DO THE KONTSEVICH TETRAHEDRAL FLOWS PRESERVE OR
DESTROY THE SPACE OF POISSON BI-VECTORS?
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From the paper “Formality Conjecture” (see Ref. [1]):

I am aware of only one such a class, it corresponds to simplest good graph,
the complete graph with 4 vertices (and 6 edges). This class gives a remarkable
vector field on the space of bi-vector fields on R%. The evolution with respect to
the time t is described by the following non-linear partial differential equation:
[see (2a) below|, where o=}, . aij% A % is a bi-vector field on RY. ...

It follows from general properties of cohomology that 1) this evolution
preserves the class of (real-analytic) Poisson structures, ...

In fact, I cheated a little bit. In the formula for the wvector field on the
space of bivector fields which one get from the tetrahedron graph, an additional
term is present. This term is equal (up to a numerical factor) to [see (2b)
below]. It is possible to prove formally that if « is a Poisson bracket, i.e.
if [0, o] = 0 € T?(RY), then the additional term shown above vanishes.

ABSTRACT. By using twelve Poisson structures with high-order polynomial coeffi-
cients as explicit counterexamples, we show that both the above claims are false:
neither does the first flow preserve the property of bi-vectors to be Poisson nor does
the second flow vanish identically at the Poisson bi-vectors. The counterexamples at
hand themselves suggest a correction to the formula for the “exotic” flow on the space
of Poisson bi-vectors; in fact, this flow is encoded by the balanced sum involving both
the Kontsevich tetrahedral graphs (that give rise to the flows mentioned above). We
reveal that it is only the balance (1 : 6) for which the flow does preserve the space of
Poisson bi-vectors.

Introduction. The Kontsevich graph complex is the language of deformation quanti-
sation on finite-dimensional Poisson manifolds [2]. Let us consider the class of oriented
graphs with two sinks and k£ > 1 internal vertices (of which, each is the tail of two edges
and carries a copy of the Poisson bi-vector P). Encoding bi-differential operators, such
graphs determine the flows on the space of bi-vectors on the Poisson manifold at hand.
The two flows with £ = 4 internal vertices in the graphs are provided by the two tetra-
hedra [1], see Fig. 1 on the reverse page. By producing 12 counterexamples, we prove
that the claim [1, 2] of preservation of the Poisson property is false as stated, so that
the (variational) Poisson bi-vectors are fragile with respect to the Kontsevich tetrahe-
dral flows. Simultaneously, we reveal that the flow which is determined by the second
graph is not always vanishing by virtue of the skew-symmetry and Jacobi identity for
the Poisson bi-vectors P.
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FIGURE 1. These tetraheral graphs encode flows (2a) and (2b), respec-
tively. Each oriented edge carries a summation index that runs from 1 to
the dimension of the Poisson manifold at hand. For each internal vertex
(where a copy of the Poisson bi-vector P is stored), the pair of out-going
edges is ordered, L < R: the left edge (L) carries the first index and
the other edge (R) carries the second index in the bi-vector coefficients,
see section 1. (In retrospect, the ordering and labelling of the indexed
oriented edges can be guessed from formulas (2) on p. 3.)

This paper is structured as follows. First we recall the correspondence between graphs
and polydifferential operators [3, 4] and we indicate the mechanism for such an operator
to vanish, cf. [5]. In section 2 we recall three constructions of Poisson brackets with
polynomial coefficients of arbitrarily high degree (see [6, 7, 8]). Next, in section 3 we
recite the basics of Poisson structure deformation [9]. In Tables 1-4 on pp. 1011 we
then summarise the properties of all structures from our 12 counterexamples to the
claim [1] that

(i) the flow P = T';(P) which the first graph in Fig. 1 encodes on the space of
bi-vectors P would preserve their property to be Poisson (in fact, it does not),
and that

(i) the flow P = I'y(P) would always be trivial whenever the bi-vector P is Poisson
(in fact, this is not true).

