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1 Introduction

Fix a prime number p, an integer f > 1 and let F' be an unramified extension
of Q, of degree f. Let:

p: Gal(Q,/F) — GLy(F,)

be a continuous representation. Assuming p is “generic”, the main aim of
this paper is (i) to associate to p a (usually infinite) family (7 (p,r)), of
smooth admissible representations 7(p, ) of GLy(F) over I, with fixed cen-
tral character (matching det(p) via local class field theory) and (ii) to prove
that these representations are all irreducible and supersingular ([4]) when p
is irreducible. In the case f =1, i.e. ' = Q,, one can naturally refine this
process into a correspondence and associate to p a single smooth admissible
representation m(p) (see [6], [13], [10] and the last section). However, when
f > 1, this is not possible anymore as the family becomes much too big. It is
then not clear so far how to formulate a correct “modulo p local Langlands
correspondence” and we contend ourselves here with the construction and
study of the representations m(p, ).

During the genesis of this paper, the authors have experienced a succes-
sion of good and bad surprises. Its origin is a conference which was held in
February 2006 at the American Institute of Mathematics in Palo Alto. Dur-
ing the open sessions, discussions involving several mathematicians resulted
in the construction for f = 2 and for each irreducible p as above arising from
a global Galois representation of (at least) one new supersingular represen-
tation 7 of GLo(F') via global (and slightly heuristic) arguments ([7], [12]).
This representation m was such that:

SOCGLy(0p) T = DoeD(p)0 (1)

where D(p) is the set of weights o associated to p|iertia ([8], [11]) and where
SOCGL,(0p) ™ denotes the socle of 7 seen as a GLy(Op)-representation. Recall
that a weight is an irreducible representation of GLy(OF) over F, and that
the GLy(Op)-socle is the maximal semi-simple GLg(Op)-subrepresentation.
Let us emphasize that all smooth admissible representations of GLy(F) that
were known until then ([18]) didn’t satisfy conditions as in (1).

After the conference, the two authors tried to construct representations 7
satisfying (1) via purely local means and, more generally, embarked into the
project of trying to classify all smooth irreducible admissible representations
of GLy(F) over F,. The first good surprise was that, using a generalization
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of the main construction of [18], it was indeed possible to construct for f = 2
new supersingular representations of GLy(F') having property (1) for p irre-
ducible and “generic”. Unfortunately soon after, came the first bad surprise:
there was an infinity of such representations! Such a phenomena could not
happen for f = 1. A little later, we realized the situation was even worse: not
only were there infinitely many representations 7 satisfying (1), but a host
of other supersingular representations also existed for f = 2 with arbitrary
GL3(Op)-socles having nothing to do with that of (1) for any p. The naive
hope for a simple 1-1 local Langlands correspondence as for the case f =1
had gone off...

However, we still hoped for a simple classification of all admissible irre-
ducible representations of GLo(F'). All of the above new irreducible repre-
sentations for f = 2 were constructed via a general process (available for
any local field F' with finite residue field) involving a finite group theoretic
structure called an irreducible “basic 0-diagram” (see below or §9). These
irreducible basic 0-diagrams turn out to be much more numerous when f > 1
(as what happens with representations), so our natural hope was: may-be
there are just as many irreducible basic 0-diagrams as irreducible admissible
representations of GLy(F) over FF,, as what happens for f = 1?7 More work
soon convinced us that for F' unramified over Q, and distinct from @, this
was not the case: one single irreducible basic 0-diagram could lead to an
infinite family of supersingular representations. Besides, a reducible basic
0-diagram could also lead to irreducible representations. To have a glimpse
at how catastrophic the situation can be for f = 2 (compared to f = 1), the
interested reader should take a look at §10.

Since a full classification of smooth irreducible admissible seemed too
complicated, we decided to focus only on those representations satisfying
(1). Then came a good surprise. We had noticed that extending our con-
struction from f = 2 to f = 3 seemed to involve reducible basic 0-diagrams
even in the case where p is irreducible and hence (following our previous
hope) seemed to lead to reducible representations of GLy(F'). Just after we
realized this hope was erroneous, we discovered that the representations of
GL2(F) we could associate to p irreducible for f = 3 were indeed irreducible
eventhough the basic 0-diagrams were not. This phenomena comforted us
with the idea that we were constructing interesting representations in that
case. Finally, to extend these results from f = 2,3 to arbitrary f (including
the cases where p is reducible), we found that the correct condition to require
on the basic 0-diagrams was a certain multiplicity one assumption together
with a maximality condition (see below or §13).

4



Let us now explain with more details the main results of this paper.

Let I € GL2(Op) be the Iwahori subgroup of lower triangular matrices
modulo p, I1 C [ its maximal pro-p subgroup, K; C I the first congruence
subgroup of GLy(OF) and 8 C GLy(F) the normalizer of I in GLy(F).
If x : I — F, is a smooth character, let x* := x((3¢) - (54)) be the
conjugate character. Our main idea to construct representations 7 of GLo(F')
over [, is to first construct the triple (%1, 7!t can). Here 751 is seen as a
representation of GLy(Op)/K; = GLy(F,) where F, is the residue field of
Op, 7!t is seen as a representation of &) and can is the canonical injection.

Theorem 1.1. Fiz a Galois representation p as above and assume p is
generic (Definition 11.7).

(i) There exists a unique finite dimensional representation Do(p) of GLa(F,)
over Fy, such that:

(a) socarL,r,) Do(p) = Goep(p)0

(b) each irreducible o in D(p) only occurs once as a Jordan-Holder
factor of Dy(p) (hence in the socle)

(c) Do(p) is mazimal for properties (a) and (b).
(i1) Each Jordan-Hélder factor of Do(p) only occurs once in Dy(p).

(i1i) As an I-representation, one has:

Dp)"~ P xex

certain (x,x%)
x#x°

(in particular Do(p)™ is stable under x — x°).
(iv) Assume p is tamely ramified, that is either split or irreducible, then:
dimg Do(p)" =37 +1
with + in the reducible case and — in the irreducible case.

(v) Assume p is reducible non-split and let d € {0,---, f — 1} such that
|D(p)| = 2¢, then:
dimg Do(p)"* = 27793,



Let us point out the following important comment concerning the above
theorem. (i) is a general fact that works for any set of distinct weights (not
just the sets D(p)), see §13. But (ii) seems quite specific to the combina-
torics of the weights of D(p), see §12. Moreover, to construct and study the
representation Dg(p), in particular to prove (iv) and (v) above, we need a
fine knowledge of the injective envelope of a weight that we couldn’t find in
the literature (where the results were not strong enough and only available
for SLy(F,)). We were therefore forced to provide our own proofs (see §§2 to
4). For instance, let o := Sym”’Fﬁ ®F, (Sym”Fﬁ)Fr ®- - ®F, (Symrf*FZ)FrF1
be a weight with all ; in {0,--- ,p — 2} (see below for notations) and let V,,
be the maximal representation of GLo(F,) with socle o such that o occurs
only once in V,. We completely determine the structure of the representa-
tion V, including its socle and co-socle filtrations (see Proposition 3.6 and
Theorem 4.7). We also completely determine the structure of the GLy(F,)
representation Dg(p) in Theorem 1.1 when p is tamely ramified: see §13 and
§14 for details.

Let us call a basic 0-diagram any triple D := (Dg, D1, 7) where Dy is a
smooth representation of GLy(Or)F* over F, such that p € F* acts trivially,
D, a smooth representation of K over Fp and r : Dy — Dy an injection induc-
ing an [ F*-equivariant isomorphism D; — D('. For instance (7%, 7', can)
for m a smooth representation of GLy(F) over F,, is such a diagram. A basic
0-diagram is said to be irreducible if it doesn’t contain any non-zero strict
basic subdiagram (in the obvious sense).

Theorem 1.2. Let D = (Dgy, Dy,7) be a basic 0-diagram and assume D'
1s finite dimensional.

(i) There exists at least one smooth admissible representation w of GLa(F)
over F), such that:
(a) sock m = sock Dy
(b) (7K1 7t can) contains D

(c) m is generated by Dy.
(ii) Assume D is irreducible. Then any 7 as in (i) is irreducible.

This theorem has to be thought of as an existence theorem only, as unicity
in (i) is wrong in general. Moreover, it has nothing to do with F' unrami-
fied over Q, and works for any local field F* with finite residue field, see §9.
The idea is to build 7 inside the injective envelope Inj Dy of the GLy(OF)-
representation Dy in the category of smooth representations of GLy(Op) over
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F,. Roughly speaking, the main point is to prove one can non-canonically ex-
tend the action of I on Inj Dy to an action of &; such that (Inj Dy, Inj Dy, id)
contains D (up to isomorphism), which is possible as injective envelopes are
very flexible. Then the two compatible actions of GLy(OF) and £&; on the
same vector space Inj Dy glue to give an action of GLy(F') and we define 7
as the subspace generated by Dy. The whole process is highly non-canonical
both because the action of GLy(Op) on Inj Dy is only defined up to non-
unique isomorphism and because the extension to an action of K, involves
choices. Note also that the converse to (ii) is wrong in general: reducible di-
agrams can lead to 7 as in (i) being irreducible (we provide ample examples
in the sequel). However, one can prove under certain mild conditions that
any admissible irreducible 7 gives rise to an irreducible basic “e-diagram” for
some e > 0, see Theorem 9.13. Unfortunately, basic e-diagrams when e > 0
are much more difficult to handle than basic 0-diagrams.

Let us now go back to the setting of the first theorem and assume that
p acts trivially on det(p) (via the local reciprocity map) which is always
possible up to twist. One can use (iii) of Theorem 1.1 to extend the action
of I on Dy(p)* to an action of K;. Moreover, multiplicity 1 in (ii) implies
that this extension is unique up to isomorphism and we denote by D;(p) the
resulting representation of K. The idea is then to use Dy(p) and D;(p) to
associate a basic 0-diagram to p but one needs to choose an I F'*-equivariant
injection r : Dy(p) < Dy(p). Up to isomorphisms of commutative diagrams,
it turns out there are infinitely many such injections as soon as f > 1. Denote
by D(p,r) := (Do(p), D1(p),r) any such basic 0-diagram. Most of the time,
D(p,r) is not irreducible, but one can prove the following structure theorem:

Theorem 1.3. Let p : Gal(Q,/F) — GLy(F,) be a continuous generic rep-
resentation such that p acts trivially on det(p) and let D(p,r) be one of the
basic 0-diagrams associated to p.

(i) Assume p is indecomposable, then D(p,r) cannot be written as the di-
rect sum of two non-zero basic 0-diagrams.

(ii) Assume p is reducible split, then we have:

D(p,r) = D(p. )

f
£=0

where D(p,r) is a non-zero basic 0-diagram that cannot be written as
the direct sum of two non-zero basic 0-diagrams.



In fact, D(p,10) = (Dou(p), D1.4(p),re) where Dge(p) and Di(p) only
depend on p and not on r. When ¢ varies, the GLy(F,)-representations
Dy (p) do not have the same flavour. For instance Dy (p) and Dy (p) have
an irreducible socle but this is not the case for the other Dg,(p). Note
that the basic 0-diagrams D(p,r) and D(p,r,) are usually not irreducible
(even when p is for the first). Theorem 1.3 suggests that the right GLy(F')-
representations associated to p should somehow satisfy the same properties
as D(p,r), i.e. should be indecomposable (resp. semi-simple) if and only if
p is. We formulate the following more precise conjecture (Conjecture 19.1):

Conjecture 1.4. Keep the setting of Theorem 1.3.

(i) There exists a unique (up to isomorphism) smooth representation w(p,r)
of GLo(F') which is generated by its K1-invariant vectors and such that:

(m(p, ) w(p, 7)™, can) 2= D(p, 7).

(i1) This representation is irreducible (resp. semi-simple, resp. indecom-
posable) if and only if p is irreducible (resp. semi-simple, resp. inde-
composable).

(iii) If p is semi-simple, then m(p,r) ~ ®I_7(p,r)¢ where w(p,7)¢ is a
smooth irreducible admissible representation such that:

(m(p, ) m(p, )}t can) = D(p, o).

Moreover w(p, 1), is a principal series if £ € {0, f} and is a supersin-
gular representation otherwise.

(iv) If p is indecomposable, then m(p,r)* ~ &I_ w(p* 1), where p* is the
semi-simplification of p and w(p™, ), is a smooth irreducible represen-
tation as in (iii). Moreover, the GLy(F')-socle of w(p,r) is w(p™,1%).

In the text, we give non-trivial evidence to the above conjecture. Applying
(i) of Theorem 1.2, one gets for example:

Theorem 1.5. Keep the setting of Theorem 1.3.

(i) There exists a smooth admissible representation m of GLy(F') such that:
(a) sockx ™ = @Uep(p) o
(b) (7¥1 7 can) contains D(p,r)
(c) m is generated by Dy(p).



(i1) If D(p,r) and D(p,r") are two non-isomorphic basic 0-diagrams asso-
ciated to p, and w, 7 are as in (i) respectively for D(p,r) and D(p,r"),
then w and 7' are non-isomorphic.

The proof of (ii) crucially relies on property (i) of Theorem 1.1 defining
Dqo(p). We also have an exactly similar theorem replacing everywhere m by
7 and D(p,r) by D(p,r,) for 0 < ¢ < f (see Theorem 19.10). In particular,
when p is split, (ii) of Theorem 1.3 implies that the representation @Lom
satisfies properties (i) of Theorem 1.5 (see (iii) of Conjecture 1.4).

Now comes the most technical result of the paper which uses in an essen-
tial way the fact that F' is unramified over Q,.

Theorem 1.6. Keep the setting of Theorem 1.3.

(i) Assume p is irreducible. Then any m as in (i) of Theorem 1.5 is irre-
ducible and 1s a supersingular representation.

(i1) Assume p is reducible. Then any m, as in (i) of Theorem 1.5 for D(p,ry)
is irreducible. Moreover, 7y is a principal series if £ € {0, f} and is a
supersingular representation otherwise.

The proof of this theorem is too technical to be described here. In par-
ticular it can’t follow from (ii) of Theorem 1.2 as the basic 0-diagrams in-
volved are not irreducible. However, the “dogma” seems to be the following;:
let o be a weight and 7 a GLy(Op)-subquotient of the compact induction

c—Indgizggl) x 0 (see below) which contains two weights, then 7 is a non-
trivial GLo(OpF)-extension between these two weights (see §§17 and 18 for
more details, in particular the long computation of Lemma 18.4 proving the
existence of many non-split such extensions). We strongly suspect that this
breaks down when F is ramified over Q,. It is the existence of all these non-
trivial extensions, together with Theorem 1.3, which are responsible for the
irreducibility of the above representations 7 or 7, (see §19). Note that the
proof requires to distinguish which GLy(Op)-extensions between two weights

are actually GLo(F,)-extensions, which is done in details in §5.

When f is arbitrary, we cannot prove more of Conjecture 1.4 so far. When
f =1, we indeed know the conjecture:

Theorem 1.7. Assume F' = Q,, then Conjecture 1.4 holds.

Some cases of this theorem were already known thanks to [6], [10] or [13]
but we provide here an essentially complete proof (§20). The main novelty
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concerns the case where p is reducible non-split. We prove that there is in-
deed a unique 7 as in (i) of Conjecture 1.4 and that this 7 is a non-trivial
extension between two principal series as in (iv) of Conjecture 1.4 (the repre-
sentations 7y and 7). The existence of these extensions was already known
(see [10] and [13]) but it was not known that, when p is generic, they are
completely determined by their Ki-invariants. Our proof relies on the com-
putation of the first derived functor H'(I;,7) of the functor 7 — 7t as a
module over the Hecke algebra of I; when 7 is a principal series (see Theorem
7.16). As the proof is not substantially longer, we give it for all extensions
F of Q, (even ramified) although we only use it for F' = Q,. An inter-
esting fact is that this computation shows the appearance of supersingular
Hecke-modules ([22]) in H'(I;, 7) if and only if F is not Q,, which seems to
be consistent with statements (iii) and (iv) of Conjecture 1.4 when f > 1.
We are confident that Theorem 7.16 will find other applications in the future.

The reader will have realized that this paper contains more questions than
answers. Apart from Conjecture 1.4, it seems to us that the most important
problem is to prove that the representations 7 constructed in Theorem 1.5
can be realized (or not!) on the étale cohomology modulo p of towers of
p-power level Shimura curves over totally real fields at places above p where
the real field is unramified. The papers [14] and [15] are a first step in that
direction. If so, then comes the question of the cohomological meaning of
the various “parameters” r of the family (D(p,r)),: for instance can several
distinct r “occur” (via some 7 as in Theorem 1.5) on various cohomology
groups for a given p? One can also wonder how one can build the right
GLa(F)-representations associated to p when p is not generic (for example
trivial). It is highly probable that basic 0-diagrams won’t contain enough
information in those non-generic cases. May-be one can use e-diagrams for
e > 0 (see §9). A better way would probably be to extend the constructions
via (¢, I')-modules of the case F' = Q,, ([10], [5]). However, such an extension
seems quite mysterious so far when F' # Q,. Nevertheless, the authors can’t
help thinking that the irreducibility result in (i) of Theorem 1.6 precisely
when p is irreducible has a “Galois” origin, and thus should have a “Galois”
proof. Also, one can try to extend our constructions to the case where F' is
ramified over Q, (a set of weights analogous to D(p) exists thanks to [19]).
Finally, there still simply remains the open problem to classify all supersin-
gular representations of GLy(F) over F, when f > 1. We hope to return to
some of these questions in future work.
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Let us now quickly describe the organization of the paper.

In §§2 to 4, we provide the necessary results or references on the repre-
sentation theory of the group GLo(F,) over F,. In §5, we study GLy(Of)-
extensions between two weights, in particular we explain which such exten-
sions are GLy(FF,)-extensions. In §6, we give preliminary material on the
Hecke modules for I; associated to principal series of GLy(F'). This material
is used in §7 to compute the Hecke module H!(I;,7) when 7 is a principal
series. This computation is then used in §8 to construct extensions between
principal series for F' = Q, and to show that, in that case, a principal series
has no non-trivial extension with a supersingular representation. In §9, we
develop a general theory of diagrams, in particular of basic 0-diagrams, for
any local field F' with finite residue field and we prove Theorem 1.2. In §10,
we give the most obvious examples of basic 0-diagrams, in particular we list
all irreducible such diagrams for F' = Q,, and we show that the situation
gets more complicated when F' # Q,. In §11, we define generic Galois repre-
sentations p and recall the set of weights D(p) associated to them in [§]. In
§12, we prove a combinatorial unicity Lemma involving these weights which
is used in §13 to prove (ii) of Theorem 1.1. In §13, we also prove (i) and (iii)
of Theorem 1.1 and define the basic 0-diagrams (Dq(p), D1(p), ). In §14, we
study more closely the GLy(F,)-representation Dy(p) and prove (iv) and (v)
of Theorem 1.1. In §15, we prove Theorem 1.3. In §16, we give explicitly
the diagrams (Do(p), D1(p),r) when f = 1 and f = 2. In §17, for each
non-trivial weight o we define and study a GLo(Op)-subrepresentation R(o)
of C-Iﬂdgiigglw 0. We use these results in §18 to prove that R(o) contains
many non-split extensions between weights. In §19, we prove Theorem 1.5
and use the results of §§17 and 18 to prove Theorem 1.6. Finally, in §20, we
prove Theorem 1.7.

Let us now fix the main notations of the text.

Throughout the paper, we denote by Op a complete discrete valuation
ring with fraction field F', residue field F, = F,;, and maximal ideal pp.
We fix a uniformizer w of Op which is p when F' is unramified over Q, (so
pr = wOp). We also fix once and for all an embedding F,r — Fp.

We let I := SLy(F,), I' := GLy(F,), B C I' the subgroup of upper
triangular matrices, U C B the subgroup of upper unipotent matrices, H
the subgroup of diagonal matrices, K := GLy(Or) and I C K the subgroup
of matrices that are sent to B via the reduction map K — I'. Recall that
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we have a group isomorphism H — B/U and a bijection K/I = T'/B. We
also denote by U?® the subgroup of lower unipotent matrices. For m > 1, we
define the following subgroups of K:

Lo (1+p2’f pE > and K, = (Hp?f Py ) _
pE 1+ pw pE 1 +pw
For instance, I; C I is the subgroup of matrices that are sent to U C B via
K — T'. We set G := GLo(F), Z := F* the center of G, R = KZ and &,
the normalizer of I in G. Welet s := (9%), ny:= () ') and IT:= (2 §). We
let P C G (resp. P*®:=sPs~! C G) be the subgroup of upper (resp. lower)

triangular matrices and 7" := P N P? the diagonal matrices. Recall that we
have Ry = [Z 11 I Z11.

All representations are over E,—vector spaces. We denote by Repr (resp.
Repg, Repg, Rep;, Repy , etc.) the category of finite dimensional (resp.
smooth) representations of I' (resp. G, K, I, K,,, etc.) over F,. If S € Repr
(resp. Repg, Repy, etc.) and E C S is any subset, we denote by (I" - E)
(resp. (G-E), (K-FE), etc.) the subrepresentation of S generated by E under
the action of the group. If y : F* — F: is a smooth character, we denote
by Repg (resp. Rep Ky Rep I,x) those smooth representations which have
central character x. If S € Repy is non-zero and indecomposable, we denote
by (Si)o<i (resp. (S%)o<;) the graded pieces of its socle filtration (resp. of its
co-socle filtration also called radical filtration) with Sy # 0 (resp. S° # 0)
(see e.g. [1, §1.1]). We denote by socr S = Sy its socle and by cosocr S its
co-socle, that is, its maximal semi-simple quotient. If S € Rep,, we denote
by sock S its K-socle. If G’ C G is a closed subgroup and R a smooth rep-
resentation of G’ on a Fp—vector space, we denote by C—Indg, R the Fp—vector
space of functions f : G — R such that f(¢'g) = ¢ - f(g9) (¢ € G', g € G)
and such that the support of f is compact modulo G’. The group G acts
on c—Indg, R by right translation on functions. If x : B — F; is a smooth
character, we denote by Indg x the F,-vector space of functions f : I' — F,
such that f(by) = x(b)f(y) (b € B, v € T") with left action of I" by right
translation on functions. Likewise with Ind¥ y.

If y: H— F; is a character, we denote by x® the character x*(h) :=
X(shs) where h € H. We denote by a : H — F; the character:

Qo (())\ 2) — At

that we also see as a character o_f Bor I vial - B —» H. If ¢is an irre-
ducible representation of I' over F, and x : [ — IF; the character giving the
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action of I on o', we denote by ol* the unique irreducible representation
of I' over F, which is distinct from o and such that I acts on (ol¥)t via y*

(we can’t use o® which denotes the conjugation of o by s). For x € F;, we

let 0, : G — F; , g — xvdet9)) where val is the valuation normalized by
val(w) := 1.

We call a weight an irreducible representation of K (hence of I') on F,,.
A weight can be written:

roT2 1732\ Fr r_1 2 \Frf 1
Sym™F, ®z, (Sym F)"®- - ®g, (Sym'” 'F)" ®F, N (2)

where the r; are integers between 0 and p — 1, n is a smooth character
Op — F; , T acts on the first Sym via the fixed embedding F,; — F, and
on the others via twists by powers of the Frobenius Fr where Fr(z) := a?
(x € Fpr). Throughout the text, we often denote by (rg,---,rs_1) ® n the
representation (2) (although sometimes (ro,--- ,7¢_1) just means the corre-
sponding f-tuple, the context avoiding any possible confusion).

We normalize the local reciprocity map so that it sends a geometric Frobe-
nius to a uniformizer. Using the fixed embedding [F,; — IF,, we define:

w OF —» OF/WOF >~ pr %Fp.

When F' = Q, is unramified, we define:

wy : Gal(Q,/Q,s) — F; (3)

via the local reciprocity map as the unique character which is the reduction
modulo p on Z;f and which sends p to 1.

The first author is very much indebted to the American Institute of Math-
ematics and the participants of the Palo Alto conference on p-adic represen-
tations and modularity held there in February 2006. In particular, he thanks
K. Buzzard, F. Diamond, M. Emerton, T. Gee and the organizers D. Savitt
and K. Kedlaya. Parts of the paper were written when the second author vis-
ited I.HE.S., supported by the program “Large Infrastructures for European
Research”, and Université Paris-Sud, supported by Deutsche Forschungsge-
meinschaft. The second author would like to thank these institutions.
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2 Representation theory of I' over I, I
In this section, we study the structure of the principal series of I' over Fp.

Fix 0 := (ro, -+ ,74-1) ® n a weight. Then B acts on ¢V by a character:

a * ,
(33

where 7 := Z{:_Ol pirs. Recall the space Ind}; x (resp. Ind}; x*) has dimension
¢+1 and is isomorphic to Indf x (resp. Ind} x*) in an obvious way. We now
recall results on the structure of Ind}; x* and Ind}; x, mainly from [3]. First,
we give its Jordan-Holder components.

Let (2o, - ,xp_1) be f variables. We define a set P(xq,---,xp_1) of
f-tuples X := (Xo(xo), -+, Ap_1(xy—1)) where A\;(x;) € Z £ x; as follows. If
=1 Xo(zo) € {wo,p — 1 — zo}. If f > 1, then:

(i) Ni(z) e {zjyx;—Lip—2—a;,p—1—a;} fori € {0,---, f — 1}

(it) if \;j(x;) € {xs, x; — 1}, then N\iyq(wiq) € {wi1,p—2 — w1}

(iil) if \i(z;) € {p—2—zs,p—1—x;}, then N\j1q1(zi41) € {p—1—2i11, 254011}
with the conventions zy = zg and A\¢(zf) = Ao(20).

For A € P(xo, -+ ,x_1), define:

-1

~

o) = (3T p = Nlw) i Ap-a(og ) € g 1)
f—1
e(\) = %(pf -1+ sz(xl - )\,(xz))> otherwise.

The following straightforward lemma is left to the reader.
Lemma 2.1. One has e(\) € Z & @) Za,.

Lemma 2.2. The irreducible subquotients of Ind; x or Ind; x* are exactly
the (all distinct) weights:

()\O(ro)y T, )\f_l(’]”f_l)) ® dete(k)(T‘O’n- 7’I‘f_l)n

for X € P(xzg,--- ,x5_1) forgetting the weights such that A\;(r;) < 0 for some
1.
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Proof. See [11, Prop. 1]. O
For A € P(zo, -+ ,xs_1), we define:

and set £(X\) := [J(N)|. T XN € P(xg, - ,x5-1), we write ' < X if J(N) C
J(N). If 7 is an irreducible subquotient of Indy; x* and A € P(xq,- -+ ,75_1)
its associated f-tuple by Lemma 2.2, we set £(7) := ¢(\). We also write
7/ < 7 if the corresponding f-tuples X, A satisfy ' < A. The following
lemma is well known.

Lemma 2.3. Assume xy = x°, then:
Indp x = Indp X"~ (0,---.0) @& (p—1,--- ,p— 1) @n.

The following theorem is easily derived from the results of [3]. It can also
be derived from Theorem 4.7 below.

Theorem 2.4. Assume x # x°.

(i) The socle and co-socle filtrations (see e.g. [1, §1.1]) on Indy x* are the
same, with graded pieces:

(Ind’; x*) @ T
()=t
for0<i< f.
(i) We have (Indj x); = (Ind x*)—

(iii) Let T be an irreducible subquotient of Indly x* and U(r) the unique
subrepresentation with co-socle T. Then the socle and co-socle filtrations
on U(T) are the same, with graded pieces:

A

L(r")=i
<7

for 0 <i < /(7).
(iv) Let T be an irreducible subquotient of Indy x° and Q(7) the unique

quotient with socle T. Then the socle and co-socle filtrations on Q(T)
are the same, with graded pieces:

(Q(7)); = @ 7’

L(r!y=i+L(T)
<t/

for0<i< f—4L(1).
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Let ¢ € Ind}; x* with support in B such that ¢(u) = 1 for all u € U. In
particular, ¢ is U-invariant and H acts on ¢ via the character y* (we recall

that x*: B — F; is the character (§ ) — d'n(ad)). For 0 < j < q—1, set:
p=v () g)e
A€F,

with the convention 0° = 1 and 097! = 0. If y # x*, or equivalently 0 < r <
q — 1, fo is the “other” U-invariant element in IndFB X- The following two
easy lemmas are left to the reader.

Lemma 2.5. (i) The group H acts on f; via the character xa ™ = y*a" 7.
(it) The set {f;,0 <j <q—1,0¢} is a basis of Ind}; x°.

Lemma 2.6. Assume x = x*. Then fo+n(—1)¢ is an H-eigenvector and a
basis of (0,---,0) @n, while {f;,0 <j <q—2, fim1 +n(—1)¢} is a basis of
H-eigenvectors for (p—1,--- ;p—1)®@mn.

We now describe the analogous result for x # x°. Note that ¢ is then the
socle of Ind%; x* by Theorem 2.4.

Lemma 2.7. Assume x # x°. With the notations of Lemma 2.2, let 7 :=
(Mo(r0), -+, Apo1(rpe1)) ® deteNTori-0p be an irreducible subquotient of
Ind}; x°.

(i) Assume T = 0. Then the following H-eigenvectors of Ind x*:
fzzfz—olpidi, 0<d; <r;notall di=r; f.+n(=1)(=1)"¢
form a basis of H-eigenvectors of o inside Indlj;3 x°.
(i) Assume T # o. Then the following H-eigenvectors of IndFB X

fzzfz—olpidia 0<d; <N(ry)if i¢ JN), p—1=XN(r;) <d;<p—1ifieJ(N)

map to a basis of H-eigenvectors of T in any quotient of Ind x* where
T s a subrepresentation.

Proof. Using the equality for A # 0:
6 I\ (A 1) _ [(A'+8 1\ /X 0 1 At
1 0/\1 0) 1 0/)\0 =xtJ\0 1
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and the fact that ¢ is U-invariant and an H-eigenvector of eigencharacter y?,
we get for 6 € Fy:

(‘f 5) fo = o4n(=1) 3 (=2 (“1” é>¢

AEFg
A
= san-nE 0o () e @
AeF,
and for 1 <73 <q—1:

(7 5)5 = an T eaw (U o

AeFy

= Y S0 (e 6

A€y

We prove (i). As (Indj x*)V is generated by f; and ¢ and as ¢ generates
Ind}; x*, we have that f, generates o¥. As f, is U-invariant, it is enough to
compute (¢3§) fo- By (4), we have:

(3 o) o= 6 a0 s) wacney 3 (5o

0<d;<r;
d#r

where d := Z{:_ol p'd;. This implies (i) by varying ¢ in F,. We prove (ii).
Let U(1)o := Ker(U(7) — 7) (see (iii) of Theorem 2.4 for U(7)), it is enough
to prove that the image of the elements (ii) in the quotient (Indj x*)/U (7)o
form a basis of 7. Using the equality:

0 1) ()= 1)

one easily checks that fs _  pi(p-1-1,(r,)) Is U-invariant in (Ind% x*) /U (7)o.

By (i) of Lemma 2.5, B acts on it by ya~ Lieson P! (P=1=Xr0) ywhich is also the
action of B on 7Y hence it generates 7 in (Ind}; x*)/U(7)o. Now a calculation
shows that for A € F:

)\Q*lJﬂ”*Zz‘eJ(A) P p—1-Xi(rs)) _ )\ZieJ(,\) P (p=1)+252 500 P A7)
)

hence, by (5), we have as previously in Ind}; x*:

((15 (1)) fZiEJ()\)pi(p—l—)\i('r‘i)) = 7](—1)(—1)7" Z (;) (_5)C_dfd

0<d; <X;(ry) if i¢J(X)
0<d;<p—1 if i€J(\)
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where ¢ := >, ;000" (P — 1) + X000 PAi(ri) and d = S0 pids. But in
(Ind}; x*)/U (7)o and arguing by induction on £(7) = |.J()\)| starting from (i)
(where £(7) = 0), we have in particular:

fr+n(=1)(=1)"¢ 0 (6)
fa = 0

for d = S0 pid; with 0 < d; < \i(ry) if i ¢ J(N),0<d; <p—1ifie J\)
with at least one ¢ € J(A) such that d; < p—1—X;(r;) (one checks using (iii)
of Theorem 2.4 and (ii) above with the induction that these elements are in
U(7)o). By (6), the only f; remaining in (Indj x*)/U(7)y are exactly those
in (ii). We get the result by varying ¢ in [F,. ]

3 Representation theory of I' over F, IT

In this section, we study the structure of the injective indecomposable rep-
resentations of I'" over [F,, and prove some useful technical results.

We start with the description of the irreducible components of these injec-
tive envelopes (without the multiplicities). Let (z,--- ,zs_1) be f variables.
We define a set Z(xzg, -+ ,xs_1) of f-tuples A := (Xo(xo), -+, Ap—1(xf-1))
where \;(x;) € Z+x; as follows. If f =1, Ao(xo) € {0, p—1—20,p—3—x0}.
If f > 1, then:

(i) Ni(zy) € {zg,z; — Ly + 1, p—2—a;,p—3 —x;,p—1—x;} for i €
{07 Tty f - 1}
(ii) if Ai(wi) € {mi, v — 1,z + 1}, then Ay (v441) € {Tig1, 0 — 2 — Tiga }
(111) if )\z(xz) S {p —2— Ti,P— 3— Ti, P — 1-— .Ti}, then )\i+1(l’i+1) c {.Z’iJrl —
Lz +1,p=3—2i1,p— 11—z}

with the conventions x; = zp and Af(xf) = Ao(o).

For A\ € Z(xg, -+ ,x5_1), define:

f-1
1 . _
e@)::§< ym—M@m)ﬁyq@ﬁgeu#hwq—qu+u
i=0
1 =
e e — N (s i
e(N) = 2<p 1+;p(xl )\l(:vl))> otherwise.

The following straightforward lemma is left to the reader.

18



Lemma 3.1. One has e(\) € Z @ @{:_01 ZLzx;.

Let o := (ro,---,7f—1) @ n be a weight. The following lemma makes
explicit the weights o which are subquotients of inj o (counted without mul-
tiplicities).

