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Abstract

Let G be a semisimple algebraic Lie group and H a reductive sub-
group. We compute geometrically the best even integer p for which the
representation of G in L?(G/H) is almost LP. As an application, we
give a criterion which detects whether this representation is tempered.
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1 Introduction

Let G be an algebraic semisimple Lie group and H a reductive subgroup.
The natural unitary representation of G' in L?(G/H) has been studied for
more than half a century starting with the pioneering work of I. M. Gelfand
and Harish-Chandra.

Thanks to many mathematicians including E. van den Ban, P. Delorme,
M. Flensted-Jensen, T. Matsuki, T. Oshima, H. Schlichtkrull, J. Sekiguchi,
among others, many properties of this representation are known when G/H
is a symmetric space, i.e. when H is the set of fixed points of an involution
of G. Most of the preceeding works in this case are built on the fact that the
ring D(G/H) of G-invariant differential operators is commutative, e.g. the
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disintegration of L*(G/H) is closely related to the expansion of L?-functions
into joint eigenfunctions of D(G/H).

This paper deals with a general reductive subgroup H, for which we
cannot expect that the ring D(G/H) is commutative, and a complete change
of the machinery would be required in the study of L?*(G/H). We address
the following question: What kind of unitary representations occur in the
disintegration of G/H?

The aim of this paper is to give an easy-to-check necessary and sufficient
condition on G/H under which all these representations are tempered, or
equivalently under which L?(G/H) is tempered. More generally, we give, for
any even integer p, a necessary and sufficient condition under which L*(G/H)
is almost L? (see Theorem 4.1).

Our criterion is new even when G/H is a symmetric space where the
disintegration of L?*(G/H) (Plancherel formula) was established up to the
classification of discrete series representations for (sub) symmetric spaces
([4]). Indeed irreducible unitary representations that contribute to L*(G/H)
in the direct integral are obtained as a parabolic induction from discrete series
for subsymmetric spaces, but a subtle point is discrete series with singular
parameter, for which a classification has not been completed on the one hand
(cf. [8] for partial results), and which may induce the worst decay of matrix
coefficients on the other hand. (Algebraically, the underlying (g, K')-modules
are certain Zuckerman derived functor modules A4(A) ([6]) with A crossing
a number of walls of the Weyl chambers, so that the Langlands parameter
may become unstable and even the modules themselves may disappear.)

Here is an outline of the paper. As a baby case, we first study the unitary
representations of a semisimple group in L*(V) where V is a finite dimen-
sional representation. We also give a necessary and sufficient condition on
V under which the representation in L?(V) is tempered (Theorem 3.2) or,
more generally, under which this representation is almost L”. The heart of
the paper is Chapter 3 where we give a proof of the main theorem for reduc-
tive homogeneous spaces G/H. In Chapter 4 we collect a few applications
of this criterion, omitting the details of the computational verification that
will be published elsewhere.

The authors are grateful to the Institut des Hautes Etudes Scientifiques
(Bures-sur-Yvette) and to the University of Tokyo for its support through
the GCOE program for giving us opportunities to work together in very good
conditions.



2 Preliminary results

We collect in this chapter a few well-known facts on almost LP-representations,
on tempered representation and on uniform decay of matrix coefficients.

2.1 Weakly L? representations

In this paper all Lie groups will be real Lie groups. Let G be a Lie group
and 7 be a unitary representation of GG in a Hilbert space H.,.

Definition 2.1. Let p > 2. The representation © s said to be almost LP if
there exists a dense subset D C H, for which the coefficients
Cory 2 § > (T(g)v1,v2) are in LPTE(G) for all e > 0 and all vy, vy in D.

Let K be a maximal compact subgroup of G.

Lemma 2.2. The representation w is almost LP if and only if there exists a
dense subset Dy C H, of K-finite vectors for which the coefficients c,, ., are
in LPT(Q) for all e > 0 and all vy, vy in Dy.

Proof. We first notice that for all vy, v in D and all k;, ks in K the two
vectors m(ky)v, and 7(ks)vs have a coefficient with same LPte-norm:

||C7r(k1)v1,77(kz)vzHLPJF8 = ||Cv1,v2||Lp+5'

Let dk be the Haar probability measure on K. For any two K-finite functions
f1 and f, on K, bounded by 1, the two vectors wy := [, fi(k)m(k)vy dk and
wy := [, fa(k)m(k)vs dk have a coefficient with bounded LP**-norm:

chhwzHL”E < |‘CU1,U2HLP+E'

These vectors w; live in a dense set Dy of K-finite vectors of H.. O

2.2 Tempered representations

Definition 2.3. The representation 7 is said to be tempered if ™ is weakly
contained in the reqular representation g of G in L*(G) i.e. if every co-
efficient of ® is a uniform limit on every compact of G of a sequence of
coefficients of A\g.



Here are a few elementary facts on tempered representations.
- Let G’ C G be a finite index subgroup. A representation 7 of GG is tempered
if and only if 7 is tempered as a representation of G'.
- A representation 7 of a reductive group G is tempered if and only if 7 is
tempered as a representation of the derived subgroup |G, G].

Proposition 2.4. (Cowling, Haagerup, Howe [3]) Let G be a semisimple
connected Lie group with finite center, and m a positive integer.
A unitary representation © of G is almost L? if and only if m is tempered.
More generally, w is almost L*™ if and only if 7™ is tempered.

Remark 2.5. When G is amenable and non-compact, every unitary repre-
sentation of G is tempered but the trivial representation is not almost L?.

