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Abstract

As remarked by Mazur an Rubin (2004, Mem. Amer. Math. Soc., 168(799)) one
does not expect the Kolyvagin system obtained from an Euler system for a p-adic
Galois representation T to be primitive (in the sense of loc. cit.) if p divides a
Tamagawa number at a prime ` 6= p; thus fails to compute the correct size of
the relevant Selmer module. In this paper we obtain a lower bound for the size of
the cokernel of the Euler system to Kolyvagin system map in terms of the local
Tamagawa numbers of T , refining a result of loc. cit.. We show how this partially
accounts for the missing Tamagawa factors in Kato’s calculations with his Euler
system.

Key words: Euler systems, Kolyvagin systems, Tamagawa Numbers, the Birch and
Swinnerton-Dyer Conjecture.

1 Introduction

Let p > 2 be a rational prime and let O be the ring of integers of a finite ex-
tension of Qp. Denote the maximal ideal of O by m and fix a generator π of m.
Let T be a free O-module of finite rank, on which the absolute Galois group
GQ := Gal(Q/Q) acts continuously, and the action of GQ on T is unrami-
fied outside a finite number of places. For such a T , the notion of an Euler
system (which is originally due to Kolyvagin (Kol90)) has been generalized
in Rubin (Rub00), Kato (Kato99) and Perrin-Riou (PR98) to prove upper
bounds for the Selmer group attached to the Cartier dual T ∗ of the Galois
representation T .
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Starting from an Euler system, Kolyvagin uses his descent argument to obtain
what he calls derivative classes. These derivative classes are used to produce
bounds for the dual Selmer group. (MR04) starts exactly with these classes,
and they observe that the derivative classes enjoy stronger local conditions
than has been previously utilized. Classes with these stronger local conditions
(and with the same interrelations that the derivative classes ought to satisfy)
are called Kolyvagin systems. We refer the reader to (MR04, §3) for a detailed
description. Since Kolyvagin systems are modeled after the derivative classes,
they have exactly the same applications, namely they give upper bounds for
the dual Selmer group. In fact, Mazur and Rubin exploits the extra rigidity
gained by their observation to prove, in many cases of interest, that the Koly-
vagin system bound on the dual Selmer group is strict and in fact one could
completely determine the structure of the dual Selmer group in terms of a
Kolyvagin system (if the Kolyvagin system we use is primitive in the sense of
Definition 17 below); see (MR04, Theorems 4.5.6, 4.5.9 and 5.2.14).

The discussion above already portrays Kolyvagin systems as more fundamental
objects than Euler systems. In fact, it is also possible to prove that Kolyvagin
systems exist in many cases, however, it is impossible to write these down
explicitly in full generality. The only cases where the bound provided by a
Kolyvagin system can be made explicit are the cases where the Kolyvagin
system used comes from an Euler system, via Kolyvagin’s descent. This map
from the collection of Euler systems to the collection of Kolyvagin systems will
be referred to as the Euler system to Kolyvagin system map; see Theorem 18
below for a slightly more detailed description of this map.

One important feature of the bounds provided by a Kolyvagin system obtained
from one of the Euler systems known to date is that they are closely related
to the special values of L-functions. Such bounds thus provide evidence for
the Bloch-Kato conjectures (BK90), which predict the orders of these Selmer
groups in terms of the special values of a relevant L-function.

A natural question to ask is when these bounds given by an Euler system (or,
equivalently, by the Kolyvagin system obtained from it) are sharp. In view of
the results of (MR04), this is equivalent to (under certain technical assump-
tions) asking when the Kolyvagin system obtained from the Euler system we
started with is primitive. For example, consider Kato’s Euler system (Kat04),
which is an Euler system for T = Tp(E), the p-adic Tate module of an elliptic
curve E/Q. As explained in (MR04, Remark 6.2.5), Kato’s Euler system does
not give rise to a primitive Kolyvagin system if p divides one of the Tamagawa
numbers of E. In fact they prove that the Euler system to Kolyvagin system
map in this setting has non-trivial cokernel if p divides a Tamagawa number,
and as a result it is impossible to obtain a primitive Kolyvagin system from
an Euler system in this case. We call this phenomenon the Tamagawa defect
of Euler systems.
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However, the arguments of (MR04) (particularly Proposition 6.2.6 of loc. cit.)
is not sufficient to obtain an improved lower bound on the size of this cokernel
in terms the Tamagawa factors. This is what we do in this paper:

Theorem A Suppose πn divides a Tamagawa number of the Galois represen-
tation T . Under suitable hypotheses on T (cf. the statement of Theorem 23)
the image of the Euler system to Kolyvagin system map (of Theorem 18) is
contained in mnKS(T ), where KS(T ) denotes the O-module of Kolyvagin sys-
tems for T .

See Theorem 23 below for details.

In particular, the hypotheses of Theorem A hold when T = Tp(E), i.e. when T
is the p-adic Tate module of an elliptic curve E/Q with conductor N . Let κKato

denote the Kolyvagin system obtained from Kato’s Euler system, as in (MR04,
§6.2). Let c` be the Tamagawa number of E at `, and suppose pn|c`.

Theorem B κKato ∈ pnKS(T ).
As a corollary, this shows that the bound obtained using κKato (see (MR04,
Theorem 6.2.4), for example) can be improved as follows:

Theorem C Let IIIE be the Tate-Shafarevich group of E, LN(E, s) the "non-
primitive" Hasse-Weil L-function associated to E with Euler factors at the
primes dividing N removed and ΩE the fundamental real period of E. Then

length(IIIE[p∞]) ≤ ordp

(
LN(E, 1)

c` · ΩE

)
.

See also Corollary 27 below.