Lemma 3.2. (i) Assume (ro,--- ,rp—1) # (0,---,0) and (ro, -+ ,rp_1) #
(p—1,--- ,p—1). The irreducible subquotients of injo (without multi-
plicities) are exactly the (all distinct) weights:

Mo(r0)s -, Ap_1(rpo1)) ® deteMrorri-1)y,
for X € I(xg, -+ ,xp_1) forgetting the weights such that X\;(r;) < 0 or
Ai(ri) > p—1 for some i.
(it) Assume (ro,--- ,ry—1) = (0,---,0). The irreducible subquotients of
injo (without multiplicities) are exactly the (all distinct) weights:
(Mo(ro), -+ s Ap-a(r-1)) @ det* o=y

for A € I(xg, -+ ,x5_1) forgetting the weights such that \;(r;) < 0 for
some i and forgetting the weight (p —1,--- ;p—1) ®n.

(1ii) Assume (1o, -+ ,74—1) = (p—1,--- ,p—1). The irreducible subquotients
of injo (without multiplicities) are exactly the (all distinct) weights:

(AO(TO)y T, )\f_l(’r‘f_l)) ® dete(k)(T‘O,n- 77"f_1)/’7

for A € I(xg,--- ,xs_1) forgetting the weights such that X\i(r;) < 0 or
Ai(ri) > p—1 for some i and forgetting the weight (0,---,0) ® n. In
fact, we just have injo = o in that case.

Proof. See [21] or [2] for SLy(F,s) from which the case GLy(FF,r) is easily
derived. It can also be derived from Proposition 3.7 and Theorem 4.7 below
(see proof of Corollary 4.11). O

For r > 0, recall we can identify Symr@; with @7_,Q,z" 'y’ (see [4] or
[6] or [18]). Let V,z be the Z,-lattice in Symr@i spanned by (7)z" "y,
0 <i<r and set: B

Vii=V,z ®z7 F,

with the convention V, := 0 if » < 0. For convenience, we introduce the
following notation:
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Definition 3.3. Given an f-tuple of integersr := (ro,- -+ ,7y_1) with 0 < r;,
we define:

One can easily verify that V,7 and hence V; is stable under the action
of K and that K acts trivially on V... Moreover, if 0 < n < p — 1 then (TZ‘)

is a unit in Z, and hence V, =2 SymTFi. This isomorphism doesn’t hold in
general. Given an irreducible representation o of I', there exists a unique pair
(r,a) where r is an f-tuple as above with 0 < r; < p — 1 for all i and where
0 <a < ¢—1suchthat 0 =2V, ®det” = (r9,--- ,rp_1) ®det”. By expressing
a = Z{:_Ol pla; with 0 < a; < p — 1, one may reformulate this as follows:
given an irreducible representation o of I', there exist unique f-tuples r (as
above) and (ag, -+ ,ay—1) with 0 < a; < p — 1 and not all of a; equal p — 1
such that o = @/ (V,. @ det™)F" (see (2)).

We now recall more precise results on the structure of injective envelopes
in Repr, following [18] (which is based on [16]). If r =p — 1 we set R, 1 :=
Vp—1. For 0 <r <p—1, R, is an (explicit) I-invariant subspace of V,,_,_; ®
V,—1 defined in [18, Def. 4.2.10] (we won't really need its precise definition
here). Let r be an f-tuple such that 0 < r; < p — 1 for all ¢, then R, :=
®f:_01Rfirl is an injective object in Repp. Moreover, if r # 0 then R, is an
injective envelope of V; ® det™Zi=0 P and Ro = injVp @ Vp_1 ([18, Cor.
4.2.22 and 4.2.31]).

Lemma 3.4. For 0 < r < p — 1, there exists an exact sequence of I'-
representations:

0—=Vop2r —=R, —=V, @det? """ —0.
Proof. This follows directly from [18, Lem. 4.2.9 and Def. 4.2.10]. O

Lemma 3.5. For 0 < r < p — 1, there exists an exact sequence of I'-
representations:

0—=V,@dettr 7" —=Vop o0 —=V, ., 5 @ VT —0.
Proof. The injection is given by [18, Prop. 4.2.13]. We denote the quotient by

Q. If 0 <r < p—1, then it follows from [21, Prop. 2] that Q 2 V,_,_o® V"
as a representation of I'V. Without loss of generality we may assume that ¢
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is arbitrarily large, in particular that V,,_, o ® V{* is irreducible. Then the
image of 22°~"~2 spans QY. And since:

A0 2p—r—2 __ \2p—r—2_2p—r—2 X
(0 M)x =A T el

we obtain Q 2 V,_,_» ® V" as [-representation. O

Given r an f-tuple of integers as in Definition 3.3 with 0 < r; < 2p — 2,
we define 2p —2 —r:=(2p—2—rp, - ,2p — 2 —rp_q).

Proposition 3.6. Let r be an f-tuple with 0 < r; < p — 1 for all ¢ and
let T be a representation of I' such that o := socr 7 is isomorphic to Vy ®

f=1 i, f=1 .. . . .
det™ X0 P — Toy s Tro1) @ det= 250 P gnd o occurs in T with multi-
f
plicity 1. Then there exists a I'-equivariant injection 7 — Vap_a_,.

Proof. Since R, contains (and is isomorphic to if r # 0) an injective envelope
of socr 7, there exists a I'-equivariant embedding 7 — R,. For 0 <: < f—1

set:
i—1 ) f—1 .
) Fri 0%
W QR S @ Vi
j=0 j=it+1
Suppose that r; # p — 1 so that R, # Va,_o_,,. Twisting and tensoring the
exact sequence of Lemma 3.4, we obtain an exact sequence:

0—= Vo', , @W,—= R @W, — (V, @ det’ )™ oW, —=0. (7)

It follows from Lemmas 3.4 and 3.5 that we can embed (V; ®detp_1_r)w QW;
into R,. Hence, if r # 0 then socp((V, @ det?”'"")"" @ W;) = 5. Since o
occurs in 7 with multiplicity 1, we obtain an isomorphism:

Homp(r, Vo', @ W;) 2 Homp(7, R @ W)).

Applying this identity recursively we obtain that the image of 7 is contained
in Vop_o_p. If r = 0 then socp((V; ® detp_l_r)w ®@ W;) C o @ Vyp_q. Since
Vp—1 is irreducible, injective (and projective) and does not appear in socr 7,
Vp—1 cannot be a subquotient of 7. The same argument as above implies the
assertion. O

Proposition 3.7. Letr be an f-tuple with 0 < r; < p—1 for alli. Then o is
an irreducible subquotient of Ry if and only if it is an irreducible subquotient

of Vap—2—r. In particular, if v # 0, o appears in inj V; ® det™ X1z P'ri if and
only if it appears in Vap_o_y.
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Proof. We keep the notation of the proof of Proposition 3.6. Lemma 3.5
implies that there exists a -equivariant injection (V,, @ det’™' ") @ W, —
X@P;iz_ﬁ ® W,;. It follows from (7) that o is an irreducible subquotient of

Vifi;l_”“ ®W,1 if and only if o is an irreducible subquotient of Vi, | @W.

This implies the assertion. O

We need to study more closely the structure of Vap_2_, when 0 < r; <
p—2. Let r := (rg,--- ,74_1) be an f-tuple of integers with 0 <, <p—1
for all 7 and set:

Sy={ie{0,---, f—1},r; #p—1}.

For a subset J C Sy, we define W := ®{:_01W£§i where W, := V,, @det? ™' "
ifigJand Wy =V, , o@Vimific J If f>1 then by shifting V to a
neighbouring component we obtain that W; = ®f:_01 Ufrl where:

(i) ifieJandi—1€ JthenUy, =V, ,,_2®@V;

(i) ifie Jand i — 1 ¢ J then Uy; := V2
(iii) ifi ¢ J and i — 1 € J then Uy; :=V,, @ det? """ @V}
(iv) ifi¢ Jandi—1¢ J then Uy, :==V,, ® detP~17"i,

Assume 0 < r; < p — 1, we define a filtration on V5, 5_,, by:

FﬂO%p—Q—ri = ‘/Y2p—2—7'i
Fil'V, o ,, = V,, @det?"!
Fil*Va, 9 ,, = 0.

If r; = p—1, we define a filtration on V,,_; by Fﬂol/;,_l = V,_1and Filll/;,_l =
0. This induces the usual tensor product filtration on Vap_o_,. It follows from
[2, §1] that:

Fil'Vap 2,

_ = W;. 8

Filz+1v2p_2_r Jé.ér J ( )
[J]=]Sr|—4

Lemma 3.8. (i) Assume 0 < r < p — 2, we have an isomorphism of T'-
representations V, @ V1 = V41 & (V-1 @ det).
(i1) We have Vi @ V,_1 = R,,_».
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Proof. 1f 0 <r < p — 2 then it follows from [2, Lem. 2.5] that there exists a
[V-equivariant isomorphism V, ® V3 = V.1 @ V,_1. Since the order of T'/T”
is prime to p, V,. ® V] is a semi-simple representation of I'. Hence there exist
integers a, b such that 0 < a,b < g—1 and:

V, @ Vi (Vg @ det®) @ (Voo @ det?).

One may verify that 2" ® z and 2" ® y — 2" 'y ® z are fixed by U. This
implies that ¢ = 0 and b = 1. If r = p — 1 then R, 5 is a 2p-dimensional
subspace of V; ® V,,_; by [18, Prop. 4.2.11]. Since dim(V; ® V,_1) = 2p, we
get Vi@ V,_1 = R, s. O

Proposition 3.9. Assume 0 <7 < p—2 and let L, := (V, @ det? ") @
(V, @det’ " @ V1) @ Vyer 2 @ (Vpoy 2 @ VA).

1) L, is isomorphic to:
(i)
V,@det! '™ @ (Vi @det? " @ (Vo @det? ") @V, @
V;z—r—l @ (‘/;)—'r’—fi & det)
(i1) Suppose that q > 3, then L, is multiplicity free.

Proof. The hypothesis on r ensures that 0 < p—r—2 < p—2 and (i) follows
from Lemma 3.8. So L, is semi-simple. Let us assume ¢ > 3. We will deduce
(ii) from the fact that if 0 < r,s < p —1 then:

V,@det 2V, @det’ <= r=sanda=b (¢ —1).

Since r — 1,7, + 1 are distinct the representation (V, ® det? ™) @ (Vo1 ®
det’ ") @ (V,_; ® det?™") is multiplicity free. Similarly V,_, o @V, , 1 @
(Vp—r—3 @ det) is multiplicity free. So if L, is not multiplicity free then one
of the following must hold:

(@ r—1=p—r—1 @0 r =p—-r—1 (¢ r+1 =p—r—1
d r+1=p—r—2 (e) r+1 =p—r-—3.

In cases (a), (c) and (e), p is even, hence p =2 and r = 0 so that:
Ly = (Vo ®@det) @ (Vs @ det) @V & V4.

Since ¢ > 2 we have 1 # 0 (¢ — 1) hence Ly is multiplicity free. In case (b),
p#2and r = (p—1)/2 hence:

L= (V,@det") @ (Vi1 @det”) @ (Vg @det ™) @ Vi @V, & (Vg @ det).
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Sincer 20 (¢q—1) and r+1 20 (¢ — 1) as ¢ > 3, L, is multiplicity free. In
case (d), p # 2 and r = (p — 3)/2 hence L, is isomorphic to:

(V; @ det’™?) @ (Vg @ det’™?) @ (Vo @ det’™?) @ Vi @ Vo @ (V; @ det).

Now r 4+ 2 # 1 (¢ — 1) as this would imply p%?’ =p—2 (p—1) which is
impossible. Also r+2 # 0 (¢ — 1) as ¢ > 3. Hence L, is always multiplicity
free. O]

Proposition 3.10. Let r and s be f-tuples such that 0 < r;,s; < p—1 for
all i. If p # 2 then assume that if r; = p—1then s; =p—1ors; =0. If
p = 2 then assume that if r; = p — 1 then s; = p — 1. Then Vi ® det” can
occur i Vop_o_y with multiplicity at most 1.

Proof. Note first that if r = p — 1, then V5,_5_, = V,_1 which is irreducible,
hence we can assume r # p — 1. If f = 1 this is either trivial or follows from
Lemma 3.5. Assume f > 1. We argue by induction on:

n(r):={ie{0,---,f—1},r;, =p—1and s; = 0}|.

Assume n(r) = 0 and suppose that Vi ® det” occurs in Vap_a_,. It follows
from (8) that Vi ® det® occurs in W for some J C S,. We claim that if
ri=p—1theni—1¢ J. Ifi—1¢€ J then r,_; # p— 1 by definition of
Sy and Uy, = V,_; ® V. Lemma 3.8 implies that V} ® V,-1 = R, 5 and it
follows from Lemmas 3.4 and 3.5 that the irreducible subquotients of R,_,
are V,_o ® det and VE. Hence if V; ® det® is a subquotient of W then
either s;, = p— 2 or s; = 0. But both are impossible: the first because of
our assumptions and the second because of n(r) = 0. This proves the claim.
Let P be the set of subsets of S, such that J € P if and only if for all ¢,
ri =p—1implies that i =1 & J. If r, = p—1set M,, :=V,4,if ¢ € S,
and 74 = p— 1 set M,, .= (V,, @ det’ """ & (V,, ® det? ' © ;) and
if 1 € Sp and ryyy # p— 1 set M, = L,,. Proposition 3.9 implies that
the representation ®{;01Mfi ™ is semi-simple and multiplicity free. Hence, if
J € P then W is semi-simple and multiplicity free. Now, suppose Vs ® det”
occurs at least twice in Vap_5_,. From what we have just proven, this means
there exists I,J € P with I # J such that V5 ® det” is a subquotient of W;
and Wj;. If 5 € I and j € J, it follows from the definitions that U;; # Uy ;.
Then V; ®det” is a subquotient of Ur @ (®iz; M) and Uﬁj ® (®i;ﬁjM£ri).
Since U} # UJY, this implies that Vs ® det® appears in ®f;01Mfi ™ at least
twice, which cannot happen as ®{:_01M£ri is multiplicity free. This proves
our statement for n(r) = 0. Assume n(r) > 0 i.e. there exists i such that
r; =p—1and s; = 0 and hence p > 2 from our assumption. Suppose that
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Vs ® det” is a subquotient of W for some J C S,. The only possibility for
having s; = 0 with r;, = p — 1 is to have:

Wii® VlFri =V, ® detpflfn)Fri ® VlFri = (Vo1 @ W)™

appear as a ®-factor of a subquotient of W; and this implies either r;_; =
p—lands; y=0o0rr,_; #p—1andi—1¢€ J. By an obvious induction
and as r # p — 1, this implies that there exists j such that r; #p—1, 7€ J
and 741 = p—1, sj41 = 0. From the definition of W, we see that V5 ® det”
is then a subquotient of:

(‘/I’*Q*T‘j ®V1FI)FW ®<®k7ﬁjvzl;} 2— rk) VFrJz ; ®RW2 ®(®k€{y,y+1}v2p 2— rk)

where the isomorphism follows from Lemma 3.8. Every irreducible subquo-
tient of V™ v @ (Voo ®@de )" ® (®k¢{y,y+1}v2p o) has its (j + 1)-th
digit equal to p — 2. Since p > 2 and s;41 = 0, Vs ® det” cannot be such a
subquotient. Lemma 3.4 then implies that V5 ® det” occurs in Vap_o_, with
the same multiplicity as in VFr2 ) ® VF’“]Jrl (®kg{j,j+1}‘/22r52,rk). Let r/
be the f-tuple 7 == p—2—rj, i, ==p—2, 7 = for k & {j5,j +1}.
Since 2p — 2 — (p — 2) = p and n(r’) = n(r) — 1, the induction hypothesis
implies that V; ® det® can occur in V;,Fj;frj ® VI @ (@rgijinVars )
with multiplicity at most 1. This finishes the proof. n

Corollary 3.11. Letr be an f-tuple such that 0 <r; < p—2. Then Vap_o_,
is multiplicity free and the graded pieces of the filtration (8) are semi-simple.

Proof. Since 0 < r; < p — 2, the conditions on s in Proposition 3.10 are
empty and P as in the proof of Proposition 3.10 is the set of all subsets of
Sp. It follows from the proof of Proposition 3.10 that if J C S, then W is
semi-simple. O

Corollary 3.12. Let 0 and T be two irreducible representations of I' over
F,. Assume o = (rg, -+ ,7p_1) ®@n with 0 < r; < p—2 for all i and assume
there exist indecomposable finite dimensional representations of I' over Fp
with socle o and co-socle T.

(i) Among these indecomposable representations, there is a unique one
I(o,7) such that o appears with multiplicity 1 (hence as subobject).

(i1) The representation I(o,T) is multiplicity free.

Proof. Let k be a representation of I' such that socr k = ¢ and cosocr k = 7.
Since socr k is irreducible there exists an injection x — injo. In partic-
ular, 7 is a subquotient of injo and hence by Proposition 3.7 7 is a sub-
quotient of Vap_g_,. Corollary 3.11 implies that 7 occurs in Vap_o_, with
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multiplicity 1, hence dimg Hompr(inj 7, Vap_2-,) = 1. Choose a non-zero
¢ € Homp(inj7, Vap_2_r) and set I(o,7) := Im¢. Since I(o,7) is a quo-
tient of inj7, cosocr I(o,7) = 7 and since I(o,T) is a subrepresentation of
Vap—2-r, socr I(0,7) = 0. Since Vap_o_, is multiplicity free so is I(o, 7). Let
A be a representation of I' such that socr A & o, ¢ occurs in A with mul-
tiplicity 1 and cosocr A = 7. Then A\ is a quotient of inj 7 and Proposition
3.6 implies that A is isomorphic to a subrepresentation of Vap_o_,. Since
dimg Homp(inj 7, Vap_2-r) = 1, A is isomorphic to (o, 7). O

4 Representation theory of I' over F, ITI

We prove important results on the socle filtration and I;-invariants of I'-
representations with irreducible socle appearing only once.

Let r:= (rg,--- ,rs—1) be an f-tuple of integers such that 0 <r; < p—2
for all i. Let ¥ be the set consisting of f-tuples € = (e, -+, €7_1) where
e, € {—1,0,1}. For € € 3, we set |e| := |{i,¢; # 0}|. Let X, be the subset of
3} consisting of f-tuples e such that if r;, = 0 then ¢;_; # —1 and if r; = p—2
and €; # 0 then ¢;,_; # —1 (as usual f =0 and —1 = f — 1). In particular,
Ye=2if1 <r; <p-—3forall i.

Definition 4.1. Let €,8 € X, we write € < § if there exists k € {0,--- | f —
1} such that the following hold:

(i) =0, 6, #0

(ii) Op—1 = —€p_1
(i1i) 6; = ¢€; for alli & {k —1,k}
(iv) if rp =p— 2 then €1 # 1.

We write € < & if there exists a sequence €, -+ ,€; in X, with j > 0 such
that e = €9, 6 =€j and e; < €41 for 0 <i < j. Wewritee < ife =9 or
e <.

To e € 3, we associate an f-tuple r(e) = (r(€)o,-- ,r(€)s_1) such that
0 <r(e); <p—1and an integer e(e) := 3.7 ple(e); as follows:

(i) if #0,7(e)i:=p—2—1; + €1

(11) if € = 0, T(E)i =T+ €
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if €1 = —1
otherwise

(iii) if ¢ # 0, e(e); := { (1)

. . L L p—r ifEi_lz—l
(iv) if & = 0, e(e)i := { p—1—r; otherwise.

Lemma 4.2. Let J C {0,---, f — 1} then:

W; = @ V;(e) X dete(e).
P
e|l=|J

Proof. This follows from Lemma 3.8 and the definition of W (see §3). [

In the next lemmas, we sometimes use some results that will be proved
in §5 (the reader can check that these results do not depend on the ones we
prove below using them!).

Lemma 4.3. Let €,6 € X, with |e| < |§]|, then Ext%(Vr(g) ® dete(‘s),Vr(e) ®
det®®) £ 0 if and only if e < 8.

Proof. If f = 1 this follows from (i) of Corollary 5.6. Assume f > 1. If
g < 6, a straightforward computation yields 7(8)y = p—2—r(e)y, 7(0)k+1 =
7(€)ks1 + Ok, €(8)r = e(e)r +1(e)r + 1 —p and €(0)p41 = e(€)pt1 + 1 if
0 = —1, e(d)k41 = e(e)gq1 if & = 1. By (i) of Corollary 5.6, we have
Ext%(Vr(,;) @det®®, Vie) ®det€(e)) = 0. Conversely suppose that Ext%(Vr(,;) ®
det®® Vo @ det®®)) # 0, let j € {0,---,f — 1} be an index as in (i) of
Corollary 5.6 and set k := j — 1. If i & {k,k + 1} then this corollary implies
that r(e); = r(d);, e(e); = e(d);. We claim that this implies ¢;,_; = d;—;
for i ¢ {k,k+ 1}. If ¢ and 0; are either both zero or both non-zero then
r(g); = r(d); implies that ¢;_1 = d;_;. If one of them is zero and the other
non-zero then e(e); = e(d); implies that r; = p — 2 and r(g); = r(§); implies
that either r;, = (p—2+4+6;.1—€;.1)/20rr; = (p—2+€¢_1—08;_1)/2. Iff p>3
this is impossible. If p = 3, a case by case analysis shows that this is also
impossible. If p = 2 we get ¢;,_1 = d;_1. Hence ¢; =9, for all i & {k — 1, k}.
By (i) of Corollary 5.6, we have 7(d)y = p — 2 — r(€)g. If ¢ # 0 then
r(8)r = Tk — €x—1. This together with exponent considerations imply that
0r = 0 and hence §;_; = —e;_1. However this contradicts |e| < |d]. Hence
ex = 0. The same argument gives oy # 0 and 0,1 = —€x_1. Since 7(d)x > 0
we get that r(e)r < p—2 and hence if r, = p— 2 then ¢,_; # 1. Putting this
together gives € < 4. H

Lemma 4.4. We have V, 1 @ VT 2 V,, ;.
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Proof. We may assume that f > 1. The image of ?*~! in V5, ; (see §3 for
notations) is fixed by U and we have (3 5)a?~! = W= 1Pg?~1in V5, ;.
This implies that V,_; ® VlFr occurs as an irreducible subquotient of Va,_;.
However, both have dimension 2p, hence they are isomorphic. O

Lemma 4.5. Let r be an integer such that 0 < r < p — 2, we have:
‘/2p—2—r ® ‘/1 = (VYQp—?)—r ® det) s> VYQp—l—'r’-

Proof. We may assume that f > 1 since for f = 1 the result follows by
restriction to GLy(F,). Tensoring with V; the exact sequence of Lemma 3.5
and using Lemma 3.8 gives an exact sequence:

0— (Vi @det! " @ (Vg @ det?™") — Vopa, @ V4 —
(Vor1 @ Vi) @ (Vpy3 ® det QV™) — 0

where one forgets the term involving p —r — 3 (resp. r — 1) if r = p — 2
(resp. r = 0). It follows from (i) of Corollary 5.6 below that Ext(V,_, 1 ®
VI Vi @ det!" 1) = 0 and Ext}(V,_, 3 @ det @V, V,_; @ det?™") = 0.
Moreover, dimg Extr(V, 3 @ det @V, Vo @det?"™ ) = 1if r < p—2
and the unique non-split extension is given by the representation V5, 3_, ®
det (Lemma 3.5). Likewise dimg Extp (Vo1 @ VT, Vo @ det?™) = 1
it > 0 and the unique non-split extension is given by Vs, 1_,. Now an
irreducible representation o can occur in the socle of V5, 5, ® V; if and only
if Homr(o ® Vi*, Vap_9_,) # 0. Since V, ® det’?"17" is the socle of Vap—a—r,
Lemmas 5.3 and 3.8 imply that V, ® V;™ ® det” cannot occur in the socle of
Vop—o—r @ V7 if 0 < s < p—2. Putting this together we obtain V5, o, ® V} =
(Vap—s—r @ det) & Vopq_, if 1 < r < p—3. If r = p— 2 the same proof
gives V, ® Vi = (V-1 ® det) @ V,41. Finally if r = 0 we get V5, o @ V) =
(Vo1 @V @ (Vap_g@det) = Vo, 1B (Va,_3®@det) where the last isomorphism
is given by Lemma 4.4. O

Proposition 4.6. Let €,6 € ¥, with € < § and let E(e,d) be the unique
non-split extension (see Lemma 4.3):

0 — Vi) ® det”® —— E(e, 8) — Vi) ® det”” ——0.

Then there exists a I'-equivariant injection:

L |
Fﬂf—|5|+2v2p_2_r

E(e,d)
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Proof. Let J := {i,¢; # 0} then there exists an injection:

Fﬂf“‘ﬂ ‘/2p—2—r

T::VF{7‘® ®; WY < .
2p—2—r; ( i#] J,'L) Fi1f7|6‘+2V2p,2,r

It follows from Lemma 3.8 that if j — 1 ¢ J then V;;;_W ® (®izj (Vree), ®
det*®) ") is a summand of 7 and if j — 1 € J then (V; ® Vgp,g,rj)Frj ®
(®izi (Vi) ® det®®)") is a summand of 7. Lemmas 3.8 and 4.5 imply

that F(e,d) is a summand of 7, and hence we obtain an injection as in the
statement. ]

Recall that an ideal A of a partially ordered set (P, <p) is a subset such
that x € A and y <p x imply y € A.

Theorem 4.7. Let r := (rg,--- ,74_1) be an f-tuple of integers with 0 <
ri < p—2, then Vap_o_, is multiplicity free and the set ¥, parametrizes its
composition factors. For each subrepresentation T of Vap_a_r let () be the
set of composition factors of T, then %.(T) is an ideal of the partially ordered
set (X, <). The mapping T — 3.(7) defines a lattice isomorphism between
the lattice of subrepresentations of Vap_o_r and the lattice of ideals, ordered
by inclusion, of the partially ordered set (X, <).

Proof. The first assertion is given by Corollary 3.11, (8) and Lemma 4.2.
We identify in the sequel the irreducible subquotients of Vo, _o_, with the
elements of X,.. Let us define a new partial ordering <’ on X, as follows:
e <’ 4 if and only if there exists a subrepresentation 7 of Vap_2_, such that
cosocr T =2 § and € occurs as an irreducible subquotient of 7. Tautologically
the lattice of ideals of (X, <’) is isomorphic to the lattice of subrepresenta-
tions of Vop_2_r. Now if € <’ § it follows from Corollary 3.11 and Lemma
4.2 that e occurs in Fil/ P71V, 5 .. Hence |e| < |8] by (8) and Lemma
4.2. Lemma 4.3 and Proposition 4.6 imply then that the partial orderings <’
and < coincide. O

Corollary 4.8. Let 7 be a subrepresentation of Vop_o_r. If r = 0 assume
that Vo1 is not a direct factor of 7. Then the graded pieces of the socle
filtration of T are given by:

n @D Vi et
e€XSy(T)
le|=1
Proof. Let § € ¥, then the number of € € X, such that € < § is || — {7, 0; #
0,0;—1 = 1,71 = 0}|. This implies that, unless r = 0 and § = 1, there will
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exist € € X, such that € < §. The case r = 0 and é = 1 corresponds to
Vp—1 and we have excluded it here. It follows from Definition 4.1 that € < é
implies |e| + 1 = |d]. Theorem 4.7 gives then the assertion. O

Corollary 4.9. Let T be a subrepresentation of Vap_o_r. Assume that there
exists an integer k € {0,-- -, f} such that, if Vy(e @det®® occurs in cosocr T,
then |e| = k. Then the graded pieces of the co-socle filtration of T are given
by:

Ti = @ ‘/r(s) ® dete(s).

e€Xy (1)
le|=k—1

Proof. This follows again from Theorem 4.7 together with € < § = |e| =
18] — 1. O

Definition 4.10. Let A\, X € I(xo,--- ,x5-1) (see §3). We say A and N
are compatible if, whenever \j(x;) € {p — 2 — x; — £1,2; £ 1} and \(z;) €
{p—2—x; — £1,2;, £ 1} for the same i, then the signs of the £1 are the
same in N(x;) and N(x;).

For A € Z(xo, -+ ,xp-1), set SA) :=={i €{0,--- , f—=1}, Ni(z;) =p—2—
xr; — x1,2; £ 1} and () := |[S(N)].

Corollary 4.11. Let 0 and T be two irreducible representations of I' over
F,. Assume o = (rg,-++,r71) ®n with 0 < r; < p — 2 for all i and
let I(o,T) be the I'-representation with socle o and co-socle T constructed
in Corollary 3.12 (assuming it exists). Let X € I(xg,--- ,x5_1) such that
7= (o(ro), -, Ap_1(rp_1)) @ det“ Mo rr-0p by Lemma 3.2. Then:

I(o,7); = D (Ao(ro), -+ s Nj i (rp-1)) © det“ X0 miy

S(A)SS(N)
L\)=i
A compatible with A

forgetting the weights such that X,(r;) < 0 for some i.

Proof. To an element N € Z(xo,--- ,zy_1), we associate an element & € 3
as follows:

(i) if Ni(z;) € {p—2—x;,p—3—z;,p—1—x;} then €,_, = N(x;)—(p—2—x;)
(ii) if N(z;) € {x;,x; — 1, + 1} then €,_, = Ni(x;) — ;.

This defines a map Z(xg,--- ,xf_1) — X which is bijective, the inverse map
being given by X.(z;) :=p—2 —x; +€,_, if €, # 0 and \j(z;) := x; + €,_, if
€. = 0. The reader can then easily check that the following properties hold:
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(i) 0 < A(r;)) < p—1for all ¢ if and only if & € ¥, C ¥ where r :=
( 7Tf—1)

(ii) (Ag(ro), -+ ,)\/f_l(?"fq))@det Nrosorp—1) o =~ Vie ®det &)+212) pirs

(iii) if A — e and X — €&’ with e,&’ € %,, we have ¢ < ¢ if and only if
S(V) € S(A) and X is compatible with A.

By Proposition 3.6 and the definition of I(o,7) (Corollary 3.12), we may
embed [(o,7) into Vap_a_y ® detzf;01 Prip. Let € € ¥, correspond to A as
in the statement. From (iii), (i) and Theorem 4.7, we get that 3.(I(c, 7))
corresponds to the f-tuples \' € Z(zo,--- ,xy_1) such that 0 < X(r;) <p—1
for all i, S(N') € S(\) and X is compatible with A. The result follows then
from Corollary 4.8 together with (ii) and the fact /(\) = |e/| if N +—€&'. O

Letr := (ro, -+ ,7r7_1) be an f-tuple of integers with 0 < r; < p—1 for all

i this time. Let ¥’ be the subset of X consisting of f-tuples € = (&g, -+, €7_1)
such that ¢; € {0, 1} for all i. Let X! be the subset of >’ consisting of f-tuples
e such that if r; = p—1 then ¢; = 0. In particular, ¥, = >'if 0 < r; < p—2for
all i. Define y : H — F;fl??f X((f)\ 0)) = p S0P 5o that B acts on the U-
invariants of V, ® det™2i=0 ' by y. For € € Y. set e 1= yaXizo peilp=1-ri),
Then xe = xs implies e = d or r = 0 and {&,0} = {0,1}. Moreover, [18,
Lem. 4.2.33] implies that y. # x2 unlessr =0,e € {0,1} orr =p — 1 (and
e =0). To e € X! we associate an f-tuple r(e) = (r(s)g, -+, r(e)s_1) such
that 0 < r(e); < p— 1 and an integer e(e) := S/} o D'e(e); as follows:

(i) if r = 0 and € = 0 then r(0) := 0 and ¢(0) := 0
(ii) fr=0and e =1thenr(l):=p—1ande(l):=0
(iii) if r=p—1 (and € = 0) then r(0) := p —1 and e(0) :=0

)

(iv) in all other cases r(e) and e(e) are such that H acts on the U-invariants
of Vie) ® det®® by ye.

Note that (r(g),e(e)) in (iv) is well defined since xe # x2.

Lemma 4.12. Lete € ¥.. Ifr =0 orr =1, assume that € ¢ {0,1}. Then
r(e) is determined by:

-1 -1
Zpir(€)i = Zpi(ri +26(p—1-m)) (¢—1)
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and we have e(€); = (1 —¢;)(p— 1 —r;) for all i. In particular, if r; =p—1
then r(e); = p—1 or r(e); = 0. Moreover, if 0 < r; < p—2 for all i then
the definition of r(e) and e(e) coincides with the previous one.

Proof. This follows from:

A0 F=1 i 49 (p—l—r
X€< (0 )\_1) ) — )\Zizo p*(ri+2e;(p—1—r;))

1 0 f=1 i
— AT -1
e (o A) ) AS= -

]

If 7 is any representation of I', we denote by 3(7) the set of its irre-
ducible subquotients and by 3(7) N X! the subset of ¥ of € corresponding
to irreducible representations Vi (e) ® det®® that are also in (7).

~Y

Proposition 4.13. Let 7 be a representation of I'. Suppose that socr 7 =2

Vi ® det™ 50 "' qnd that socr T occurs in T with multiplicity 1. If p = 2 we
additionally assume r =0 orr =p — 1. Then we have:

v~ B XaZizo Pep-1ori)
e€S(r)NSL

In particular dimg ™V = |2(r)N XL

Proof. By Proposition 3.6, we may embed 7 into Vap_2_, and we denote the
quotient by Q. It follows from [18, Lem. 4.2.19] and [18, Lem. 4.2.20] that:

F=1 e (p—1—r
RI(.J = VZI{)—Z—I‘ =~ EBE‘EZ;.XS e @e:ezi‘xazizo p El(p 1 z)‘ (9)

If r = p—1 we necessarily have 7 = V,,_; and ¥, = {0}: the assertion
follows trivially. Assume r # p — 1, then the assumption on socr 7 implies
that V,_; can’t occur in 7 and we are left to prove that x. occurs in 7Y
if and only if e € (1) N X.. Assume r = 0 and y. = x2, which im-
plies € € {0,1} and x. = 1. We have that 1 occurs in 7Y (as socr(7) is
the trivial representation) and that {0,1} N X(7) N X = {0}: the asser-
tion follows in that case. Assume now x. # x5. If x. occurs in 7Y then
Homp(Ind}; xe,7) # 0. Since Vi) ® det®® is the co-socle of Ind} xe, it
must be a subquotient of 7. We thus have e € X(7) N X,. Conversely,
assume € € (1) N XL ie. Vi @ det®® € B(7). Equivalently, we have
Homp(inj Vye) ® det®®), 7) # 0 (using the fact that inj V() has co-socle Vy(¢)
and is a projective object). It follows from Proposition 3.10, Lemma 4.12 and
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(9) that dlmF Homl‘(ln_] ‘/;‘(6 ® dete €) V2p 2 1') = 1. AS an V () ® dete(E) is

projective, this implies Homp (inj Vi ®det Q) =0ie. Vi ®det ) can’t
occur in ). This implies in partlcular Homp(Ind BXes Q) = O as IndB Xe has
co-socle Vi) ® det®®. We thus have an isomorphism:

Homp(IndE Xe, T) =2 Homp(IndFB Xes Vep—2-r).