2.3 Uniform decay of coefficients

Let G be a linear semisimple connected Lie group and let ¥ be the Harish-
Chandra function on G (see [3]). In this paper we will not need the precise
formula for ¥ but just the fact that this function ¥ is in L**¢(G) for all e > 0
and the following proposition.

Proposition 2.6. (Cowling, Haagerup, Howe [3]) Let p be an even
integer. A wunitary representation w of G is almost LP if and only if, for
every K-finite vectors v, w in H,, for every g in G, one has

(7 (g)v, w)| < U(g)¥?||v]||Jw]|(dim(Kv))? (dim(Kw))?.

This proposition tells us that once an almost LP-norm condition is checked
for the coefficients of a dense set of vectors of H,, one gets a UNIFORM
estimate for the coefficients of ALL the K-finite vectors of H,.

The set of p for which 7 is almost L? is an interval [p,, oco[ with p, > 2
or pp, = 0.

When G is quasisimple of higher rank and H, does not contain G-
invariant vectors, this real p, is bounded by a constant pg < oo (see [9]).

According to Harish-Chandra, when G is semisimple and 7 is irreducible
with finite kernel, this real p, is finite (see [5]).



2.4 Representations in L*(X)

Let X be a locally compact space endowed with a continuous action of GG
preserving a Radon measure vol on X. One has a natural representation m
of G in L*(X) given by, (7(g)¢)(z) = ¢(g 'z) for g in G, ¢ in L*(X) and x
in X.

Lemma 2.7. Let G be a semisimple linear connected Lie group, p a positive
even integer, and X a locally compact space endowed with a continuous action
of G preserving a Radon measure vol.

The representation of G in L*(X) is almost LP if and only if, for any
compact subset C' of X and any € > 0 vol(gC N C) € LPT(Q).

Proof. If the representation of G in L?(X) is almost LP then, according to
Proposition 2.6, for all K-invariant compact set B of X, the function g —
vol(¢gB N B) = (n(g)1p, 15) belongs to LP™¢(G). Since any compact set C
of X is included in such a K-invariant compact set B, the function g —
vol(gC N C') belongs also to LPe(G).

Conversely, let D C L*(X) be the dense subspace of continuous compactly
supported functions on X. For any two continuous functions ¢, s € D,
the coefficient (m(g)¢1,¢2) is bounded by ||¥1]leo||@2]lc vol(gC N C') where
C' := Supp(1)USupp(y2), and hence this coefficient belongs to LF*¢(G). [

3 Representations in L*(V)

In this chapter we study the representation of a semisimple Lie group in
L*(V) where V is a finite dimensional representation.

3.1 Function py

Let H be a reductive algebraic Lie group, and 7 : H — SL4(V) a finite
dimensional algebraic representation over R preserving the Lebesgue measure
on V. We write dr : h — End(V) for the differential representation of 7. Let
a = a, be a maximal split abelian subspace in .

For an element Y in a, we denote by V, the sum of eigenspaces of 7(Y")
having positive eigenvalues, and set

pv(Y') := Tracey, (dr(Y")). (3.1)



Since this function py : @ — R5( will be very important in our analysis, we
begin by a few trivial but useful comments. We notice first that, since H is
volume preserving, for any Y € a,

pv(=Y) = py(Y), (3.2)
pv(Y)=0«<dr(Y)=0. (3.3)

This function py is invariant under the finite group Wy := Ng(a)/Zy(a).
This group is isomorphic to the Weyl group of the restricted root system
Y(h,a) if H is connected. This function py is continuous and is piecewise
linear i.e. there exist finitely many convex polyhedral cones which cover a
and on which py is linear.

Example 3.1. For (7,V) = (Ad, ), py coincides with twice the usual ‘p’ on
the positive Weyl chamber a, with respect to a positive system L7 (b, a).

Py = Z dimb,a on ay,
aext(h,a)
where b, C B is the root subspace associated to .

For other representations (7, V'), the maximal convex polyhedral cones on
which py is linear are most often much smaller than the Weyl chambers.

3.2 Criterion for temperedness of L*(V)

Since the Lebesgue measure on V is H-invariant, we have a natural unitary
representation of H on L?(V') as in Section 2.4.

Theorem 3.2. Let H an algebraic semisimple Lie group, 7 : H — SLy(V)
an algebraic representation and p a positive even integer. Then, one has the
equivalences :

a) L*(V) is tempered <= py(Y) <2py(Y) for any Y € a.

b) L3(V) is almost P <= py(Y) < ppv(Y) for any Y € a.

Remark 3.3. Inequality py < p py holds on a if and only if it holds on a,.
Since all the mazimal split abelian subspaces of y are H-conjugate, it is
clear that this condition does not depend on the choice of a.

Example 3.4. Let H = SL(2,R)? with d > 1. The unitary representation
in L*(V') is tempered if and only if the kernel of T is finite.
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Example 3.5. Let H = SL(3,R). The unitary representation in L*(V') is
tempered if and only if dim(V/VH) > 3 where V¥ = {v € V : Hv = v}.

For h € H, x € V and a measurable subset C C V, we write hx for
7(h)x and we set hC := {hx € V : x € C}. Similarly, for a > 0 we set
aC = {azx € V : x € C}. We write vol(C') for the volume of C' with respect
to the Lebesgue measure.

Proof of Theorem 3.2. When the kernel of 7 is noncompact, both sides of the
equivalence are false. Hence we may assume that the kernel of 7 is compact.
Since H is semisimple, according to Proposition 2.4 and Lemma 2.7, it is
sufficient to prove the following equivalence:

p(Y) < ppy(Y) — vol(hCNC') € LPT(H) for any compact
foranyY €a subset C'in'V and any € > 0.