As one may notice, the "improvement" we give above includes only one Tama-
gawa factor. A further improvement which shall include all Tamagawa factors
unfortunately escapes our method. We discuss this matter further in §4. We
also elaborate on the hypotheses of Theorem 23 to produce other interesting
occurrences of the Tamagawa defect of Euler systems for representations other
than the Tate module of an elliptic curve.

Our results are somewhat related to that of (Jet), however they are more
general in the sense that our Theorem 23 gives a conceptual explanation for
the Tamagawa defect for many Galois representations; yet the setting for which
Theorem 23 applies is disjoint from that of Jetchev’s as far as the Kolyvagin
system machinery is concerned.
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2 Technical Results

2.1 Basic Definitions

2.1.1 Notation

Fix once and for all an odd rational prime p. Let R be a local principal ideal
ideal ring with finite residue field of characteristic p, m be its maximal ideal
and k = R/m be its residue field. We fix a generator π of m. For the main
applications of our technical results R will the ring of integers of a finite
extension Qp, in that case we write F for its field of fractions.

For any field K (local or global) K will be a fixed separable algebraic closure
of K and GK will denote Galois group Gal(K/K). For every rational prime `
we fix an embedding GQ`

↪→ GQ. This fixes a decomposition group of `, and
we write I` for the inertia subgroup inside of this fixed decomposition group.

Let T be an R-module endowed with a continuous GQ-action, which is free of
finite rank over R. We will assume that T is unramified outside finitely many
primes. If R is the ring of integers of a finite extension Qp, we write V for
T ⊗R F and W for T ⊗R F/R = V/T . By H∗(K,X) := H∗(GK , X) we mean
the group cohomology of GK computed with respect to continuous cochains
with values in X for X = T, V,W or their subquotients.

If a groupH acts on a setX, then the subset of elements ofX fixed (pointwise)
by H is denoted by XH .

If M is an R-module and I is an ideal of R, then M [I] will denote the sub-
module of M killed by I. If M is a GQ-module, Q(M) will be defined as the
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fixed field in Q of the kernel of the map GQ → Aut(M).

2.1.2 Local Cohomology Groups and Local Conditions

Much of the definitions and results we record in §2.1.2 can be found in (MR04,
Chapter 1).

Throughout this section let K denote a non-archimedean local field and K a
fixed separable algebraic closure of K. O will be the ring of integers in K, F
its residue field, and Kunr ⊂ K the maximal unramified subfield of K. Let I
be the inertia subgroup Gal(K/Kunr), and GF = Gal(Kunr/K).

2.1.2.1. Galois Cohomology of Local Fields. There is an exact sequence of
profinite groups

{1} −→ I −→ GK −→ GF −→ {1}
Further, since the cohomological dimension of GF ∼= Ẑ is one it follows that
H2(GF, T

I) vanishes. Thus the Hochschild-Serre spectral sequence gives rise
to the following exact sequence:

0 −→ H1(GF, T
I) −→ H1(K,T ) −→ H1(I, T )GF −→ 0

2.1.2.2. Local Conditions.

Definition 1 A local condition F on T (at ` if K = Q`) is a choice of an
R-submodule H1

F(K,T ) of H1(K,T ).

Suppose T is an R-module with a continuous GK-action, and F is a local
condition on T . If T ′ is a submodule of T (resp. T ′′ is a quotient module),
then F induces local conditions (which we still denote by F) on T ′ (resp. on
T ′′), by taking H1

F(K,T ′) (resp. H1
F(K,T ′′)) to be the inverse image (resp. the

image) of H1
F(K,T ) under the natural maps induced by

T ′ ↪→ T, T � T ′′.

Definition 2 Propagation of a local condition F on T to a submodule T ′

(and a quotient T ′′ of T is the local condition F on T ′ (and on T ′′) obtained
following the above procedure.

For example, if I is an ideal of R, then a local condition on T induces local
conditions on T/IT and T [I], by propagation.

Let QuotR(T ) be the category R[[GK ]]-modules whose objects are quotients
T/IT for all ideals I of R, and where the morphisms from T/IT to T/JT are
all scalar multiplications r such that rI ⊂ J .
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Definition 3 A local condition F is cartesian on QuotR(T ) (or on a sub-
category of QuotR(T )) if for any injective R[[GK ]]-module homomorphism
φ : T1 → T2 the local condition F on T1 is the same as the local condition
obtained by propagating F from T2 to T1.

2.1.2.3. Examples of Local Conditions. We review several choices for local con-
ditions which will appear quite frequently.

Definition 4 Suppose L is an extension of K in K, and define

H1
L(K,T ) := H1(Gal(L/K),TGL) =

ker
{
H1(K,T )→ H1(L, T )

}
⊂ H1(K,T )

Thus every choice of an algebraic extension L/K gives a choice of a local
condition. We note that H1

L(K,T ) is functorial in T . The unramified condition
frequently appears in this paper and is obtained by taking L = Kunr. Namely

H1
unr(K,T ) := H1

Kunr(K,T ) = H1(GF, T ).

When T is unramified (i.e. I acts trivially on T ), we will also call this the
finite condition and write H1

f (K,T ) = H1
unr(K,T ).

In general, if char(F) 6= p and R is the ring of integers of a finite extension
Qp, the finite condition at K is given by

H1
f (K,T ) = ker

{
H1(K,T ) −→ H1(Kunr, V )

}
.

See (Rub00, §3.1) for a more detailed discussion on the finite and unramified
local conditions.

2.1.2.4.Dual Local Conditions.

Definition 5 Define the Cartier dual of T to be the R[[GK ]]-module

T ∗ := Hom(T, µp∞)

where µp∞ stands for the p-power roots of unity inside Qp.