But the right hand side is non-zero by (9) and we are done. O

5 Results on K-extensions

In this section, we assume [’ is a finite extension of Q,. We determine I'-
extensions between two weights and give partial results on K-extensions for
p > 2 which are not ['-extensions.

Proposition 5.1. Let 7 be a representation of K such that Ky acts trivially.
Then there exists an isomorphism of K -representations:

= [F:Qy)
HY(K, ") 2P (re (Va@det™ EB T.

=0

H

Proof. It is enough to prove the claim when 7 is the trivial representation
of K (as K acts trivially on 7). We have H'(K;,1) ~ Hom(K1,F,) (group
homomorphisms) with the left action of K given by:

(g¥)(h) = ¥(g9"hg), g € K, ¢ € Hom(K{,F,), h € K;.

For 0 <i < f —1, define k¥

7 7,7

¢; € Hom(K,F,) as follows:

@ @

KYA) = w(b)”,  KU(A) = w(o)”, (A) :=w(a—d)7

3 (2

where A := (1=, ®0 ) € K, (see §1 for w). Since:

1 —a) (a b\ (1 o\ (a—ca b+ (a—d)a—ca?
0 1 c dJ\0 1) c d+ ca
the action of I; fixes ! and for all « € F, we get:

1 (07 i i
( o] K = kY4 af e — oKL

1 [Oé] _ pi l
(0 1)62' = ¢ — 20" K;.

33



Moreover we have:

One may then check that the map:

2
y2 = 'Lig: <1) TY = &, 332 = _'Lif;

induces a K-equivariant isomorphism (V3 ® det ™))" = (k¥ ¢;, k1), As K, N
UC[KiNnT,KiNU], KayNnU® C [K3NT, Ky NU®| (where square brackets

denote the subgroup generated by the commutators) and:

{(g wa) T € 1+p%} C(K,NU* K, NU),

we deduce that every ¢ € Hom (K, F,) can be written as a linear combination

of K}, €, /ié for 0 < i < f —1 and a homomorphism which factors through

the determinant. If ¢ factors through the determinant then K acts trivially

~Y

on ¢. The p-adic logarithm induces an isomorphism Hom(1 + pF,Fp) =
Hom(Op,F,), hence:

dime HOHI(l + pF7Fp> = dlmpp(Op/pOF) = [F : Qp]

and the subspace of such 1 has dimension [F : Q,] over F,. This finishes the
proof. O]

Corollary 5.2. Let o and 7 be finite dimensional representations of I' over
F,. Suppose that Homp (o, 7) = 0 and Homr(o, (Vo ® det )™ @ 7) = 0 for
0<i<f—1. Then Exty(o,7) = Exty(o,7).

Proof. Since for all representations 7 of K (over F,) we have Homg (o, 7) ~
Homr (o, 751), the Grothendieck spectral sequence gives an exact sequence:

0 — Exty (0, 7) — Extk (0, 7) — Homp (o, H' (K, 7)) .
The result follows then from Proposition 5.1. O]
We now use notations from §3.
Lemma 5.3. For 0 <r <p—1 we have Homﬁp(Vr,Fp) ~V. @det™".

Proof. Exercise. O
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Proposition 5.4. Assume p > 2.

(i) For 0 <r < p—2 we have an isomorphism of T'-representations:

VoV, 2V, 0@ (V. @det) @ (V,_o ® det?).

(ii) We have an isomorphism of I'-representations (recall V, =0 if r < 0):

VoV, o =2 R, 2@ (V, 4 ®det?)
Va@ Voo = Ry 3@ (Vo1 @ det).

Proof. The assumption p > 2 ensures that 1 < p — 1. Hence by Lemma 3.8
we have V; @ V] 2V, @ (Vy ® det). If r < p — 2 then using Lemma 3.8 twice
we obtain that V; ® Vi ® V,. is isomorphic to:

Vi® (Vi1 @ (Voo @ det)) 2 Vo @ (V, @ det) @ (V; @ det) @ (V,_p @ det?),

hence Vo @ V, & V40 @ (V, @ det) @ (V2 ® det2), which proves (i). If
r = p — 2 the same argument gives Vo @V, 2 = (V1 @ V,_1) & (Vo4 ® det2)
and Lemma 3.8 implies V; ® V,_1 = R, 5. If r = p — 1 then by [18, Prop.
4.2.11], R,_3 is a 2p-dimensional subspace of V2 ® V,,_;. The restrictions of
R, 3 and Vo ® V)1 to GLy(F,) are injective objects in Repgy,,). Hence
there exists a GLy(F,)-equivariant isomorphism:

Vo ®Vpt 2R, 5@ J,

where J is an injective object in Repgp,,)- Since dimﬁp J =3p—2p=np,
we have J ~ V,_; ® det” as an GLo(F,) representation. Now since J is
irreducible as GLy(IF,) representation, there exists an exact sequence of I'-
representations:

0—=Ry3—=V2©V, 1 —= VI @ det” —=0. (10)

for some 0 <7 < f—1andsome 0 < a < ¢g—1. By dualizing and using Lemma
5.3, we obtain an injection V;)Ffl @ det® — Vo ® Vp—1 for some 0 < b < ¢ — 1.
Since socr R, 3 ~ V,_ 3 ® det®, we can’t have V;,Fj; ® det” < R, 3. Thus
(10) must split and we have b = a. Now the element ry ® 2P~! — 22 @ 2P~y
is fixed by U in V2 ® V,,_; (with obvious notations) and it follows from [18,
Prop. 4.2.13 and Lem. 4.2.14] that it does not lie in R,_5. Hence, the image

of zy ® 2P~1 — 22 ® 2P~ 2y spans the U-invariants of ijl ® det®. Since:
>\ 0 ( ® p—1 2® p—2)_)\p ( ® p—1 2® p—2) )\ EFX
0 ) yea =2’ @t y) = Nplay @t —2’ @), Ap e Fy,
we must have i =0 and a = 1. Hence Vo @V, 1 ¥ R, 3& (V-1 ®det). [O

35



Corollary 5.5. Assume p > 2 and let v and s be f-tuples such that 0 <
rj,s; <p—1 forall j.

(i) For 0 <i < f—1 and all integers a,b we have:

dimg Homp(V; @ det’, V;™ ® V, @ det®) < 1.

(ii) We have Homp (Vs ® det’, V¥ @ V, @ det®) # 0 if and only if s; = r;
for all j # i and one of the following holds:

(a) s;i=r;+2andb=a (¢—1)

(b) si=r; andb=a+p" (¢q—1)

(c) si=r;i—2andb=a+2p" (¢—1)

(d) f=1,p=3,so=ro=p—1landb=a (¢g—1).

Proof. The result is obvious from Proposition 5.4 if 0 < r; < p—2 (note that
if r; < 2 or r; > p—3, some cases are empty as we must have 0 < s; < p—1).
If r; = p — 2, there exists an injection:

R o (@) = By @ (@R, @ et 7)),
i i
Asr # 0 (because r; = p — 2 and p > 2), we have (see §3):
R (@, @ der ) = ing (V5 @ det)®™ @ @ V),
J#i J#i
which implies in particular:
socr (Rf}_’é ® <® Vrf”))) > (V,_o ® det)™ ® (@ Vf]>
j#i i

Using Proposition 5.4, we then deduce the result in that case. If (r; =p—1
and p > 3) or (r; =p—1, p=3and f > 1), the proof is analogous using:

socr (Rgr_i?) ® <® VTSW))) > (Vo3 ® det)Fri ® <® Vrljrj>
j#i j#i

Finally, if 7, = p — 1 and p = ¢ = 3, the result follows from Ry ~ inj(Vj) &
Vp-1. O

We finally obtain the main result of that section:
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Corollary 5.6. Let o := (rg, - ,rp_1)®@det” and 7 := (So,- -+ ,S7-1) ® det?
be two weights (0 <r;;s; <p—1and0<a,b).

(i) We always have dimg Exti(r,0) < 1. If f = 1, we have Exth(1,0) # 0

if and only if sg = p—2—rot1 and b = a+ro+1 p(lﬂ) (p—1). If f > 1,
we have Exty(7,0) # 0 if and only if there exists j € {0,--- , f — 1}
such that s; = r; for alli ¢ {j—1,j} (with the convention —1 = f—1)
and one of the following holds:

(a) sji-1=p—2—rj_1,8;=r;—Llandb=a+p (rj-1+1) (¢—1)
(b) sj-1 =p=2-rj-1, s; =r;+1 andb = a+p " (rj+1)—p’ (¢—1).

i) Assume p > 2. If Exti (7,0 Extl (7,0) then there exists j €
(ii) r K
{0,---, f — 1} such that s; = r; for all i # j and one of the following
holds:

(a) s;=r;—2 andb=a+p (g—1)

(b) sj=r; andb=a (¢—1)

(¢) s;=r;+2andb=a—p (q—1)

(d) f=1,p=3so=ro=p—landb=a—1 (q—1).

Proof. We start with (i). The case f = 1 is a direct consequence of Lemmas
3.4 and 3.5. Assume f > 1. Twisting everything by det™, we can assume
o = V; (with obvious notations). Let 7 be as in (a) or (b), then Lemma 3.8
together with (8) imply that 7 occurs in the socle of:

Fill %= (Vo 5 @ det”) /Fill* (Vo 5, @ det”)

where r = Zz o TP As Fillsr‘(v2p—2—r ® det") =2 Vi = o, the inverse
image of 7 by the surjection Fil'Sr‘_l(Vzp_z_r ® det") — Fil'S”‘_l(Vzp_z_r ®
det”)/V; gives an element in Ext(7, o). Moreover, this element is non-zero
as socr(Vap_2_r ® det”) = V; by Lemmas 3.4 and 3.5. Now we have:

q—1
Exty (7, 0) = Exth(Indf 7, 0) 2 EB Exty (7 ® det®, o).

c=1

By [2, Cor. 4.5], Exty,(7,0) # 0 if and only if there exists j such that
si = fori & {j —1,5}, sj;1 =p—2—r;—1 and s; = r; £ 1. In that
case, dimg, Exti/(r,0) = 1 unless f = 2 and r = ((p — 3)/2,(p — 1)/2) or

((p 1)/2 (p—3)/2) in which case the dimension is 2. If the dimension is
1 we are done. If f =2andr = ((p—3)/2,(p—1)/2) then case (a) with j =1
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and case (b) with j = 0 give the same 2-tuple s but a different exponent b,
which implies the assertion. The other case is analogous. Finally (ii) follows
from Corollary 5.2 and Corollary 5.5. [

The second part of Corollary 5.6 is presumably not optimal in the sense
that there might exist o and 7 satisfying one of the conditions in (ii) with
Exty(7,0) = 0.

Corollary 5.7. Assume p > 2 and let W be a representation of K on a finite
dimension Fp—vector space. Assume W is multiplicity free and for any pair of
distinct irreducible constituents (o, 7) of W, none of the conditions (a) to (d)
in (i1) of Corollary 5.6 are satisfied for any j. Then W is a I'-representation.

Proof. We argue by induction on n(W) := the number of irreducible sub-
quotients of W. If n(W) = 1 then W is irreducible and so K acts trivially.
Suppose that n(WW) > 1 and let o be an irreducible quotient of W. Consider
an exact sequence 0 — Wy, — W — o — 0. Since n(W;) = n(W) — 1, K;
acts trivially on Wj. Moreover, our assumptions imply:

Homp (o, W3®) = Homp (o, (Va ® det ™)™ @ W) = 0
for all 7, where ss denotes semi-simplification. This implies:
Homp (o, W) = Homp (0, (Vo @ det ™)™ @ W) = 0

for all . By Corollary 5.2 we have Exty.(o, W;) = Exty (o, W;) and hence K,
acts trivially on W. [

6 Interlude with the Hecke algebra

We recall certain results on the representation theory of the Hecke algebra of
I,. We follow (most of) the notations of [18, §2] and don’t assume anything
on F.

Let H := Endg(c-Ind§ 1). The algebra H has an F,-basis indexed by
the double cosets I;\G/I;. We write T, for the element corresponding

to the double coset I;gl;. For a character x : H — F:, we set e, =
(|H) 7' Y peq X(h)T,. The elements T, T, T and the idempotents e,

for all characters x : H — F; generate H as an algebra. For relations see
18, Lem. 2.0.12].
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Let Z : Repy; — Mody be the functor:
Z(r) :== " 2 Homg(c-Ind{ 1,7).
Let 7 : Mody — Repg be the functor:
T(M):=M Ry C—IndIG1 1.

One checks that (Z,7) is a pair of adjoint functors i.e. Homy (M, Z(7)) =
Homg(T (M), w). Let RepS~" be the full subcategory of Reps with objects
G-representations on which the fixed uniformizer w acts trivially. Then the
functors restrict to Z : Rep®=' — Mody__, and 7 : Mody,__, — Rep™="
where Hp—1 = H /(T3 — 1).

1

Let r := (rg,--- ,7_1) be an f-tuple such that 0 < r; < p —1 for all .
We consider V; (see Definition 3.3) as a representation of Ky by lifting it to
a representation of K and letting w act trivially. It is shown in [4, Prop. §]
that there exists an isomorphism of algebras:

Endg(c-Ind§ V;) = F,[T]

for a certain 7' € Endg(c-Ind§ V;) defined in [4, §3]. Fix ¢ € c-Ind§ V,;
such that Supp ¢ = Ky and (1) spans V.I'. Since ¢ generates C—Indgo V; as
a G-representation, T is determined by Tp.

Lemma 6.1. (i) Ifr=0 then T =T+ 3,5 (7 A

(i1) If v # 0 then Typ = ZAqu(g’ [i‘])go.

Proof. In the notation of [4] this is the calculation of T'([1, eg]). The claim
follows from the formula (19) in the proof of [4, Th. 19]. O

Definition 6.2. Let r := zlfz_olpin with r; € {0,--- ,p— 1} and r the f-
tuple (ro,-++ ,7p-1). Let X € F, and n : F* — F; be a smooth character.
We define an H-module M (r,\) by the exact sequence:

0 — (c-Ind§ Vi)' T2 (e-Ind€ Vi) —— M(r, ) — 0.
We define a G-representation 7w(r, \) be the exact sequence:
0—>c-d§ Vi = c-Ind$ V, —7(r, \) — 0.

We set w(r,\,n) == w(r,\) @ nodet and M(r,\,n) := M(r,\) ® n o det.
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For r,n as in Definition 6.2, let y : H — F; be the character given by

x((39)) = wn(Au]). Set v := {x,x*} and e, := > pey €y € H. The
idempotents e, are central in H. If |y| =1 (ie. if r =0o0r r = ¢— 1), set
Zy =T, Tu+TuT,, +Tn. Otherwise set Z, := T, Tr+1nT,,. The elements
Z., are central in e,H and were used in [22].

Proposition 6.3. Let )\, := An(—w '), there exist exact sequences of H-
modules:

(i) ifr = 0:
0 (1 + T ) ey Moot 221 + Ty Ve Hot ——= M (0, A, 1) ——0

(ii) if r # 0:

0“‘%>7%5eXSTiwzl%Z:égjkﬁ6X57{w=1444%>ﬂ4(r7A’n)444>0'

Proof. We prove the statement in the (harder) case when r # 0 and r #
g — 1. We can assume 1 = 1, since twisting by n has no effect on the
action by T,,, and (v® )T = T (v ® 1) = (vI) @ n(—w ). We claim
that (c-Indg V)" 2 T, e,sHeoor. It follows from [18, Rem. 3.1.6] that the
image Im( ¢-Ind%, x* LN -Ind$), y ) is isomorphic to c-Ind§ Vi, where we
consider y and x*® as representations of IZ with w acting trivially. Now
(c—Ind?Z X)Il = e, Ho=1 as an ‘H-module, hence T, e,sHo=1 is a submodule
of ((:—IndgO Vy)™. This is an isomorphism since T} e, = 0 and it can be
deduced from [18, Lem. 2.0.15] that:

T,
Ker( exyHoo1 —> ey Heoo1 ) 2 T, 6, Hpo.

Let ¢y € c-Ind¥, x* be the function such that Suppy = IZ and oy (g) =
X°(g) for all g € 1Z, then:

1 I
ZTopre = T TaTo, 00 = 3 (0 [/f]) ny I, e

neFq
It follows from Lemma 6.1 that Z, = T. O

Corollary 6.4. (i) There exists a basis {vi,v2} of the underlying vector
space of M(r,\,n) such that:

vieys = v, Uil = v, e, =V, vl =1

and such that viT,, = —vy if r =q—1 and v T, = 0 otherwise.
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(ii) We have va(1 +T,,) = n(—w HAvy if r =0 and voT,,, = n(—w ) Avy
otherwise.

Proof. One may show that if » # 0 (resp. r = 0) the images of T, eys,
Th.exsTr (resp. (14T, )ey, (1 + T, )ey ) form a basis of M(r, ). One
may then immediately verify the assertions. O]

One can deduce from Corollary 6.4 that M(r,\) is irreducible unless
(r,A) = (0,£1) or (r,A\) = (¢ —1,%1) (see [22]). Moreover, there exist exact
non-split sequences of H,—; modules:

0 ——= T(St ®641) —= M(0,£1) — > T(521) — 0

where St denotes the Steinberg representation of G over [Fy,.

Corollary 6.5. Let M be a subquotient of M (s, pu,w®) in Mody__,. Assume
that Exty,__ (M, M(r,\)) # 0, then A = (—1)u and either r = s and a =
0(qg—1)orr=q—1—sanda=r (¢g—1).

Proof. Let 0 — M(r,\) - E — M — 0 be a non-split extension. Set
v = {x,x*}. Since e, and Z,e, are central in Hr—y, the maps £ — E,
v — v(l—e,), v— v(Ze, — ) are maps of H,—; modules and factor
through M — E. Since E is not split, M (1 —e,) = 0 and hence s = r or
s =q—1—r. Since Z, has eigenvalue p(—1)* on M(s, pr,w®), we obtain
A= pu(=1)" O

Corollary 6.6. Assumer #0,r#q—1 and A #0. Set M := M(r,\) and
M :=M(g—1—rAX-1)",w"), then:

dimg Exty,__ (M, M) = dimg Exty,__ (M, M') =1
and the corresponding non-split extensions are given by:

0—= M —= T e Hemt/(Zy — N2 —= M —=0

0——= M —=exHom1/(Zy = A) —= M —0.

Proof. Set E := eysHo—1/(Z,— ) then we have an exact sequence of H—1-
modules:

Zy—A
04>€X5Hw:1 H6X57—('w=1 —F —0. (11)
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One may verify that the images of eys, eysTt, €y, Ty, eysThT,, form a basis
of E. Moreover it follows from Proposition 6.3 that the subspace spanned
by the images of e, T,,., ey=TuT,, is an Ho—1-module isomorphic to M’ and
the corresponding quotient is isomorphic to M. One may verify directly
that the sequence is non-split. Since e,sH— is a direct summand of a free
module, (11) is a projective resolution of E in Mody,__,. In particular, for
all Ho—1-modules N, we have Extéiwzl(E, N) =0 for i > 1 and an exact
sequence:

0 — Homy,__, (E,N) —= News 222 Neyo — = Extl,__ (B, N) —=0,

This gives dimg Exty,__ (E,M) = 1 and dimg Exty,__ (E,M’) = 0. Fur-
thermore, for all irreducible H,—;-modules NV, we have an exact sequence:

0 — Homy__,(M',N) —Ext;,__ (M,N)—=Exty,__ (E,N).

Setting N = M’ we obtain dimg_ Exty, (M, M') = 1. Since A # 0 we have
Homy,_, (M', M) = 0 and setting N = M, we get dimg Ext;,_ (M, M) <
1. But we have Exty,__ (M, M) # 0 (since the extension in the statement is
non-split), thus dimg_ Ext;,_ (M,M)=1. O

Corollary 6.7. Assumer =0 orr =q— 1. Set M := M(r,\) and M’ :=
M(q—1—r,7), then dimg Exty,_ (M, M) = dimg Exty,__ (M,M') = 1.

Proof. Since —e; T,,, is an idempotent in H, the exact sequences in Proposi-
tion 6.3 are projective resolution for M. If r = ¢—1 then for all H—;-modules
N we have Extj, _ (M,N) =0 for i > 1 and an exact sequence:

0 —> Homy,__, (M, N) — Ne,Ty,, 2= NeyT,, — Extl,__ (M, N) — 0.

The assertion for r = ¢ — 1 follows from this exact sequence. The case r = 0
is analogous. O]

Proposition 6.8. Assume A # 0 then we have:
T(M(r,Am) = w(r,An), Z(x(r,Amn) = M(r,Amn).

Proof. 1t is enough to consider the case n = 1. Let I be the kernel of the
natural map a : 7(Z(c-Ind§ V;)) — ¢-Ind§ V;. If r =0 or r = ¢ — 1 then
—T,.e1 is an idempotent which implies that K = 0. The first isomorphism
then follows by applying 7 to the exact sequence defining M (r, A). Assume
r # 0 and r # g — 1. It follows from the proof of Proposition 6.3 that
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((:—Indg0 Vi)t 2 T, e, Hpo1. Hence every v € K can be written v = T),.e, ® f
with T, e, f =T, f = 0. Now we have:

Z’yU = TnSTHTnsex ®f= Tnsex ® (THTnsf> =0.

Since A # 0, multiplication by Z, — X induces thus an isomorphism K = K.
Since « is surjective, we deduce the first isomorphism from a diagram chase.
Applying 7 to the exact sequence defining 7(r, A,n), we obtain an injection
M(r,\,n) — I(m(r,\,n)). It follows from [4, Th. 30] that this map is an
isomorphism. ]

Corollary 6.9. Let T be a smooth admissible irreducible non-supersingular
representation of G over IF,, then TZ(T) = 7.

Proof. 1t follows from [4, Cor. 36] that either 7 = x(r, \,n) with (r, \) #
(0,£1), (r,\) # (¢—1,%1), or 7 = nodet, or 7 = St ®nodet. The assertion
follows from Proposition 6.8, [4, Th. 30] and right exactness of 7. O

Corollary 6.10. Let M = M (r,\) with A # 0, or M =Z(1), or M = Z(St).
Then YT (M) = 0.

Proof. We prove the statement when M = M (r, A) and A # 0. Assume that
r=0orr=gq—1then —e;7,, is an idempotent. Hence the exact sequences
in Proposition 6.3 are projective resolutions. Moreover, 7 (T, e1Hpo1) =
c-Ind§ Vpoq and T((1 + T,,,)e1Hwo1) = c-Ind§ Vp. Hence, applying 7 to
the exact sequence defining M(r, A), we obtain an exact sequence defining
7(r,\) and thus L'7 (M) = 0. Applying 7 to the exact sequences:

0 Z(1) M(g—1,1)—=Z(St) —=0

0 —=T(St) —= M(0,1) (1) 0

we obtain L7 (Z(1)) = L7 (Z(St)) = 0. Assume r # 0, r # g—1 and X # 0.
Let E be an H,—1-module defined by the exact sequence:

Zny—A
00— estwzl — estwzl —F—0.

Since e, is an idempotent, this is a projective resolution of E. Applying 7,
we obtain an exact sequence using 7 (eys Hep—1) = c-Ind¥, x*:

Zy—A
0 —L'7T(F) — c¢-Ind¥, x* = c-Ind%, x* T(E) 0.

Now Z,—\ is an injection since it is an injection on Z(c-Ind¥, x*) = eys Ho=1.
Hence L'7(F) = 0 and T(E) & c-Ind%, x*/(Z, — \). Set «’ := 7(q — 1 —

43



r, A=) W), mi=m(r,A) and M’ := M(q—1—r,A\(—1)",w"). Applying T
to the exact sequence () M’ E M 0 we obtain an exact
sequence:

0—=L'T(M) —> ¢/ —=T(E) —=7 —>0.

Since r # 0 and r # ¢—1, @’ is irreducible and thus 7 (E) = 7w if L' 7 (M) # 0.
But this is impossible as Z(7) has dimension 2 and Z(7 (£)) has dimension
at least 4. 0

7 Computation of R'Z for principal series

We assume F' is a finite extension of Q,. Let x : P - T — F; be a smooth
character. We also denote by x the restriction of x to Z. We compute R'Z(7)
in Repg,, for m = Ind$ y.

Set Z; := Iy N Z. Since Z; is pro-p and x is smooth, we have x(Z;) =
1. Hence Z; acts trivially on all the representations in Repg . Forgetting

[a¥)

the H-module structure gives an isomorphism of vector spaces R'Z(r) =
Hl(Il/Zl,W>.

Lemma 7.1. For a cocycle f € Z'(I,/Z,,Ind$ x) define functions ¢* and
Y as follows:

Giw) = [F@)1), we NP, ¢lu) = [fW]n,), welnP"
Then the map f — (*, ') induces an isomorphism:
HY(I,/Z,,Ind$ x) — Hom((I; N P)/Z,,F,) @ Hom((I, N P*)/Z,,F,). (12)
Proof. Since G = PI, II Pn,l,, we have an isomorphism:
Ind§ x|r, & Ind}'p 1 @ Ind}! p. 1.

As Z; acts trivially on both sides, we may rewrite this as Indggl1 X|n 2z =

11/71

Ind(}/%, , 1@ nd}/Z, 1. Tt follows from [20, §2.5] that:

HY(I,/Z,,Tnd% x) = H'Y((I, N P)/Z,,1) @ H'((I, N P*)/Zy,1)
which implies the assertion. O

Fix ¢* € Hom((I; N P)/Z,,F,) and ¥' € Hom((I, N P*)/Z,,F,) (the
superscripts u and [ stand for “upper” and “lower”). We consider the pair
(1", 9") as an element of RZ(Ind% y) via (12).
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Lemma 7.2. There exists a locally constant function p : G — F, satisfying
the following equalities:

(i) p(pgu) — o(pg) = x(p)(p(gu) —(g)), pEP, g€G, uel
(i) o(u) — (1) =¢"(u), welLNP
(i1i) p(nsu) — p(ng) = PH(u), welLNPs

(iv) ¢(zg9) = x(2)p(9), 2z€Z, ge€q.

Proof. Consider the exact sequence of G-representations:
0—=Ind$y ——=Ind§x —=Q—=0
where ¢ is the natural inclusion. For all 7 in Repg, ,, we have:
Homg (7, Ind$ x) = Homy(r, x) = Homg (r, F,)

and hence Ind§ x is an injective object in Repg - Applying 7 we obtain an
exact sequence of H-modules:

0 —Z(Ind% y) ——=Z(Ind§ x) —= Z(Q) —= R'Z(Ind§ ) — 0.

Let 3 be a preimage of (¢*,4!) in Z(Q) and ¢ be a preimage of % in Ind$ .
Then ¢ satisfies (iv). Since @ is fixed by I3, for all u € I} we get (u— 1)p €
Ind$ x and hence ¢ satisfies (i). Moreover, (1*,1!) is the class of the cocycle
u+— (u—1)p. Lemma 7.1 implies then that ¢ satisfies (ii) and (iii). O

Proposition 7.3. Let n € G and, for each coset ¢ € I;/(I; N n~'Iin),
fix a representative ¢ € I;. With the notations of Lemma 7.2, set T, :=

>o.en"ty and:

0"(u) = [pTal(w) = [pT)(1) = Y _(plucn™) — p(en™))

[

0'(u) = [pTul(neu) — [pTn)(ns) = D (¢p(nsuen™) — p(nen™))

C

where u s respectively in Iy N P and I, N P®, and where the sum 1is taken
over all cosets ¢ € I/(I, N'n~"Iin). Then the action of H on R'Z(Ind$ x)

is given by (V*, )T, = (6",01).

Proof. 1t follows from [18, Cor. 2.0.7] that the action of H on Z(Q) is given
by 7T, = >..en~'%. As T, is a preimage of %7, in Ind§ x, (¥*,¢")T,, is
the class of the cocycle u — (u—1)(¢T},). The assertion follows from Lemma

7.1. [l
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We now fix an integer r such that 0 < r < ¢g—1 and X\ € F;. Let
x:1T — F; be the character:

wna 0 P m—n s X
X( < 0 wmd> ) =N""w(d)" (a,d € Of, m,neZ). (13)
It follows from [4, Th. 30] that Z(Ind% x) = M(r, \).

Fix 9" € Hom((I; N P)/Zy,F,), ¥' € Hom((I, N P*)/Z,,F,) and let ¢ be
a function as in Lemma 7.2. We may choose coset representatives so that

o1, = Zaqu(é [Cl"] Ingtp, Tn = ' and so that, for all £ : H — F;:

et 3 e((,0)) (5 )

PWAS pa

We consider (1%, ') as an element of R'Z(Ind$ x) via (12). We are going to
determine (¢*, Y")T,., (", ") Ty and (%, ¢')ee using Proposition 7.3.
Lemma 7.4. Let ji € B then (_j,y §)(10") = ("W 1 n..

Lemma 7.5. Let ¢ € wOp then:
1 0
enao )bt (5, )
peFy

Proof. Note that the left hand side is equal to }_ 5 (539 D) —

o(( —%u] ?))) Since (") is contained in the derived subgroup of I; N P,
the term corresponding to p = 0 is:

S”((cl) _1)) — (1) =¢u((§ ;)) o

If € T, using (i) of Lemma 7.2 with p := (§ 19), g := (_juy 1), w:= (§ W D)
and Lemma 7.4 we get:

P((6 1) 1)) =2y 1)) =

Summing over p € Fy we get the claim. O]
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Lemma 7.6. Let a,d € 1 + wOp then:

oy ) ror=((§ )

S0 (e 1)) = (S0 ((5 )

perg neFq

Lemma 7.7. Let b € Op then:

(o 1)) - e = (1)

Proof. Let b be the image of b in Op/wOp then:

> (oG nst) = (5 m)) = 32 (w0 W sy )

S neF,

and the right hand side is equal to:

1

X(n;Q)wl«Zuewq([u]*bf[uf]) (1))) = (—1)%’(( —1qb(1)>)'

A similar argument gives:

Lemma 7.8. Let a,d € 1 + wOp then:

(6 2))‘[“"T"S]“):‘“<(<zﬂemqw>1<1—ad-1> D)

The following two lemmas can be easily obtained by using (i) of Lemma
7.2 and observing that x(IT"'n ') = X and x(nJI71) = A7%:

Lemma 7.9. Let a,d € 1 + wOp and c¢,b € Op then:

(5 ) - - (4 2)
(o (2, ) - temmlon) = e () 0))
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X

Lemma 7.10. Let a,d € 1 + wOp, ¢ € wOp, b € Op and let £ : H — Fp
be a character then:

e (5 8)) - = 5 w3 )(5 )

A\ ueFy

[goeg](ns (i 2)) pecd(n) = > A 5((A 2))“((4;1#1 2))

A ueFg
Definition 7.11. (i) For 0 <i < f, define e; € Hom((I, N T)/Z,,F,) by:
a((89) = w((1 = da) /@)
and k¥ € Hom((I; N P)/Zy,F,), kk € Hom((I, N P*)/Z,,F,) by:
R 5) = w0, m((29) = we?.

(ii) For § € Hom(([; ﬂT)/Zl, ),
6" € Hom((I; N P*)/Z,F,) by:

a((55) =a((§2), o((29)=d((52).

Lemma 7.12. There exist 61,0, € Hom((I; NT)/Zy,F,) and z*
0 <i< f such that:

st e = o

Proof. By restricting ¢* to TNI; and twisting by s, we obtain 6, € Hom((/1N
T)/Z,,F,) such that ¢* — 6} is trivial on I; N T. Since:

define §* € Hom((I, N P)/Zy,F,) and

EF for

([ ’L

the restriction of ¢" — 8% to (§ *F') is trivial. Hence ¢* — 6} factors through
KinP. Now dimg Hom(([1 N P)/(K1 N P),F,) = dimg Hom(F,,F,) = f
and the ) are linearly independent. This proves the claim for ¢*. The claim
for 1! follows after conjugating by II. O

We will consider x¥, s!, §*, 6" as elements of R'Z(Ind% x) by extending
them by zero to elements of Hom((h N P)/Z,,F,) ® Hom((I, N P*)/Z,,F,)
and then using (12) and Shapiro’s lemma.
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Proposition 7.13. Let 6 € Hom((I; N T)/Z,,F,) then:
Shey = 0", 8"Tp =M1, 8T, =6, dew =46, 0"Tn=\"

Ifr=q—1, 8T, =6 and ifr # q—1, 8'T,, = 0. In particular, (%, 5l>Fp
is stable under the action of H and is isomorphic to M (r,\) as an H-module.

Proof. This follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7 and 7.8. O

Proposition 7.14. (i) We have rje i = K Kle = ki, k4T =

7 7 Xsapi
A6l KT = AR and kYT, = 0.

(11) We have:

KT, = (Y kb4 (Y e+ (D p)er + (—1) epnt

pery pery pery
where ep =1 if F' = Q, and ep = 0 otherwise.

Proof. This follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7, 7.8 (note that
val(q) = [F : Qy)). 0

Proposition 7.15. (i) The subspace S := (e}, e}, k{', Kl)z, of R'Z(IndS x)
is stable under the action of H.

(ii) Let s be an integer such that 0 < s < g—1 and s = —r—2p' (¢—1),
then there exists an exact sequence of H-modules:

0—=M(r,\) —= 85— M(s%, epA~! wt?') —0,

where ep = 1 if ' = Q,, and ep = 0, otherwise. This sequence is non-
split if and only if (F=Q,, p>2,r=p—2and \==%1) or (F =Qy
and A =1) (and hence r =1 and s =0).