This statement is a special case of Proposition 3.6 below. [l

3.3 [L[P-norm of vol(hC' N C)

Suppose now that the kernel of 7 is compact. According to (3.3), one has
pv(Y) >0 as soon as Y # 0. Hence the real number

Y
py = max A(Y)

3.4
vea\{o} py(Y) (3:4)

is finite.

Proposition 3.6. Let H be an algebraic reductive Lie group, and 7 : H —
SLi(V) a volume preserving algebraic representation with compact kernel.
For any real p > 0, one has the equivalence :

p > py <= vol(hCNC) e LP(H) for any compact set C in V.

In this section we will show how to deduce Proposition 3.6 from a volume
estimate that we will prove in the next section.

Proof of Proposition 3.6. Let Hg be a maximal compact subgroup of H such
that H = Hg(exp a)Hg is a Cartan decomposition of H.
The Haar measure dh of H is given as

| = [ e )pyvay (3.5)
7



for any Hg-biinvariant measurable function f on H, where

Dy(YV):= [[ [sinh(e,Y)|"™% forY €a.

aexT(b,a)

We also introduce the function on a

Dy(Y) = /”Z”<1 Dy(Y + Z)dZ.

We shall prove successively the following equivalences

1 VO N € , for any compact C C V,
(1) (hCNC) e LP(H), f ccVv
(i3) vol(e¥ C' N C) Dy(Y) € L'(a), for any compact C C V,
(i3i) vol(e¥C' N CO)P ﬁh(Y) € L (a), for any compact C C V,
1) vol(e N e e a), for any compact C' C V,

l(e"CnCyen™) e L'(a), f ccv
(v) ePr(Y)—ppv(Y) o L'(a),

(vi) ppy(Y)—ps(Y) >0, for any Y € a \ 0.

171117

(i) <= (4i) We may choose C' to be Hp-invariant by expanding C' if nec-
essary. We apply then the integration formula (3.5) to the Hy-biinvariant
function vol(hC' N C).

(i) <= (i4i) Replace C' by a larger compact C" := *"C where a(1) is the
unit ball {Z € a | ||Z]] < 1}. Since vol(e¥ ~2C'NC) < vol(e¥ C'N ") for any
Z € a(1), one has

a

/ vol(e¥ C' N C)PDy(Y)dY = / / vol(e¥ C' N CYPDy(Y + Z)dY dZ
aJ|Z]<1

< vol(a(1)) / vol(e¥ €' A C") Dy (Y)Y,

a

/ vol(e¥ C' N CYPDy(Y)dY < / vol(eX ~2C" N C")P Dy (Y)dY

a a

— vol(a(1))"! / vol(e¥ €' N C") Dy (V)dY.

a

(111) <= (iv) We notice that we can find constants a;,as > 0, such that for
any Y € a, the following inequality holds:

ay e < Bh (V) < agem™.

8



(iv) <= (v) We use Proposition 3.7, that we will prove in Section 3.4, and
that gives, for C' large enough, constants m, M > 0 such that, for any Y € a,

me V) < vol(e¥C'NC) < Me v,

(v) <= (vi) We recall that the function py—ppy is continuous and piecewise
linear.
This proves Proposition 3.6 provided the following Proposition 3.7. [

3.4 Estimate of vol(e¥C' N Q)

The following asymptotic estimate of vol(e¥ C'NC) for the linear representa-
tion in V' will become a prototype of the volume estimate for the action on
G/H which we shall discuss in Section 4 (Theorem 4.4).

Proposition 3.7. Let H be an algebraic reductive Lie group, 7 : H —
SL.(V) a volume preserving algebraic representation, and C be a compact
netghborhood of 0 in V. Then there exist constants m = m¢g > 0, M =
Mg > 0 such that

me P Y) <vol(e¥CNC) < Me= ) for any Y € a.

To see this, write A = A(V,a) C a* for the set of weights of the repre-
sentation d7|, : @ — End(V'), and

VZ@AGAV)U U:ZU)\ (36)
for the corresponding weight space decomposition.

Lemma 3.8. For each N € A, let By be a convex neighborhood of 0 in Vy,
and let B :=[], Bx. Then, one has

vol(e¥ BN B) = vol(B)e ™ Y)  for any Y € a.

Proof. For any real t, one has By N e 'By = e~ By where t* := max(t,0).
Then we get

BRe VB =[(Byne ™B,) = [[,e ) By,
and vol(e¥ BN B) = vol(BNe Y B) = e ¥ vol(B). O
Proof of Proposition 3.7. We take {B)} and {B}} such that
H)\ BycCcC H)\ B,
and we apply Lemma 3.8. O



4 Representations in L*(G/H)

In this chapter we study the representations of an algebraic semisimple Lie
group in L?(X) where X is a homogeneous space with reductive isotropy.

4.1 Criterion for temperedness of L*(G/H)

Let G be an algebraic reductive Lie group and H an algebraic reductive
subgroup of G. Since the homogeneous space X = G/H carries a G-invariant
Radon measure, there is a natural unitary representation of G on L*(G/H)
as in Section 2.4. We want to study the temperedness of this representation.

Let q be an H-invariant complementary subspace of the Lie algebra b
of H in g. We fix a maximal split abelian subspace a of h and we define
pq @ — R>( for the H-module q as in Section 3.1.