There is the perfect local Tate pairing

< , > : H1(K,T )×H1(K,T ∗) −→ H2(K,µp∞)
∼−→ Qp/Zp

Definition 6 The dual local condition F∗ on T ∗ of a local condition F on
T is defined so that H1

F∗(K,T
∗) is the orthogonal complement of H1

F(K,T )
under the local Tate pairing < , > .
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Proposition 7 (MR04, Proposition 1.3.2) Suppose that the residue charac-
teristic of the local field K is different from p. Then H1

f (K,T ) and H1
f (K,T ∗)

are orthogonal complements under the local Tate pairing < , >.

2.1.3 Selmer structures and Selmer groups

Definitions and results we record in this section can be found in (MR04, Chap-
ter 2).

For the rest of this paper, unless otherwise is stated, T will be a free R-module
endowed with a continuous action of GQ, which is unramified outside a finite
set of rational primes. Below notation will also be in effect till the end.

Let Q ⊂ C be the algebraic closure of Q in C, and for each rational prime `
we fix an algebraic closure Q` of Q` containing Q. We will ignore the infinite
place of Q systematically since we assumed p > 2. Occasionally we will denote
GQ`

= Gal(Q`/Q`) by D`, whenever we would like to identify this group by a
closed subgroup of GQ = Gal(Q/Q); namely with a particular decomposition
group at ` in GQ. We further define I` ⊂ D` to be the inertia group and
Fr` ∈ D`/I` to be the arithmetic Frobenius element at `.

Definition 8 A Selmer structure F on T is a collection of the following data:

• a finite set Σ(F) of places of Q, including ∞, p, and all primes where T is
ramified.
• for every ` ∈ Σ(F) a local condition (in the sense of Definition 1) on T

(which we view now as a R[[D`]]-module), i.e., a choice of R-submodule

H1
F(Q`, T ) ⊂ H1(Q`, T ).

If ` /∈ Σ(F) we will also write H1
F(Q`, T ) = H1

f (Q`, T ).

Definition 9 If F is a Selmer structure, we define the Selmer module H1
F(Q, T )

to be the kernel of the sum of the restriction maps

H1(Gal(QΣ(F)/Q), T ) −→
⊕

`∈Σ(F)

H1(Q`, T )/H1
F(Q`, T )

where QΣ(F) is the maximal extension of Q which is unramified outside Σ(F).

Example 10 Suppose R is the ring of integers of a finite extension Qp. The
canonical Selmer structure Fcan on T is given by

• Σ(Fcan) = {` : T is ramified at `} ∪ {p,∞},
• if ` ∈ Σ(Fcan) and ` 6= p,∞ then H1

Fcan
(Q`, T ) = H1

f (Q`, T ),
• H1

Fcan
(Qp, T ) = H1(Qp, T ).
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Note that we may safely ignore the infinite place since p > 2, therefore one
has H1(R, T ) = 0.

If I is an ideal of R we define the canonical Selmer structure on T/IT (which
we still denote by Fcan) to be the Selmer structure obtained from Fcan on T by
propagation of local conditions.

Definition 11 A Selmer triple is a triple (T,F ,P) where T is an R[[GQ]]-
module which is free of finite rank over R, unramified outside finitely many
primes; F is a Selmer structure on T and P is a set of rational primes, disjoint
from Σ(F).

2.2 Hypotheses

In this section we record the hypotheses which were utilized by Mazur, Rubin
and Howard to prove their main theorems on Kolyvagin systems in (MR04).
For a discussion of these hypotheses see (MR04, §3.5).

H1 T/mT is an absolutely irreducible k[GQ]-representation.
H2 There is a τ ∈ GQ such that τ = 1 on µp∞ and T/(τ − 1)T is free of rank
one over R.

H3 H1(Q(T, µp∞)/Q, T/mT ) = H1(Q(T, µp∞)/Q, T ∗[m]) = 0.
H4 Either

H4a Homk[[Gal(Q/Q)]](T/mT, T
∗[m]) = 0, or

H4b p > 4.
H5 Pt ⊂ P ⊂ P1 for some t ∈ Z+, where Pk is as in (MR04, Definition 3.1.6).
H6 For every ` ∈ Σ(F), the local condition F at ` is cartesian (in the sense
of Definition 3) on the category QuotR(T ) of quotients of T .

Remark 12 i. Suppose R is the ring of integers of a finite extension Qp.
Then Fcan satisfies H6 by (MR04, Lemma 3.7.1).
ii. Suppose that E/Q is an elliptic curve defined over Q which does not have
complex multiplication, and let T = Tp(E) be its p-adic Tate module (which
is a representation of GQ which is free of rank 2 over R = Zp). It is verified
in (Rub98) that Tp(E) satisfies the hypotheses H1-H4, and the choice the set
of primes P which satisfies H5 has been explained (see also (Sch98)). Thus
the hypotheses above hold for the Selmer triple (T,Fcan,P).

2.3 Theorems of Howard, Mazur and Rubin

Suppose (T,F ,P) is a Selmer triple (in the sense of Definition 11). LetKS(T ) =
KS(T,F ,P) denote the R-module of Kolyvagin systems for the Selmer triple
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(T,F ,P) defined as in (MR04, Definition 3.1.3). We also let KS(T,F ,P) be
the generalized module of Kolyvagin systems, see (MR04, Definition 3.1.6) for
a definition. Under the hypotheses set in §2.2 above Howard, Mazur and Ru-
bin show that the structure of the modules KS(T,F ,P) and KS(T,F .P) is
determined by an invariant χ(T ) = χ(T,F) which they call the core Selmer
rank, see (MR04, Definitions 4.1.11 and 5.2.4). In §2.3 we give a survey of
their relevant results.