Proof. (i) follows from Lemmas 7.10, 7.9, 7.5, 7.6, 7.7 and 7.8. Proposition
7.13 implies that the subspace (¥, Eéﬁp of S is stable under the action of ‘H
and is isomorphic to M(r, A). We denote the corresponding quotient by Q.
Let v; be the image of % and vy be the image of A™'x! in Q. Proposition
7.14 implies V1€, (pi = U1y V2€ s pi = V2, vt = ve, VI = v1, 111, =0
and.:

vo (T, — Z 2P = AN (=1) gy
pery
Now xa ' ((39)) = A7""2"(\u)™*" hence P p2' 7 £ 0 if and only
if (Xofpi)s — ya?'. These relations and Corollary 6.4 imply <U1,U2>Fp =
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M(s®, epAt, wr+pi). Suppose that the sequence does not split. Then Corol-
lary 6.5 implies that A = (—1)""*A\"'ep, and hence F = Q, so that i = 0.
Assume p > 2, then r +1 # r (p — 1) and hence Corollary 6.5 implies
r=s=p-—2and A = 1. Let v := {xa ! x*a}, since r = p — 2 we
have Z, = T,,,T1 + TuT,,. If the sequence was split then Z, — A would kill
S. However £(Z, — ) = AN 'w'T,, — A" = (3 ,cpx w7 1)e! # 0, so the
sequence does not split. Assume now p = 2. Since r > 0 we get r = 1 and
hence s =0, A =1 and Z, =T,/ Ty + 1T}, + Ti. The same argument shows
that xk*(Z, — 1) # 0 and hence the sequence can not split. O

We now sum up the results of this section.

Theorem 7.16. Let A EF; andr €{l,---,q—1}. For0<i< f—1, let
s € {0, ,q— 2} such that s©) = —r — 2p’ (¢ —1).
(1) Assume F' # Q, then:
i1 |
R'Z(m(r, ) 2 M(r, )*F%) & @B M(s9,0,w").

=0

(i) Assume F = Q, and, if \ = £1, assume furthermore p > 2 and
r#p—2. Then:

RYZ(7(r,\) = M(r, \) @ M(s9 X1 wrth),

(i) Assume F =Q,, A =+1,p>2 andr =p—2 then R*Z(x(p — 2, £1))
15 the unique non-split extension of Ho—1-modules:

0— M(p—2,+1) —R'Z(n(p—2,£1)) —= M(p—2,£1) —0.

(iv) Assume F = Qy and A = 1 then R'Z(m(1,1)) is the unique non-split
extension of Hp—1-modules:

0—M(1,1) —RZ(n(1,1)) — M(0,1) —0.
Proof. This is a reformulation of Propositions 7.13, 7.14 and 7.15. Note that

dimg Hom((, NT)/Z1,F,) = dimg, Hom(1+pp,F,) = [F : Q). In (iii) and
(iv), the uniqueness of the extension is given by Corollary 6.7. [
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8 Extensions of principal series

We keep the notations of sections 6 and 7 and still assume F' is a finite
extension of Q,. We fix a smooth character F* — F; and study groups
Extg; , (7, 7) of G-extensions with central character y.

Theorem 8.1. Let r € {1,---,¢q—1}, X € F;, 7w = 7w(r,\) and M :=
M(r,\) (see Definition 6.2). Let T be a smooth admissible irreducible non-
supersingular representation of G over Fp with central character x with x as
in (13). Then there exists a short exact sequence:

0 — Exty,__ (Z(7), M) — Extlcyx(T, 7) — Homy(Z(7),R'Z(7)) — 0 (14)

where EXté‘,x(T? ) denotes the F,-vector space of G-extensions with central
character x.

Proof. Let E be the class of an exact sequence in Repg ,

0 s € T 0.

Taking [;-invariants we obtain an exact sequence of H-modules:

0—=T(7) —=TI(€) —=I(r) —2& RZ(r) .

Hence we obtain a map EXt%;’X(T, 7) — Homy(Z(7),R'Z(7)), E +— ¢p. We
claim that this map is surjective. Let ¢ € Homy(Z(7),R'Z(7)) be non-zero.
By Corollary 9.11 below (note that if p = 2, 7|g, has property (S) below by
Corollary 9.3), there exists an exact sequence:

01— 0Q—>0Q —0,

where (2 is a smooth admissible representation of G over F, such that Q|
is an injective envelope of sock 7 in Repy . Since Q[;, is an injective object
in Repy, ,, by taking [;-invariants we obtain an exact sequence:

0—M—ZIZ(Q) - I(Q) — R'Z(r) — 0.

By examining the construction of Q we observe that Z(Q2) = M & S, where S
is a direct sum of supersingular modules (compare [18, Prop. 6.4.5]). Since
7 is irreducible and non-supersingular, Z(7) is irreducible and hence ¢ is
an injection. Since 7 is non-supersingular, Corollary 6.5 implies that there
exists no non-split extensions between a supersingular module and Z(7). In
particular Exty,__ (Z(7),Z(Q2)/M) = 0. From the exact sequence:

0— Homy(Z(7), Z(2) /M) — Homy (Z(7), Z(Q)) — Homy (Z(7), R'Z (7)) —0
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we thus get ¢ € Homy(Z(7),Z(Q)) such that the composition Z(7) 2,
Z(Q) — R'Z(m) is ¢. Now let E be the image of ¢ under:

Homy (Z(),Z(Q)) = Homg(r,Q) % Ext,, (r,7)

(use the adjunction property of Z and 7 (see §6) together with 7Z (1) = 7
for the first isomorphism), then one checks that ¢ = ¢. Let us now prove
exactness in the middle of (14). Suppose that E is such that ¢ = 0, then
we obtain an extension of H—;-modules:

0—Z(m) =M Z(e) Z(T) 0.

If this extension is split, Corollary 6.9 implies that £ = 0. Corollaries 6.10,
6.9 and Proposition 6.8 imply that, after applying 7 to this exact sequence,
we obtain an exact sequence of G-representations:

0—=7——>T7L(e) —=T7—>0.

This implies that the natural map 7Z(e) — € is an isomorphism, hence we
get back E and thus exactness in the middle of (14). Let us finally check
injectivity on the left of (14). Suppose that we have an exact sequence of
‘H—1-modules:

0 M N Z(7) 0.

Corollary 6.10 implies that, after applying 7', we obtain an exact sequence
of G-representations:

0—>7—>T7T(N)—=7—>0.

Let E be the class of this extension in Exthx(T, 7). After applying Z we
obtain a diagram of H-modules with exact rows:

0 M N Z(T) 0

S N

0——M—ZIT(N) Z(7)

Hence ¢p = 0 and N = Z7 (N). This implies that 7 induces an injection
Exty,__ (Z(7), M) < Extg, (7,7). O

Corollary 8.2. Let m:=7w(r,\) and M := M(r,\) as in Definition 6.2 with
ref{l,---,q—1} and)\GF;. Let x as in (13).
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(i) There exists an injection Hom(F*,F,) — Extg  (m, 7).

(i) If (N, F) # (£1,Qq) and (N, F,r) # (£1,Q3,2) then this injection is
an isomorphism and the subspace Ext%{wzl(M, M) wia (14) corresponds
to the unramified homomorphisms.

Proof. Let § € Hom(F*,F,). Welift § to a homomorphism of P via P — F*,
(§5) — ad™". Let e5 be the extension corresponding to § via Extp(x, x) &
Hom(P,F,). By inducing to G we obtain an exact sequence:

0 —Ind% x —Ind% es — Ind$ y — 0.

By evaluating functions at identity, we see that this sequence splits if and
only if § = 0. This proves (i) as m ~ Ind%y. Let vy, v, be the basis of
the underlying vector space of €5 such that for all ¢ € P, we have gv; =
x(g)v1 + x(9)0(g)ve and gvs = x(g)ve. Denote by U (resp. U?®) in this
proof (and only in this proof) the unipotent subgroup of P (resp. P?®). Let
o1 € Indg e¢s be the function with Suppy; = PI and ¢;(u) = v; for all
u € [1NU®, and let @y := ZAG]FQ((l) [’1\] )n; Yp1. The images of p; and s form
a basis of (Ind$ x)*. Moreover, [(u — 1)¢1](ns) = 0 for all w € I, N P* and
[(tu — D)1](1) = 6(t)vg for all t € TN 1 and w € I; NU. Seeing 6|14y,
as an element of Hom((I; N T)/Z,,F,), we let ot ,, and 8]t ., be as in
(ii) of Definition 7.11. We thus get that ¢, maps to d[t,,, and ¢, maps
to 0|}, ,, in R'Z(r) via (12). The assumptions on A, F' and r imply that if
¢ € Homy (M, R'Z(7)) is non-zero then ¢ is an injection and the proof of
Theorem 8.1 goes through even in the case when m = 7 is not irreducible.
Moreover, ¢p(M) = (0%, 5l>Fp for some § € Hom(1 + pr,F,). So we obtain an

exact sequence:
0 — Hom"™ (F*,F,) — Hom(F*,F,) — Homy (M,R'Z(7)) —=0

(where Hom"™ means homomorphisms which are trivial on O}). Hence we
obtain an injection Hom"™ (F*,F,) — Ext;,__ (M, M). Since both spaces
are one dimensional, this is an isomorphism. ]

Corollary 8.3. Letr € {1,--- ,q— 1}, A € F; and x as in (13). Assume
F=Q,, (p,\) #(2,1) and (p,\,r) # (3,£1,2). Let s € {0,--- ,p—2} such
that s = —r —2 (p—1). Let:

d = dimg Ext  (m(s, A7 W), 7 (r, N).

Ifr=p—2 and A = 1 then d = 2. Otherwise, d = 1.

33



Proof. Set M’ :== M(s,\™",w™™) and M := M(r,\). If Homy,(M', M) # 0
then w™™ =1 and hencer+1=0 (mod p—1), A= A"!, s=r (mod p—1).
This can only happen if (p,A\,r) = (3,£1,2), (p,A\) = (2,1) or p > 2 and
(r,A\) = (p — 2,£1). We have excluded the first two cases. In the third case
m(r,\) 2 m(s, \7, w2 7(p—2,41) and hence it is dealt with in Corollary
8.2, so we obtain d = dimg Hom(Qy, F,) = 2. If Exty,__ (M’, M) # 0 then
Corollary 6.5 implies that either we are in the cases considered before or
r+1=r(p—1)and X = (=1)"A"!. This implies (p,\) = (2,1). The
assertion follows from Theorems 7.16 and 8.1. O

Corollary 8.4. Letr € {1,--- ,q— 1}, A € F; and x as in (13). Assume
F=Q,, then Exté,x(ﬂ(s, 0,n),m(r,\)) =0 for all s and n.

Proof. Set m:=m(r,\), 7" :=7w(s,0,n), M := M(r,\) and M’ := M(s,0,n).
It follows from [6] that Z(n") = M’ and [18, Cor. 6.1.8] implies that, for
all 7 in Rep, we have Homy (M',Z(7)) = Homg(n', 7), hence n’' = T (M').
Theorem 7.16 implies that Homy (M’ R'Z(7)) = 0. Corollary 6.5 implies
that Ext%iwzl(M’, M) = 0. The proof of theorem 8.1 then goes through to
show that Extg, (7', ) = 0. O

9 General theory of diagrams and represen-
tations of GLs

We define basic diagrams and use them to construct smooth admissible rep-
resentations of G over IF,, generalizing the constructions of [18]. We don’t
assume anything on F'.

We start with a few lemmas. Let [H] := {(P‘] 0 ) A€ B} G the

0 [u]
subgroup of & generated by [H] and II and set G := G /w”.

Definition 9.1. Let 7 be a smooth representation of K1 such that w acts
trivially. We say that T has property (S) if 7' — 7 has a G-equivariant
section.

Proposition 9.2. Let 7 be a smooth admissible representation of K1 such
that w acts trivially. If p # 2 then T has property (S). If p = 2 then assume

that for every character x : H — ﬁ: such that x = x° there exists a subset
S of e, such that (I1-S)NS =0 and (I1-S)US is a basis of T'e,. Then
T has property (S).
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Proof. Since w acts trivially the action of G on 7/t factors through G. We
claim that the assumption implies that 711 is an injective representation of G.
The order of G is equal to 2(q—1)?, hence if p # 2 the claim holds trivially. If

p=2and x # x° then Ind[gH] X is irreducible, and injective since the order of
[H] is prime to 2. Hence, 7 (e, +e,s) is injective. If y = x*, the assumption
on 7 implies that 7'e, = @ Ind?H} X- Since Ind[gH] X is injective we obtain the
claim. But the claim implies that there exists a splitting. O

Corollary 9.3. Let m be a smooth admissible representation of G such that
w acts trivially. Assume that p = 2, and that for every character x : H — F;
such that x = x*, there exists a filtration of H-modules of w*e, such that the
graded pieces are isomorphic to either M(0,\,n) or M(q — 1,\,n) for some
A and n. Then w|g, has property (S).

Proof. This follows from the fact that the underlying vector space of M (r, \,n)
is two dimensional with basis {v, IIv}. O

Corollary 9.4. Let m be a smooth admissible representation of G such that
w acts trivially. Assume that p = 2 and that socg 7 consists of supersingular
representations, then w|g, has property (S).

Proof. 1t follows from Corollary 6.5 that there are no extensions between
non-supersingular and supersingular H-modules. This implies that if a non-
supersingular module is a subquotient of 7/, then there exists an irreducible
non-supersingular H-submodule of 7/t. However, Proposition 6.8 would im-
ply that an irreducible non-supersingular representation occurs in socg 7.
Hence, every irreducible subquotient of 7/t is supersingular. Let y : H — F;
be a character such that x = x* and choose any filtration of 7'te, such
that the graded pieces are irreducible H-modules. It follows by above that
the graded pieces are isomorphic to M(0,0,7) for some 7. Hence, 7|g, has
property (S). O

Lemma 9.5. Let 7 be a smooth admissible representation of K1 such that the
fized uniformizer w acts trivially on T and assume that T has property (S).
Let v : 7|7 — Inj(7|;) be an injective envelope of T|; in Rep;, then there exists
an action of &1 on Inj(t|;) such that v is R-equivariant. If T satisfies the
conditions of Proposition 9.2 then this action is unique up to isomorphism.

Proof. Let s : 7 — 71 be a G-equivariant section. Define ¢; : 7 — Indg' 7/,
v +— [g — s(gv)]. This is a R;-equivariant injection since it induces an
injection of 771, Now (Indé1 i) = Ind[lH] 71 is an injective envelope of 711
(and hence of 7) in Rep;. Hence there exists an [-equivariant isomorphism
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W Inj(r|;) = Ind[[H] 711 such that ¢, = ¢or. We may use ¢ to define an action
of 8 on Inj(7|;) such that ¢ is K;-equivariant. If 7 satisfies the conditions
of Proposition 9.2 then 7/t is an injective representation of G, and hence
Ind?1 711 is an injective envelope of 7 in the category of £ representations
on which w acts trivially. This implies the assertion. O]

Lemma 9.6. Let 0 = & ,0; where (0;)1<i<m are irreducible representa-
tions of K. Let 0 — Injo be an injective envelope of o in Repy. Let
e € End;(Inj o) be an idempotent and suppose that there exists an action of
R1 on e(Injo) extending the action of I with w acting trivially. Then there
exists an action of K1 on (1 — e)(Injo) with w acting trivially.

Proof. Set V := e((Injo)™) and W := (1 — e)((Injo)™). Denote by V, and
W, the x-isotypic subspaces for the action of I, where x : H — F: . We

have:
V=P w=pw,
X X

where the sum is taken over all the characters x. The action of II on e(Inj)
induces an isomorphism V) = V). and hence dimg V) = dimg Vs for all .
It follows from [18] that for every o; and every x we have:

Iy

dimg (Inj o) = dimg (Inj o)k,

where Injo; is an injective envelope of o; in Repg. Since Injo = @, Inj o,
we obtain dimg (Inj o)l = dimg (Inj J)QS and hence dimg W, = dimg W,
for all x. For every ordered pair (x, x*) such that y # x*, choose an isomor-
phism of vector spaces ¢y,ys : Wy — Wys so that ¢y« = ¢l . If x = x°
then Wy = W, and we set ¢\« := idw,. Define ¢ € Endg (W) by:

¢(wx) = Oy (wx)a Vw, € Wy, Vx.

Then ¢? = idy and ¢u¢™ w = Hull*w, u € I, w € W. Hence by sending
IT to ¢ we obtain an action of & on W. Since Injo is an injective object
in Repg, Inj|; is an injective object in Rep;, and thus (1 — e)(Injo) is an
injective object in Rep;. Since W = (1 — ¢)(Injo)”*, we have that W —
(1 —e)(Injo) is an injective envelope of W in Rep;. Since I; acts trivially on
W, W has property (S) and Lemma 9.5 implies there exists an action of £;
on (1—e)(Injo) extending the action of I and such that w acts trivially. O

Definition 9.7. A diagram D is a triple (Do, Dy, 1) where Dy is a smooth
representation of Ko, Dy is a smooth representation of K and r : D1 — Dy
18 an 1 Z-equivariant morphism.
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This definition is taken from [18, §5.5]. Diagrams equipped with obvious
morphisms build an abelian category D, which is equivalent to the category
of G-equivariant coefficient systems on the Bruhat-Tits tree X for PGLy(F)
([18, Th. 5.5.4)). Given D = (Dy, Dy,7) € D, we will write Ho(X, D), or
more simply Hy(D), for the 0-th homology of the coefficient system corre-
sponding to D. Explicitly, one has an exact sequence:

-Ind§ (D, ®6_,) 2> c-Ind§ Dy —— Ho(D) —0
where 0 is the composition of the following obvious maps:
c-Ind§ (D ® 6-1) <= c-Ind§, Dy — c-Ind$, Dy — c-Ind% , Dy.

In particular, Hy is a functor from D to Rep,. This functor has a section,
namely the constant functor K : 7 — (7|g,, 7| g, ,1d).

Theorem 9.8. Let D = (Dg, Dy,7) be a diagram such that Dy is admissible,
r is an injection and w acts trivially on Dy. If p = 2, assume Dy has property
(S). Let 0 := sock Dy. Then there exists an injection of diagrams:

LD — K(Q),

where § is a smooth representation of G such that Q| = Injo with o — Injo
an injective envelope of 0 in Repy.

Proof. Since Dy is admissible, DE is finite dimensional and hence o & @&, 0;
with o; irreducible. Since Dy|x is an essential extension of o, there exists an
injection ¢y : Dy|x < Injo making the diagram of K-representations:

oc——>Injo

N

Dolk

commute. Put an action of K on Inj o by making w act trivially and denote
this representation €2y. Then ¢y : Dy — €y is Kp-equivariant. Set ¢; := tgor.
Since r and ¢y are injections, we obtain an injection ¢y : Di|; < $g|;. Since
Qo|; is an injective object in Rep; and ¢; is an injection, there exists an
idempotent e € End;(€) such that e oty = 11, and ¢; : Dy|; — () is
an injective envelope of Dj|; in Rep;. Since K acts on D; with w acting
trivially, Lemma 9.5 implies there exists an action of K on e(£2y) such that
11 2 D1 — e(Qp) is Ri-equivariant. Moreover, Lemma 9.6 implies there exists
an action of &) on (1 — ¢e)(€Q) extending the action of I. This defines an
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action of & on e(Qy) ® (1 —€)(2): we denote this representation by ;. We
obtain an injection of diagrams:

L= <L07L1> : (D(),Dl,?“) — (Qo,Ql,id).

It then follows from [18, §5] that there exists a representation €2 of G, unique
up to isomorphism, such that (€, ©,id) = K(Q). O

Lemma 9.9. Let D = (Dq, Dy,r) be a diagram and set:

Fo = {f € c-Ind§, Dy, Supp(f) C Ko}

Let € be a smooth representation of G and suppose that we are given an
injection of diagrams v : D — KC(Q2). Then the composition:

Fo—= c-IndS, Dy — Ho(D) 22

1S an injection.

Proof. Let ¢ : Fy — € denote the above composition. Evaluation at 1 in-
duces an isomorphism Fy = Dy. It follows from the proof of [18, Prop. 5.4.3]
that the diagram (Ker ¢, 0,0) is contained in Ker:. Since ¢ is an injection,
SO is ¢. O]

Proposition 9.10. Let D = (Dg, Dy,r) be a diagram and suppose we are
given an injection of diagrams v : D — K(§2), where Q is a smooth repre-
sentation of G such that sock Q) = sockx Dy. Let m be the image of Ho(t) :
Ho(D) — Q. Then Q is an essential extension of w. In particular, if 7w is
irreducible then 7 is the G-socle of 2.

Proof. Lemma 9.9 implies socx Dy C sock m C sock §2, where we have iden-
tified Dy with the image of Fy in 2. Since sockg Dy = sock §2, we obtain
socg ™ = sock §). So Q| is an essential extension of 7|g, which implies
the first part. Suppose now that 7 is an irreducible representation of G. If
7’ C  is a non-zero G-invariant subspace, we thus have 7’ N7 # 0, and
hence m C 7’ as 7 is irreducible. So 7 is the unique irreducible G-invariant
subspace of €. O

Corollary 9.11. Let m be an admissible representation of G such that w
acts trivially on m and o = sock 7. If p = 2, assume w|g, has property (S).
Then there exists an injection m —  where Q2 is a representation of G such
that Q| = Injo.
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Proof. We apply Theorem 9.8 to the diagram IC(7) and obtain a represen-
tation  of G such that Q|x = Injo together with an injection of diagrams
L K(r) — K(Q). Applying H, on both sides gives a map Hy(¢) : m — .
Lemma 9.9 implies that Hy(¢) is injective. O

We say that a diagram D = (Dg, Dy, r) is basic if w acts trivially and
there exists an m > 1 such that r induces an isomorphism r : D; & Dém
(see §1 for 1,,,). We say that a basic diagram D is O-irreducible if it does not
contain any proper non-zero basic subdiagrams. For e > 1, we say that a
basic diagram D is e-irreducible if D does not contain (x o det, x o det, id)
where y : F* — F; is a smooth character, r : Dy = D(If“ and for every
basic proper subdiagram D’ C D, we have r : D} & (D})%+ with ¢/ < e.
Note that, if D is O-irreducible, then D = (D', DI* ).

Theorem 9.12. Let D be a basic e-irreducible diagram with e > 0 and
suppose that we are given an injection of diagrams ¢ : D — KC(2) where €2 is
a smooth representation of G such that sock ) =2 sockg Dy. Then the image
of Ho(t) : Hy(D) — 2 is an irreducible representation of G.

Proof. Let 7 be the image of Hy(D) — Q. By Lemma 9.9, we have injections
D — K(r) — K(£2) and identify D with its image in K(7). Suppose that
7' is a non-zero G-equivariant subspace of 7 and set K(7') N D := (Do N
7', D;N7’, can) (can stands for the canonical injection). Since (DyNa’)lett =
Dit'na’ = DyNa’, we obtain that K(n/)ND is basic. Lemma 9.9 implies that
sockx Dy = sockg m = sock Q. Hence, Do N 7" # 0 and hence K(7') N D # 0.
Assume D # KC(n') N D, then there exists ¢ < e such that D; N 7' =
(Do N 7')ler+1. Since sl 118 C Iy we have s(Do N 7)o+t C (Do N w’)lert,
Since Dy N7 = (Do N ')+t we obtain s(D; N7’) € Dy N7’ and hence that
D, N7’ is a K-invariant subspace of Dy N 7’. It follows from [18, §5] that
there exists a representation p of G such that (Dy N7, Dy N7’ id) = K(p).
Since I.4q acts trivially on Dy, it will be contained in the kernel of p, and
hence Kerp will contain SLy(F'). Hence there exists a smooth character
x:F*— F; such that (yodet, yodet,id) is a subdiagram of D. This implies
D = (x o det, y odet,id) and hence m = x o det is irreducible. Otherwise
D C K(n') € K(§2). Taking Hy, we obtain that the image of Hy(D) — € is
contained in 7’ and hence 7 = 7', O

Set t :=1Is = (§ ). For 7 in Rep, and m > 0, we define a diagram:
S"(m) == (8™(m)o, S™(m)1, can),

where 8™ (7) is the smallest subdiagram of IC(7) such that the following hold:
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(i) socxg ™ C 8™ (7)o
(i) S™(m)r = S(m)y"*

(and where can stands for the canonical injection). Given two subdiagrams
D = (Dy, Dy, can) and D' = (Dj, D}, can) of K(m) satisfying (i) and (ii) for
a given m, we may consider DN D’ := (DyN D}, D; N D}, can). We have that
socx m C Do N D)y and (Do N D))+t = D+t 0 (Dy)+1 = Dy N D). Hence
S™(r) is well defined. We note that S™(xr) C (g&m+1 gln+1 can).

Theorem 9.13. Let m be an admissible representation of G which is G-
generated by (socy m)!.

(i) If p = 2, assume 7|g, has property (S). If there ezists e > 0 such that
S¢(m) is e-irreducible, then m is irreducible.

(11) Assume 7 is irreducible and either socy 7 is multiplicity free or m can
be realized over a finite field. Then there exists e > 0 such that S¢(r)
is e-irreductble.

Proof. We prove (i). Corollary 9.11 gives an injection m < ) where € is a
representation of G such that Q|x = Injo with o := socx 7 and ¢ — Injo
an injective envelope of o in Repy. We obtain an injection of diagrams
S"(m) — K(Q) for all m > 1. We have socg(S™(I1)g) = sockx m = sock 2,
so if 8™ () is irreducible, then Proposition 9.12 implies that the image of
Ho(X,8™(m)) — Q is irreducible. Since 7 is generated by (socy m), 7 is
contained in this image and is thus also irreducible. We prove (ii). Suppose
7 is an irreducible representation of G' and sock 7 := @} ;0; is multiplicity
free. Since G = I, Kt™ K Z and 7 is irreducible, for each ¢ there exists m;
such that:

SOCK (Z(K . tjaz-)) = SOCk . (15)

J=0

Let m > max;(m;), m > 1 and suppose 8™ () is not m-irreducible. Then it
contains some basic m-irreducible subdiagram D = (Dy, Dy, can). Since all
the o; are distinct, we have o; C Dq for some i. Since I, C K; and m > 1,
we have o; C Dy, hence to; = Ilo; C Dy for all ¢ and thus (K - to) C D,.
Since st’o is fixed by I;;9, by repeating the argument for all j we get:

3

<.
I
o
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As m — 1 > m;, we have socx Dy = sock 7 by (15), which implies that
D = 8™(7) is m-irreducible. Suppose 7 is an irreducible representation of
G which can be realized over a finite field. Let o4,...0, be distinct irre-
ducible summands of sock w. Since we are working over a finite field, the set
Hompg (0;, ) is finite. For each ¢ and each ¢ € Hompg (0;, 7), there exists m; 4
such that:

SOCK (Z(K : tj¢(ai)>> = SOCK T.

Jj=0

Let m be an integer such that m > max; 4(m; ), then the previous proof
goes through to show that S™(m) is m-irreducible. O

In the rest of the paper, we call basic 0-diagram any basic diagram such
that r : Dy = D{' < Dj.

10 Examples of diagrams

We give a few simple examples of basic 0-diagrams, in particular we list all
irreducible basic 0-diagrams for f = 1.

We denote by st :== (p — 1,--- ,p — 1) the Steinberg representation for
. Consider the following list of basic 0-diagrams D = (Dg, Dy, ) where we
make (” 0) act trivially everywhere:

Op

(1) (D07 D17r) = (L 171d)

(i) (Do, Dy,7) := (st,st’t, can) where II acts on st’* by identity and can is
the canonical injection

(iii) (Dg, Dy,7) := (1 @ st, 1 @ st can) where II acts on 1 @ st!t = F vy @

F,v,_1 with vg € 1 and v,y € st by (A € F, \ {~1,0,1}):

[Mvy = vg—1+ Avg
M, 1 = (1= A)vy— vy

(iv) (Do, D1,7) := (Ind} x, (Indj )™, can) where x # x* and II acts on
(Indj; x)" = F,fy @ F,¢ (with the notations of §2) by (\ € F;):

Hfo = Ao
Mo = A1f,
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(v) (Do, Dy,7) := (0 @ ol olt @ ol can) where o is any weight and 1I
acts on o't @ ol*! - Fp’ug © vaa[s] (with obvious notations) by:

M, = v,

HUU[S] = V4.

All of the above basic 0-diagrams are irreducible. Moreover, one checks
that the diagrams in (iii) and (iv) are all distinct when A varies and the
diagrams in (v) are all distinct when {o, o*!} varies. Note that, after a base
change on (vg,v,-1), (iil) is like (iv) but for x = x* (however, we chose to
separate the two cases). The diagrams (v) are studied in [18].

From the results of [4], [6] and [18] (see also [22] and [17]), we deduce the
following;:

Theorem 10.1. Assume F' = Q,. The functor D — Hy(D) (see §9) in-
duces a bijection between the set of isomorphism classes of irreducible basic
0-diagrams and the set of isomorphism classes of irreducible smooth admis-
sible representations of GLy(Q,) over Fp. The inverse bijection is given by
7 ((K - wlt), 71t can) where can stands for the canonical injection.

The above list exhausts all irreducible basic 0-diagrams up to twist when
f =1. When moreover F' = Q,, the above bijection D — Hy(D) gives:

(i) Ho(D) =1

(ii) Ho(D) =St ® 6_1 (St is the Steinberg representation of GL2(Q),) over
Fy)

(iii) Ho(D) exhaust the unramified irreducible principal series of GL2(Qp)
over IF, up to twist

(iv) Ho(D) exhaust the ramified irreducible principal series of GL2(Q,) over
F, up to twist

(v) Hy(D) exhaust the supersingular representations of GLy(Q,) over F,.

Note that, for 7 irreducible admissible and F' = Q,, p > 2, one has
(K - 7ft) 7t can) ~ (7% 7t can) if and only if 7 is not supersingu-
lar (when p = 2, we are not sure of 751 when 7 is a twist of 7(ry,0) =
(c-Ind, SymroFi)/(T) with 7o = 0 or 79 = 1 (see [4] or §6 for T and see
example (iii) of §16 for f =1)).

Needless to say the above theorem completely breaks down when F' # Q,,.
For instance, if F' = Q,s and f > 1:
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(i) there are many more irreducible basic 0-diagrams D than the ones of
the list above

(ii) Ho(D) can have infinitely many distinct quotients
(iii) these quotients can have a bigger K-socle than the one of Dy
(iv) 7 can be irreducible eventhough ((K - 71), 71 can) is not, etc.

Let us finish this section with a fancy series of examples of reducible basic
O-diagrams for f = 2 leading to irreducible admissible 7 when F' = Q,.

Assume f =2 and let 0 := (1,p — 2) ® det? ' and x the action of I on
o', Let 7 be the following unique I'-extension with I'-socle 1:

0—=1—=7—0®c —0.
For a positive integer n, set:

Do(n) :=std 7 @}ndg X @ - @Indy X
n times

and recall that o is the socle of Indy x* and ol its co-socle. Number the
Ind} x* from 1 to n and let v; := (fy);, v5 := ¢; using the notations of §2, so
that (Ind} x*)* = Fu; @ Fuf, 1 < i < n. Let w be a basis of 1 C 7 and
vg (resp. v3) an H-eigenvector in 771 which is sent to o/t (resp. U[S}Il) under
7 — 0 @ ol so that we have 71t = F,w @ F vy @ F,v5. Finally, let v’ be a
basis of st’t. Hence we have:

Do(n) =Fw' & (Fow & Fv @ Fup) @ <@(vai @ va§)>.

=1

Define an action of IT on Dy(n) as follows:

Mw =

M = w

v} = 41, 0<<n—1
vy = v, 0<1<n—1

v, = v

vy = v

and call D;(n) the resulting R;-representation. Denote by D(n) the basic
0-diagram (Dg(n), D1(n), can) where can is the canonical injection Dy (n) —
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Dy(n): the notation is actually bad since the isomorphism class of D(n)
depends on the choice of the vectors v;, v;. Using techniques analogous to
that of §18, one can prove the following proposition (we don’t give details
here, as we don’t use it in the paper):

Proposition 10.2. Assume F' = Q2. For any injection of diagrams ¢ :
D(n) — K(§2) where Q is a smooth representation of G such that socg €2 =
sockx Do(n), the image of Ho(v) : Ho(D(n)) — Q is an irreducible admissible
representation of GLo(Q,2) with the same K-socle as Dy(n).

(The point being that, although D(n) is reducible, the techniques of §9
produce irreducible representations from it). Using Theorem 9.8, this implies
that each Hy(D(n))) has at least one irreducible quotient with the same K-
socle as Dg(n). Now, let D be as in example (v) above with ¢ = 1 (and
thus ol = st by definition, see §1). One can easily check that Hy(D) =
(C-Indg0 1)/(T). As D — D(n), we see that Hy(D) has infinitely many
non-isomorphic irreducible admissible quotients with growing K-socle.

11 Generic Diamond weights

From now on and until the end of the paper, we assume F' = Q,r, although
many of the forthcoming results actually only depend on the residue field of
F. Following [8] and [9], we briefly recall the list of weights associated to a
generic Galois representation p.

We first consider the case where p is reducible and split.

Let (zo, - ,zy_1) be f variables. We define a set RD(x, -+ ,x5_1) of
f-tuples X := (Xo(@o), -+, Aj—1(xy—1)) where A\;(x;) € Z £ x; as follows. If
=1 Xo(zo) € {wo,p — 3 —xo}. If f > 1, then:

(i) Ni(zy) € {zjx;+1L,p—2—a;,p—3—x;} fori € {0,--- , f—1}
(11) if )\Z(.CEZ) S {ilfi, x; + 1}, then )\i-‘rl (mi-i—l) S {ilfH_l,p —2— mi-}—l}
(111) if /\Z(l'z) € {p—?—x,,p—3—xl}, then )\i—&—l(‘ri-‘,—l) c {p—3—$i+1,fbi+1+1}

with the conventions x; = xy and Af(xf) = Ag(zo). An element of the set
RD(xg, -+ ,x5-1) is called a formal reducible Diamond weight.
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For A € RD(xg, -+ ,x5_1), define:

F-1
1 . )
e(A) = 5( p(x; — /\Z(xz))) if Ap_1(zpq) € {zpo1, 251 + 1}
i=0
1 —
i i\ (o -
e(N\) 5 (p 1+ ;p (x; )\Z(xl))> otherwise.