Here is the main result of this chapter :

Theorem 4.1. Let G be an algebraic semisimple Lie group, H an algebraic
reductive subgroup of G, and p a positive even integer. Then, one has the
equivalences :

a) L*(G/H) is tempered <= py(Y) < pg(Y) for any Y € a.

b) L*(G/H) is almost LV <= py(Y) < ppy(Y) for any Y € a.

Remark 4.2. One has the equality py = py + pq-
The inequality pg < p pq holds on a if and only if it holds on a.

Proof of Theorem 4.1. When the kernel of the action of G on G/H is non-
compact, both sides of the equivalence are false. Hence we may assume that
this kernel is compact. But then, according to Proposition 2.4 and Lemma
2.7, it is sufficient to prove the following equivalence:

pa(Y) < ppg(Y) PN vol(gC'NC) € LPT(G) for any compact
foranyY €a subset C in G/H and any e > 0.

This statement is a special case of Proposition 4.3 below. [l

4.2 LP-norm of vol(¢C' N C)

We assume that the action of G on G/H has finite kernel or, equivalently,
that the action of H on q has compact kernel. Then, according to (3.3), one
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has pg(Y) > 0 as soon as Y # 0. Hence the real number

pG/m i= max AaY)
vea\{0} pg(Y)

(4.1)

is finite.

Proposition 4.3. Let G be an algebraic reductive Lie group and H an alge-
braic reductive subgroup of G such that the action of G on G/H has compact
kernel. For any real p > 1, one has the equivalence :

P > pea <= vol(gC N C) € LP(G) for any compact set C in G/H.

In this section we will show how to deduce Proposition 4.3 from a volume
estimate that we will prove in the following sections. For that we will use
another equivalent definition of the constant pg/p.

We extend a to a maximal split abelian subspace a4 of g and we choose
a maximal compact subgroup K of GG such that Hyx := H N K is a maximal
compact subgroup of H, and that G = K(expay)K and H = Hg(expa)Hg
are Cartan decompositions of G and H, respectively.

Let We be the finite group We = Ng(ag)/Za(ay) ~ Ni(ag)/Zk(ag).
When G is connected, W is the Weyl group of the restricted root system
E(ga Clg).

For Y € a, we define a subset of W¢ by
W(Y;a) :={we Wg:wY € a}. (4.2)
We notice that W(Y;a) 3 e for any Y € a, and W(0;a) = Wg. We set

p(Y) = min - pg(wY). (4.3)

We can then rewrite Definition (4.1) by the equivalent formula

Pg(y)
= AN 4.4
Po/n = max o (V) (4.4)

Proof of Proposition 4.3. The Haar measure dg on G is given as
| 1@ = [ 5@)0y)av, (1.5
Og

11



for any K-biinvariant measurable function f on G, where Dy is the W-
invariant function on a4 given by

Dy(Y):= [ Isinh(a,Y)["™% YV €aq,

aexT(g,aq)

and where g, C g are the (restricted) root spaces.
We also introduce the function on a,

Dy(Y) = /” o el 20z

We shall prove successively the following equivalences

(i)  wvol(gCNC) e LP(G), for any compact C' C X,

(ii) vol(e"C'NCO) Dy(Y) € L'(ay), for any compact C' C X,
iii) vol(e¥C'NC ng(Y) € L'(a,), for any compact C' C X,
w) vol(e¥C'NCYPersY) ¢ L(a,), for any compact C' C X,
(v)  vol(e¥C' N ersY) ¢ LY(a), for any compact C' C X,
(vi) ePs(V)=pp™(Y) ¢ 1 (a),

(vid) pp;m“(Y) pg(Y) >0, for any ¥ € a~ 0.

—~

—
\_/\_/\_/\_/

[ R

(1) (17) We may choose C' to be K-invariant. We apply then the inte-
gration formula (4.5) to the K-biinvariant function vol(¢C N C).

(i1) <= (iii) We just replace C' by a larger compact C' := ¢®()(C where
ag(1) is the unit ball {Z € a4 : || Z|| < 1}.

(17i) <= (iv) We notice that we can find constants a;, as > 0, such that for
any Y € a4, one has

a ePg(Y) < ﬁg(y) < ay ePg(Y)_

(iv) <= (v) The main point of this equivalence is to replace an integration
on ag by an integration on a. For that we will bound the support of the
function pe on a4, po(Y) = vol(e¥ C N )P ers¥). We may choose C' to be
K-invariant so that, ¢ is Wg-invariant. We recall now the Cartan projection

G —ag/We, kie¥ ks — Y mod Wg

12



with respect to the Cartan decomposition G = K (exp ay) K. It follows from
[1, 7] that, for any compact subsets S C G, there exists 0 > 0 such that

p(SHS™) C u(H) + ag(8) mod Wg (4.6)

where ag(0) stands for the o-ball {Y € a4 : ||Y|| < 0}. If we take this compact
set S C G such that C' C SH/H, then Y € a, satisfies e¥ C N C # () only if
e¥ € SHS™!, and therefore, only if Y € u(SHS™!). Hence we get the bound
on the support

Supppc C | wla+aq(d)). (4.7)

weWag

By Wg-invariance of ¢, we only have to integrate on the §-neighborhood of
a. Hence the assertion (iv) is equivalent to the following assertion

(iv') vol(e¥ CNC)P er«™) € L' (a+ay(R)) for any compact C' C X, any R > 0.