In particular, the twelfth counterexample pertains to the infinite-dimensional jet-space
geometry of variational Poisson structures [10]. (Quoted from [11], the Hamiltonian
differential operator for that variational Poisson bi-vector P is then processed by using
the techniques from [12, 13], cf. [14].)

Finally, we examine at which balance the linear combination of the Kontsevich tetra-
hedral flows preserves the space of Poisson structures on finite-dimensional manifolds.
We argue that the ratio 1 : 6 does the job.

1. THE GRAPHS AND OPERATORS

Let us formalise a way to encode polydifferential operators using oriented graphs. Con-
sider the space R™ with Cartesian coordinates * = (z1, ..., x,), here 3 < n < oo;
for typographical reasons only do we use the lower indices to enumerate the variables,

so that 2?2 = (x1)?, etc. By definition, the indexed edge e — e denotes at once
the derivation 0/0x; = 0; (that acts on the content of the arrowhead vertex) and the
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summation Y., (over the index ¢ in the object which is contained within the ar-
rowtail vertex). li)r examp_l(;, the graph e +— Pi(x) 5 o encodes the bi-differential
operator Y i (-)0; P (x) 9;(-). If its coefficients P are antisymmetric, then the graph
e < o 4 & encodes the bi-vector P = P 9, A 9;, where 9; NO; = 3(8; ® 0; — 9; ® 0;).
It then specifies the Poisson bracket {-,-}p if the @-’cuple of coefficients solves the
equation

(PU)5, - P + (PIR)G, - PH 4 (PH)5, - P =0, ()

that is, the bracket ® «— P L o satisfies the Jacobi identity. Clearly, we then have
PY(x) = {zi, x;}p.

From now on, let us consider only the oriented graphs whose vertices are either sinks,
with no issued edges, or tails for an ordered pair of arrows, each carrying its own index
(see Fig. 1 on p. 2). Allowing the only exception in footnote 1 on p. 4 below, we shall
always assume that there are neither tadpoles, nor double oriented edges, nor two-edge
loops so that none of the three graphs which are shown here (or similar graphs) will be
considered in what follows:

Q‘ <= (excluded).

We also postulate that every vertex which is not a sink carries a copy of a given Poisson
bi-vector P = P"(x) 0; A 0;; the ordering of indexed out-going edges coincides with the
ordering “first < second” of the indexes in the coefficients of P.

Example 1. Under all these assumptions, the two tetrahedra which are portrayed in
Fig. 1 are, up to a symmetry, the only admissible graphs with k£ = 4 internal vertices,
2k = 6 + 2 edges, and two sinks.

The first graph in Fig. 1 encodes the bi-vector

& & PP gPE P gpmm\ § 9
rgp):Z( > ) A (2a)

0x,07,0x,, Oxy Oxny Oz | Ox; 0—56]

i,j=1 \k,l,m,k’ ', m'=1

Likewise, the second graph in Fig. 1 yields the bi-vector

- - o*PYy PP gp¥top™t\ o0 0
Dy(P) =) ( > )8@ e (2b)

gk, L,k € m! =1 0,0 Oz Oz Oy al‘j

i,m=1

In this paper we examine

(i) whether the respective flows & (P) = I'4(P) at a = 1,2 preserve or, in fact,
destroy the property of bi-vectors P(g) to be Poisson, provided that the Cauchy
datum P}ezo is such; we also inspect

(i) whether the second flow is (actually, it is not) vanishing identically at all ¢,

provided that the Cauchy datum is a Poisson bi-vector.

Remark 1. Whenever the bi-vector P in every internal vertex of a non-empty graph I’
is Poisson, the bi-differential operator which is encoded by I' can vanish identically.
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First, this occurs due to the skew-symmetry of coefficients of the bi-vector.! Second,
the operators encoded using graphs (with a copy of the Poisson bi-vector P at every
internal vertex) can vanish by virtue of the Jacobi identity, see (1), or its differential
consequences. This mechanism has been illustrated in [5]; making a part of our present
argument (see section 3), it will be a key to the (re-)proof of the fact that the balanced
flow &L(P) = T'1(P)+6'2(P) does preserve the property of bi-vectors P(e) to be Poisson
whenever the Cauchy datum PLZO is such.