The following straightforward lemma is left to the reader.
Lemma 11.1. One has e(\) € Z & @) Za;.

Lemma 11.2. Let p : Gal(Q,/Q,r) — GLy(F,) be a continuous representa-
tion such that its restriction to inertia is:

ro+14p(ri+1) 4 dpf (o1 +1)
[ e

with —1 < r; < p—2. Let us assume 0 < r; < p — 3 for all © and not all
ri equal to 0 or equal to p — 3. Then the weights associated to p in [8] are
exactly the (all distinct) weights:

()\0(7”0), Tty )‘ffl(rffl)) ® dete()\)(m,m ’Tfil)n
Jor A= (Xo(zo), -+, Ap-1(zf-1)) € RD(zo," -+, xp1).
Proof. See [11, Prop. 1.1 and Prop. 1.3] and [11, §3]. H

We now consider the case where p is irreducible.

Let (xg,--- ,z_1) be f variables. We define a set ZD(xg,--- ,z5_1) of
f-tuples X := (Ao(z0), -+, Ap—1(xf_1)) where N\i(z;) € Z £ z; as follows. If
f =1, )\0(1‘0) S {l’o,p —1- I‘O}. If f > 1, then:

(i) Ao(xo) € {xo,x0—1,p—2—20,p—1—2x0} and A\;(z;) € {zs, 2, +1,p—
2—z;,p—3—x;}iti>0

(ii) if ¢ > 0 and N\;(z;) € {z;,x; + 1} (resp. Ao(zo) € {0, x0 — 1}), then
Nit1(Tip1) € {Zig1,0 — 2 — i1 }

(iii) if 0 <i< f—1and N(z;) € {p—2—x;,p— 3 —a;}, then A\ 1(z;41) €
{p—3—zis1, 241 + 1}

(iv) if Ao(zo) € {p—1— o, p — 2 — x0}, then Ny (x1) € {p —3 — 21,21 + 1}
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(v) if Apoq(zpo) € {p—2—xp-1,p — 3 — 41}, then A\o(zp) € {p — 1 —
Lo, Lo — ].}

with the conventions z; = xy and Af(xf) = Ao(xp). An element of the set
ID(xg,- -+ ,xp_1) is called a formal irreducible Diamond weight.

For A € ID(x, - ,xy_1), define if f > 1:

F-1

() = (D= M) i Ao ) € fapa g+ 1)
f-1

e(\) = %(pf -1+ Zp’(xz - /\Z(:pl))> otherwise,

and, if f =1, e(\) := 0 if M\o(z0) = o, e(N) := 2o if Ao(z9) =p — 1 — xy.

The following straightforward lemma is left to the reader.
Lemma 11.3. One has e(\) € Z & @i:ol ZLx;.

Lemma 11.4. Let p : Gal(Q,/Q,s) — GLo(F,) be a continuous representa-
tion such that its restriction to inertia is:

ro+1+4p(ri+1)+-+pf ~H(rp_141)
Wy g 0
wpf(m+1)+pf“(r1+1)+-~~+p2f*1(rf_1+1) ©n

with 0 <rg <p—1and =1 <1r; <p—2 fori >0, and where wyy is defined
as in (8) from one of the two embeddings F;f — F; giving back the fized

embedding F;f — F; by restriction to ]F;f. Let us assume 1 < rog < p— 2
and 0 < r; < p—3 fori > 0. Then the weights associated to p in [8] are
exactly the (all distinct) weights:

()\0(7«0)’ cee )\f—l(rf—l)) ® deteo\)(row“ 77“f—1)77
fOT' A= ()\0($0), cee ,)\ffl(fﬂffl)) € ID(QIQ, cee ,.Cli‘ffl).
Proof. See [11, Prop. 1.1 and Prop. 1.3] and [11, §3]. O

The set RD(zg, - ,xy-1) (vesp. ID(xzg,--- ,xs—1)) can be naturally
identified with the set of subsets S of {0,---, f — 1} as follows: set i € S
if and only if X\;(z;) € {p —3 — z;,x; + 1} (resp. if i > 0 set i € S if
and only if A\;(z;) € {p —3 — x;,x; + 1} and set 0 € S if and only if
Xo(zo) € {p — 1 — xg,xo — 1}). One checks that, given S, there is only

66



one possibility for (A;(x;)); € RD(xo, - ,xp-1) (vesp. € ID(xg, -+ ,T5_1)).
By Lemmas 11.2 and 11.4, when p is tamely ramified (and generic) we
can thus identify D(p) with the subsets of {0,---,f — 1}. If ¢ € D(p),
A € RD(zg, -+ ,x5-1) (resp. ID(zg, -+ ,x5-1)) and S C {0,---,f — 1}
correspond to o, we set (o) = £(\) := |S].

For \, N € RD(x¢,--- ,x¢_1) (resp. ID(xg, -+ ,xf_1)) corresponding to
S,8 C {0,---,f — 1} respectively, we define A N X' € RD(zg, -+ ,xf_1)
(resp. ZD(xo,--- ,xy—1)) as the element corresponding to SNS’ and AUN €
RD(zg,- -+ ,x5-1) (resp. ID(xp, -+ ,x¢_1)) as the element corresponding to
SUS’. We also define a partial order on the elements of RD(zg, - ,25_1)
(resp. ZD(zo,- - ,xy—1)) by declaring that X" < X if and only if S’ C S or
equivalently AUX = X or equivalently ANX = X. If p is a continuous generic
tame Galois representation, o,0’ € D(p), and 0,0’ correspond respectively
to A\, N, we let 0 N o’ (resp. o Uo’) be the unique weight in D(p) which
corresponds to AN A (resp. AU X). We also write o < o’ if A < X

We now consider the case where p is reducible but not split.

Definition 11.5. A non-empty subset D(xg, -+ ,x5-1) of RD(xo,- -+ ,T5_1)
is said to be of Galois type if it satisfies the following properties:

(i) if X € D(xg, -+ ,x5-1), then all N € RD(xg, -+ ,x5_1) such that N <
A are in D(xg, -+ ,x5_1)

(11) if A, N € D(xg,--- ,xp-1), then N\UXN € D(xq,- - ,x5_1).

Note that, if D(xg,--- ,zs_1) is a subset of Galois type, then it follows
from (ii) of Definition 11.5 that D(zo,--- ,xs_1) has a unique maximal ele-
ment for <. If this element corresponds to & C {0,---, f — 1}, one checks
that |D(zg, - ,25-1)| = 2% where d := |S|. Definition 11.5 comes from the
following result:

Lemma 11.6. Let {ro,--- ,rs_1} be such that 0 < r; < p —3 for all i and
not all r; equal to O or equal to p — 3.

i) Let p : Gal(Q,/Q,;) — GLy(F,) be a continuous representation such
() p P y2 p
that its restriction to inertia is:

( WO IHPTEDFp (1)

f . ’1‘> 0 (16)
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with *+ # 0. Then there exists a unique subset D(xq, -+ ,x5_1) <

—=

RD(xg,- -+ ,x5-1) of Galois type such that the weights associated to
p in [8] are exactly the (all distinct) weights:

(Mo(ro) =+ Ap—a(ry—1)) @ det" o=y
fOT’ A= ()\0(1‘0), ce ;)\f—l(xf—l)) S D(ZE07 ce ,If_l).
(ii) Let D(xo,--+ ,wp-1) & RD(xo, -+ ,xp-1) be a subset of Galois type.
Then there exists at least one representation p : Gal(Q,/Q,r) — GLy(IF,)

as in (16) with * # 0 such that the weights associated to p in [8] are
exactly the (all distinct) weights:

()\O(TO)7 Tty )\f_l(rf_l)) ® dete(A)(TO’“"Tffl),r]

Jor A= (Xo(xo), -+, Ar—1(wp-1)) € D(wo, -+, xf-1).

Proof. Part (i) follows from [9, §5.1]. For part (ii), use that D(zg,--- ,zs_1)
has a unique maximal element for < together with [9, §5.1]. ]

In the sequel, we only consider those p satisfying the conditions in Lem-
mas 11.2 or 11.4 or 11.6, and we give them a name:

Definition 11.7. Let p : Gal(Q,/Q,s) — GLa(F,) be a continuous represen-
tation, we say p is generic if one of the following holds:

(i) the restriction of p to inertia is isomorphic to:

ro+14p(ri+1)+-+pf " (ry_1+1)
p * ® 1
0 1

for some charactern and some r; with0 < r; < p—3 and (ro,--- ,r5_1)¢

{(07 ,0),(]9—3,"' 7p_3)}

(ii) the restriction of p to inertia is isomorphic to:

ro+14p(ri+1)+-+pf =1 (rp_1+1) 0
Wof @
0 p! (ro+1)+p! T (r1 1) ++p? " (1 +1) U
W
for some character n and somer; with1 <rqg <p—2and0<r; <p-3

fori>0.

One can check this definition doesn’t depend on the choice of the embed-
ding F, — F,. Note that there is no such p for p = 2 and that for p = 3 the
only possibility is p irreducible with 7o = 1 and r; = 0 for ¢ > 0 (notation of
Lemma 11.4).

In the rest of the paper, we denote by D(p) the set of weights associated
to a generic p and simply call them Diamond weights.
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12 The unicity Lemma

Fix p generic, we define the “distance” from a weight to a Diamond weight
associated to p, and prove that there is attached to any weight a unique
Diamond weight such that this distance is minimal.

Recall from §11 that RD(xg, - ,x¢_1) (resp. ZD(xg, -+ ,x¢_1)) denotes
the set of formal reducible (resp. irreducible) Diamond weights which can
be identified with the set of subsets S C {0,---,f — 1}. Recall also that
D(zg, -+ ,x5-1) € RD(xg,--- ,x5-1) denotes a subset of Galois type.

Definition 12.1. Let A € RD(xg,--- ,x5_1) (resp. X € ID(xg,--- ,T5_1))
corresponding to S C {0,---, f —1}.

(i) Let S C {0,---,f —1}. We say pp € RD(xg,--- ,x5-1) (resp. pu €
ID(zg, - ,x5-1)) is the negative of N\ within S if  corresponds to
(S\SNSII(S'\SNST).

(i1) If pis as in (i) for 8" ={0,--- , f —1}, we simply say u is the negative
of A (in which case p corresponds to {0,--- , f —1}\ S).

For instance, if f = 5, the negative of A := (zo+1, 21, p—2—x9, 23+ 1, p—
2—1x4) € RD(x0,- -+ ,x4) within {4,5} = {4,0} is (2o, x1,p —2 — 29, p — 3 —
x3, x4+1) whereas its negative is (p—2—x¢, p—3—x1, x2+1,p—2—x3, x4+1).

Lemma 12.2. Let A\, N, \" € RD(zo, -+ ,x5_1). Assume that X' is the neg-
ative of A within S’, X' is the negative of X within S" and 8" C S'. Then
N < AUN (see §11 for < and U).

Proof. Let S (resp. 7', resp. 7") correspond to A (resp. AU X, resp.
AN N, then we have 7/ = SUS" and 7”7 = SUS”. Thus 7” C 7', hence
AUN < AUN. As M < AU N, we have " < AU X by transitivity. O

Definition 12.3. A sequence (Ao(xo),- - , Ap—1(xp—1)) where \;(z;) € Ztx;
is called a weak formal reducible (resp. irreducible) Diamond weight if, for
any i, one has \j(x;) € {z;, x;+1,p—2—x;, p—3—a;} (resp. N\i(z;) € {x;, x;+
1,p—2—x;,p—3—a;} fori > 0 and \o(z0) € {xo,x0—1,p—2—10,p—1—20}).

That is, we don’t require any condition on A;i1(z;1+1) with respect to

Lemma 12.4. Let A = (\(z;)) be a formal reducible (resp. irreducible)
Diamond weight and j € {1,---, f —1}.
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(i) The sequence:

()\0(370)7 A1), p = 2 = M), p— 2 = N (i) — £,
P—2— Nipjo1(Tigj—1) — £1, Aigj(migy) £ 1,
Nivjir (Tigjsr)s o+ s Apma(mpmn))  (17)

(with the convention i+ =i+ — fif i+ 0 > f) is a weak formal
reducible (resp. irreducible) Diamond weight if and only if it is a formal
reducible (resp. irreducible) Diamond weight. If so, (17) is then the
negative of A\ within {i +1,--- i+ j}.

(i) The sequence:
(p—2—Xo(wo) — £1,+++ ,p—2— Ap_q(zy1) — £1) (18)

is a weak formal reducible (resp. irreducible) Diamond weight if and
only if it is a formal reducible (resp. irreducible) Diamond weight. If
so, (17) is then the negative of \.

Proof. (i) This is easy combinatorics, so let us briefly prove only the case A €
RD(zg,- - ,x5-1). Assume (17) is a weak formal reducible Diamond weight.
Say that an index 6 € {1,---,j} is of type + if p — 2 — Aiys(wips) — (+1)
or Nirs(ziys) + 1 occurs in (17) and of type — if p — 2 — Ais(xins) — (—1)
or A\irs(zirs) — 1 occurs. Then we necessarily have \;is(xi1s) € {p — 3 —
Tirs, Tivs} if 0 is of type + and Ny 5(2i46) € {p — 2 — 445, wirs + 1} if § is of
type — (the other possibilities don’t satisfy the conditions of Definition 12.3).
Moreover, as A € RD(zg, - -+ ,x¢_1), it turns out there are only 4 possibilities
for the sequence X;(x;),- -, Aitj(wiy;), according to whether \;(z;) = =z,
ri+1, p—2—x; or p—3—ux;, if we want (17) to be a weak formal reducible
Diamond weight, that is, if we want A\ s(xiis) € {p — 3 — Ti45, xirs} for §
of type + and A\jys5(zivs) € {p — 2 — w15, 705 + 1} for 0 of type —. For
instance, if \;(z;) = p — 2 — x;, then A\jys(x;4s) must be x5 + 1 for the
first index of type —, p — 2 — x;,s for the second, x;,5 + 1 for the third etc.
Also, A\jys(xirs) must be p — 3 — x;45 for all indices of type + strictly before
the first index of type —, wz;,s for all indices of type + strictly between
the first and second of type —, etc. One can check that in all cases, the
resulting weak formal reducible Diamond weight (17) is always obtained from
the original A as follows: in A replace A;(z;) by p — 2 — Ai(2;), Nigj(@iyy)
by Nij(zigg) + 1if Xij(Tirj) € {Zivg,p — 3 — iy}, by Aigj(wiyy) — 1if
Nivj (i) € {wiv;+1,p—2—2;4;}, and for 6 € {1,--- ,j—1} each p—2—x; 15
by x;+5 + 1, each p — 3 — 2,5 by z;1s, each z;55 +1 by p — 2 — x;,5 and
each x;15 by p — 3 — x;,1.5. This weight is exactly the negative of A\ within
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{i+1,---,i+j}, and is a fortiori in RD(zo,--- ,zs_1). The proof of (ii) is
analogous and left to the reader. O]

One defines the support of a sequence p —2 — - p—2—-—=+1,--- ,p—
2—-—41,-4+1asin (17) to be the subset of indices {i +1,--- ,i+j} (with
as usual the identification i + 9 =i+ — f if i +6 > f). One defines the
support of the sequence (18) to be {0,---, f —1}.

Let p, i1 € Z(yo, -+ ,ys—1) (see §3) and assume p and p' are compatible

(Definition 4.10). We define pn N g/ == (N i)o(yo), -+, (N ) p-1(yp-1))
as follows:

(1) if pi(ys) = v, (WO p)i(ys) = ys

(ii) if pi(ys) € {p =1 =i, 0 = 3 = wits (O ' )i(i) = i (yi)

(yz lf ,uz yz 7é { P 2= Yi
(iif) if pes(y) € {1, it L, (On)ilys) = o2
yi it pi(yi)= { Yi
pilyi) i (i) 7&{ b1
(iv) if pi(ys) = p—2—wi, (WO H)ilys) = vi -
Yi lf /'I"L(yz> { Zy'.

We have pNy' = p/ N p. Intuitively, we just take the “intersection” of the
sequences p—2—-,p—2—-—=+1,--+ ,p—2—-—=1,-+1 on both p and x’. Recall
from §4 that S(u) :={i € {0,--- , f =1}, wi(z;)) =p—2—2; — £1,2; £ 1} for
€ I(yo, - ,yr—1). We leave the (straightforward) proof of the next lemma
to the reader:

Lemma 12.5. We have unp' € Z(yo, -+ ,yr—1) and S(pNnp') = S(p)NS(').

We denote by D(xg, -+ ,x5-1) € RD(xo,--- ,zy_1) an arbitrary subset
of Galois type (see Definition 11.5).

Lemma 12.6. Let p, 1’ € Z(yo, -+ ,ys—1) and assume there is v; € Z £ y;
such that both p and (' are in RD(xg, - -+ ,x7_1) (resp. D(xo,- -+ ,Tf-1), TESP.
ID(xg,- - ,xf-1)). Then u, i’ are compatible and pNp' € RD(xg, -+ ,T5-1)
(resp. D(zg, -+ ,xp-1), resp. ID(xo, -+ ,x5-1)).
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Proof. Beware that p Ny is computed in Z(yo, - - - ,ys—1). First, it is easy to
check that u, ' are compatible. For instance, assume p;(y;) = p—1—1y; and
i (yi) = yi+1, then i (y;) = p—pi(yi). But i(yi), pi(yi) € {wi, zi+1,p—3—
xy, p—2—x;} (vesp. if i > 0and o(yo), po(yo) € {xo—1, T, p—2—10,p—1—20}
in the case ZD) and it is thus impossible to have p;(y;) = p — pi(y;). The
other cases are similar. From the very definition of Z(yo,- - ,ys—1) in §3,
one sees one can pass from p to p N ' by applying successively to p several
sequences as in (17) such that the successive sets of indices that are affected
are disjoint, or one sequence as in (18). Denote by S&” the union of the
supports of these sequences. From the definition of N u/, one has either
(kO )i(ys) = palys) or (WO p')i(ys) = pi(s) or (N p)iyi) = p— 2 — ().
In particular p N g’ is always a weak formal reducible (resp. irreducible)
weight. Lemma 12.4 then gives that p Ny’ € Z(yo, -+ ,yp—1) is an element
of RD(zg,--- ,x5-1) (resp. ID(zp, - ,x5-1)) and is the negative of y (seen
as an element of RD(xg,--- ,xs_1) (resp. ID(xg,---,xs_1))) within S”.
This proves the cases RD(xg, -+ ,x5_1) and ID(xg, -+ ,x7_1). For the case
D(zg,- -+ ,xf_1), note first that pU ' € D(xg, -+ ,x5-1) as D(zg, -+ ,x5_1)
is of Galois type (here, ;o and p' are considered as elements of D(xg, -+ ,27_1)
and pUp’ is computed in RD(zo, - -+ ,x¢_1), see §11). As before, one can pass
from p to ¢/ by applying successively to u several sequences as in (17), or one
sequence as in (18). As u, ' are compatible, one can take these sequences
such that the successive sets of indices that are affected are disjoint, so that
these sequences are uniquely determined. By Lemma 12.4, this implies p’ is
the negative of ;1 (seen as an element of RD(zy, - - - , 1)) within the support
S’ of these sequences. But the previous support S8” is always included in &’
by construction. Lemma 12.2 then yields pu N g/ < p U/, which implies
pNp' € D(xg, -+ ,xp-1) by (i) of Definition 11.5 applied to U p/ (beware
that p Ny is computed in Z(yp,- - ,ys—1) whereas p U y/ is computed in
RD(zg,- - ,x5-1)). This finishes the proof. O

Let 0 and 7 be two weights and assume o = (rg,---,r7_1) ® n with
0 <r; <p—2forall i. Assume there exist indecomposable I'-representations
with socle o and co-socle 7. By Corollary 3.12, there is a unique such rep-
resentation, call it (o, 7), such that ¢ appears in I(o,7) with multiplicity
1. Moreover, all of the Jordan-Holder factors of (o, 7) are then distinct.
If there is no such representation, set [(o,7) := 0. For any I(o,7), set
U(o,T) € Zso U {+00} to be 400 if I(o,7) = 0 and otherwise the smallest
integer such that I(o,7)yo0,r) = 0.

The following lemma will be used in §14.
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Lemma 12.7. Let p, 1 € Z(yo, - ,yr—1) and assume p and p' are com-
patible. Let 0 = (rg,--+ ,74—1) @ with 0 < r; < p—2 for all i. Let 7, 7’
and " be irreducible subquotients of injo corresponding to wu, p' and p O
respectively via Lemma 3.2. Then k is an irreducible subquotient of 1(o,T)
and I(o,7") if and only if k is an irreducible subquotient I(o,7").

Proof. Let k be an irreducible subquotient of inj o and let A € Z(yo, - -+ ,ys—1)
correspond to k via Lemma 3.2. Corollary 4.11 implies that x is a subquotient
of I(o,7) and I (o, ') if and only if A is compatible with p and g/ and S(\) C
S(pu)NS(¢'). Tt is immediate from Definition 4.10 and Lemma 12.5 that this
is equivalent to A is compatible with p N p' and S(A) € S(u N '). Again
by Corollary 4.11 this is equivalent to x is an irreducible subquotient of
I(o,m"). [

Let p : Gal(Q,/Q,s) — GLy(F,) be a continuous generic representation
as in Definition 11.7 and recall that D(p) is the set of weights associated to
p (see §11). It is straightforward to check from the definitions of §11 that
any o € D(p) is such that o = (sg, -+ ,s7-1) @ with 0 < s; < p — 2 for all
7 and not all s; equal to 0. For a weight 7, define:

Up,7) :=min{l(o,7), 0 € D(p)} € Z=o U {+00}.

We can now prove the main result of this section:

Lemma 12.8. Let 7 be any weight such that {(p,T) < +o0.
(i) There is a unique o € D(p) such that {(o,7) = L(p,T).

(i1) Let o' € D(p) such that I(c’,7) # 0. If o' = o with o as in (i), then
I(o',7) has no other weight of D(p) distinct from o' in its Jordan-
Hélder factors. If o' # o, then I(o',T) contains o.

Proof. We start with (i). Write 7 = (so, -+, Sf—1) ®  and assume there are
two distinct weights 0,0’ € D(p) such that (o, 7) = €(c’,7) = {(p,T). By
Lemma 3.2, there are distinct p, ' € Z(yo,--- ,ys—1) uniquely determined
such that:

o = (nols0), s py—a(sy-1)) @ det W0y

O_/ — (/’66<80)7 N 7/’L/ffl(8ffl)) ® dete(ﬂ’)(so,“',sffl)n.
By Lemma 11.2 or Lemma 11.6 or Lemma 11.4, there are distinct A\, \" €
RD(zg,--- ,x5-1) or D(xg,--- ,xy_1) or ID(zp, -+ ,xp_1) (according to p)
uniquely determined such that:

o = (Ao(ro)s-, Ap—1(ry—1)) ® deteM (o ry-1)

o' = (N(ro),---, }—1(7“]‘—1)) ® dettW)rory-1),
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We claim that we have the identities for each i € {0,---, f —1}:

i) = (X)) (19)
Indeed, we have the equalities for all i:
i (i) = i (X)) (20)

and:

dete(,u)(so,-~~ Sf—1)—e(X)(ro, -, rr—1) _ dete(u')(So,"- Sp—1)—e(N)(ro,re—1)

which, by an easy calculation, amounts to:

det ¢ DRo(ro) = Ap—1(ry—1))—e(N)(ro,+rp-1) _

det =€ ™G 00) Ny (1) =e(N) (o, 5 1)

which is again equivalent to:

det e oMo 1) oo TN o) (21)

Here, ' i= (1 (y:)) (where (p; o) (i) = yi) and g o == (7 (Ni(wi)).
We now leave as an exercise to the reader to check that the equalities (19) are
equivalent to the equalities (20) and (21) (this is analogous to proving that all
weights in IndlfB x or all Diamond weights are distinct, cf. e.g. Lemma 2.2).
We can apply Lemma 12.6 to y and p/ with z; = A\, (us(v:)) € Z £ y; to de-
duce that pNp' € RD(xg, - ,x5-1) or D(zo, -+ ,x5-1) or ID(xq, -+ ,T5_1).
In particular, one has:

o= (N 1 )ols0), -+ (1N ) o (37-1)) @ et 05110y € D). (22)

But as p and g are distinct and as ¢(o, 7) = ¢(¢’, 7), Corollary 4.11 together
with the second part of Lemma 12.5 imply:

Uo" 1) < (o, 7T)

which is impossible as ¢(o, 7) is minimal. This proves (i). Let us prove (ii).
If o' = o, there can’t be any other Diamond weight in I(¢’, 7) as this would
contradict the minimality of ¢(o, 7). Assume o’ # o, and let 1/, u as for (i).
Then o” defined as in (22) is again in D(p) (the equality ¢(o,7) = £(0’, T)
was not used here). Moreover, we have that ' and p Ny’ are compatible by
construction and that S(u N p') € S(w') by Lemma 12.5. By Corollary 4.11
(used “backwards”), we get that o” is a Jordan-Holder factor in I(¢’, 7). The
same argument with u and o yields that ¢” is also a Jordan-Hélder factor in
I(0,7), hence 0” = o # ¢ by (i). This finishes the proof. O
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Remark 12.9. Consider D'(zg, - ,27-1) C ID(z, - ,xy_1) a non-empty
subset satisfying conditions (i) and (ii) of Definition 11.5. Then the proof of
Lemma 12.6 goes through with D'(zo, -+ ,2xy_1) instead of D(xg,- -+ ,z7_1).
As a consequence, Lemma 12.8 extends to this case, that is, if p is irreducible
and D'(p) € D(p) is the corresponding subset of weights, the function o’ —
((o', T) reaches its minimum on D’(p) for a unique weight o of D'(p).

13 Generic Diamond diagrams

We associate to each generic p as in Definition 11.7 a “family” of basic 0-
diagrams as in §9. When f > 1, this family is always infinite.

We start with a general proposition:

Proposition 13.1. Let D be a finite set of distinct weights. Then there exists
a unique @p to isomorphism) finite dimensional smooth representation Dy
of I' over IF,, such that:

(i) socr Dy = @, cp 0o
(i1) any weight of D appears at most once (as a subquotient) in Dy
(11i) Dy is mazximal with respect to properties (i), (ii).

Moreover, one has an isomorphism of I'-representations:

Dy = @ Dy.»

oD
where socr Dy , = 0.

Proof. Note first that condition (iii) means that, if D} is any finite dimen-
sional representation of I' over Fp that strictly contains D, as a subrep-
resentation, then (ii) is not satisfied for Dj. Set 7 := @,cpo and let 7/
be a representation of I' satisfying (i). Then 7’ satisfies (ii) if and only if
Homyp(7'/7,injo) = 0 for all ¢ € D. Since injo is an injective object in
Repr, we have an exact sequence of I'-representations:

0 — Homp(7'/7,inj o) — Homp (7, inj o) — Homp(7,injo) — 0
and hence 7’ satisfies (ii) if and only if:

dimg Homp(7',injo) =1, Vo € D.
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We fix an injective envelope inj7 of 7 in Repp. Let 7, and 7 be two I'-
invariant subspaces of inj 7 containing 7 and satisfying (ii). Since injo is
injective the sequence:

0 — Homp (7 + 7, injo) — Homp (7 @ 72,inj o) — Homp (1 N 7o,injo) — 0

is exact. Since 7 + 73 and 7 N7y both contain 7 as a subobject, we get that
Homr (o, 71 + 72) and Homr (o, 71 N 72) are non-zero. Hence the terms on the
left and right are non-zero as inj ¢ is an injective object. Moreover, since the
term in the middle has dimension 2, we obtain dimﬁp Homp (71 +79,injo) = 1.
Hence there exists a maximal subspace Tyax of inj7 satisfying (i) and (ii).
Since any representation 7/ of I' with socr 7/ = 7 can be embedded in inj T,
we obtain the first part of the proposition. Since 7 is multiplicity free for
o € D, there exists a unique idempotent e, € Endr(inj7) such that e, (inj7)
is an injective envelope of 0. Since @,cpey(Tmax) satisfies (i) and (ii), the
natural injection:
Tmax @JEDeﬂ(Tmax)

has to be an isomorphism. O
We leave the proof of the following immediate corollary to the reader:
Corollary 13.2. Let D and Dy be as above, then Endr(Dy) = FLDI.

Let p : Gal(Q,/Q,s) — GL2(F,) be a continuous generic representation
as in Definition 11.7 and D(p) its set of Diamond weights (all distinct, see
§11). We denote by Dy(p) the unique representation of Proposition 13.1 with
D = D(p). We now start studying the I'-representation Dy(p).

If ¢(p, ) < +00, set:
I(p,7) := I(0,7)

where o € D(p) is the unique Diamond weight of Lemma 12.8.
Lemma 13.3. We have Homp(I(p,7),I(p,7')) = 0 or F,.

)
Proof. Let f : I(p,7) — I(p,7") be non-zero (if it exists) and denote by o
(resp. o') the I'-socle of I(p,7) (resp. I(p,7')). We first prove that f is
injective. Otherwise, we have f(o) = 0 and either the I'-socle of I(p,7’)
has more than one Jordan-Hélder factor (as there is no other Jordan-Hélder
factor of I(p, ) than o in D(p)), which is impossible, or 7 is the I'-socle of
I(p,7), which implies 7 € D(p) i.e. I(p,7) = 7 which is again impossible
as f is non-zero. Hence f(0) = o = o'. Let f' : I(p,7) — I(p,7') be any
[-equivariant map. If f’ is non-zero, we again have f'(o) = 0. As o is
irreducible, there is A € F, such that f — \f’ is zero on 0. But f — \f’' €
Homr(I(p,7),I(p,7")) and the same proof as for f gives then f = Af'. O
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In particular, I(p, 7) is well defined up to unique isomorphism. Note that
any subrepresentation of (p,7) with an irreducible co-socle 7’ is automati-
cally isomorphic to I(p, 7’) (this follows from the definition of the representa-
tions I(o,7) in §12). We define a partial order on the representations I(p, 7)
as follows:

I(p,7) < I(p,7') <= Homr(I(p,7),I(p, 7)) = F,.
Proposition 13.4. With the previous notations, we have:

Do(p) = @oen(p)Do,s(p) (23)

with:
Dy (p) = lim I(p, 7),
<

the inductive limit being taken with respect to all non-zero maps I(p, ) —
I(p, ") such that socr I(p,T) = socr I(p,7") = 0.

Proof. The first part is contained in Proposition 13.1, we are thus left to
proving Dy ,(p) = lim I(p, 7). Note that the inductive limit is not direct.
The representation lim I(p, 7) has o as socle and doesn’t contain any other

weight of D(p) by (ii) of Lemma 12.8. From the proof of Proposition 13.1,
we thus have lim I(p,7) C Dy(p), that is limI(p,7) C Dy ,(p). Let 7 be

any irreducible subquotient of Dy, (p) and Dy, (p,7) € Dy, (p) a subrepre-
sentation with co-socle 7. By Corollary 3.12, we have Dg,(p,7) ~ I(0,T)
and by (ii) of Lemma 12.8 (together with (ii) of Proposition 13.1), we have
I(o,7) = I(p, 7). This implies the surjectivity of lim I(p,7) = Doo(p). O

Note that Dy(p) only depends on the restriction of p to inertia.

Corollary 13.5. The I'-representation Dy(p) is multiplicity free.

Proof. This follows from Proposition 13.4, Corollary 3.12 and the definition
of I(p, 7). O

So we see that, although Dy(p) is defined so that it only satisfies multi-
plicity 1 for its socle, it indeed satisfies multiplicity 1 for all of its factors.

Corollary 13.6. There exists a unique partition of the B-eigencharacters of
Do(p)V in pairs of eigencharacters {x, x*} with x # x°.
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Proof. Unicity is clear from Corollary 13.5. Let v € Dy(p)Y such that B acts
on v via some character y. We have:

Ind} y — (I'-v) = Dy(p).

Hence, there is a quotient of Ind}; ¥ that injects into Dg(p), which implies
(looking at socles) that a weight o’ of D(p) must appear in Ind}; x. This rules
out y = x* as, from the assumption p generic, we know that D(p) doesn’t
contain a character nor a twist of (p — 1,--- ,p — 1). The weight ¢’ also
appears in Indl;3 x® by Lemma 2.2, which implies that a quotient of Indlj; x°
is isomorphic to (0, o) # 0 where s is the co-socle of Ind}; x*. By (ii) of
Lemma 12.8, I(p, 0y+) is a non-zero quotient of I(o’, 0ys), and hence also of
Indj x*. As I(p, o) C Dy(p) by Proposition 13.4, x* is an eigencharacter
of B acting on I(p,a,:)” C Dy(p)Y. O

We now fix w = p and recall from §9 that a basic 0-diagram (Dy, Dy, 1)
satisfies 7 : Dy ~ D{' C Dy. We also recall that the scalar matrix (8 2) acts
now trivially everywhere.

Definition 13.7. A family of basic 0-diagrams is a pair (Dgy,{ }) where Dy
is a smooth finite dimensional representation of Ky which is trivial on K,
and { } is a partition of a basis of eigencharacters of 17 acting on Dél mn
pairs of eigencharacters {x, x*}.

To a family of basic 0-diagrams as in Definition 13.7, one can attach
a genuine “family” of basic 0-diagrams ((Dy, D1,7)), by making II act on
D, = Dél as Ilv, = vys, Ilvys = v, where v,,v,s are eigenvectors corre-
sponding to a pair of eigencharacters {x, x*} in the partition and by letting
r : Dy — Dy be an arbitrary [Z-equivariant injection. Usually, there are
infinitely many such injections up to isomorphism.

We can finally sum up the main results of this section. We still denote
by Do(p) the Ro-representation deduced from the K-representation Dy(p) by
making p act trivially.