To see that this assertion (iv') is equivalent to (v), we just have to replace
the compact C by a larger compact C” := %" and to notice that the map

Y — Zma(x lpg(Y + Z) — pg(Y')] is uniformly bounded on a.
€ag

(v) <= (vi) We use Theorem 4.4, that we will prove in the next section, and
that gives, for C' large enough, constants m, M > 0 such that

min

me P ) < vol(eYC NnC) < Me ") for any Y € a.

(vi) <= (vii) We recall that the function py—ppi™™ is continuous and piece-
wise linear.
This proves Proposition 4.3 provided the following Theorem 4.4. ]

4.3 Estimate of vol(e¥ C' N Q)

Let C be a compact subset of X. We shall give both lower and upper bounds
of the volume of e¥C' N C as Y € a goes to infinity. For that we will use the
function pi™ defined by formula (4.3). Let zo = eH € X = G/H and W
be the orbit of this point under the Weyl group of G.

Theorem 4.4. Let G be an algebraic reductive Lie group, H an algebraic
reductive subgroup and C' a compact neighborhood of Kxy in X = G/H.
Then there exist constants m = me > 0 and M = Mg > 0 such that

mePa () <vol(e¥CNC) < MePa() for any Y € a.
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The proof of the lower bound will be given in Section 4.4.

We will give the proof of the upper bound in eight steps which will last
from Section 4.4 to 4.8. Clearly, the upper bound in Theorem 4.4 is equivalent
to the following statement:

For any compact sets Cy, Cy in X, there exists M = M¢, ¢, > 0 such that

vol(e¥ Cy N Cy) < Me ") for any Y € a. (4.8)

The strategy of the proof of (4.8) will be to see G/H as a closed orbit
in a representation of G and to decompose C; and (5 into smaller compact
pieces.

4.4 Lower bound for vol(e¥ C'N Q)

Up to the end of this chapter we keep the setting as above : G is a connected
algebraic reductive Lie group, and H an algebraic reductive subgroup. Then,
there exists an algebraic representation 7 : G — GL(V') such that the ho-
mogeneous space X = G/H is realized as a closed orbit X = Gzyg C V
where Stabg(zg) = H. We can assume that Ker(dr) = {0}. We fix such a
representation (7,V") once and for all.

Here is the first step towards both the volume upper bound and the
volume lower bound in Theorem 4.4.

Lemma 4.5. There exists a neighborhood C,, of xo in G/H such that for
any compact neighborhood Cy of xy contained in C,,, there exist constants
m, M > 0 such that

me PY) < vol(e¥ Co N Cy) < Me™» ) for any Y € a. (4.9)

Proof. Since G and H are reductive, the representation of H in q is volume
preserving. Hence we can apply Proposition 3.7 to the representation of H
in q. Roughly, the strategy is then to linearize X near zy. To make this
approach precise, we need two similar but slightly different arguments for
the lower bound and for the upper bound.

Lower bound. We choose a sufficiently small compact neighborhood Uy of
0 in g on which the map

T_q—= X, 2w efxg

14



is well-defined, injective with a Jacobian bounded away from 0. Since z is
H-invariant, this map 7_ is H-equivariant. For any compact neighborhood
Co=7m_(C) of g in X with C' C Uy, one has, for every Y € a,

BYOO NCyD W_(ey(]ﬂ C)

The lower bound in (4.9) is then a consequence of the lower bound in Propo-
sition 3.7.

Upper bound. Since the linear tangent space 1, X C V of X at zg
is canonically H-isomorphic to ¢, we will also denote it by ¢. Since H is
reductive, this vector subspace q C V admits a H-invariant supplementary
subspace s. We set p : V — q for the linear projector with kernel s. We
choose a sufficiently small compact neighborhood C,, of zy in X on which
the map

T X = q, 2 p(x) — p(ro)

is injective with a Jacobian bounded away from 0. Since x is H-invariant,
this map 7, is also H-equivariant.
For any compact subset Cj of C,,, one has, for every Y € a,

7T+(6YCO N C()) - aelake;

where C := 7, (Cy). The upper bound in (4.9) is then a consequence of the
upper bound in Proposition 3.7. O

As a direct corollary we get the lower bound in Theorem 4.4 .

Corollary 4.6. For any compact neighborhood C of Kzo in G/H, there
exists m > 0 such that

vol(e¥C' N C) = me ") for any Y € a.

Proof. Shrinking C' if necessary, we can assume that C' = KCj where Cj
is a compact neighborhood of xy. According to Lemma 4.5, there exists a
constant m > 0 such that the lower bound in (4.9) is satisfied. For each
we W(Y;a) (C Wg), we take a representative k, € Nk (ag). Then one has

vol(e¥'C'N C) > vol(e¥ k1 Cy N Cp) = vol(e®Y Cy N Cy) > me Py,
Hence one has

VO](@YC ﬂ O) Z m max e—pq(wY) - m e_pgnin(y)‘

This ends the proof. [l
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4.5 Volume near one invariant point

Here is the second step towards the volume upper bound (4.8). It is a subtle
variation of the volume upper bound given in Lemma 4.5.
For any subspace b C a, weset X* :={z € X :e¥z =2, forall Y € b}.

Lemma 4.7. For any subspace b C a and any point x € X°, there exists a
neighborhood C,, of x in X and M > 0 such that

vol(e¥ C, N Cy) < Me ") for any Y € b.