2.3.1 Core Selmer rank and the module of Kolyvagin systems

Recall the definition of the canonical Selmer structure Fcan. Theorem below
(which is (MR04, Theorem 5.2.15)) enables us to calculate the core Selmer
rank χ(T,Fcan) of the canonical Selmer structure T :

Theorem 13 Suppose R is a discrete valuation ring. Let d− = rankR(T−),
where T− is the −1-eigenspace for the action of some complex conjugation.
Then

χ(T,Fcan) = d− + corankR(H0(Qp, T
∗)).

Example 14 Suppose E/Q is an elliptic curve defined over Q and let T =
Tp(E) be its p-adic Tate module. In this case χ(T,Fcan) = rankZpT

− = 1.

Fix a Selmer triple (T,F ,P) until the end of §2.3, for which H1-H6 hold.

Theorem 15 (MR04, Corollaries 4.5.1 and 4.5.2) Suppose R is a principal
artinian ring of length k.

(i) If χ(T ) = 0 then KS(T ) = 0.
(ii) If χ(T ) ≥ 2 then for every positive integer d, KS(T ) contains a free R-

module of rank d.
(iii) Suppose χ(T ) = 1. Then,

(1) KS(T ) is a free R-module of rank one.
(2) If j ≤ k then the projection T → T/mjT induces a surjective mapKS(T )→

KS(T/mjT ).

Building on Theorem 15, the following result is proved in (MR04, Proposition
5.2.9 and Theorem 5.2.10):

Theorem 16 Suppose R is a discrete valuation ring.

(i) If χ(T ) = 0 then KS(T ) = 0.
(ii) Suppose χ(T ) = 1. Then,
(1) KS(T )

∼−→ lim←−KS(T/mkT,Pk)
∼−→ KS(T ),

(2) KS(T ) is a free R-module of rank one, generated by a κ ∈ KS(T ) whose
image in KS(T/mT ) is nonzero.
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Definition 17 κ ∈ KS(T ) is called primitive if the image of κ in KS(T/mT )
is nonzero.

2.3.2 Euler systems and the descent map

Suppose for this section that R is the ring of integers of a finite extension of
Qp. Let (T,Fcan,P) be a Selmer triple, and let K be an abelian extension of Q
which contains the maximal abelian p-extension of Q which is unramified out-
side p and P . Following (MR04, Definition 3.2.2) we let ES(T ) = ES(T,P ,K)
denote the collection of Euler systems for (T,P ,K).

Theorem 18 (MR04, Theorem 3.2.4) Suppose that T/(Fr` − 1)T is a cyclic
R-module for every ` ∈ P, and that Frp

k

` − 1 is injective on T for every
` ∈ P and every k ≥ 0. Then there is a canonical homomorphism ES(T ) →
KS(T,Fcan,P) such that if c ∈ ES(T ) maps to κ ∈ KS(T,Fcan,P), then
κ1 = cQ.

2.4 Comparison of Selmer structures and the Cartesian Condition

Lemma 19 Suppose for the local condition H1
F(Q`, T ) ⊂ H1(Q`, T ) the R-

module H1(Q`, T )/H1
F(Q`, T ) is torsion-free. Then for every n ∈ Z+ the in-

duced local condition on the quotients QuotR/mn(T/mnT ) = {T/mjT}nj=1 of
R/mn-module T/mnT is cartesian (in the sense of Definition 3).

PROOF. This is (MR04, Lemma 3.7.1 (i)). 2

Proposition 20 Suppose H1
G(Q`, T ) ⊂ H1

F(Q`, T ) are two local conditions on
T at the prime ` such that

(i) H1(Q`, T )/H1
F(Q`, T ) is R-torsion-free,

(ii) H1
F(Q`, T/m

nT )/H1
G(Q`, T/m

nT ) is a free R/mn-module (where H1
F(Q`, T/m

nT )
(respectively H1

G(Q`, T/m
nT )) is the local condition on T/mnT propagated

from the local condition F (respectively G) on T ) in the sense of Defini-
tion 2.

Then the local condition G is cartesian on the quotients QuotR/mn(T/mnT ) =
{T/mjT}nj=1 (in the sense of Definition 3) of the R/mn-module T/mnT .

PROOF. Let the R-module Q be defined by the exactness of the following
sequence:

0 −→ H1
G(Q`, T ) −→ H1

F(Q`, T ) −→ Q −→ 0. (2.1)
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The propagated local condition H1
F(Q`, T/m

jT ) is defined as the image of
H1
F(Q`, T ) under the canonical homomorphism

H1(Q`, T )/mjH1(Q`, T ) ↪→ H1(Q`, T/m
j)

(which is induced from the long exact sequence for the GQ`
-cohomology of the

exact sequence

0 −→ T
πj

−→ T −→ T/mj −→ 0

where we recall that π is a uniformizer of R). In other words

H1
F(Q`, T/m

jT ) = im
{
H1
F(Q`, T )→ H1(Q`, T )

mjH1(Q`, T )
↪→ H1(Q`, T/m

jT )

}
(2.2)

The kernel of the first map in (2.2) is H1
F(Q`, T )∩πjH1(Q`, T ) which is equal

to πjH1
F(Q`, T ) since we assumed that H1(Q`, T )/H1

F(Q`, T ) is R-torsion-free.
Thus

H1
F(Q`, T/m

jT )

= im
{
H1
F(Q`, T )

mjH1
F(Q`, T )

↪→ H1(Q`, T )

mjH1(Q`, T )
↪→ H1(Q`, T/m

jT )

}

Similarly,

H1
G(Q`, T/m

jT ) = im
{
H1
G(Q`, T )→ H1(Q`, T )

mjH1(Q`, T )
↪→ H1(Q`, T/m

jT )