So, each of the two claims (i—i7) is false if it does not hold for at least one Poisson
structure (itself already known to have skew-symmetric coefficients and turn the left-
hand side of the Jacobi identity into zero for any triple of arguments of the Jacobiator).
To examine both claims, we clearly need a store of Poisson structures such that the
coefficients P¥(x) are not mapped to zero by the third or second order derivatives
in (2a) and (2b), respectively. For that, a regular generator of Poisson structures with
polynomial coefficients of arbitrarily high degree would suffice.

2. THE GENERATORS

Let us recall three regular ways to generate the Poisson brackets or modify a given
one, thus obtaining a new such structure. These generators will be used in section 4 to
produce the counterexamples to both claims from [1].

2.1. The determinant construction. This generator of Poisson bi-vectors is de-
scribed in [6], cf. [15] and references therein. The construction goes as follows. Let
T1, ..., T, be the Cartesian coordinates on R">3. Let § = (g1, . . ., gn_2) be a fixed tuple
of smooth functions in these variables. For any a, b € C*°(R"), put

{aa b}ﬁ = det(J(gla <oy 9n—2,Q, b))

where J(-,...,-) is the Jacobian matrix. Clearly, the bracket {-,-}; is bi-linear and
skew-symmetric. Moreover, it is readily seen to be a derivation in each of its arguments:
{a,b-c}; ={a,b}z-c+b-{a,c}; For the validity mechanism of the Jacobi identity for
this particular instance of the Nambu bracket we refer to [15] again (see also [16]).

To obtain the coefficients P¥(x) of the respective Poisson bi-vector P, one evaluates
the bracket at the coordinate functions: P¥(x) = {2, 27 }57’93'

IFor example, consider the oriented graph with ordered pairs of indexed edges (i < j, k < £, m < n,
p=q):

We claim that due to the antisymmetry of P which is contained in each of the four internal vertices,
the operator (which this graph encodes) vanishes identically. Indeed, it equals minus itself:

OB (PP1) 0 (P*™) 0y (P™)0k0¢(P™) 05 A\ 05 = — 018 (P™) 3 (P*™) 0y (P)10¢ (P*) 0; 1 O
= — 0O (PPN, (P8, (P08, (P¥) 0; A 8; = 0.

To establish the second equality, we interchanged the labelling of indices (p & ¢, k = ¢, and m = n)
and we recalled that the partial derivatives commute.
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Example 2 (see entry 3 in Table 2 on p. 10). Fix the functions g; = z3x2z, and

go = x§x4x1, and insert them in the determinant generator of Poisson bi-vectors. We
thus obtain the bi-vector P, the coeflicients of which are given in the matrix

0 —2 x%x%mxl -3 x%xg:mxl 12 x%x%xixl
2 x3w514T) 0 —xSxy23 2 x3xriws
3 x3xSz,1, xSwy7s 0 —3 xSzl
—12x3252%30,  —2x3xixd 3 xSxia’ 0

By construction, the above matrix is skew-symmetric. The validity of Jacobi iden-
tity (1) is straightforward: indexed by i, j, k, all the components [P, P]“* of the
tri-vector vanish.? This Poisson bi-vector P will be used in section 4 in the list of our
counterexamples to the claims under study.

2.2. Pre-multiplication in the 3-dimensional case. Let z,y, 2z be the Cartesian
coordinates on the vector space R*. For every bi-vector P = P% 9; A 9;, introduce the
differential one-form P = Py dz+P5 dy+P5dz by setting P := —P_dxAdyAdz, so that
P, = —P? Py = P13 and P3 = —P'2 Tt is readily seen [7] that the original Jacobi
identity for the bi-vector P now reads® dP A P = 0 for the respective one-form P. But
let us note that the pre-multiplication P — f - P of the form P by a smooth function f
preserves this reading of the Jacobi identity:

d(fP)A(fP)=f-[df APAP+ f-dPAP] = f2.dPAP =0,

This shows that the bi-vector fP which the form fP yields on R3 is also Poisson.