Proof of Lemma 4.7. Let H' be the stabilizer of x in G and b’ its Lie algebra.
Since x is in X°, one has b C h’. Hence there exists a maximal split abelian
subspace a’ of b’ containing b. Since all the maximal split abelian subspaces of
h are H-conjugate, one can find an element g € G such that x = gxy. Then
one has H' := gHg™ ' and §’ := Ad(g)h. After replacing g by a suitable
element gh with h in H, we also have o’ = Ad(g)a. We set q' := Ad(g)q and
introduce the function py : @ — R associated to the representation of H’
on ¢ as in Section 3.1. By definition, we have the following identity:

py(Ad(9)Z) = pg(Z) for any Z € a. (4.10)

Applying Lemma 4.5 to the homogeneous space G/H’, we see that there
exist a compact neighborhood C,, of  in X and a constant M > 0 such that

vol(e¥ C, N C,) < Me ) for any Y € o' (4.11)

Now, for Y € b, we set Z = Ad(g~")Y. This element Z belongs also to a.
Since the Cartan subspace a4 contains a and since two elements of a; which

are G-conjugate are always W-conjugate, there exists w € Wy such that
Z = wY . Using (4.10), we get

pe(Y) = pg(Z) = py(wY) > Pfqmn(Y)-

Hence, Lemma 4.7 follows from (4.11). O

4.6 Volume near two invariant points

Here is the third step towards the volume upper bound (4.8).
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Lemma 4.8. For any vector subspace b C a and any points x1, xo in X°,
there exist compact neighborhoods Cy of x1 and Cy of x9 in X, and M > 0
such that

vol(e¥Cy N Cy) < Me ™M) for any Y € b, (4.12)
We set
VPi={veV:bv=0} (4.13)

so that X* = X N V® and we set 7° : V. — V" to be the b-equivariant
projection.

Proof. When z; = x5 this is Lemma 4.7. When z; # x4, we choose C] and
C, with disjoint projections 7°(C1) N7°(Cy) = 0 so that, for any Y in b, the
intersection e¥ C; N O, is also empty. O]

Here is the fourth step towards the volume upper bound (4.8).

Lemma 4.9. For any vector subspace b C a and any compact subsets Sy, S
included in X°, there exist M > 0 and compact neighborhoods Cs, of Sy and
Cs, of So in X such that

vol(e¥ Cs, N Cs,) < M e ") for any Y € b. (4.14)

Proof. This is a consequence of Lemma 4.8 by a standard compactness ar-
gument. Let x; € S;. For any x4 € Sy, there exist compact neighborhoods
Ci(x1,x9) of xy and Cy(xq, x9) of xq satisfying (4.12).

First we fix x; in S;. By compactness of (5, one can find a finite set
Fy = Fy(x) C Sy for which the union Cy(xy1,S) := Ugyer,Co(z1,22) is a
compact neighborhood of Sy. The intersection C(z1,.52) := Nyyer, C1 (21, 2)
is still a compact neighborhood of x;.

By compactness of C'1, one can find a finite set F7; C Sy for which the union
Cs, = Uz, er, C1(21,S2) is a compact neighborhood of S;. The intersection
Cs, := Nzer, Ca(x1, S9) is still a compact neighborhood of Ss.

Since only finitely many constants M are involved in this process, the
compact neighborhoods Cs, and Cg, satisfy (4.14) O
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4.7 Facets

In this section, we shall introduce a decomposition of a in convex pieces F'

called facets by using the representation dr|, : @ — End(V).

We need to introduce more notations. Let A = A(V,a) be the set of
weights of a in V. For v in V we write v = Z vy according to the weight

AEA

space decomposition V' = @ Vy. We fix a norm || || on each weight space

AEA
V\, and define a norm on V' by

o] = ma o |

For any subset ' C a, we set

AL = {AeA:\Y)>0forany Y € F}
AL = (DeA:ANY)=0forany Y € F}
AL = {AeA:\NY)<O0forany Y € F}

We say that F' is a facet if
A=ALTTAYITA, and
F={Yea: XY)>0forany A\ € A},

AY) =0 for any A € A,
A(Y) <0 for any A € AL}

Let F be the totality of facets. Then we have

a= |_| F (disjoint union).
FeF

For any facet I’ we denote by ar its support, i.e. its linear span:

ap:={Y €a: \Y)=0 forany A € A%}
We set
Vi = EB Vy fore=+4,0,—.

AEAS,
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Notice that, using Notation (4.13), we have V2 = V. We have a direct sum

decomposition:
V=VieVieV,. (4.16)

Here is the fifth step towards the volume upper bound (4.8).

Lemma 4.10. Let F be a facet, Sy be a compact subset of X N (V2 & V),
and Sy be a compact subset of X N (V2 @ V). Then there exist compact
neighborhoods Cs, of S1 and Cs, of Sy in X, and M > 0 such that

vol(e¥ Cg, N Cs,) < Me ") for any Y € ap. (4.17)

Proof. We recall that 7°F is the projection on V2 = V. Since X is closed
and is invariant under the group €%, one has the inclusions

(XN (VEeVy)) C X and (XN (Ve V) C X,

Let Ty := w%F(S1) and Ty := 7w (Sy) be the images of S; and Sy by the
projection 7 . Since

SScXn(VReVy) and Sy c XN (Ve V), (4.18)

these images T7 and T, are compact subsets of X%. According to Lemma
4.9 with b = ap, there exist M > 0 and compact neighborhoods C7, of T}
and Cp, of Ty in X such that

vol(e¥ O, N Cp,) < M e ™) for any Y € ap. (4.19)
Using again (4.18), one can then find an element Y, € F' such that
e¥0S; C interior of Cp, and e~ 1S, C interior of Cr,.
We choose then the neighborhoods
Cs, == e °Cp, and Cg, := Oy,
of S; and Sy respectively. According to (4.19), one has, for any Y € ag,
vol(e¥ Cg, N Cs,) = vol(e 2" Cr, N Cp,) < M e P (Y =2Y0),

Since the function Y+ [pf"™ (Y —2Yy) —pi*(Y')] is uniformly bounded on a,
this gives the volume upper bound (4.17). O
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Here is the sixth step towards the volume upper bound (4.8).