}
(2.3)

and the kernel of the first map in (2.3) isH1
G(Q`, T )∩πjH1(Q`, T ) which equals

H1
G(Q`, T )∩ πjH1

F(Q`, T ) because H1(Q`, T )/H1
F(Q`, T ) is R-torsion-free. We

thus have

H1
G(Q`, T/m

jT ) =

im
{

H1
G(Q`, T )

mjH1
F(Q`, T ) ∩H1

G(Q`, T )
↪→ H1(Q`, T )

mjH1(Q`, T )
↪→ H1(Q`, T/m

jT )

}

Consider the following exact sequence, which is simply obtained by tensor-
ing the exact sequence (2.1) by R/mj and using the fact that taking tensor
products is a right exact functor:

H1
G(Q`, T )

mjH1
G(Q`, T )

−→ H1
F(Q`, T )

mjH1
F(Q`, T )

−→ Q/mjQ −→ 0.

This sequence may be completed to an exact sequence on the left by modifying
the left most term:
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0 −→ H1
G(Q`, T )

mjH1
F(Q`, T ) ∩H1

G(Q`, T )
−→ H1

F(Q`, T )

mjH1
F(Q`, T )

−→ Q/mjQ −→ 0. (2.4)

Now the exact sequence (2.4) and the description of the propagated local con-
ditions H1

F(Q`, T/m
jT ) and H1

G(Q`, T/m
jT ) above shows that the following

sequence is exact.

0 −→ H1
G(Q`, T/m

jT ) −→ H1
F(Q`, T/m

jT ) −→ Q/mjQ −→ 0. (2.5)

To prove the statement of the Proposition we need to prove that

H1
G(Q`, T/m

iT ) = ker

{
H1(Q`, T/m

iT )
[πj−i]−→ H1(Q`, T/m

jT )

H1
G(Q`, T/mjT )

}
(2.6)

for 0 < i ≤ j ≤ n, where [πj−i] is the map induced on the cohomology
groups from the map T/miT

πj−i

−→ T/mjT . Now if c ∈ H1(Q`, T/m
iT ) and

[πj−i]c ∈ H1
G(Q`, T/m

jT ) ⊂ H1
F(Q`, T/m

jT ) it follows from Lemma 19 that
c ∈ H1

F(Q`, T/m
jT ). Thus (2.6) is equivalent to the statement

H1
G(Q`, T/m

iT ) = ker

{
H1
F(Q`, T/m

iT )
[πj−i]−→ H1

F(Q`, T/m
jT )

H1
G(Q`, T/mjT )

}
(2.7)

for 0 < i ≤ j ≤ n.

To see (2.7) holds consider the following commutative diagram (where the
rows come from the exact sequence (2.5)):

0 //H1
G(Q`, T/m

iT ) //

[πj−i]
��

H1
F(Q`, T/m

iT ) //

[πj−i]
��

Q/miQ //

πj−i

��

0

0 //H1
G(Q`, T/m

jT ) //H1
F(Q`, T/m

jT ) //Q/mjQ // 0

By our assumption that H1
F(Q`, T/m

nT )/H1
G(Q`, T/m

nT )
∼→ Q/mnQ is a free

R/mn-module it follows that the right vertical map in the diagram above is
injective for 0 < i ≤ j ≤ n. This shows that the map

H1
F(Q`, T/m

iT )
/
H1
G(Q`, T/m

iT )
[πj−i]−→ H1

F(Q`, T/m
jT )

/
H1
G(Q`, T/m

jT )

is injective for 0 < i ≤ j ≤ n, which proves (2.7) and the Proposition. 2

Corollary 21 Suppose F is a Selmer structure on T and hypotheses H1-H6
are satisfied for (T,F ,P). Suppose further that the core Selmer rank χ(T,F)
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is one. Let G be another Selmer structure on T , and suppose the local con-
dition at ` determined G satisfies the assumptions of Proposition 20 and that
H1
G(Q`, T ) ( H1

F(Q`, T ). Then

KS(T/mnT,G,Pn) = 0.

PROOF. It follows from Proposition 20 that the hypotheses H1-H6 are
satisfied by (T/mnT,G,Pn). Further, since H1

G(Q`, T ) ( H1
F(Q`, T ), it follows

from (Wil95, Proposition 1.6) (see also (MR04, Proposition 2.3.5)) that

length
(
H1
G (Q, T/mnT )

)
− length

(
H1
G (Q, T ∗[mn])

)
<

length
(
H1
F(Q, T/mnT )

)
− length

(
H1
F(Q, T ∗[mn])

)
.

Using the definition (MR04, Definition 4.1.11) of the core Selmer rank and (MR04,
Proposition 4.1.4), this translates into

0 ≤ χ(T/mnT,G) < χ(T/mnT,F) = 1,

hence χ(T/mnT,G) = 0. Now Theorem 15 shows that

KS(T/mnT,G,Pn) = 0,

as desired. 2

3 Applications

Until the end of this paper we assume that R is the ring of integers of a finite
extension of Qp and let F be its field of fractions. Let Fcan be the canonical
Selmer structure as in Definition 10. Suppose Fu-` is the Selmer structure
defined as follows:

• Σ(Fu-`) = Σ(Fcan),
• if q ∈ Σ(Fu-`) and q 6= ` then H1

Fu-`
(Qq, T ) = H1

Fcan
(Qq, T ),

• H1
Fu-`

(Q`, T ) = H1
unr(Q`, T ),

where H1
unr(Q`, T ) = ker{H1(Q`, T ) → H1(Qunr

` , T )} is the unramified coho-
mology.