Theorem 13.8. Let p : Gal(Q,/Q,r) — GLo(F,) be a continuous generic
representation such that p acts trivially on its determinant. Then there exists
a unique family of basic 0-diagrams (Do(p),{ }) such that:

(Z) SOCK DO(p) = @UED(p) g
(11) any weight of D(p) appears at most once (as a subquotient) in Do(p)

(i1i) Do(p) is mazimal with respect to properties (i), (ii).
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Moreover, Dy(p) is then multiplicity free.

Note that the family (Dg(p),{ }) only depends on the restriction of p to
inertia.

Remark 13.9. In case p is not generic, there is still defined a set of Diamond
weights D(p) (see [8]) and one can still define a I'-representation Dy(p) as in
Proposition 13.1 with D = D(p). In general, Dy(p) is not multiplicity free.
But more importantly, it is not clear to us, in view of the coming Conjecture
19.1, whether this Dy(p) is always the “right” I'-representation to consider
in that case.

14 The representations Dy(p) and Di(p)

For p generic we compute the dimension of D;(p). When p is moreover tame,
we explicitly determine the Jordan-Holder factors of Dy(p).

We start with several lemmas.

Lemma 14.1. Let p be generic. For x : H — F; let my, € Zxy such that
(EBUGD(p) in] ‘7)]1 = @ ,myx. Then Do(p)h = @mx>o X-

Proof. If x occurs in (inj o)™ for some o € D(p) then y # x* as p is generic.
Since Dy(p) is multiplicity free by Theorem 13.8, every y can occur in Dg(p)t
with multiplicity at most 1. Let x occur in (inj o)™ for some o € D(p). Then
o is a subquotient of Ind¥ y and there is a unique quotient 7 of Ind% y with
socle o (as Ind% x is multiplicity free). If there exists a Jordan-Hélder factor
o1 # o of 7 such that o1 € D(p), let 71 be the unique quotient of 7 with
socle g1. Starting again, we obtain like this a non-zero quotient 7, of Indf( X
such that the socle o, of 7,,, lies in D(p) and no other Jordan-Hélder factor
of 7, does. By maximality of Dy(p) (see (iii) in Theorem 13.8), we have an
injection 7, < Dy(p). Hence Homg (Ind%X y, Do(p)) # 0 and so x occurs in
Dy(p)". 0

Recall from §4 that ¥ denotes the set of f-tuples € := (ep, - - ,€7_1) with
¢, € {—1,0,1} and ¥’ C ¥ the subset of f-tuples € with ¢; € {0,1}. If
s := (s, -+ ,sf_1) is an f-tuple of integers with 0 <s; <p—2,n: F* — F:
is a smooth character and o := (sq, - - - , s7_1) @, recall that ¥/ parametrizes
in a natural way the characters of I acting on (inj o)™ (see Proposition 4.13
and twist). If € € ¥/, denote by o(e) the unique twist of V(o) @ det®® which
occurs as a subquotient of injo (see §4).
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Lemma 14.2. Let 0 := (So, - ,S7_1) ® 1 be an irreducible representation
of ' with0 <s; <p—2. Let j € {0,--- , f =1}, 0’ == (so, -+ ,8j1,p— 2 —
Si 8501+ 1,854, 8p-1) @ ndet? VP and assume s +1 < p — 2.
Let € € ' then there exists € € ¥/ such that o(e) = o'(¢') if and only if one
of the following holds:

(Z) €; = 1 and €i+1 = 0
(11) €, =0 and €j41 = 1.

Moreover, if the above holds, then €' is uniquely determined as follows: €, =
ex for k & {j,j+ 1}, in case (i) €; = 0 and €j,, = 0 and in case (i) €; =1
and €, = 1.

Proof. If such an €’ exists then it is uniquely determined since all the repre-
sentations in {o’(g’),e’ € X'} are distinct. If e satisfies (i) or (ii) then one
may check that, if €’ is as above, then o(e) = ¢'(g’). Conversely, if &’ € ¥
is such that (€}, €;,,) # (0,0) and (€}, €, ;) # (1,1) then one of the digits of
the f-tuple s'(g’) corresponding to o’(g’) will be either s + 2 or p — 3 — sy,
k € {j,7+ 1}, which implies (with considerations of determinant) that there
exists no € € ¥’ such that o(e) = o'(¢’). O

Remark 14.3. Switching ¢ and ¢’ in the above proof, we obtain an anal-
ogous result with the weights (so,---,s7-1) ® 7 and (so, -+ ,8;_1,p — 2 —
87,8501 — 1,840, , sp_1) @ ndet” 9+,

We denote by o; the weight in D(p*) corresponding to a subset J of
{0,---, f — 1} (see §11) and by s(J) the f-tuple of integers such that o is
a twist of V() (see §3).

Lemma 14.4. Fiz a subset S C{0,---,f —1} and let J C S.

(i) If J #{0,--- , f — 1} then there are 2/=V! characters of I which occur
in (inj o)™ and do not occur in (Djesinjop ).

(i) If J ={0,---, f—1} and p is reducible then there are 2 characters of I
satisfying the same condition. If J = {0,--- | f—1} and p is irreducible
then there are mo characters of 1 satisfying the same condition.

Proof. Write s(J) = (sg,---,S7-1) and note that one has 0 < s; < p — 2
for all 7 as p is generic. If J = ) then every character occuring in (inj o)™t
satisfies the (empty) condition, and hence there 2/ of them. Suppose that
J # (0 and let j € J. Assume first p is reducible. If j +1 & J then
the f-tuple corresponding to oy is s(J \ {j}) = (0, ,5j—2,0 — 2 —
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Sj—1,8; — 1,841, ,85-1). If j+ 1 € J then the f-tuple corresponding to
OJ\{5} is S(J \ {j}) = (80, oy 8j-2,P — 2 — Sj—1, 955 + 1, Sj41, ,Sf_l). By
Proposition 4.13, it is enough to count the € € ¥’ such that for all j € J
and all ¢’ € ¥, one has 0;(e) 2 ongy(e). If J #{0,---, f — 1}, it follows
from Lemma 14.2 and Remark 14.3 that such & can be described as follows:
for every k and j such that k & J, {k+1,--- ,7} C Jand j+ 1 & J, either
g =+ =¢-1=0and e =1lore =---=¢_1 =1and ¢ = 0. There
are 27 such e € /. If J = {0,---, f — 1} then it follows from Lemma
14.2 that the only € € ¥/ satisfying the above condition are (0,---,0) and
(1,---,1). Hence we obtain 2 characters. Assume now that p is irreducible.
If j # 0 then the f-tuple s(J \ {j}) is the same as in the reducible case. If
1 € Jthens(J\{0}) =(so—1,81,-+-,8f-2,p—2—5s_1) and if 1 € J then
s(J\{0}) = (so+1,s1, - ,Sf_0,p—2—55_1). If J#{0,---, f—1} then, as
in the reducible case, the “new” € € ¥’ can be described as follows: for every
kand j such that k ¢ J, {k+1,---,j} CJ,j+1¢ Jand 0 & {k+1,---,j}
we have as before either ¢y, = --- =¢;_1 =0ande¢; =lore =---=¢_1 =1
and €; = 0; for every k and j such that k ¢ J, {k+1,--- ,j} C J,j+1¢&J
and 0 € {k+1,---, 7} we have:

(i) if 1 € J theneither ¢, =---=¢€;; =0, =---=¢j_1 =1and ¢; =0
OI'EkI"':Ef,1:1760:“':€j,120and€j:1

(i) if 1 & J then either ¢ =--- =€ 1 =€ =00r ¢, = - =€5_1 =€ =
1.

Again we get 277V new characters. Assume p is irreducible and J =
{0,---,f —1}. Suppose that we have € € ¥’ which is new. If e;; =1
then by Lemma 14.2 ¢ = 0. By applying Lemma 14.2 repeatedly we ob-

tain € = --- = €;_1 = 0, which is a contradiction to €;_; = 1. A similar
argument also gives a contradiction when e;_; = 0. Hence there are no new
characters. O

Lemma 14.5. Fiz a subset S C {0,---,f — 1} and let I,J C S. Suppose
that I(or,05) # 0. Then orny is a subquotient of I(or,0).

Proof. When p is reducible, (i) of Lemma 12.8 implies that there exists a
unique " C I such that ¢(o},0,) is minimal. This still goes through for p
irreducible and arbitrary & by an analogous proof, see Remark 12.9. The
uniqueness of I’ implies that oy is a subquotient of I(o7,05). As oy is a
subquotient of I(0y, o) (as is easily checked using Lemma 11.6 and Corollary
4.11), we have I(o;ny,05) # 0. The uniqueness of I’ implies then that o
is a subquotient of I(o;,0;). Using Corollary 4.11, one checks this implies
INJCI'CJ. AsI’"CI, wehave I'=1NJ. O
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Lemma 14.6. Fiz a subset S C {0,---,f — 1} and let J,J' be distinct
subsets of S such that |J'| < |J|. Assume that x occurs in (injo;)™ and in
(injo, ). Then there exists j € J such that x occurs in (injopgy)™.

Proof. The assumption implies that o; and o are subquotients of Indf X-
Let 7, (resp. T,s) be the co-socle (resp. socle) of Ind} y. Since Indf x
is multiplicity free, I(7ys,0,) and I(7ys,0) are submodules of Indf x. It
follows from Lemmas 12.7 and 12.6 that there exists I C S such that o7 is a
subquotient of I(7ys,0;) and I(7ys,0,). Lemma 14.5 implies that oy is a
subquotient of I(7ys, ). Suppose that INJ # J and let j € J\(INJ). Then
I(o\(j},0) is a quotient of I(07ny,05) and hence o\ ;3 is a subquotient of
I(1ys,07) € Indff x. Hence y occurs in (injog))™. Suppose J C I. (i)
of Theorem 2.4 implies that Ind¥ y and Ind¥ x* have the same irreducible
subquotients. By repeating the same argument with x*® instead of y, we
obtain I’ C S such that o is a subquotient of I(7,,0;) and I(7y,0,). It
follows from (ii) of Theorem 2.4 that I(o;, o) is a subquotient of Ind¥ y
which contains both o; and o. It follows from the proof of Lemma 14.5
that I(pr,01) = I(oinp, o). Hence I(or,01nr) is a subobject of I(o;, o)
and contains o; and ojny as subquotients. Since I(or,07nr), I(07,05) and
I(or,01ny) are all subquotients of I(os, 0y), we obtain INI" C Jand INI" C
INJ'. Hence I'nJ C JNJ" and since J' # J and |J'| < |J|, we get JNI'" # J.
By repeating the previous argument we obtain that there exists j € J such
that o ;) is a subquotient of Ind¥ x*. Since Ind¥ y and Ind¥ y* have the
same irreducible summands, we are done. O

Proposition 14.7. Let p be generic and let d such that |D(p)| = 2¢ (see
§11). If p is irreducible then dimg Do(p)r = 3/ — 1. If p is split then
dimg Do(p)t = 3/ + 1. If p is reducible non-split then dimg Dy(p)h =
2/—d3d,

Proof. 1f p is reducible non-split, note that d = |S| where S corresponds to
the maximal weight of D(p) (see §11). Lemma 14.1 implies that it is enough
to count the number of distinct characters in (G csinjo 7). Let J C S and
suppose that |J| < f then Lemmas 14.4 and 14.6 imply that there are 2/~1/
characters which occur in (injo;)* and do not occur in (injo ;)™ for any
J CS, || < ||, J #J. If|J| = f and p is reducible (resp. irreducible)
then there are 2 (resp. 0) characters satisfying the above condition. Now
there are (Z) subsets of § of cardinality k. Hence, if d < f we obtain:

d
dimg Do(p)" =) (Z) 2fF = 2f~d(2 4 1)? = 2/ 43¢
k=0
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and if d = f we obtain:

f
dimFP D0<p)ll =41+ Z (‘]]{i) 2f7k = 3f +1
k=0

where + corresponds to the reducible case and — to the irreducible case. [J

We now assume p is generic tame and work out explicitly all Jordan-
Holder factors of Dy(p) and those which “contribute” to Dy(p)t. Fix o €
D(p) and write o = (Ao(70), -, Ap_1(r_1)) @ det*Wo =y with \ =
(Ai(x;)); asin Lemma 11.2 or Lemma 11.4. If p is reducible (resp. irreducible)
one defines py € Z(yo, -+ ,ys—1) as follows:

(1) pai(yi) ==p =1 =y if \i(z:) € {p — 3 — @y, 2;} (vesp. if i > 0 and
)\Q(Io) € {p —2— Lo, Lo — 1})

(i) pni(yi) =p—3—w;i if Ni(x;) € {p —2 — @, x; + 1} (resp. if i > 0 and
)\0(ZEO) € {p —1-— IL‘(),ZE()}).

For 1 € Z(yo, -+ ,ys-1), define po A = (pu;(Ni(2;)); and e(po N) €
@f;ol Zz; as in Lemma 3.1 according to whether piy_1(Ap_1(25_1)) € Z+x54
or Z—xp_.

Theorem 14.8. Let p : Gal(Q,/Q,s) — GLo(F,) be a continuous generic
representation as in Definition 11.7 and assume p is tame, i.e. either irre-
ducible or split. Fiz o € D(p) and X the corresponding f-tuple.

(i) The irreducible subquotients of Dy, (p) are exactly the (all distinct)
weights:

(0(Mo(10))s -+ s =1 (Ag—1(rp1))) @ detien o iy (24)

for e I(yo,--- ,yp—1) such that p and py are compatible (see Defini-
tion 4.10) forgetting the weights such that p1;(A;(r;)) < 0 or p;(Ni(r;)) >
p— 1 for some 1.

(1) The graded pieces of the socle filtration on Dy (p) are:

Doo(p)i= @ 7

(W)=i

for 0 <i < f—1 and weights T as in (24) with {(p) as in §4.
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Proof. We may embed Dy, (p) inside injo. By Lemma 3.2, all weights of
Dy (p) are of the type (24) for certain p € Z(yo, - ,ys—1). We provide
a proof only for p split, leaving the completely analogous irreducible case
to the reader. Let p € Z(yo,--- ,ys—1) which is not compatible with gy,
assume 0 < p;(r;) < p—1 for all ¢ and let 7 be the corresponding weight
(24). Thereis j € {0,---, f — 1} such that either \;(z;) € {p — 3 — z;,z,}
and p;(y;) € {p =3 —yj,u; + 1} or Aj(;) € {p — 2 — zj,2; + 1} and
pi(y;) € {p —1—y;,y; — 1}. In the first case, define p' = (u(v:)); by
pi(i) o= pays) i € {515}, w1 (yj—1) == p—2—y;—1 and pj(y;) == y;+1.
In the second case, define 4/ = (1i(y:)); by . (u:) = ps(ys) it 1 € {j — 1,5,
W (Yj—1) == p—2—y;-1 and pj(y;) :=y; — 1. Let 7" be the corresponding
weight (24). Then one checks that in both cases 77 € D(p), 7" # o and
7" is a subquotient of I(o,7) (using Corollary 4.11 for the latter). Hence 7
cannot appear in Dy, (p) by multiplicity 1. Conversely, if p is compatible
with py and g # (yo,- -+ ,ys—1), then the weight (24) is never in D(p) as is
immediately checked. By maximality of Dy ,(p) together with Corollary 4.11,
this implies (i). (ii) follows from Proposition 13.4 and Corollary 4.11. O

Remark 14.9. (i) If p is split and 0 = (rg,--- ,74—1) ®noro = (p—3 —
T, ,p—3—T51) ® det>=0 P00y then Doo(p) = Indp x where
x* is the action of I on ot

(i) One can prove that, if p is split (resp. irreducible), then Dy,(p) is

always the image under ®z I, of a Z,-lattice in a principal series

(resp. a cuspidal representation) of I' over Q,. In particular, one has
dimg Doq(p) = p/ +1 (vesp. p/ — 1) for all o € D(p).

If S € Repr is multiplicity free and 7 is an irreducible subquotient of
S, we say that 7V has a lift in SY or contributes to SV if and only if the
surjection U(7) — 7 induces a surjection U(7)Y — 7V where U(7) C S is
the unique subrepresentation with co-socle 7.

Corollary 14.10. Keep the notations of Theorem 14.8. The irreducible sub-
quotients T of Dy, (p) such that T has a lift in Dy, (p)™ are exactly the

weights (24) such that pi(yi) € {p — 2 —vi,p — 1 — vi, yi, i + 1}

Proof. As usual, we only prove the case where p is reducible. Set s :=
(Mo(ro), -+, As—1(ry—1)) and note that one has 0 < X\;(r;) < p — 2 for all
as 0 € D(p). By Proposition 3.6 and the fact Dy, (p) is multiplicity free, we
may embed Dg,(p) into:

F=1 i (r
Vap_a_s ® detimo PR qegeM ro 1)y,
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(see §3 for Vap_a_s). Using Proposition 4.13 and twisting, it is thus enough
to prove that the set of weights as in the statement coincides with the set of
weights:

{Vie) ® dete(© e o)t Ay o e 33Dy 4 (p) N L)

Denote by Z'(yo, - ,ys—1) the subset of Z(yo, - ,ys—1) of f-tuples p =
(o(Yo), -+, tp-1(ys-1)) such that pi(y;) € {p =2 —yi,p = 1 = yi, ys, ys + 1}
for all i. The bijection Z(yo, - ,ys—1) — ¥ in the proof of Corollary 4.11
obviously induces a bijection Z'(yo, - - - ,y;—1) — ¥’ ~ XL. Moreover, we have
(see proof of Corollary 4.11):

(1 (Ni(r)) @ det? @Ot = v o @ dete©+250 pixi(r).

(i) of Theorem 14.8 implies the equality of the two sets of weights. H

15 Decomposition of generic Diamond dia-
grams

For p a continuous generic Galois representation, we study the decomposition
of the family of basic 0-diagrams (Dy(p), { }) of Theorem 13.8.

Let S be a subset of {0,---,f — 1} and define 0,(S) (resp. 6;(S)) as
follows (with the convention f —14+1=0): i € §,(S) ifand only ifi+1 € S
(resp. if 0 < 7,7 € 6;(S) if and only if i + 1 € S and 0 € §;(S) if and only
if 1 ¢ S). One defines in an obvious way d(S) and 07'(S) for n € Z. If
p: Gal(Q,/Q,s) — GLy(F,) is a continuous tamely ramified generic Galois
representation and o € D(p) corresponds to S (see §11), we write §"(o) for
the unique weight in D(p) corresponding to 67'(S) if p is reducible, §7(S) if
p is irreducible.

Fix p generic as in Definition 11.7 and tamely ramified and let o € D(p).
Let A € RD(xg, - ,xs-1) or ID(xg,--- ,x5_1) give rise to o via Lemma
11.2 or Lemma 11.4 and § C {0,---,f — 1} correspond to o and X (see
§11). Let 7 be an irreducible subquotient of Dy, (p) such that 7/t has a lift
in Dy, (p)* and write 7 as in (24) for a u € Z(yo,-- ,ys_1). Note that by
Corollary 14.10, one has p;(y;) € {p —2 —yi,p — 1 — yi, i, y; + 1}. If pis
reducible, define:

ST ={ieSand p_1(Ni1(win1)) €{zi,zia+1L,p—1—2,4}}
S+ = {Z ¢ S and ﬂi—l()\i—l(xi—l)) - {p — 3 — Ti—1,P — 2 — Ti—1,T5—1 + 2}}
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If p is irreducible, define ST and S~ in the same way except that 1 € S~
(resp. ST)iff 1 € S and po(Ao(z0)) € {xo — 1,20,p — xo} (resp. 1 ¢ S and
to(Mo(70)) € {p — 2 — x0,p — 1 — mg, 70 + 1}).

Lemma 15.1. Assume p is reducible (hence split), then |S™| = |S™|.

Proof. As A € RD(xg,--- ,xs-1) and as pu and p, are compatible by (i) of
Theorem 14.8, we have:

S = {Z} )\i—1<5(7z’—1) = p—3—x;_1 or p—2—x,;_; and ,ui—l(yi) = p_2_yz‘—1}H
{Z} )\z‘f1(13i71) =p—2—uz,_; and /M'fl(yifl) = Y1+ 1}

and likewise:

St ={i,\io1(wi1) =ximyor xog + 1 and g1 (Y1) =p — 2 — yi—1 J
{i, \ic1(zi21) =221+ 1 and p;—1(yi—1) = yi1 + 1}.
But if p;(y;) =p—2 —y; and \(x;) € {p —3 — z;,p — 2 — x;}, we get from
the compatibility of 1 and py that the smallest j > 1 such that p;4;(yit;) =

Yir; + 1 must be such that \ii;(zi4;) = 24+; + 1 (otherwise, some index
between i and i 4+ j would contradict the compatibility). This implies:

|{ia )\z’(xi—1> =p—3—x;10rp—2—ux;_; and ,Ui(yz‘—l) =p—2— y¢_1}| =
i, \i(xiz1) = o1 + 1 and p(yim1) = yio1 + 1}.

Likewise, we have:

|{ia )\z’(xi—1> =x;_q or r;_ + 1 and Mi(yi—l) =p—2— yi_1}| =
i, Ni(wim1) =p — 2 — 2,1 and pi(yi—1) = yi—1 + 1}

All this obviously implies |S™| = |ST]. O
Lemma 15.1 is wrong when p is irreducible.

Lemma 15.2. With the previous notations, the unique weight w € D(p)
such that ((w, 7)) = ((p, 7)) corresponds to the subset 6,((S\ S7) U ST)
(resp. 6;((S\S™)UST)) if p is reducible (resp. irreducible).

Proof. Note that there is indeed such a w thanks to Corollary 13.6 and that
(S\S)NST = 0. Assume first p is reducible (hence split) and let A\ €
RD(zg,- - ,xp-1) correspond to the subset §,((S\ST)UST). Let (u(y;)): €
Z(yo,- - ,Ys—1) as previously (corresponding to 7) and define (11;(y;)); by the
formula:

p—1—pi(Ni(z:)) = ma(Ni(xi)), Vi (25)
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By (i) of Theorem 14.8, u is compatible with p, in the sense of Definition
4.10. By (i) of Theorem 4.10 again, it is enough to prove that (j;(y;)); €
Z(yo,- -+ ,ys—1) and (f, pi5) are compatible. This is horrible but easy combi-
natorics. Assume i+ 1 € (S\S7)UST, then Xz(xl) e{p—3—wyxz+1}.
Ifi+1eS8\S, one must have \;(z;) € {p —3 — x;,p — 2 — x;} and some
conditions on g which then imply the following cases:

(1) Xi(z;) = p—3 — @, py;) = y; which gives using (25) Xz(xz) =x; 1+
Lptici(yio1) =y +1or Ni(wg) =p— 3 — x4, (i) =0 — 1 — yi
(i) Ni(z;) =p—3 — x4, ui(y;) = p— 1 — y; which gives using (25) Xl(xl) =
v+ 1, (ys) =p—2 —yi or N(xi) =p — 3 — 4, [1i(yi) = v
(iti) Ai(w;) = p — 2 — @i, pi(ys) = yi which gives using (25) i (x;) = z; +
1,#@(%) =Yy; or )‘ ($Z> p—3-— zmﬂl(yz) pP—2—y.

If i+ 1€ ST, one must have \;(x;) € {z;,z; + 1} and some conditions on p
which then imply the following cases:

(i) Ai(zi) = @i, pi(ys) = p — 2 — y; which gives using (25) Xz(Iz) =Tt
L ui(yi) = ys or Ni(wi) = p— 3 — @, fui(yi) = p — 2 — ys
(i) Mi(z;) = 2+ 1, wi(y;) = p — 2 — y; which gives using (25) \;(z;) =
zit+ L i(y) =g+ Lor Ni(w) =p—3—m, () =p—1 -y
(iii) Ai(2:) = @ + 1, pa(y;) = yi + 1 which gives using (25) A\(z;) = ; +
Lpi(y) =p—2—y; or Niw;) =p — 3 — x4, i(yi) = -
Assume now i+1 ¢ (S\S™)UST, then Ai(z;) € {xs, p—2—a;}. Ifi+1 €S,

one must have \;(z;) € {p —3 — z;,p — 2 — x;} and some conditions on pu
which then imply the following cases:

(i) Ni(w:) =p—3— @i, pa(ys) = p— 2 — y; which gives using (25) Xi(z;) =
Zi, Z(yz) = —2—% or )\ <x1> p_2_xz7ﬁl(yl> =Yi
(ii) Ni(z z) p—2—w, pi(y;) = p — 2 — y; which gives using (25) \;(z;) =
T li(yi) =p— 1 —y; or N(w;) = p— 2 — x4, fia(ys) = i + 1
(iti) Ai(2:) = p — 2 — @y, pi(ys) = y; + 1 which gives using (25) Ni(z;) =

2o T(yi) = yi ot N(m:) = p— 2 — x4, (i) = p — 2 — yi.

Ifi+1¢ Sandi+1¢ ST, one must have \;(z;) € {x;,z; + 1} and some
conditions on g which then imply the following cases:

87



(i) Az(%) = Ty, Mi(l/z‘) = y; which gives using (25> Xz(xz) = l’z;ﬁz(%) =
p—1—yior N(x;)) =p—2—a, 1;(y;) =y + 1

(i) N(w;) = @, wi(yi) = p — 1 — y; which gives using (25) \;(z;) =
Tiy 1i(Ys) = yi or Ni(@i) =p — 2 — @i, i(ys) =p — 2 — ys
(i) Ai(zi) = 2+ 1, pily;) = y; which gives using (25) Xi(z:) = 2, i (y;) =
p—2—yior \(w;) =p—2— i, 1i(Y;) = yi-
If (f2i(vi))i € Z(yo, - -+ ,ys—1), we see that i and pi5 are compatible in all of the
above cases. Let us now check (;(vi)): € Z(yo,- - ,ys—1). Assume fi;(y;) =
y; + 1. From the above list, we have four possibilities for (\;(x;), p;(y;)) and

(Xz(xz)7ﬁz(yz))
(p—3—m,y;) and (
(zi +1,p—2—y) (
(zi;y)) and  (p—2— 24,y +1)
(p—2—2,p—2—w) (

and

and

In the first case, we have (A 1(2i1), tir1(Yiv1)) € {0 — 3 — ig1, Yig1), (P —
3= @it1,p— 2= Yir1), (i + 1,yi+1)7 (#ir1 +1,p — 2 = yi41)} which, again
from the above list and the fact A € RD(zo,--- ,x¢_1), yields:

()\i+1(xi+1)a ﬁiﬂ(yiﬂ)) € {($i+l7p —2— yi+1)7 (p — 2 — T, ?Ji+1)}-

We see fii11(yiv1) € {p — 2 — Yit1,Yis1}- The 3 other cases yield the same
conclusion, hence we always have f1;11(yi11) € {p—2—Yis1, Yir1}. Examining
i (y;) = vy; yields in the same way fi;41(yiv1) € {p — 2 — Yit1,Yir1}. For
fi(yi) € {p —2 —yip — 1 — y;} a similar check yields fi;41(yit1) € {p —
1 — yi+1,Yir1 + 1}. This implies (12;(v:))i € Z(yo,- - ,ys—1). We leave the
somewhat analogous case p irreducible to the reader. O]

In the case 7 = 0, Lemma 15.2 was noted independently by Buzzard.

Recall that, if p is a continuous reducible generic Galois representation
(not necessarily split), there is a maximal element ¢™** in D(p) for < (see

§11).

Lemma 15.3. Let p be a continuous reducible generic Galois representation,
P its semi-simplification and o™ € D(p) the unique mazimal weight. Let
T be any weight such that {(p,7) < +oo and o € D(p) such that I(p,T) =
I(o,7). Then £(p®,7) < +oo and, if o' € D(p*) is such that I(p*, 1) =
I(c',7), we have o = o' N o™ in D(p™).
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Proof. As D(p) C D(p®), it is clear that £(p,7) < +oo implies £(p™, 1) <
+oo. We first prove o < o’. By (ii) of Lemma 12.8 applied to p*, I(o, 1)
contains ¢’ hence we have [(o,0’) C I(o,7). As in the proof of Lemma
12.6, we go from o to ¢’ inside I(o,7) by applying to o several sequences

p—2—-p—2—-—=1,--- .-+ 1 such that the successive sets of indices that
are affected are disjoint, or one full sequence (--- ;p —2 — - —=£1,---). Let
i€ Z(yo, - ,ys—1) be the unique element corresponding to these sequences

and recall that S(u) = {i, ui(y;) =p—2 —y; — +1 or y; £ 1} and that o’ is
the negative of o within S(u) (see Lemma 12.4). Let S,8" € {0,---,f — 1}
correspond to o,0’. Assume that we don’t have o0 < ¢/, or equivalently that
we have S(p) NS # 0. Let p/ be the unique element of Z(yo, -+, ys—1) such
that:

(i) S()=8mns
(ii) p and p’ are compatible (Definition 4.10).

Then, by Corollary 4.11 applied to I(o,0’), i’ corresponds to a unique irre-
ducible component ¢” of I(o,0’) C I(o,7) which is distinct from o. More-
over, from Lemma 12.4, one easily derives that this weight is still in D(p*)
(it is the negative of o within S(i’)). But we have ¢” < 0 as S(i/) C S
by assumption, so ¢” is also still in D(p). The definition of o then implies
o = o”, which is a contradiction. Hence we have o0 < ¢'. As o < o™,
we have 0 < o/ N o™ < ¢'. In particular, ¢’ N ¢™** is obtained from o by
applying sequences p—2—-, p—2—-—=+1,--- ,-£1 with support (in the sense
of §12) contained in S(u). As o' No™*, ¢’ € D(p*™), we get from Lemma 12.6
that these sequences are compatible with y and then from Corollary 4.11 that
o' N o™ is a component of I(o,0") C I(o,7). But ¢/’ N o™ € D(p) since
o' No™* < g™ and 0™ € D(p). Thus, we must have 0 = ¢’ N ™. [

We are now ready to prove:

Theorem 15.4. Let p : Gal(Q,/Q,r) — GL2(F,) be a continuous generic
Galois representation and (Dy(p),{ }) as in Theorem 13.8.

(i) Assume p is indecomposable, then (Dy(p),{ }) cannot be written as

the direct sum of two non-zero families of basic 0-diagrams (Definition
13.7).

(ii) Assume p is reducible split, then we have:

!

(Do(p).{ 1) = D (Do) { 1) (26)

=0
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where Dg¢(p) := @uoy=¢Doo(p) (see (23) for Dy, (p)). Moreover, for
each £, (Doo(p),{ }) cannot be written as the direct sum of two non-zero
famalies of basic 0-diagrams.

Proof. The whole proof is again easy but tedious combinatorics and we only
give details in the reducible case. Let us start with (ii). Note that there
is a unique o € D(p) such that {(c) = 0 (resp. (o) = f), namely o =
oo = (rg,--+,7y—1) @n (resp. 0 =05 :=(p—3—10,--,p—3—1p_1)®
det""°+1+p(”+1)+"'+pf71(Tf‘lﬂ)n)- We have to prove that the unique pairing
{ } on the I-eigencharacters of Dy(p)t preserves the I-eigencharacters of
Dy ¢(p)™ for each ¢, and doesn’t preserve those corresponding to any strict
non-zero K-direct factor of Dy,(p). This is straightforward if £ = 0 (resp.
¢ = f) as Doo(p) = Indy xo (resp. Do s(p) = Indj; x) where x§ (resp. X?)
is the character giving the action of I on of' (resp. O']Icl), see (i) of Remark
14.9. Fix 0 € D(p), 0 ¢ {o¢,04} and let S C {0,---, f — 1} correspond
to 0. Let 7 be an irreducible subquotient of Dy, (p) as in Corollary 14.10
contributing to Ij-invariants. Let S~ and ST as before with 7 and let & €
D(p) correspond to 6,((S\ S7) US*). By Lemma 15.2, 7¢I sits in Dyz(p)
and by Lemma 15.1, ¢(0) = ¢(c), hence { } preserves the I-eigencharacters
of Do ¢(oy(p)™. For £ € {1,---, f—1}, let o, € D(p) correspond to the subset
{1,2,--- ,¢}. We are going to prove that one can always “go” from Dy ,(p)"
to Do,ae(o)(P)h using y — x°. By Lemma 15.2 applied successively to 7 = o,
7 = §(0) etc., we can assume 0 ¢ S and 1 € §. Write § = II/,_,S, with
So = {ia+ 1, via + jat ia € {0, f— 1}, 0 & S and in + jo < ias
(sodg =0and )| _jo = {(0)). If r =0, we are done as 0 = 0y, in that
case. Assume r > 0 and define g := (1;(v:))i € Z(Yo, - -+ ,ys—1) as follows:

Mo(yo) = p—2—1

pi(y) = p—1-y;, 1<i<jo—1
tio(Yjo) = Yjo +1

wi(yi) = yi, > Jo.

Let 7 be the irreducible subquotient of Dy, (p) corresponding to u as in
(i) of Theorem 14.8. We have S~ = {1}, St = {jo + 1} and, by Lemma
15.2, 71 sits in Dy ,0)(p) where o) corresponds to SU) 1= Sy 11 6,(S \ Sp).
If jo+1 ¢ SW, we start again with 71 inside Dy, (p) corresponding

to the same p and get that 7 sits in Dy o (p) where o corresponds

to S@ = Sy I 63(S \ Sy). Repeating this again, one reaches S1—7) =
So I 6i1-00(S\ &) = IEST ) with SY'77°) as before. In particular, r
has strictly decreased. By an obvious induction, we can “reach” like this
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r = 0, that is 0y,). All this implies that { } doesn’t preserve any strict
non-zero K-direct factor of Dgy,)(p). Let us now prove (i). The case p
irreducible is analogous to (ii) and we leave the details to the reader. Let us
assume p is reducible non-split and let o € D(p). We are going to prove that
one can always “go” from Dy, (p)* to Dg,,(p)"* using x — x°. By using
Lemma 15.3 and Lemma 15.2 “backwards” and since Dy, (p*) C Do ,(p),
we can (and do) replace o by d (o) for the biggest integer n such that
§(0) < o™, Consider now the weight 6~!(¢)l*l. By Lemma 15.2 applied
to p* and 7 = 07 (0) € D(p®), 6*1(0)[51 is a Jordan-Holder component
in Dy, (p*) € Dy,(p) such that (5~ ( )END contributes to Do, (p)t. By
Lemma 15.3 applied to 7 = 6 (o), 67 (0) is a Jordan-Hélder component in
D 5-1(5)nomax (p). Moreover, £(6~ (o) No™) < £(67 (o)) = L(0) as 6 '(0) ¢
D(p). Thus, replacing o by 6 (o) N o™, we see that ¢(c) has strictly
decreased. By an obvious induction, we can “reach” like this ¢(c) = 0. This
finishes the proof. m

16 Generic Diamond diagrams for f € {1,2}

We completely describe the family of basic O-diagrams (Dy(p),{ }) attached
to a continuous generic p : Gal(Q,/Q,s) — GLa(F,) for f =1 and f = 2.