Lemma 4.11. Let F be a facet and Cy, Cy compact subsets of G/H. Suppose
CiNn(VEeVa)=0 or Con (VE® VL) =0. Then there exists Yy € F such
that

eYCiNCy=0 foranyY €Yy + F.

Proof. For a compact subset C' of X and A € A, we set

mx(C) = 1;%151 |luall and My(C) = Ilr)lea5<||v,\||,

and for e = £, we set

mz(C) = max my(C) and M5g(C) := max M,(C).

AEAT AEAT

If Gy N (VE® Vy) =0, one has m5(Cy) > 0 and we choose Yy € F such
that, for all A € A},

Let Y € Yy + F. By definition of m}%(C}), one can find A € A} such that,
for any v in Cy, one has ||vy|| > m}(C}). One has then

I(e")all = P juall = XMVmE(C) > Mt (Ca).

Hence e¥v does not belong to Cy. This proves that e C; N Cy = 0.
Likewise, if Co N (Vi @ V) = 0, one has m(Cy) > 0, and we choose
Yy € F such that, for all A € A,

oY) ME(Cl)_ B
mp(C2)

4.8 Upper bound for vol(e¥C' N C)

Here is the seventh step towards the volume upper bound (4.8). For any
facet F', any Yy € F, and any R > 0, we introduce the R-neighborhood of
the Yy-translate of the facet F' :

F(Yo,R) := Yo+ F + a(R), (4.20)

where a(R) is the ball {Y € a: ||V < R}.
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Lemma 4.12. Let F' be a facet, R > 0, and Cy, Cy compact subsets of G/H.
Then there exist Yrr € I and M > 0 such that

vol(e" Cy N Cy) < M e "™ for any Y € F(Yrg, R). (4.21)

Proof. We first assume that R = 0. We will deduce Lemma 4.12 from the
two previous steps, namely Lemmas 4.10 and 4.11. Let

Sl = C’lﬂ(V})@VF_) and SQ = CQQ(VFO@V;)
According to Lemma 4.10 we can write
C1:=C5 UC] and Cy:=Cs, UC,

where Cg, and C§g, are respectively compact neighborhoods of S; in € and of
Sy in Oy satisfying the volume upper bound (4.17) for some constant M > 0,
and where C] and CY, are compact subsets of X such that

NV Vy)=0 and CoN(VE@ VL) =0.

Hence according to Lemma 4.11, there exists an element Yz € F' such that,
for any Y € Yr + F', one has,

YCINCy=e"Cs,NCy=e"CINCs, =10 .
Hence, one has the desired volume upper bound, for any Y € Yr 4+ F,
vol(e¥' Cy N Cy) = vol(e¥ Cs, N Cg,) < M e #i "),

When R is not zero, we apply the first case to the compact sets e* ),

and C5 and notice that the function Y — pax, X (Y +2Z) = pi (V)] s
ca

uniformly bounded on a. [

Proof of Theorem 4.4. Here is the eighth and last step towards the volume
upper bound (4.8). Fix two compact sets Cy,Cy of G/H. According to
Lemma 4.12, given any facet F' € F and any R > 0 there exist Yrp € F
and M > 0 such that (4.8) holds for any Y € F(Ypg, R). The following
Lemma 4.13 tells us that (4.8) holds for any Y in a. This ends the proof of
the volume upper bound (4.8) and of Theorem 4.4, ]
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Figure 1: Cover of a

Lemma 4.13. Assume that, for any facet F' and any R > 0, we are given
an element Yrr € F'. Then, one can choose for every facet F' a constant
Rp > 0 such that, using notations (4.20), one has

a=|J F(Yrr,, Rr). (4.22)
FeF
Proof. We will choose inductively on ¢ = 0,1, ..., dim a, simultaneously the

constants Ry for all the facets of codimension ¢ (see Figure 1).

We first choose Rp = 0 for all the open facets F'.

We assume that Rr has been chosen for the facets of codimension strictly
less than ¢ and we consider the set

ap = U F(YF,prRF)-

FeF
codim F'<£

We assume, by induction, that there exists a constant d, > 0 such that the
complementary set a\ a, is included in a §;-neighborhood of the union of the
facets of codimension ¢. We choose Rr = 9, for all the facets of codimension
(. This gives a new set a,y1. The complementary set a\ a,,; is then included
in a dy;1-neighborhood of the union of the facets of codimension ¢ + 1, for
some constant d,,7 > 0. And we go on by induction. O

5 Application

The criterion given in Theorem 4.1 is very handleable: it is easy to detect
for a given homogeneous space G/H whether the representation of G in
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L*(G/H) is tempered or not. We collect in this chapter a few corollaries
of this criterion, omitting the details of the computational verifications that
will be published elsewhere.

5.1 Abelian or amenable generic stabilizer

For general real reductive homogeneous spaces, we deduce the following facts :

Proposition 5.1. Let p > 2 be an even integer. Let G be a semisimple
algebraic Lie group, and Hy O Hy two unimodular subgroups.

a) If L*(G/H,) is almost L? then L*(G/Hy) is almost LP.

b) The converse is true when Hy is normal in Hy and Hy/Hs is amenable
(for instance finite, or compact, or abelian).