Remark 22 By (Rub00, Lemma I.3.5) H1
Fu-`

(Q`, T ) ⊂ H1
Fcan

(Q`, T ) and

H1
Fcan

(Q`, T )/H1
Fu-`

(Q`, T )
∼−→ H0(Q`,W

I`

/
V I`/T I`),

13



where I` ⊂ GQ`
is the inertia subgroup, V = T ⊗RF and W = V/T . Note that

the R-module H0(Q`,W
I`

/
V I`/T I`) is finite and its order is the p-part of the

Tamagawa number at `, cf. (FP94, §I.4.2.2).

Recall that there is a canonical map (which we call the Euler system to Koly-
vagin system map)

ES(T ) −→ KS(T,Fcan,P)

from the module of Euler systems to the generalized module of Kolyvagin
systems (see (MR04, Definition 3.1.6)).

Theorem 23 Let Fcan and Fu-` be as above. Suppose (T,P) satisfies the hy-
potheses H1-H5, χ(T,Fcan) = 1 and n ∈ Z≥0 is such that the R/mn-module(
H1
Fcan

(Q`, T )/H1
Fu-`

(Q`, T )
)
⊗R/mn is free of positive rank. Then

im (ES(T )→ KS(T,Fcan,P)) ⊂ mnKS(T,Fcan,P).

PROOF. We begin with the remark that KS(T,Fcan,P) is canonically iso-
morphic to KS(T,Fcan,P) when the core Selmer rank χ(T,Fcan) is one. (This
follows from (MR04, Proposition 5.2.9).) We thus allow ourselves to view the
map from the module of Euler systems to the generalized module of Kolyvagin
systems as a map ES(T ) −→ KS(T,Fcan,P) (and this is how the statement
of the Theorem makes sense). Under the assumptions above, KS(T,Fcan,P)
is an R-module of rank one. Consider the map

ES(T )→ KS(T,Fcan,P)→ KS(T/mnT,Fcan,Pn). (3.1)

SinceKS(T,Fcan,P) is free of rank one, the statement of the Theorem is equiv-
alent to the statement that the map (3.1) is zero. As pointed out in (MR04,
Remark A.5), the proof of (MR04, Theorem 3.2.4) shows that the map (3.1)
factors as follows:

ES(T ) //

((RRRRRRRRRRRRR KS(T,Fcan,P) //KS(T/mnT,Fcan,Pn)

KS(T/mnT,Fu-`,Pn)

44hhhhhhhhhhhhhhhhh

Thus it suffices to prove that KS(T/mnT,Fu-`,Pn) = 0. This follows immedi-
ately from Corollary 21 applied with F = Fcan and G = Fu-`. Note that our
assumptions guarantee that Corollary 21 applies with the choices above. 2

Let Q∞ be the (cyclotomic) Zp-extension of Q, Γ = Gal(Q∞/Q) be its Galois
group and Λ = Zp[[Γ]] be the cyclotomic Iwasawa algebra. LetKS(T⊗Λ,Fcan)
be the module of Λ-adic Kolyvagin systems for T (defined as in (Büy07, §3.2)).

14



Under certain hypotheses (see (Büy07, §2.2)) it is proved that the Λ-module
KS(T ⊗ Λ,Fcan) is free of rank one and that the specialization map

KS(T ⊗ Λ,Fcan) −→ KS(T,Fcan,P)

is surjective. We remark that the hypotheses H.T of (Büy07, §2.2) holds if p
does not divide any of the Tamagawa numbers at any prime ` 6= p.

If, however, p does divide at least one Tamagawa number then the specializa-
tion map above is not surjective and it is predicted in (Büy07, Remark 3.25)
that the cokernel of this map should be related to Tamagawa numbers. As a
justification of this remark one may prove:

Theorem 24 Suppose all the assumptions of the Theorem 23 hold for the
triple (T,Fcan,P) and Fu-`. Let n ∈ Z+ be as in Theorem 23. Then

im (KS(T ⊗ Λ,Fcan) −→ KS(T,Fcan,P)) ⊂ pnKS(T,Fcan,P).

PROOF. The proof of Theorem 23 applies in an identical way, by (Col98,
Proposition II.1.1) (used instead of the proof of (MR04, Theorem 3.2.4)). 2

We now exhibit a particular application of Theorem 23: We apply it with
Kato’s Euler system for the Tate module of an elliptic curve. Let E/Q be an
elliptic curve defined over Q and let T = Tp(E) be its p-adic Tate module. We
will also assume that

p > 3, (3.2)
the p-adic representation GQ → Aut(E[p∞]) is surjective. (3.3)

Suppose the Tamagawa number c` = |E(Q`)/E0(Q`)| at ` 6= p is divisible
by p, and set n = ordp(c`). Since we assumed p > 3, this shows (cf. (Sil92,
Corollary C.15.2.1)) that E has split multiplicative reduction at ` (thus E/Q`

is a Tate curve Tateq with Tate parameter q ∈ `Z`) and that the component
group of the special fiber of the Néron model E/Spec(Z`) of E/Q`

is a cyclic group
isomorphic to Z/c`Z. Thus we have an exact sequence

0 −→ E0(Q`) −→ E(Q`) −→ Z/c`Z −→ 0. (3.4)

Further, one also has Z×`
∼−→ E0(Q`) under Tate uniformization (see for ex-

ample (Sil92, Theorem C.14.1)). This shows that X[p∞] is finite and X[pk] ∼=
X/pkX for X = E0(Q`) or X = E(Q`); and for all k ∈ Z+. Here X[p∞] stands
for the p-power torsion inside the group X.

