boundary
of the domain of integration ∂∆ ∩ E� = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. The blown-up
domain is the hexagon h in figure 5. The associated mixed Hodge structure is given
by [BV13] for the relative cohomology H2(P − E�, h− E� ∩ h)

(10.6) 0 −→H1(h− E� ∩ h) −→H2(P − E, h− E� ∩ h) −→H2(P − E�,Q) −→ 0
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and for the domain of integration we have the dual sequence

(10.7) 0 −→H2(P − E) −→H2(P − E�, h− E� ∩ h) −→H1(h− E� ∩ h) −→ 0

The Feynman integral for the sunset graph coincides with I2
3 (t) = 〈ω, s(1)〉

where ω in F 1H1(E�,C) is an element in the smallest Hodge filtration piece F 2H1(E�,C)(−1),
and s(1) is a section in H1(E�,Q(2)) [BV13].

The integral is expressed as the following combination of elliptic dilogarithms

(10.8) − I2
3 (t)

6
= −iπ

6
$r(t))(1− 2τ) +

$r(t)

π
E�(τ) ,

where the Hauptmodul t = π√
3
η(τ)6η(2τ)−3η(3τ)−2η(6τ), the real period $r(t) =

π√
3
η(τ)6η(2τ)−3η(3τ)−2η(6τ) and τ is the period ratio for the elliptic curve E�.

Using q := exp(2iπτ) the elliptic dilogarithm is given by

E�(τ) = − 1

2i

∑
n≥0

(
Li2
(
qnζ5

6

)
+ Li2

(
qnζ4

6

)
− Li2

(
qnζ2

6

)
− Li2 (qnζ6)

)
+

1

4i

(
Li2
(
ζ5
6

)
+ Li2

(
ζ4
6

)
− Li2

(
ζ2
6

)
− Li2 (ζ6)

)
.(10.9)

which we can write as well as q-expansion

(10.10) E�(τ) =
1

2

∑
k∈Z\{0}

(−1)k−1

k2

sin(nπ3 ) + sin( 2nπ
3 )

1− qk
.

As we mentioned earlier this integral is not given by an elliptic dilogarithm obtained
by evaluating the real analytic function D(z) to the contrary to the Mahler measure
described in section 7.1.

The amplitude is closely related to the regulator in arithmetic algebraic geom-
etry [Beilinson85, Bloch00, Soule86, Bru07]. Let conj : MC → MC be the
real involution which is the identity on MR and satisfies conj(cm) = c̄ m for c ∈ C
and m ∈ MR. With notation as above, the extension class s(1) − sF ∈ H1(E�,C)
is well-defined up to an element in H1(E�,Q(2)) (i.e. the choice of s(1)). Since
conj is the identity on H1(E�,Q(2)), the projection onto the minus eigenspace
(s(1)− sF )conj=−1 is canonically defined. The regulator is then

(10.11) 〈ω, (s(1)− sF )conj=−1〉 ∈ C .
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