Proposition 5.2. Let p > 2 be an even integer. Let G be an algebraic
semisimple Lie group, and H an algebraic reductive subgroup.

a) If the representation of Ge in L*(Ge/Hc) is almost LP, then the repre-
sentation of G in L*(G/H) is almost LP.

b) The converse is true when H is a split group.

Theorem 5.3. Let G be an algebraic semisimple real Lie group, and H an
algebraic reductive subgroup.

a) If the representation of G in L*(G/H) is tempered, then the set of points
in G/H with amenable stabilizer in H is dense.

b) If the set of points in G/H with abelian stabilizer in b is dense, then the
representation of G in L*(G/H) is tempered.

The proof of Theorem 5.3 gives also the list of all the spaces G/H for
which the representation of G'in L?(G/H) is not tempered.

Even when H has no compact factors and G/H is a reductive symmetric
space, the converses of a) and b) in Theorem 5.3 are not always true. Here
are two examples.

a) L*(Sp(p1+p2, q1+a2)/Sp(pr, 41) X Sp(p2, ¢2)) is not tempered when p; > 1,
¢1 > 1 and p; + ¢1 = pa + ¢2 + 1, even though the set of points in G/H with
amenable stabilizer in H is dense.

b) L*(SL(2m+1,H)/S(GL(m+1,H) x GL(m,H))) is tempered when m > 1
even though the set of points in G/ H with abelian stabilizer in b is not dense.
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5.2 Complex homogeneous spaces

We assume in this section that G and H are complex Lie groups.

Corollary 5.4. Suppose G is a complex algebraic semisimple group and H
a complex reductive subgroup. Then L*(G/H) is tempered if and only if the
set of points in G/H with abelian stabilizer in b is dense.

Example 5.5. L?(SL(n,C)/SO(n,C)) is always tempered.
L*(SL(2m,C)/Sp(m,C)) is never tempered.
L*(SO(7,C)/Gy) is not tempered.

Example 5.6. Letn=n;+---+n, withn; >--->n, >1,r>2.
L*(SL(n,C)/ ] SL(n;,C)) is tempered iff 2ny < n + 1.
L*(SO(n,C)/ ] SO(n;, C)) is tempered iff 2ny < n + 2.
L*(Sp(n,C)/ ] Sp(n;, C)) is tempered iff r > 3 and 2n; < n.

5.3 Real homogeneous spaces

Here are a few examples of application of our criterion.

Example 5.7. Let Gy be a real algebraic semisimple Lie group and Ky a
mazimal compact subgroup.

L*(Gy x G1/A(G))) is always tempered.

L*(G1c/Gh) is always tempered.

L*(Gic/Kic) is tempered iff Gy is quasisplit.

Example 5.8. Let G/H be a symmetric space i.e. G is a real algebraic
semisimple Lie group and H is the set of fized points of an involution of
G. Write g = b @ q for the H-invariant decomposition of g. Let G' be an
algebraic semisimple Lie group with Lie algebra g’ = b @ v/—1q.

Then L*(G/H) is almost L? iff L*(G'/H) is almost L”.

Example 5.9. L*(SL(p + q,R)/SO(p, q)) is always tempered.
L*(SL(2m,R)/Sp(m,R)) is never tempered.
L*(SL(m +n,R)/SL(m,R) x SL(n,R)) is tempered iff |m —n| < 1.

Example 5.10. Letp<p1+---4+p, ¢ <q1+ -+ ¢q,.
L2(SO(p,q)/ T1 SO(ps, 4:)) is tempered iff 2 ma%(pi +q¢)<p+q+2.

Piqi
The homogeneous spaces in Examples 5.6 and 5.10 are not symmetric
spaces when r > 3.

24



References

[1]

2]

Y. Benoist, Actions propres sur les espaces homogenes réductifs, Ann.
of Math. (2) 144 (1996), 315-347.

I. Bernstein, On the support of Plancherel measure, Journ. Geom. Phys.

5 (1988) 663-710.

M. Cowling, U. Haagerup and R. Howe, Almost L? matrix coefficients,
J. Reine Angew. Math. 387 (1988), 97-110.

P. Delorme, Formule de Plancherel pour les espaces symétriques
réductifs, Ann. of Math. (2) 147 (1998), 417-452.

A. Knapp, Representation Theory of Semisimple Groups: An Overview
Based on Examples, Princ. Math. Ser. 1986.

A. Knapp and D. Vogan, Jr., Cohomological Induction and Unitary
Representations, Princeton University Press , 1995.

T. Kobayashi, Criterion for proper actions on homogeneous spaces of
reductive groups, J. Lie Theory 6 (1996), 147-163.

T. Matsuki, A description of discrete series for semisimple symmetric
spaces. II. Representations of Lie groups, 531-540, Adv. Stud. Pure
Math., 14, Academic Press, 1988.

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary rep-
resentations and applications to Kazhdan constants, Duke Math. J. 113
(2002) 133-192.

Y. BENOIST

Centre national de la recherche scientifique-Département de Mathématiques, Uni-
versité Paris-Sud 11, Batiment 425, F-91405 Orsay Cedex, France

(e-mail: yves.benoist@math.u-psud.fr)

T. KOBAYASHI

Kavli IPMU and Graduate School of Mathematical Sciences, the University of
Tokyo, Meguro, Komaba, 153-8914, Tokyo, Japan

(e-mail: toshi@ms.u-tokyo.ac.jp)

25