One may check without difficulty that

H1
f (Q`, V ) := ker{H1(Q`, V ) −→ H1(Qunr

` , V )} = 0.
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(One way to see this is via the fact that

H1
f (Q`, V ) = im{E(Q`)

∧ ⊗Zp Qp ↪→ H1(Q`, V )}

and that E(Q`) contains a pro-` subgroup of finite index. Here E(Q`)
∧ stands

for the p-adic completion of the abelian group E(Q`). Alternatively, it follows
from Kodaira-Néron theorem (and our assumption that p > 3) that E has
split multiplication at `. Using this fact, one may see at once that V I` is of
Qp-dimension one, and the Frobenius Fr` ∈ D`/I` at ` acts non-trivially on
V I` . Therefore

0 = V I`/(Fr` − 1) ∼= H1
f (Q`, V ),

where the final isomorphism V I`/(Fr` − 1) ∼= H1
f (Q`, V ) is (Rub00, Lemma

I.3.2(i)).)

Hence we conclude that the restriction map

H1(Q`, V ) −→ H1(Qunr
` , V )

is injective, thus

H1
Fcan

(Q`, T ) = H1
f (Q`, T ) := ker{H1(Q`, T )→ H1(Qunr

` , V )}
= ker{H1(Q`, T )→ H1(Q`, V )},

which equals the image of E(Q`)[p
∞] inside H1(Q`, T ). See also (Rub00,

§I.6.4). Similarly, one may show that H1
unr(Q`, T ) is the image of E0(Q`)[p

∞]
inside H1(Q`, T ). The diagram below summarizes our discussion in this para-
graph:

H1
f (Q`, T ) im{E(Q`)[p

∞]�
� //H1(Q`, T )}

H1
unr(Q`, T )

∪

OO

im{E0(Q`)[p
∞]�

� //H1(Q`, T )}
This, together with (3.4), Example 14 and Theorem 23 (with n = ordp(c`))
shows

Corollary 25 Let T = Tp(E), E, c`, n be as above. Then

im (ES(T )→ KS(T,Fcan,P)) ⊂ pnKS(T,Fcan,P).

We remark that the hypothesesH1-H5 hold in this setting (which is necessary
in order to apply Theorem 23) thanks to our assumptions (3.2) and (3.3). See
also (MR04, Lemma 6.2.3).

Let N be the conductor of E. Kato (Kat04) has constructed an Euler system
which gives rise to a Kolyvagin system κKato ∈ KS(T,Fcan,P) for a suit-
ably chosen set of primes P , see (Rub98, §3.5) and (MR04, §6.2) for more
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details. Corollary 25 shows that κKato ∈ pnKS(T,Fcan,P). Further we know
(Theorem 16) that KS(T,Fcan,P) is a free Zp-module of rank one, and is gen-
erated by a primitive Kolyvagin system. We fix such a generator κE so that
κKato = pα · κE for some α ≥ n.

The following Theorem is the main application of κKato. Let L(E, s) denote
the Hasse-Weil L-function attached to E, and LN(E, s) the non-primitive L-
function which is obtained by removing the Euler factors at primes dividing
the conductor N of E. Let ΩE be the fundamental period of E, and IIIE be
the Tate-Shafarevich group of E.

Theorem 26 (Kat04) Assume (3.2) and (3.3) holds. Suppose further that

• E has good reduction at p,
• p - E(Fp),
• p does not divide the integer rE of (Rub98) Theorem 7.1,
• L(E, 1) 6= 0.

Then
length(IIIE[p∞]) ≤ ordp(LN(E, 1)/ΩE).

To prove this Theorem one utilizes

(i) Kolyvagin system machinery with κKato to bound the classical Selmer group
(see for example (Rub98, Theorem 3.2)),

(ii) and then Kato’s calculations (see the proof of (Rub98, Theorem 8.6)) with
the element κKato

1 (which appears as cQ in (Rub98)).

More precisely, Kolyvagin system machinery with κKato gives the inequality

length (SE(Q)) ≤ length
(
H1

s (Qp, T )/Zp · locs
p

(
κKato

1

))
, (3.5)

cf. (Rub00, Theorem 2.2.10(ii)). Here SE(Q) is the classical p-Selmer group
attached to E/Q, and H1

s (Qp, T ) = H1(Qp, T )/H1
f (Qp, T ) is the singular quo-

tient withH1
f (Qp, T ) = im{E(Qp)

∧ ↪→ H1(Qp, T )} and locs
p is the composition

H1(Q, T ) −→ H1(Qp, T ) −→ H1
s (Qp.T ).

The conclusion of Theorem 26 then follows from Kato’s calculation of the right
hand side of the inequality (3.5).

One could use κE instead of κKato = pα · κE to bound the classical Selmer
group (which, in a sense, is a "better" Kolyvagin system). Using the fact
that the singular quotient H1

s (Qp, T ) is a free (rank one) Zp-module (as it
injects into H1

s (Qp, V ) = H1(Qp, V )/H1
f (Qp, V )), and replacing κKato by κE,

the inequality (3.5) is evidently improved by a factor of pα and yields the
following stronger version of Theorem 26:
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Corollary 27 Assume the hypotheses of Theorem 26 holds. Then

length(IIIE[p∞]) ≤ ordp

(
LN(E, 1)

pα · ΩE

)
≤ ordp

(
LN(E, 1)

c` · ΩE

)
.

4 Concluding Remarks

4.1 More on Kato’s Euler system

Explicit calculations carried out by Kato (Kat04) to determine a bound on
the size of the Selmer group are limited to the case L(E, 1) 6= 0. In this case
the classical Selmer group SE attached to E is finite and one only has to deal
with the very first term κKato

1 of the Kolyvagin system κKato ∈ KS(T,Fcan,P).
In fact, in Corollary 27 above we only use Corollary 25 to conclude that
κKato

1 = pα · κE1 , where α and κE are as above. This is sufficient in the setting
of Theorem 26.