_ We write a finite dimensional indecomposable representation S of I' over
[, as follows:
So— S — 85y —---— 85,

where (S;); are the graded pieces of the socle filtration (see introduction).
Let us start with f = 1. Twisting if necessary, we can assume that p

acts trivially on det(p) and that the restriction of p to inertia has one of the
following forms:

L (wrth s

(i) < 0 1) with % £ 0
. Wt 0
(ii) < 0 1>

wrott 0
(iii) ( 2 . 1)
0 Wg( 0+1)

where w stands for w; (the reduction modulo p of the cyclotomic character)
and where 1 < ry < p — 4 in the first two cases and 1 < ry5 < p — 2 in the
last (remember p is generic!). The corresponding Dy(p) is:
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Sym? ' F, @ det'
(i) Sym”@i — ®
Symp*?’*mﬁi ® det™ !

SymTOF; — Symp_l_mFi ® det"™
ii %
(1) —3—roT2 ro+1 ro+2752 -1
Sym”™"""F, ® det™™ —  Sym™"F & det
Symmﬁi — Symp_?’_mFi ® det™t?
(iii) o)
Sym?” _1_’"0F§ ® det™tt — SymTO_QF; ® det .

The reader can easily find the unique pairing {x, x*} and check directly that
Dy(p)™ has dimension 2 in case (i), 4 in case (ii) and again 2 in case (iii).
We let 1T act on Dy(p)™ in the unique possible way (up to isomorphism of
Ri-representations) and let Dy(p) be the resulting &;-representation. Up to
isomorphism of basic O-diagrams, the reader can check that an I Z-equivariant
injection 7 : D1(p) < Do(p) depends on one scalar in F; in case (i), on two

scalars in IF, in case (ii) and is unique in case (iii).

We go on with the slightly more involved case f = 2. We will distinguish
the following cases on the restriction of p to inertia (after some possible
twist):

ro+14+p(r1+1)
(ia) <w2 *

) with x # 0 and D(p) = {(ro,71)}

*

7‘0+1+p(7‘1+1
) (+ 1
1) ® detm”’(p 1)
w?"o+1+p(7"1+1 «
< 1 with * # 0 and D(p) = {(r0,71),(ro +1,p — 2 —

Q?(ietp 1oy
( 7‘0+1+P(7‘1+1 0

)
)mm*%Owdmmz{mxm@—Q—mn+
)
)
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wro+1+p(r1+1) 0
(iii) ! 2(ro+1)+p®(r1+1)
0 wi 0 P 1

where 0 < rg, 7 < p—3 with (rg,r1) ¢ {(0,0), (p —3,p—3)} in the first four
cases and 1 < rg < p—2, 0 <r; <p—3in the last. The corresponding
Dq(p) is (we don’t write the twists by powers of det for each weight, one
can recover them from the usual formulas of §11; moreover if a weight has a
negative entry, we just forget it):

(ia)
(7“0,7”1) — 51— 5

where S is given by :
(p—2—ro,m+1)B(ro—1,p—2—11)B(p—2—r9,71—1)D(ro+1,p—2—11)

and Sy by:

(p—1-=ro,p—=3—r)®(p—1—ro,p—1-r1)®(p—3—r9,p—1-11)
©(p—3—r0,p—3—11)

((ro,m1) —S1—S2) ® (p—2—ro,r1+1) — S} — 55)

where:

S (ro—1lp—2-r)@(p—2—ro,r1—1) & (ro+1,p—2—1)
Sy = (p=1l=ro,p=1=-r)@®pP—-3—-ro,p—1-1)

Stoi= (p=3—ro,p—3-11)B(ro,m1+2)d(p—1—ro,p—3—11)
Sé = (T0+1p 4—7"1)@(7’0—1,]?—4—7"1)

(i)
((rosr1) — $1— $2) @ ((ro+ Lp—2=11) — S| — })

where:

S1o= (p=2-ron+)@—Lp-2-r)®&(@-2-ro,mn—1)
Sy = (p=1-r,p=3—r)®(p—1—re,p—1-1)

S; = (p=3-re,p—=3-1)D(ro+2,1)®(P—-3—r0,p—1—-11)
Sé = (p—4—7“0,7"1+1)@(p—4—7’0,7"1—1)
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(7’0,7“1) — S — (p—l—ro,p—l—ﬁ)

@D
(p—2—7'0,7"1+1) _— Si _— (7"0-1,}7-4—7”1)
©
(ro+Lp—2—1r) — SY — (p—4—rg,m1 —1)
D
p—3—ro,p—3—r1) — S — (ro+2,r1+2)
where:
S1 = (p—2—-ro,r1—1)®(ro—1L,p—2—11)
ST = (ro, r1+2)@(p—1—r0,p—3—7’1)
Si’ = ( —7"0 p—l—’l"l)@(’f’o—{—2,’f’1)
S = (rot Lp—4— ) ® (p—d— o+ 1)
(iii)
(ro,11) — S1 — (P—3—ro,p—1—1)
@D
(ro—Lp—2—r;) — S — (p—ro,r1—1)
©
(—1-rop—3-r1) — S — (o—2m+2)
D
p—2—ro,r+1) — SV — (ro+1,p—4—r)
where:
S (p—2—ro,r1i = 1)@ (ro+L,p—2—11)
S1 (ro—2,r)@®&p@—1—rog,p—1—r1)
Si’ = (ro—lp 4—7‘1)@(]9—7“0,7’1—1—1)
S = (p—3—re,p—3—11)® (ro, 11+ 2).

The reader can easily find the unique pairing {x, x*} and check directly that
Dy(p)™* has dimension 4 in case (ia), 6 in cases (ib), (ic), 10 in case (ii) and
8 in case (iii). Defining the K;-representation D;(p) as previously, the reader
can check that, up to isomorphism of basic 0-diagrams, an IZ-equivariant
injection r : Dy(p) — Dy(p) depends on two scalars in F; in case (ia), (ib)

. oo=X . .. o= X .
and (ic), of four scalars in I, in case (ii) and of one scalar in F, in case (iii).
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17 The representation R(o)

For o a weight, we define and start studying a K-representation R(o) which is
a subrepresentation of C—Indg0 o and which will contain all the I'-representa-
tions Dy 55)(p) for generic tame p. Although it might not be strictly neces-
sary, we assume p > 2 and o # ol

We fix 0 = (1o, ,77_1) ® 1 a weight such that o # o*) and extend the
K-action to a Kp-action by making p act trivially. We let x be the character
giving the action of I on ¢!t. Following the notations of [4], for g € G and
v € o we denote by [g,v] € (:—Indg0 o the unique fonction with support in
Rog~! which sends g~ to v. Let r := 1y +pry + -+ p/~'r;_; and recall
that any element of o can be seen as a polynomial over Fp in the variables
a" "y for i = dg+piy + -+ pflip_y with 0 <i; < r;. We first define fi(a)
to be the K-subrepresentation of c—Indg0 o generated by the elements:

(168 ] efgrres)

where J, := {i € {0,---, f—1},r; > 1} and with the convention .., p’ =0
when J = (). An easy calculation shows that this is the same as the K-
subrepresentation of C-Indg0 o generated by the elements:

(L5 [(38) 2y i € (e’ T € Th o €Fy).

For J C J,, we define Filjﬁ(a) to be the K-subrepresentation of é(a) gen-
erated by the element:

0 1) i ] for i — :
, y'| for i = E .
{(p 0 jeJ

An easy calculation gives Fil”’ R(¢) C Fil’R(0) if J' C J hence we have

Fil’ R(0) = R(0).
Lemma 17.1. (i) For J C J,, we have:
Fil’ R(o)

= Ind} sadics P,
ZJ’CJ Fil’ R(U) X
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(i) For J C J, and j € J, \ J, the K-representation:

1y Fil”“U R(0)
rod = —=
Zj/gju{j} FllJ R(U)
J'#J
18 an extension:
0—— Indg Xsazielpi Gr’J Indg XsaijfZiEin —0 (27)

which is isomorphic to the induction from I to K of the extension of
I-representations 0 — ySaXics?' — s — y*a’ T2ics?' — () where the
action of I is given in a basis (v,w) of * such that v € y a2=icsP" by:

(z?c 2) v (Xsap”zmpi)( (;c Z) ) <(C/ )’ v+ w>. (28)

Proof. Straightforward and left to the reader. O]

Definition 17.2. Let o, x and J C J, as previously and setr{ :=r; ifi & J,
r! =r;—=2ifieJ (hence =1 < 1! <p—3). We say that an irreducible
subquotient of Indy x*a2=ics?" is special if it is of the form:

((Bo(r), -, 651(ry_1) ® det“ 870 degies 'y (29)

where (0;(x;))i € P(xo, - ,x5-1) (see §2) with ;(x;) € {p — 2 — z;,z;} if
1€ J.

Example 17.3. If f = 1, we have J, = {0}. The special irreducible subquo-
tients of IndFB x* are o and ol*l. If ry > 2, the special irreducible subquotient
of Ind} x*ar is Symm’ZFf, ® detn and if 7o = 1, Indj x*a has no special
irreducible subquotient.

Lemma 17.4. The D-representation Indy xiaZies?' has all its irreducible
subquotients special if and only if J = (.

Proof. 1f J = (), it follows from Lemma 2.2 that all irreducible subquotients
are special. Assume J # (). If r; > 2 for all 7 € J, it again follows from the
same lemma that all subquotients can’t be special (e.g. the co-socle if the
representation is indecomposable). Assume r; = 1 forsomei € J. Asr;—2 =
—1, one checks the socle of IndFB xoaics P is a weight (sq, - - - sy_1)®1 with
s; € {p — 1,p — 2}. Hence the co-socle is a weight (fo, - ,t;_1) ® ¢ with

t; € {0,1}. But as r/ = —1, any special subquotient (29) is such that
0;(x;) =p—2 — x; i.e. such that 6;(r/) =p—1. Asp > 2 t; # 0,(r]) and
the co-socle is again never special. ]
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Lemma 17.5. Assume that J # () and that Ind X saXies? has at least one
wrreducible special subquotient. Let i and j be too consecutive elements in J
(with possibly i = j if |J| =1). If r; =1, there is s € {0,---, f — 1} such
that i +1<s<j—1 (modulo f) and rs >0 (and s & J).

Proof. Indeed, if this was not the case, then any special subquotient of

Ind} x*a2ies?' as in (29) would necessarily be such that 6;(z;) = p — 2 —
(as 7! = —1) and O,(n,) oy —1fori+1<s<j—1 (asr‘]—rszo) As
(0;(x;)); € P(xo,-++ ,x¢-1), this implies §;(z;) € {p — 1 — z;,z; — 1}. But
this is impossible because j € J implies Hj(:vj) e{p-— 2 — T, %} O

Lemma 17.6. Let J' C J C J, and set (* := yaXies P Let (sg, -+ ,57.1)®
Y be the socle of Indy ¢* and set siJ\J, =s;ifi ¢ J\J and s'i]\‘], =5 — 2
if i € J\ J'. Any special irreducible subquotient of:

Indg XsO&ZiEin = IndFB CSaZiEJ\J’ v
can be written as:
(Oufsi™), 051 (572])) & dere e Ziens Ty (30)
for 0 € P(xo, -+ ,xp-1) with 0;(x;) € {p — 2 —x;,x;} if i e J\ J.

Proof. Note first that, as J' C J and o # o, we can’t have ¢ = ¢* and
the socle of Ind ¢* is well defined. If f = 1, there is nothing to prove as
J'" = 0 in that case. Assume f > 1. If r; > 2 for all + € J', this follows
immediately from Definition 29. If r; = 1 for some i € J’, this easily follows
from Definition 29 together with Lemma 17.5 (note that, using Lemma 17.5
if there is ¢ € J’ such that r; = 1, one has s; =r; > 1if i ¢ J'). O

Beware that, conversely, all subquotients as in (30) are not necessarily
special in the sense of Definition 29.

Lemma 17.7. Assume that J # 0 and let T be a special irreducible subquo-
tient of Ind x*a2=ics?" . Then 1 doesn’t occur in Indy y*a2=ics P for J' C J.

Proof. Set ¢* := y*asics pi, By Lemma 17.6, any special irreducible sub-
quotient of Ind’ Cfa>ien'?" can be written as:

J\J

(00(83\ ) ef 1($f\ 1 )) ® det J\J " )detzzeJ\J/p w

for 0 € P(xg, -+ ,xp_1) with 6;(z;) € {p 2—x;,x;}ifi € J\J'. By Lemma
2.2, the irreducible subquotients of Ind}; ¢* are:

(>\0<30), cee ’)\f—l(sf—l)) ® dete()\)(so,~-,sf,1)¢
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for X € P(zo, -+ ,x5-1). If a special subquotient of Ind} CSa2miens P also
occurs in Indy ¢*, then by considerations of determinants as in the proof
of Lemma 12.8, one can check this implies \;(z;) = 6;(x; — 2) as formal
expressions of x; for any ¢ € J\J'. This is impossible as A € P(zg, - ,x_1),
and thus one can’t have \;(z;) € {x; — 2,p — x;}. O

Lemma 17.8. Let 7 be a special irreducible subquotient of Indg XSaZiEin

and U(7) C FilY R(0) the unique subrepresentation with co-socle T (which is
well defined by Lemma 17.7). Then all irreducible subquotients of U(T) are
special.

Proof. If f = 1, this follows from Example 17.3 so we can assume f >
1. First, for any J C J, and any special subquotient 7 of Ind} y*aies?'
corresponding to some A € P(xo,--- ,zs_1) by Lemma 2.2, one checks (using

Lemma 17.5 if r; = 1 for some 7 € J) that the unique subrepresentation
of IndFB Y aicsP" with co-socle 7 has only special irreducible subquotients,
namely all the weights corresponding by Lemma 2.2 to the f-tuples X' €
P(xo,- -+ ,xp—1) with X' < X in the sense of §2. Using this inductively, it is
enough to prove the following statement: all weights 7/ of Indy y*a2ies P
with J' € J which could possibly be involved in a non-trivial K-extension
with 7 are already automatically special. Define ¢* and (so,- - ,s7-1) ® 1 as
in Lemma 17.6. Using the notations of the proof of Lemma 17.7, write:

J

! ! \ / \ / ;
) ) A s
7= Qolso) -+ s Apalsp)) @ deteW (0,555 -1)q),

with 8, A € P(xo, -+ ,x5-1) and 6;(x;) € {p —2 — x;,x;} it i € J\ J'. The
weights distinct from 7 and possibly involved in a K-extension with 7 are
described in Corollary 5.6. Consider first the extensions F2, i.e. cases (a)
and (c) of (i) of Corollary 5.6. In order for a weight 7" to be involved in
such an extension with 7, the only possibilities are J = J'II1{j} (for some j),
0;(x;) = Ni(x;) for i # j and 0;(z; —2) = \j(x;) — 2 with 6,(z; —2) = x; — 2
or §;(z; —2) = \;j(z;) +2 with 0;(z; —2) = p—2— (; — 2) (note that we are
dealing with weights, not formal weights, but considerations of determinant
as in the proof of Lemma 12.8 show this is actually equivalent). But in
both cases, we have Aj(x;) = 0;(z;) and 7’ is thus necessarily the weight
(Bo(s0), - »0p_1(s7-1)) @ det®@Co5r-1)4), Tt is certainly special in Ind} ¢*
if 7 is special in Indg ¢ sq2iens' P Consider now the extensions F1,i.e. cases
(a) and (b) of (i) of Corollary 5.6. In order for a weight 7’ to be involved in
such an extension with 7, the only possibilities are J = J'I1{j} (for some j),
Oi(x;) = Ni(z;) for i ¢ {j — 1,7}, Oj_1(zj—1) =p — 2 — A\j_1(xj_1) and either
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Hj(ﬂlj — 2) = )‘j(xj) — 1 with 9j<xj — 2) =T — 2 or Qj(xj — 2) = )\j(.fl?j) +1
with 0;(x; —2) =p —2 — (z; —2). Let us suppose §;(z; —2) = z; — 2, then
the weight 7 is up to twist:

(Oo(s0)s -+ ,0j-1(8j-1),85 — 2, -+, 0p-1(sp-1))
whereas the weight 7/ is up to twist:
(Bo(s0), -+, p=2—=0;-1(sj1),85 — L+, 0pa(sy-1))-

As 7 is special, the weight 7 can also be written up to twist:

(Go(rg)s -+ 051 (rf_1))
with 6 as in (29) such that 0(z;) = x; (asr] =r;—2=1s;-2). Asr{ =r/

1
if 1 # j and 7“3] "= r;, the weight 7' can thus be rewritten up to twist:

(96(70(‘)] )7 Y 2 2 - 0}_1(’/“;]_1), ’I“}-] - 17 T }_1(7“;_1))

which is special in Indj ¢* by Definition 17.2 and an easy calculation in
P(zo,--- ,xp—1). The other case is analogous and left to the reader. No
other weight distinct from 7 can possibly be involved in a K-extension with
7 which has a central character. O]

[~)eﬁnition 17.9. We define R(o) to be the following subrepresentation of
R(o):

R(o) =) U(7)
for all J and all subrepresentations U(T) as in Lemma 17.8.

Example 17.10. Assume f = 1. If 7y = 1, we have R(o) = Ind};x*. If
ro > 2, R(0) is an extension:

0 — Ind; x* — R(0) — SymTO_QFf, ® detn — 0.
We will see in §18 that this extension is non-split.

Recall that the set Z(zo,--- ,zs_1) was defined in §3.

Lemma 17.11. The irreducible subquotients of R(c) are exactly the (all
distinct) weights:

(o(ro), -+ s pp-1(rp-1)) @ dete(u)(ro,m,rf_l)77

for pi(z;) == XNi(p— 1 — ;) with A € Z(xg, -+ ,x5-1) and e(p) defined in the
usual way (forgetting the weights such that p;(r;) < 0 or p;(r;) > p—1 for
some i). In particular, they occur in R(o) with multiplicity 1.
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Proof. Let u be as in the statement and set:

J={ie{0, -, f—1}, pi(x;) € {x; —2,p—x;}}.

Let 6;(x;) == pi(x;) if @ ¢ J and 0;(z;) == pi(z; +2) if ¢ € J. Then it is
straightforward to check that 6 € P(x,--- ,zs_1) and that:

(Ho(ro), -+ py—1(ry-1)) @ detWro sty —
(90(7“(‘)]), - 79]”—1(7";_1)) ® dete(e)(T()],--~,rf71)n (31)

with 7/ as in Definition 17.2. Hence any weight as in the statement is
special and thus occurs in R(o). Conversely, going backwards on (31),
any weight as in (29) corresponds to a unique g as above such that J =

{i, i) € {p — @i, & — 2}}. 0

Lemma 17.12. For a weight 7 = (po(r0), -+, prp_1(rp_1))@dete o=y
in R(0), define:

J(r) = {ief{0,--- f =1} pilw;) € {wi — 2,p— 2} }
K(r) = {ie€{0,-,f—1}p(z:) €{wi — Lz —2,p—xy,p— 1 —xi} }.

(i) The set J := J(7) is the unique J C J, such that T is a special subquo-
tient of Indjy x*aXies?",

(11) If a non-split K -extension 0 — 7" — € — 7 — 0 occurs as a subquotient

n FilJ(T)E(O'>7 then it occurs as a subquotient of R(c) and we have
J(7') C J(1) and K(1') C K(7). Moreover, if € is a I-extension, then

we have either J(7') = J(1) and K(7') € K(1) or J(7') € J(7) and
K(7") = K(7), and |J(T) U K(7)| = |J(7') U K(7")| + 1 in both cases.

Proof. If f = 1, this follows from Example 17.10 so we can assume f >
1. (i) follows from Lemma 17.11 and its proof (see (31)). Let us prove
(ii). By the definition of U(7) in Lemma 17.8, the non-split extension e
must be a quotient of U(7) and hence is also a subquotient of R(c). Write
7= (po(ro), -+, W1 (ry-1)) ® deteW) o mi-Dp with 4/ as in Lemma 17.11.
Assume e sits in Indg ySa>ie0? (e, J(7') = J(r)). If r; > 2 for all
j € J(7), then it directly follows from Theorem 2.4 (together with Lemma
2.2) that K(7') € K(7) and |K(7)| = |K(7")|+1. If r; = 1 for some j € J(7),
this is still true but one has to use Lemma 17.5. Assume now that 7' comes
from a distinct parabolic induction inside R(c), we are then exactly in the
situation of the proof of Lemma 17.8. If the extension € is of type £2 (i.e.
it is not a I'-extension), going back to this proof, we see that we necessarily
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have j € J(7) such that (¢}(z;) = z;, pi(x;) = x5 —2) or (Wy(x;) = p —
2 —xj, pi(z;) =p—x;) and p(z;) = p(x;) for ¢ # j. In both cases, we
have J(7') € J(7) and K(7') € K(7). Assume now that the extension e is
of type £1 (i.e. is a [-extension). Again, by the proof of Lemma 17.8, we
necessarily have j € J(7) such that u_(7; 1) = p—2—p;1(z;_1) and either
(w() = w5 = 1, pj(;) = 25— 2) or (pi(x;) = p—1—xj, pi(x;) = p— ;)
(and pf(x;) = pi(x;) for i ¢ {j —1,7}). The operation p — 2 — - preserving
J(7") and K (7'), we see that we have J(7') C J(7) (with |J(7)| = [J(7')|+1)
and K(7') = K(1). O

18 The extension Lemma

In this section, we crucially use that we are working with Witt vectors. We
keep the assumptions of §17 (p > 2, o # ¢¥) and prove that R(c) contains
many non-split extensions. The existence of these non-split extensions will
imply the irreducibility of some G-representations (§19).

We start with three easy lemmas.

Lemma 18.1. Let 7, 7’ be two distinct weights, Q. (resp. S;) a representa-
tion of I' on a finite dimensional Fp-vector space with socle ' (resp. co-socle
7), and R a I'-extension 0 — Q. — R — S; — 0. Assume that, if w' (resp.
w) is an irreducible component of Q. (resp. S;) with (w',w) # (7/,7), we
have Exty(w,w') = 0. Then R is obtained by push-forward along 7" — Q.
and pull-back along S, — 7 from a I'-extension 0 — 7" — ¢ — 7 — 0.

Proof. For any irreducible constituent w’ of @, distinct from the socle 7/,
we have Ext{(S;,w’) = 0. By the usual long exact sequence for Hom and
Ext, we derive a surjection Ext{.(S,, ") —» Exty(S;, Q). For any irreducible
constituent w of S, distinct from the co-socle 7, we have Extf(w,7’) = 0.
We derive again a surjection Exti(7,7') — Ext{(S;, 7). This implies the
statement. [l

Lemma 18.2. Let 7/, 7 be two weights and € a I'-extension 0 — 7/ — ¢ —
T — 0. Let F' € € be a non-zero H-eigenvector with eigencharacter x where x
is the action of I on 7™*. Assume that x doesn’t occur as an H-eigencharacter
on 7" and that (I - F) contains 7'. Then € is non-split.

Proof. Note that 7 and 7’ are necessarily distinct because of the assumption
on . If € was split, as x doesn’t occur in 7" we would have that F' necessarily
belongs to 7 via a splitting 7 < e. This would imply (I" - F) = 7 which
contradicts 7 C (['- F). O
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Lemma 18.3. Let ¢ be an integer between 0 and p — 2. Then the following

equality holds in T, :
i c (c—&—i)—n) — 1
n P c+1

n=0

Proof. Exercise. O]

The following lemma is the main result of this section and its proof a long
computation.

Lemma 18.4. Let 7' := (o, -+ , 1} _1)@ny and 7 := (to, -+ ,t;-1)®n, be two
irreducible subquotients of R(o). If f > 1, assume there isi € {0,--- , f—1}
such that t; = p—2 —t;, tiyn = tj,, £ 1 and 0, = 77T/det”z(tﬁl)fl/z(lﬂ)pzﬂ
(withi+1=04fi=f—1). If f=1, assume ty =p—2—1ty,+1 and
N, = nT/dett6+1_1/2(1i1)p. Then either the unique non-split I'-extension 0 —
7" — € — 7 — 0 or the unique non-split I'-extension 0 — 7 — € — 7 — 0
occurs as a subquotient of R(o).

Proof. We divide the proof into 6 parts (i) to (vi). _

(i) If 7/ and 7 occur as subquotients of the same Ind}; x*aXics?'| then the
result follows from the structure of such I'-representations (see Theorem 2.4).
So assume that 7’ is in Indy y*a2=ic7’?" and 7 in Ind} x*a>ies?" with J’ and
J distinct. Switching 7" and 7 if necessary, the same proof as for (ii) of
Lemma 17.12 implies that we can assume J' C J. We first assume f > 1.
Using notations as in Lemmas 17.6 and 17.8 and twisting everything by ¢!,
the same proof as the second half of the proof of Lemma 17.8 shows we can
assume J = J' 11 {j}, 7 € Ind}; ¢*, 7 € Ind}; *o”’ and:

= (Mo(s0), s Ap1(sp-1)) @ detcM (50, 57-1)

T — (90(80)7 P 79j(8] — 2)’ P 70f—1(8f—1)) ® dete(e)(sov'“7Sj_27“'7sf—1)detpj
where (g, ,57_1) is the socle of Ind}; ¢* with s; > 1 (we have ¢ # (*, see
the proof of Lemma 17.6), where 8, A € P(zo,--- ,x7_1) with 6;(x;) = \i(z;)

ifi ¢ {j—1,5}, 0;(z;—2) € {o; —2,p—;}, O51(vj1) = p—2—Nja(xj-1)
and one of the following two possibilities occurs:

case —1 @ N(x;) = z;,—1 0;(x; —2) x;—2
case +1 : N(z;) = p—1—2x; 6Oj(z;—2) = p—uj.

(i) As in §2, define:

JA) = {ie {0, f—1} N(w) e{p—2—a,p—1—z}}
JO) = {ie{0,--- , f—1}10;(z;)e{p—2—a;,p—1—x;}}
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and note that j —1 € J(A), J(8) = J(A)\ {j — 1} and j € J(0) (or J(N)) if
and only if 0;(x; — 2) = p — ;. With the notations of Lemma 17.1, let us
work inside the representation:

0 — Ind; ¢ — Gr’/'7 — Ind} (Sozpj —0

which is isomorphic by (ii) of Lemma 17.1 to Ind¥ (va ® pr) the action
of I being given as in (28) with (*o?’ instead of y*a?’ tZics?" | Let us denote
by ¢, (resp. ¢,,) the unique function in Ind¥ (F,v @ F,w) with support in I
sending 1 to v (resp. w). Let x, be the character giving the action of H on
1. We define F € Indf (F,v @ F,yw) as follows:

case —1F = ATt e (G0 o o1y

AeF,
case +1:F = Z )\p] p—1-0;(s;—2 +ZzeJ(9)\{J}p (p—1-0:(s1)) <[i\] é) gbw
AeF,

where e(7) := 1if ¢*a?”’ = (¢*a*’)* (which implies s; = 2 and 7 1-dimensional)
and (1) := 0 otherwise. There is a conflict of notations between A\ €
P(zo,--- ,xp—1) and A € F, but there is no possible confusion between the
two. The element F' is an H-eigenvector of eigenvalue x, and its image in
Ind; ¢*a”” maps to a basis of 7/t in any quotient of Indj (*a”’ where 7 is a
subrepresentation. If s; > 2, this follows directly from Lemma 2.7 or Lemma
2.6 applied to 7 and Ind} Csoﬂ’] If s; = 1 (which implies 0;(z; —2) =p —z;
and we are in the case —|—1) this is still true but requires a small computation
together with Lemma 17.5 (the set J(#) is then strictly larger than the set cor-
responding to 7 in (ii) of Lemma 2.7, for instance it contains j, but the extra
indices ¢ of J(#) are harmless since they are all such that ;(s;) = p—1ifi # j
or i =jand #;(s; —2) = p—1 and thus p—l—@i(si) =p—1-0;(s;—2) =0).
We are going to prove that (K - F') contains 7’ (as a subquotient).

(iii) Consider first the case —1, which implies s; > 2 and j ¢ J(0). First, F
is fixed by K in any quotient of Ind¥ (Iva &) pr) comlng by push-forward
from a quotient of Ind%X (IF v) = IndF (* containing 7’ as subrepresentation.
Indeed, any matrix of K acts on F' by adding to F' a linear combination of
the following vectors:

A 1
1 O¢”

>ser, A '+ ie0) P (P=1=0(5:)) ([i\] (1)) b,
[

' . 1
E:AEFqA%)+zL€J9ﬂj@ 0 ( 1] O) bv + (7)o

3 rer \Zies(o) P (p=1=0i(s:))
q
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Using Lemma 2.7 together with Theorem 2.4, one checks that these vectors

are zero in any quotient of Indf ¢* containing 7’ as subobject (use s; > 2,
J(O) € J(N), j ¢ J(\) and 0;(s;) = Ai(s;) for i € J(0)). A computation
yields now for § € F:

((1) [f]) F= 3 (A= 8) S o-1-0:6) ([i] (1)) (p[‘lx] ?) "

AeF,
+e(T)(=1)" b

where:

()

X — s/ \P~H(p 8)(_5)1)’18

s=1 p
Note that X comes from the addition law [\ + [=d] = [A — ] — p[X] (p?)
in W(F,). Using (28), we obtain for (| 1) F, up to multiplication by a

non-zero scalar:

— » A1
Z()\—é) ica(0)P'(P=1=0i(s:)) ( AP e S) 5)1”]_13) <[1] 0> Oyt

A€EF,

Z()\ _ 5)ZieJ(0)pi(p_1_9i(5i)) ([i‘] O) b + 5(7.)<_1)pj¢w'

A€EF,

Rewriting this (5tAt and varying ¢ in [F,, we get that all the elements A,
are in (K - F), in partmular the element A,;-1 which is, up to multiplication
by a non-zero scalar and since J(\) = J(@) I{j—1}

Z AZiEJ(A)\{j_l}pi(pflf)‘i(si)))\pj_l(p_l) <[)\] ) ¢”U € I d C

1
A€y

By Lemma 2.7, this element generates 7’ inside I:adl;3 ¢°.

(iv) Consider now the case +1. Here, one can check using Lemma 2.7 and
calculations analogous to those of the case —1 that F' is now [;-invariant
(and not just Kj-invariant) in any quotient of Indy (F,v @ F,w) coming by
push-forward from a quotient of Indf (F v) containing 7’ as subobject. We
will thus need the action of ([5} ) € K. Using the equality (for A # 0):

(O Y-CI D6 6 )
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and the fact that F' is [;-invariant and that ¢,, is an H-eigenvector, we get
for 6 € Fy:

. _ —1
([(1;] (1)>F:£(T)q§wzl:z )\b(T)+p](2sj)Zi¢jp7’Si([>\ 1‘|‘ ] (1)> (p%/ (1)> o

AEFS

where we didn’t bother to check the sign, where:

O g
y = =3 S rteps
2
b(r) = p(p—1-0;(s;—2)+ P(p—1—0i(s:))
ieJ(O)\{s}

and where £(7) := 1 if 7 is the socle of Ind ¢*a”’ and 0 otherwise (compare
with (4) and (5)). Note that, in the case +1, we have (*a? # (¢*a?’)?,
e(t) = 1 implies s; = 1 and the term with A = 0 in F' is non-zero if and
only if (1) = 1. This can be rewritten as follows (using (28) for the action

of (p§/ (f)):
p—1

c(T (i) 7 —L(p—s i—ls [)‘ + 5] 1
+ A (Z?)\p (p—5) 5P ( | O) bo
A€Fy

s=1
+ 3 a0 ([A?ﬂ (1)) b+ £(7) 6

AEFY
where:
T) = —p + Zplsi — Z p'(p—1—0i(sy)).
i#] i€ J(O\{s}
Using 6 € P(xg, - ,x4-1) and 0;(z;) = p—2—=x;, a small computation gives

¢(t) = d(7) modulo p/ — 1 where:

d(r):= Y v + ) ploi(s),

i€J() i¢J(0)

hence one finally gets (changing A into A — §):

(3 o= (£ (1 o

AEF,

£ (A= o)) ( i] (1)) bu +2()bu. (32)

A€F,
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Consider the expression:

_ Pty _
()\ . 6)p3—19j,1(sj,1)( (;) )\pJ—l(pfs)(_6)17,3—15’)7 (33)
1

S=

the coefficient of 67’ ¢i-1(5i-0+1) in (33) is (up to sign):

0;—1(sj-1)
] IZJ | (‘9j1(8j1)> (9j71(s:1)+17n) )\pjfl(p—l):;vﬂ(p_l)
n=0 n p Oi-1(s5-1) +1

where the equality comes from Lemma 18.3 (note that one always has 0 <
6;-1(sj—1) < p—2). In particular, it is never zero. Now writing:

dir)=Y_pp—1+ > poi(si) +p05-1(s;1),
ieJ(9) i¢J(0)
i#j—1
we deduce that the coefficient of 67’ (¢5-1(5i-0+1) in (32) is, up to multipli-
cation by a non-zero scalar, the element:

Z)\ZieJ(e;)pi(p1)+Z§i§(_el)pi9i(sz‘)+pj‘l(p1) A 1 bo.
1 0
AEF,

Varying ¢ in F, as for the case —1, we get that this element belongs to (K- F).
But since J(A) = J(0) 11 {j — 1}, this element is precisely:

Z AZies P (P 1)+ g 50 PP Ai(50) ([i‘] é) bu

A€F,

which generates 7/ inside Ind}; ¢* by Lemma 2.7. In all cases, we have that
7' occurs as a subquotient of (K - F). _

(v) Let now S, be the unique subrepresentation of Ind} (*a”’ with co-socle
7, by the definition of F', we have a surjection of I'-representations (K -
F) — S, (see (ii)). Denote by @', C Ind};¢* its kernel (which contains 7/
as a subquotient), )+ the unique quotient of @', with socle 7/ and R the
corresponding quotient of (K - F') obtained by push-forward. We thus have
an exact sequence of I'-representations 0 — ). — R — S, — 0 which is
a subquotient of Ind}* (F,v @ F,w). Let (w’,w) be irreducible constituents
of respectively (),» and S;. By Lemma 17.8, w is special as 7 is. Assume
Exty (w, w’) # 0, then by Lemma 17.8, w' is also special and by (ii) of Lemma
17.12, we have:

K(') C K(w') = K(w) C K(7).
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But the same proof as for the last part of (ii) of Lemma 17.12 shows K (7') =
K(7), hence K(7') = K(w') and K(w) = K(7). By (ii) of Lemma 17.12
again, this implies (w’,w) = (7/,7). We can thus apply Lemma 18.1 saying
that R contains as a subquotient a I'-extension of 7 by 7/. One can easily
check that y, doesn’t occur as an H-eigenvalue in 7/. We can thus apply
Lemma 18.2 saying that this extension is non-split. This finishes the proof
for f > 1.