However one should note that Corollary 25 says much more than the com-
parison above for the initial terms of these Kolyvagin systems, it in fact says
that

κKato
r = pα · κEr (4.1)

for every r ∈ N (P), where N (P) is the set of integers which are square
free products of primes in P . If κKato

1 (hence also κE1 ) is non-zero (which
essentially put us in the setting of Theorem 26) then (4.1) easily follows from
the equality κKato

1 = pα · κE1 and Theorem 15. Of course this is not always the
case and (4.1) is a much stronger statement in general. Unfortunately, when
the Hasse-Weil L-function vanishes at s = 1 (this should amount to saying
κKato

1 = 0, cf. (MR04, Corollary 5.2.13)) there is no computation yet available
with Kato’s Kolyvagin system to exemplify the content of Corollary 25 further,
in terms of bounding the Selmer group (such as Corollary 27, which applies
when L(E, 1) 6= 0).

4.2 Tamagawa numbers and level lowering

We keep assuming T = Tp(E), the p-adic Tate module of an elliptic curve E/Q,
and hypotheses (3.2) and (3.3). Corollary 25 says that

κKato ∈ c` ·KS(T,Fcan,P).

This statement is reflected in Corollary 27 as an improvement to Kato’s The-
orem 26. However, this method captures only one Tamagawa factor. What
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if there are more then one Tamagawa numbers which are divisible by p? A
natural question to ask is:

Question 1. Is it true that κKato ∈ ∏`|N c` ·KS(T,Fcan,P)?

This question turns out to be more delicate when there is more than one
Tamagawa number which is divisible by p. We first consider a preliminary
version of Question 1. Let d be the number of primes ` for which p|c`.

Question 2. Is it true that κKato ∈ pdKS(T,Fcan,P)?

To address this question we consider the newform fE of level N associated
with E. Since we assumed p > 3, p|c` implies that E has split multiplicative
reduction at `. Thus if p|c`, then `||N . The assumption that p|c` in fact trans-
lates into the statement that the Galois representation E[p] ∼= T/pT is finite
at ` (in the sense of (Ser87, §2.8); note that since ` 6= p, this simply means
that the Galois representation T/pT is unramified at `). Thus, we may apply
level lowering theorem of Ribet (Rib90) to arrive at a modular form g of level
N/` and a Galois representation Tg attached to g such that Tg/pTg ∼= T/pT .
Note that ` is no longer a bad prime for g. The author is quite curious to see
whether the Euler system for the modular form g could play a role in this
context to answer Question 2.

More generally, Dummigan (Dum) has studied the Tamagawa factors of mod-
ular forms and level lowering for their mod pn representations for n > 1. Sim-
ilarly, one might try to approach more general Question 1 via Dummigan’s
more general level lowering results.

4.3 Tamagawa numbers for higher dimensional Abelian varieties

The discussion above with Kato’s Euler system (for elliptic curves) suggests
that if one would like to apply Theorem 23 with an abelian variety A of
higher dimension, one should understand the structure of the p-part Φp of
the component group of A/Q`

for each ` 6= p. For example, when A = E
is one dimensional Kodaira-Néron Theorem (Sil92, Corollary C.15.2.1) shows
that Φp is always cyclic if p > 2, and this is exactly what we use to deduce
Corollary 25 from Theorem 23.

Let A/Q`
be an abelian variety (with ` 6= p). Let A be its Néron model over Z`.

Suppose t (resp. u) denote the dimension of the toric (resp. unipotent) part
of the special fiber As. Let Φ[p] denote the p-torsion of Φ. Since Φ is a finite
group, we have Φ[p] ∼= Φp/pΦp. Theorem below can be found in (Abb00):
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Theorem 28 (Abb00, Proposition 5.13 (i)) If p ≥ 3,

dimFpΦ[p] ≤ t+ u ≤ dimA.

Suppose now that A/Q = Af is an abelian variety of attached to a newform
f of level N . Then Af is an abelian variety of GL2-type: Let R denote the
ring generated by the Fourier coefficients of f and set K = Q ⊗ R, then
R ⊂ EndQ(A) and [K : Q] = dimA. We assume the following additional
hypotheses on p:

R⊗ Fp is a field, i.e. p is inert in R. (4.2)

R⊗ Fp acts on Φ[p], thus Theorem 28 and assumption (4.2) shows that

Corollary 29 Φ[p] is a cyclic R/pR-module.

Let Rp denote the completion of the ring R at p. The action of R on Φp

naturally extends to an action of Rp on Φp. Corollary 29 and Nakayama’s
lemma implies the following

Corollary 30 Under the hypotheses above Φp is a cyclic Rp-module.

Let O denote the maximal order of the number field K. One easily deduces
from the assumption (4.2) that the ring homomorphism R/pR → O/pO is
an isomorphism, hence p is inert in the extension O/Z as well. Further, the
inclusion R ↪→ O induces a natural isomorphism Rp

∼−→ Op. Thus we proved

Proposition 31 If we assume (4.2) then Φp is a cyclic Op-module.

Note that this is the analogous statement for abelian varieties Af to that for
elliptic curves (i.e. to the case K = Q), which, in that case, is implied by the
Kodaira-Néron Theorem.

Consider the p-adic Tate module Tp(Af ), and set

Vp(Af ) = Qp ⊗Zp Tp(Af ).

We keep assuming (4.2). It is known that Vp(Af ) is a Kp-vector space of
dimension 2; choose a GQ-invariant lattice T inside Vp(Af ) so that T is a free
Op-module of rank 2. Kato (Kat04) has constructed an Euler system for this
Op[[GQ]] representation. One could use Theorem 23 (which applies thanks to
Proposition 31 with R = Op) to obtain similar results to Corollary 25 in this
setting.
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