(vi) Assume finally f = 1. Going back to the beginning of (i), from Example
17.10 we can assume g > 2, 7/ = Symp_l_TOFf)@detmn and 7 = SymTO_QFIQ,(X)
detn. A completely analogous computation as the one in (iii) with F :=
2 oeF, (W3) dw —e(r)dw (e(r) = 1if ro = 2 and (1) = 0 otherwise) shows
that (K - F') contains 7/, and hence by (v) that the corresponding extension
is non-split. O

19 Generic Diamond diagrams and represen-
tations of GL,

We state our main conjecture and give evidence for it. The conjecture being
empty if p = 2 (see the end of §11), we can assume p > 2 all along.

If p is a continuous generic Galois representation as in §11, we denote by
(Do(p), D1(p),r) any of the basic 0-diagrams associated to p in §13. If p is
reducible, we likewise denote by (Do (p), D1(p),7e) for £ € {0,---, f} any
basic 0-diagram constructed from the family of basic 0-diagrams (26).

The following statement, which is suggested by Theorem 15.4, is the main
conjecture of the paper:

Conjecture 19.1. Let p: Gal(Q,/Q,s) — GLa(F,) be a continuous generic
representation as in §11 such that p acts trivially on its determinant and let
(Do(p), D1(p),7) be one of the basic 0-diagrams associated to p in §13 with
Dq(p) as in Theorem 13.8.

(i) There exists a unique (up to isomorphism) smooth representation w(p,r)
of G which is generated by its Ki-invariant vectors and such that:

(m(p. )", m(p, )", can) = (Do (p), Di(p), 7).
(11) This representation is irreducible (resp. semi-simple, resp. indecom-

posable) if and only if p is irreducible (resp. semi-simple, resp. inde-
composable).
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(iii) If p is semi-simple, then m(p,r) ~ ®I_7(p,r)¢ where w(p,7)¢ is a
smooth irreducible admissible representation such that:

(m(p, 7’)2517 m(p, 'r)él,can) = (Doy(p), D1e(p),7e)

for some 1Z-equivariant injections vy : Dy 4(p) — Doe(p). Moreover
7(p,7)e is a principal series if £ € {0, f} and is a supersingular repre-
sentation otherwise.

(iv) If p is indecomposable, then w(p, 7)™ ~ @I_,m(p™, 1), where w(p*, ),
is a smooth irreducible representation as in (iii). Moreover, the G-socle
of m(p,r) is w(p*,1%)o.

In the rest of this section, we give evidence to the above conjecture for
f > 1 (Theorems 19.9, 19.10 and 19.11). In the next section, we prove it
completely for f = 1.

We start with several lemmas. Recall §(o) was defined in §15 and R(o)
in Definition 17.9.

Let p : Gal(Q,/Q,r) — GL(F,) be a continuous generic tame represen-
tation. Let ¢ € D(p) and denote by x the action of I on ¢'. By Lemma
15.2 applied to 7 = o, the weight (o) is a component of Ind}; x*. Writing
o= (s, - ,8¢-1) ® 0, it is thus of the form:

0(0) = (&o(s0), -+ Er—1(sy-1)) ® det?Oosr-1)g

for a unique § € P(xo, - ,xp-1). Set S(&) == {i € {0,---, f —1},&(z;) €
{z; — 1,p — 1 — x;}} as in §4. Note that S(£) determines uniquely ¢ in
P(zo,--- ,Tp1).

Lemma 19.2. Keep the previous notations and let X € RD(zg, -+ ,x5_1) or
ID(zg, - ,x5-1) correspond to o via Lemma 11.2 or 11.4.

(i) Assume p is reducible, we have:
S ={ie{0,---,f—1} N(x;) e {p—2—w,z; + 1}}.
(ii) Assume p is irreducible. If N\o(xo) € {p — 2 — 9,29 — 1}, we have:
SE={ie{l - f—1}Aa) € {p—2 -y +1})
and if Xo(xo) € {p — 1 — xg, x0}, we have:
S ={ie{l,-,f=1}N(z) e{p—2—a;,x; + 1} } T {0}.
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Proof. With the usual notations for p as in Definition 11.7, recall we have
o= (Mo(r0), -+, Apoa(rp_1)) @ det* om0y - (3) Let ¢ € P(wg, -+ ,x51)
be the unique element such that S(¢) := {i € {0,---, f—1}, \i(z;) € {p—2—
x;, v;+1}} with S(¢) defined as in §4. A straightforward computation shows
that applying ¢ to A, that is computing (¢;(A\;(x;));, pushes all sequences
p—2—-p—3—-p—3—-,-+1on \one step to the left. By definition of
d(o), we have thus:

3(0) = (Go(Ao(ro)) -+ » (-1 (Ag-1(rs-1))) © det“ DN deg= ™oy
which implies { = £ and hence yields (i). (ii) is analogous. O
Keep the previous notations and define ye € Z(yo, -+, ys—1) as follows:
(1) pei(yi) =p—1—y;if &(ay) € {zy — 1,23}
() pei(y) =p—3—y if &G(zi)) e{p—2—wi,p— 1 — i}
Lemma 19.3. We keep the previous notations.

(i) The irreducible subquotients of Dy s (p) are exactly the (all distinct)
weights:

(1o0(&0(50)), -+ s p—1(Eg-1(55-1))) @ degeleeleoi-1lg (34)

for i€ I(yo, -+ ,ys—1) such that p and e are compatible (see Defini-
tion 4.10) forgetting the weights such that p;(&(si)) < 0 or p;(&(si)) >
p — 1 for some i.

(ii) The graded pieces of the socle filtration on Dy 5)(p) are:
Dose(p)i = B 7
L(p)=i
for 0 <i < f—1 and weights T as in (34) with {(p) as in §4.

Proof. Let 0,(\) (resp. 0,(A)) be the f-tuple of RD(xo,- - ,z5_1) (resp.
ID(xg,--- ,x5-1)) associated to d(c). From Theorem 14.8 applied to (o),
it is enough to prove the following:

(i) &(x;) € {x; — 1, z;} if and only if 6, (N);(z;) € {p —3 — x4, z;} (resp. for
1> 0 and 5Z(>\)0<I0) S {p — 2= 29,29 — 1})

(i) &(xi) € {p—2—z;, p—1—a;} if and only if 6,(N)i(z;) € {p—2—=;, x;+1}
(resp. for ¢ > 0 and 6;(N)o(xo) € {p — 1 — o, 20}).
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But this very easily follows from the equality & (\;(x;)) = 6,(\)i(z;) (resp.
&(Ni(x;)) = 0;(N)i(x;)), from Lemma 19.2 and from 6,(A\) e RD(zg, - -+ ,xf_1)
(resp. 0;(X) € ID(xg,- -+ ,x5-1)). O

Lemma 19.4. We keep the previous notations. Let T be an irreducible sub-
quotient of Do 5)(p). Then T is a subquotient of R(0).

Proof. We write ol = (s, - ,8%_1) ® 0. Equivalently by Lemma 17.11,
it is enough to prove there is A € Z(yo,--- ,ys—1) such that 7 = (\;(s})) ®
det*™C¢’ . By (i) of Theorem 14.8 or of Lemma 19.3, we have:

T = (W(&(50)), -+ s vp-1(Ep-1(sp-1))) @ det POt sr-1)g
ol = (V(/)(é()(so))v SR V}—l(gf—l(sf—l))) ® dete(ylog)(so""vsf—ﬂ@

with v,v" € Z(yo, -+ ,ys—1) and compatible in the sense of Definition 4.10.
Let /"' € Z(yo, -+ ,ys—1) be the unique f-tuple such that /(v'~*(y;)) =
y;. From the compatibility of v and ¢/, one checks that the unique f-tuple
(Ai(y:)): such that \;(vi) := vi(v) () is in Z(yo, -+ ,ys_1). This \ gives
the result. Note that one has v, ' (y;) =p — 1 — &(w:). O

If 7 is an irreducible subquotient of Dy s(o)(p), by Lemma 19.4 it is in
R(c) and one can attach to it a well-defined f-tuple p as in Lemma 17.11.

Lemma 19.5. We keep the previous notations. Let 7 be an irreducible sub-
quotient of Do 5)(p), p its corresponding f-tuple as in Lemma 17.11, i(T)
the unique integer such that T € Dq () (p)i(T) and j(7) := |K (1) \ J(7)| with
J(1) and K(7) as in Lemma 17.12. Then we have:

i(r) = j(r) + 20 ()| +i(™) — (f +1). (35)
Proof. From (i) of Lemma 19.3, 7 is of the form:

7= (0(60(50)), -, vp-1(E-1(s7-1))) @ dete o0 2r-1)g

for a unique v € Z(yo, -+ ,ys—1). Define S(v) and ¢(v) as in §4, we have
i(t) = |S(v)| by (ii) of Lemma 19.3. From Theorem 2.4 and the fact that
the T-representation I(8(c), o) (inside Dy g(,)(p)) is the unique quotient of
Ind}; x* of socle 6(c), we have f + 1 —i(cl) = |S(¢)|. Recall from (i) of
Lemma 19.3 that v and £ satisfy the conditions:

§i(v) =2i—1 = vi(ys) €{yi—1L,p—1—yi,0—2—i, yi}

Ci(xi) =p—1—x; = vi(ys) € {yi+1,p=3—yi,0—2—Vi, ¥}

vi(yi) € {p—1-yivi—1} = &) € {wi—1,2:}
= &)

vi(yi) € {p—3—vi, vi+1} &i(z;) e {p—2—u;,p—1—ux;}.
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Moreover, if X\ € Z(yo, - ,ys—1) is such that p;(y;) = AMp — 1 — y;) (see
Lemma 17.11), then A is as in the proof of Lemma 19.4 and from this proof
we get 4 = v o&. The above conditions on v and £ then immediately imply
by a short computation:

J(1)=8¢)NS(v) and K(1)=8(&)US(v)

where we recall J(7) := {i, pi(z;) € {x;—2,p—x;}} and K(7) := {3, pi(x;) €
{z; = 1,2, —2,p—x;,p— 1 — 2;}}. We thus have:

i(r) = [(SEUSE)\SENSH)
= [SEQUSW) =S NS
= [SE@I+[SW)| =2[5() NSW)|
= f4+1—i(c®) +i(r) —2|J(1)].

]

Lemma 19.6. Let p : Gal(Q,/Q,;) — GL(F,) be a continuous tamely
ramified generic Galois representation and o € D(p). There exists a unique
quotient Q(p, o) of R(c) such that:

(i) sock Q(p, ™) € B,ep(y) @

(i) Q(p, o) contains the T-representation I(p, o).
Moreover, we have sock Q(p, o) = §(o).

Proof. Recall that I(p,ol) = I(6(c),0!) (Lemma 15.2). We first prove
there is a unique quotient of Ind}; x* containing I(p, o) and with K-socle
contained in D(p): namely I(p, ol*l) itself. Indeed, consider such a quotient.
If its K-socle has just one weight, then it is obviously I(p, o). If not, let
w be another weight of D(p) distinct from (o) in this socle. From (ii) of
Lemma 12.8 applied to 7 = ¢*/ and o/ = w, we get that §(c) must be a
constituent of I(w, o) inside Indy x*. Hence w and §(c) cannot be in the
same K-socle and the unique relevant quotient is thus I(p, o!®l). Let Q be a
quotient of R(o) satisfying (i) and (ii) above. One easily checks using Lemma
17.11 that none of the irreducible Jordan-Holder factors of R(c)/Ind} x*
are in D(p). From (i), this implies that @ induces a non-zero quotient of
Ind}; x*. From (ii), we get that this non-zero quotient must contain 6(c)
in its socle as §(o) doesn’t appear elsewhere in R(¢) (use multiplicity 1 in
Lemma 17.11). Thus, this induced quotient must be I(p, o). Now let K
be the kernel of Ind; x* — I(p, o), we have a surjection R(c)/K — Q. If
w' € sock(R(0)/K), w' # (o), then w’ ¢ D(p) as either v’ is a subquotient
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of R(0)/Ind} x* or a subquotient of I(p, o!*!). Hence w' maps to 0 in Q. One
can thus replace I by K + > w’ for all such w’ and start again. We see in
the end that ) is uniquely determined and that its K-socle is just §(c). O

Example 19.7. Assume f = 1 and write 0 := SymsoFi ® 0 with sy > 1.
We have either 6(0) = o of §(c) = ol¥l. If 6(0) = o, then Q(p, c*)) = R(0)
(see Example 19.7). If (o) = ol*l and sy > 1, then Q(p, o¥l) is the unique
quotient of R(o) which is a I'-extension (non-split by Lemma 18.4):

0— ol = Q(p, ol — Symso’zFi ® detd — 0.
If §(0) = o) and sy = 1, then Q(p, o¥) ~ ol
The following lemma is essential:

Lemma 19.8. Let p, o and Q(p, o)) be as in Lemma 19.6. The quotient
Q(p, ) contains the T'-representation Dy s(x)(p)-

Proof. If f = 1, the statement follows directly from Example 19.7 above
and §16. We assume f > 1, write 0 = (sg, -+ ,57-1) @ 0 and let 7 :=
(to(s0), -+ s pp—1(sp-1)) ® det®W 05710 he an irreducible subquotient of
Do 5)(p) with g as in Lemma 19.5. It is enough to prove the following
two facts: (i) any such 7 is also a subquotient of Q(p,c!®) and (ii) the
unique K-subrepresentation Q(p, o, 7) of Q(p, o) with co-socle 7 is a I'-
representation (recall Q(p, o*l) is multiplicity free as it sits in R(c) and thus
Q(p, o, 1) is well defined). Indeed, from (ii), the last assertion of Lemma
19.6 and Corollary 3.12, we get Q(p, o, 7) ~ I(6(c), 7). From (i), we get
that Q(p, o)) contains I(§(c),7) for all constituents 7 of Dy s (p), and
hence contains Dy s5(,)(p) by Proposition 13.4. Let us prove (i). Let 0 —
7" — € — 7 — 0 be a non-split (I'-)extension that occurs as a subquotient
of Do s(s)(p) (or equivalently as a quotient of I(6(c),7)). By (ii) of Lemma
19.3 and the fact that the socle and co-socle filtrations on I(d(¢), ) are the
same (which follows from Corollary 4.9), we exactly have i(7) = i(7') + 1
(see Lemma 19.5 for notations). By Lemma 19.4, (i) of Corollary 5.6 and
Lemma 18.4, either € occurs in R(o) or the unique non-split 0 — 7 — * —
7/ — 0 occurs. Moreover, by the beginning of the proof of Lemma 18.4,
we have either J(7) = J(7') or J(7) = J(r') L {j} or J(7') = J(7) I {j}.
It J(r) = J(7'), then (35) tells us j(r) = j(7') + 1 which implies only
7' can be a subobject by (ii) of Lemma 17.12 and thus € occurs in R(0).
If J(r) = J(7') I {j}, the proof of Lemma 18.4 tells us that ¢ occurs in
R(o). If J(7') = J(7) I {j}, we must have j(7) = j(7') + 3 by (35) which
is impossible by (ii) of Lemma 17.12. Thus € always occurs in R(o), or
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equivalently in U(7) (see Lemma 17.8). Starting again with 7’ instead of
7, we see that U(7) contains all the weights of I(d(o),7) and in particular
d(o). Now if @ is a quotient of R(o) such that 7 doesn’t occur in @, then
U(7) necessarily vanishes via the surjection R(c) — Q. In particular (o)
doesn’t occur in Q. As §(c) is the socle of Q(p, o), this can’t happen for
Q = Q(p, U[S]), which must thus contain 7 as a subquotient. Let us now prove
(ii). We claim that Q(p,c!*), 7) contains no pair of distinct weights (w, w’)
corresponding to f-tuples (v,7') as in Lemma 17.11 with vj(z;) = v;(z;) 42
for one j and v}(z;) = v;(z;) fori # j. Assume there exists such a pair (w, w’).
Swapping w and w’ if necessary, we can assume v;(z;) € {z; — 2,p — z,},
vi(x;) € {zj,p — 2 — x;} and thus J(w) = J(w') I {j}. From (ii) of Lemma
17.12, we get also j € J(7) hence p;(z;) € {x; —2,p — z;}. We write
8(0) = (o(s0), -+ &p-1(s7-1)) © det™ 02100 with £ € P, -+, x1)
as previously and note that £ is also the f-tuple associated by Lemma 17.11
to d(o) viewed as a constituent of R(c). We have seen in the proof of Lemma
19.5 that we have the equality J(7) = S(§) N'S(p) which implies j € S(§)
ie. &(z;) € {o; —1,p—1—z;}. Since sockx Q(p, ¥, 7) = §(0) by Lemma
19.6, there is a chain of non-split K-extensions leading from (o) to w’ inside
Q(p, o 1) which implies K (§(c)) C K (w') by (i) of Lemma 17.12. But this
is impossible since j € K(0(0)) but j ¢ K(w') as vi(x;) € {x;,p — 2 — x;}.
As f > 1, Corollary 5.7 applied to W = Q(p, o, 7) tells us that Q(p, o, 7)
is a ['-representation and we are done. O]

Theorem 19.9. Let p : Gal(Q,/Q,r) — GLa(F,) be a continuous generic
representation as in §11 such that p acts trivially on its determinant and let
(Do(p), D1(p),r) be one of the basic 0-diagrams associated to p in §13 with
Do(p) as in Theorem 13.8.

(i) There exists a smooth admissible representation © of G such that:
(a) sockx ™ = @UED(p) o
(b) (w1, 7", can) < (Do(p), Di(p),7)
(c) m is generated by Dy(p).

(i1) If (Do(p), D1(p),r) and (Do(p), Di(p),r’) are two non-isomorphic ba-
sic 0-diagrams associated to p, and if w, 7' are as in (i) respective-
ly for (Do(p), D1(p),r) and (Do(p), D1(p),r"), then m and 7" are non-

1somorphic.

Proof. Let D := (Dy(p), D1(p),r). By Theorem 9.8, we have a smooth ad-
missible G-representation {2 with K-socle D(p) and an injection D — ().
We define 7 C €2 to be the subrepresentation generated by Dy(p). By con-
struction, it satisfies (a), (b) and (c) of (i). Assume © — 7/ where 7 and 7/
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are as in (ii). If Do(p) C 7 is not sent to Do(p) C 7', there is 0 € D(p) such
that Dy, (p) C 7 is not sent to Dy, (p) C #’. Consider the obvious induced
map Do, (p) B, Doo(p) — 7. The representation Dy ,(p) By Do (p) con-
tains Dy, (p)/o and the induced map Dy ,(p)/o — 7' can’t be zero because
Dy ,(p) C m is not sent to Dy,(p) C 7" by assumption. This contradicts
socg ™ = D(p) as the K-socle of Dy ,(p)/o can’t be in D(p) by construction
of Dy(p). Hence Dy(p) C 7 is sent to Do(p) C 7', and likewise with Dgy(p)"
Since m ~ 7', this implies (Do(p), D1(p),r) =~ (Do(p), D1(p),r") which is

impossible by assumption. Thus, we can’t have m ~ 7’ O
By an exactly similar proof, we get:

Theorem 19.10. Let p : Gal(@p/pr) — GLy(F,) be a continuous generic
representation as in §11 such that p is split and p acts trivially on its de-
terminant. Let £ € {0,---, f} and (Doe(p), D14(p),re) be one of the basic
0-diagrams associated to the family (26).

(i) There exists a smooth admissible representation 7, of G such that:

(a) sock T = @Z(e?ipg) o

(b) (ﬂ-e 77T£ ,can) (DO,K(p)7D1,€(p)7T€>
(c) e is generated by Do (p).

(11) If (Dos(p), D1e(p),1e) and (Doe(p), D14(p),r}) are non-isomorphic (as
basic 0-diagrams), and if m, 7, are two representations as in (i) for
(Dose(p), D14(p),e) and (Doy(p), D1e(p), ) respectively, then m, and
7, are non-isomorphic.

We now state an irreducibility result which uses that fact we are working
with Witt vectors (as it is based on the material of §18).

Theorem 19.11. (i) Let p be as in Theorem 19.9 and assume p is irre-
ducible. Then any m as in (i) of Theorem 19.9 is irreducible and is a
supersingular representation.

(ii) Let p be as in Theorem 19.9 and assume p is split. Then any m as in
(i) of Theorem 19.10 is irreducible. Moreover, 7, is a principal series
if € € {0, f} and is a supersingular representation otherwise.

Proof. We start with (i). Let 7’ C 7 be a non-zero subrepresentation and
o € SOCKﬂ' We prove that Dgs.)(p) € 7. We have a non-zero map
(:—Indﬁ0 o — 7" which induces a map R(o) — 7’ in restriction to R(o). Let
v € o' C ¢Ind§ o and v* := v € (olN)!* C c-Ind§ 0. Going back to

the definition of ﬁ(a) in §17 and using Lemma 17.4, note that (K - v®) =
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Ind} x* € R(o) C R(o) C c-Ind§ o. Let w® be the image of v* in 7, the
map R(c) — 7 induces Indy x* — (K -w®) C 7. But (K - w®) actually
sits in Dy (0)(p) C by Lemma 15.2, hence equals I(§(c), o) = I(p,ol¥)
by construction of D s)(p). Thus R(c) — 7' factors through a quotient
containing I(p, o) and with a K-socle contained in D(p) (as socx 7 C
D(p)). By Lemma 19.6, this quotient must be Q(p,c!!), hence contains
Do 55)(p) by Lemma 19.8. We thus get Dy 5(,)(p) C m'. Starting again with
d(0) instead of o, we obtain that 7' contains Dgs2(5)(p) etc. As §"(0) = o
for some n > 0, we get Dy, (p) C 7'. As this is true for all o € sock 7', we
finally deduce, using that all weights of D(p) are distinct:

@ Doﬂ(p):ﬂ,ﬂ @ DO,U(ﬂ)a
)

o€socy ! c€D(p

the intersection being taken in 7. This implies that @yesocy 2 Doo(p) C
Dy(p)™ is preserved by the unique possible pairing { } on Dy(p). By (i)
of Theorem 15.4, we thus get socx 7 = D(p) = sock w, hence 7’ = 7 7
is irreducible. If f = 1, we know from §16 and §10 that « is a supersin-
gular representation. If f > 1, we have dimg 7l > 2 as sockg 7 already
contains 2/ weights, hence 7 is a supersingular representation. We prove
(ii). The irreducibility of m, is proven by a completely analogous argument
using (ii) of Theorem 15.4. If ¢ € {0, f}, the reader can easily check, us-
ing that Doo(p) (vesp. Do (p)) has an irreducible socle and that Dy o(p)™
(resp. Do r(p)™) is preserved by { } inside Dy(p)*, that the surjective map
c-Ind§ o9 — 7o (resp. c-Indg oy — 7) cannot factor through 7'(c-Ind§ o)
(resp. T(C—IndgO or)) (see (i) of Remark 14.9 and §6 for 7). It implies that
mo and 7y are (irreducible) principal series. If ¢ # 0 and ¢ # f, then one
has dimg_ ng > 2 (if f = 2 this easily follows from §16 and if f > 2, sock 7,
has strictly more than 2 components), hence 7, is a supersingular represen-
tation. [

We expect any 7 (resp. 7y) as in (i) of Theorem 19.9 (resp. as in (i) of
Theorem 19.10) to actually satisfy (7% 7/ can) = (Dy(p), D1(p),7) (resp.
(<t i can) = (Doy(p), Dig(p),7¢)) and to be unique. Note that, when p
is split, any representation EB{ZOW with 7, as in (i) of Theorem 19.10 indeed
satisfies the conditions in (i) of Theorem 19.9. Thus, when p is split, we
expect any 7 as in (i) of Theorem 19.9 to be isomorphic to @Lom. When
p is reducible non-split, we expect any 7 as in (i) of Theorem 19.9 to be in-
decomposable with G-socle 7y and such that its other Jordan-Holder factors

are the 7y, 1 < ¢ < f, with 7 as in (i) of Theorem 19.10 for p*.
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As a concluding remark, we hope that the local representations of G ap-
pearing as subobject in the cohomology modulo p of towers of Shimura curves
of p"-level are precisely of the type 7(p,r) (p being the restriction to some
decomposition group at p of some global irreducible Galois representation
over Fp), and thus in particular are constructed in Theorem 19.9.

20 Proof of main conjecture for f =1

We prove Conjecture 19.1 for F' = Q,.

Let p : Gal(Q,/Q,) — GLa(F,) be a continuous generic representation
such that p acts trivially on its determinant.

Proposition 20.1. Assume p is irreducible and write its restriction to iner-

tia as:
ro+1 ® n
0 Wg( 0+1)

for some character n and some rq with 1 < rg < p—2. See n as a smooth
character of Q) (via the local reciprocity map) by making p act trivially. Let
(Do(p), D1(p),r) be the unique basic 0-diagram associated to p in §13 (see
§16 for unicity).

(i) There is a unique smooth admissible representation © of G such that:
(a) sock ™ =B ,cp(, @

(b) (ﬂ-KI’ﬂ-h’Can> - (DO(p>’D1(p)7T)
(c) w is generated by Dy(p).

(11) This representation m is irreducible, isomorphic to m(ro,0,m) (see Def-
inition 6.2) and such that:

(D()(p), Dl(p)v 7“) = (ﬂ-Kla 71-]1’ Can)'

Proof. We have D(p) = {o,08} with ¢ := (Sym“@i) ® n o det (see §16).
We have already proven the existence and irreducibility of 7 as in (i) (see
§19). The unicity of 7 in (i) follows from ©m = Hy(D) = m(r¢,0,7n) (see
Theorem 10.1) where D := (¢ @l o1 @ ol ,can) is the unique irreducible
basic subdiagram of (Dy(p), Di(p),r). For the rest of (ii), it follows from
Lemmas 3.4 and 3.5 that Dgy(p) is the maximal K-invariant subspace of
inj(o @ ol¥!) such that the K-socle is isomorphic to o @ ol*l and the space of
I -invariants is 2-dimensional. As 7/* has dimension 2 by the second part of
Theorem 10.1, this implies the injection (Dy(p), D1(p),r) — (751, 71 can)
is an isomorphism. O
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Proposition 20.2. Assume p is reducible split and write its restriction to

mertia as:
Wt o

for some character n and some ro with 1 < ry <p—4 (recallw = wy). Seen
as a smooth character of Q) (via the local reciprocity map) by making p act
trivially. Let (Do(p), D1(p),r) be one of the basic 0-diagrams associated to p
in §13.

(i) There is a unique smooth admissible representation m of G such that:
(a) sockg ™ = @Uep(p) o
(b) (ﬂ-Kl7 WII? Can) — (Do(p), Dy (p)> T)
(c) w is generated by Dy(p).

(11) This representation m is the direct sum of two irreducible principal se-
ries isomorphic to w(ro, Ao,n) and w(p — 3 — 1o, A1,7n) (see Definition
6.2) for some scalars \o, \1 € F; depending on (Do(p), D1(p),r) and
s such that:

(Do(p), Di(p),7) = (x*, 7", can).

Proof. We have D(p) = {09, 01} with oy := (SymmF;) ®nodet and o1 :=

(Symp_?’_mF;) ® n o det™t! (see §16). Let xo (resp. x1) be the character
giving the action of I on o (resp. ol). We have (see (26) and §19 for the

notations):

(Do(p), Di(p), ) = (Doo(p), Dio(p);r0) ® (Doa(p), D1a(p),m1)

where (Do o(p), D1o(p),70) (resp. (Doa(p), D1,1(p,),r1)) is as in Example (iv)
of §10 with x = xo (resp. x = x1, see §16). For 7 as in (i), let mo (resp. m)
be the G-subrepresentation generated by ¢ (resp. o1), then mg ~ 7(r¢, Ao, 1)
(resp. m ~ mw(p — 3 — 19, A1, 7)) for some scalars \; uniquely determined by
(Do(p), D1(p),r) (this follows for instance from §10 or from Proposition 6.8).
As 7 is generated by Dy(p), we thus have m = my @ ;. The rest of (ii) follows
for instance from Proposition 6.8. O]

To state the reducible non-split case, we need some further work.
Let ro be an integer, 1 < ryp < p— 3, and A\ € F;. We first define a

basic O-diagram D(rg, A) := (Dy(ro, A), D1(rg, A),can). We define Dy(ro, A)
as the following Ko-representation where K; and p act trivially (see §16 for
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notations):
Symp’1’T0F§, ® det"
Symmﬁi o S
Symp_?’_”’F; ® det™ ™!

Note that Proposition 3.6 and Corollary 3.11 imply that Dy(rg, ) is isomor-
phic to Va,_a_,, ® det™. It follows from Proposition 4.13 that Dg(rg, \)"* =
X ® x* where y : H — F; is the character given by x((} 9)) == p™. Since
1 < ry < p—3, wehave x # x* and we let v, be a basis vector in Dy(rg, )™ for
the eigencharacter x. Set vy« == 37 ¢ (g W n te, = D e, ( b1y, The
set {vy, vys} is a basis of Dy(rg, \)™. We define a representation D;(rg, A) of
£ on Dy(rg, \)* by setting ITv, := A~ 'v,s and [uys = Av,.

Theorem 20.3. Let ro, A and D(rg, \) be as above.

(i) Let m be the unique non-split extension (see Corollary 8.3):
0——=m(ro,\) —= 7 ——=m(p—3 — 1o, A1, wot) —0,

then there exists an isomorphism of diagrams (751, 71t can) = D(rg, \).

(i1) Let T be a smooth representation of G with a central character such that
sock (1) = Sym”’F; and such that there exists an injection of diagrams
D(ro,\) — (751, 711 can), then the subspace (G - Do(ro,\)) of T is
tsomorphic to .

Proof. Tt follows from Theorem 9.8 that there exists an injection of diagrams
D(rg, ) — K(€2) where € is a smooth representation of G such that Q| is
an injective envelope of SymTOFi in Repy . We first claim that the subspace
7' = (G - Dy(rg,A)) of Q is isomorphic to the extension 7 of (i). Corollary
6.4 implies that the subspace vax @vaxs of Q1 is stable under the action of
H and isomorphic to M (rg, A) as an H-module. Proposition 6.8 implies that
(G-vy) = (G-vys) = (1, A). Now 7(rg, \) = Ind$ x and hence 7(rg, \)K? =
Ind¥ x. Since Q|x is an injective envelope of Symme in Repg ,, Q1 s
an injective envelope of Sym’"OF; in Repp. Lemmas 3.4, 3.5, 3.8 imply that
the image of Dy(r9,\) via the composition Dy(rg, A) — Q51 /7(rg, \)51 —
Q/7m(ro, A) is isomorphic to (Symp’?”mﬁi) ® det™*!. Let v be a basis for
the I;-invariants of this image. Since F' = Q, we have Q' = 7(r, \)!* and
since Q|x is an injective object we obtain (Q/m(rg, A))'t = RZ(7(ro, ).
Now H acts on v by a character ya~!. The assumption on ro implies that
xa~t € {x, x*} thus it follows from Theorem 7.16 that the submodule (v-H)
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of (92/m(rg, A))™ is isomorphic to M(p — 3 — ro, A=}, w™ ™). Proposition 6.8
implies that (G - v) is isomorphic to m(p — 3 — 719, A™1, w™T1). Hence there
exists an exact sequence:

0——=m(ro,\) —= 7' ——=7(p — 3 — 19, \"H,wot) ——0. (36)

~

This sequence cannot be split as 7’ is a subspace of 2 and hence socg 7’

[a¥)

Symmﬁi. Corollary 8.3 implies then that 7’ = 7. We thus obtain an in-
jection D(rg,\) — (71 7' can). Suppose that this injection is not an
isomorphism, then Lemma 3.4 implies 75! = Q%1 and hence Symmﬁi occurs
in 7%t with multiplicity 2. This is impossible, since taking Ki-invariants of

(36) yields an exact sequence () —= Ind¥ x kK Ind¥ x*a . Hence

we get (i). Since by Corollary 9.11 any 7 as in (ii) can be embedded into €2
as above, we also get (ii). O

Proposition 20.4. Assume p is reducible non-split and write its restriction

to inertia as:
wrotl x
(0 1)

for some character n and some rq with 1 < rg < p—4. See n as a smooth
character of Q) (via the local reciprocity map) by making p act trivially. Let
(Do(p), D1(p),r) be one of the basic 0-diagrams associated to p in §183.

(i) There is a unique smooth admissible representation m of G such that:
(a) sock ™ =B ,cp(, O
(b) (wt, 7w, can) <= (Do(p), D1(p),7)
(c) w is generated by Dy(p).

(11) This representation 7 is the unique non-split extension of w(p — 3 —
ro, AL W) by w(ro, A\, n) for some scalar \ € F; depending on
(Do(p), D1(p),r) and is such that:

(D()(p), Dl(p)v 7”) = (WKlﬂ 71.11’ Can)'

Proof. This follows from Theorem 20.3 and the fact that (Dy(p), D1(p),r) is
isomorphic to D(rg, A) up to twist for some A € F; (see §16). ]

In particular, we finally deduce from all the previous propositions:

Theorem 20.5. Conjecture 19.1 holds for F' = Q,.
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