This pre-multiplication trick provides the examples of Poisson structures of arbitrarily
high polynomial degree coefficients (in a manifestly non-symplectic three-dimensional
set-up).4

2.3. The Vanhaecke construction. In [8], Vanhaecke created another construction
of high polynomial degree Poisson bi-vectors. Let u be a monic degree d polynomial

Indeed, there are four tuples of distinct values of the indices i, j, and k up to permutations; we
let 1 <i<j<k<n=4so that the check runs over the set of triples {(1,2,3), (1,2,4), (1,3,4),
(2,3,4)}. For example,

[P, P]'* = 6x523 232y — 62523 a3y — 6adastaiw) + 6adwstaie

— 183@33@%%33@1 + 183@3,@%1,@3,@1 + 1230330%%3301 — 6x§x§1xix1 — 61:‘31:%130421301 =0.
Therefore, [P,P] = > [P,Pl¥*(x)d; AO; ANy =0.
1<i<j<k<4

3The exterior differential dP is equal to
dP = (0,P'® + 9,P®)dx Ady + (—0,P? + 0,P®) dx Adz + (—0,P — 9, P'3)dy A dz.
The wedge product is
dP AP = (9,P* P + 0,P* P*! + §,P?P'® 4+ 9,P* P*' 4 9,P? P* + 0.P% P?*) dw Ady A dz
= (—[P,P] = dz Ady Adz)dz A dy A dz.

“In dimension three, this pre-multiplication procedure also provides the examples of Poisson bi-
vectors at which the second flow (2b) does not vanish identically.
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in A and v be a polynomial of degree d — 1 in \:
w(N) = X F AT g N+ g,
v(A) = v AT v A g

Consider the space k? (e.g., set k := R) with Cartesian coordinates wu,, ..., u,, vi,
.., vg. To define the Poisson bracket, fix a bivariate polynomial ¢(-,-) and for all
1<1,7 <dset

{ui,uj} = {UZ‘,’U]‘} = 0, (3&)

¥y u(})
{u;,v;} = coeff. of M in ((b()\,v()\)) . {W] . mod u()\)) : (3b)
where we denote by [...]; the argument’s polynomial part and where the remainder

modulo the degree d polynomial u()) is obtained using the Euclidean division algorithm.
Let us emphasise that these Poisson bi-vector are defined on the even-dimensional
spaces. Indeed, the coefficients of Poisson bracket (3) are arranged in the block matrix
(_3%), where the components of the matrix U are U = {u;,v;}.
2.4. The Hamiltonian differential operators on jet spaces. The variational Pois-
son brackets {-,-}p for functionals of sections of fibre bundles generalise the notion of
Poisson brackets {-, - }» for functions on finite-dimensional Poisson manifolds (N", {-,-}p).
Namely, let us consider the space J°°(7) of infinite jets of sections for a given bundle 7
over a manifold M™ of positive dimension m. The variational Poisson brackets {-,-}p
on J*®(7) are then specified by using the Hamiltonian differential operators (which we
shall denote by A and the order of which is typically positive).> The formalism of vari-
ational Poisson bi-vectors P = 2(&- A(£)) and the variational Schouten bracket [-, ] is
standard (see [10, 18] and section 3 below). The geometry of iterated variations is re-
vealed in [12]; the correspondence between the Kontsevich graphs and local variational
polydifferential operators is explained in [13].

Example 3. For an inspection whether any of the two claims (which we quoted from [1]
on the title page) would hold in the variational set-up, it is enough to consider a
Hamiltionian differential operator with (differential-)polynomial coefficients of degree >
3. Let us conveniently take the Hamiltonian operator®

A=u?>0 —ou’

dx

for the Harry—Dym equation (see [11]); here w is the fibre coordinate in the trivial
bundle 7: R x R — R and x is the base variable. This operator is obviously skew-
adjoint, whence the variational Poisson bracket {-,-}p is skew-symmetric. The Jacobi
identity for {-,-}p is also easy to check: the variational master equation [P,P] = 0
does hold for the variational bi-vector P = 1(¢ - A(€)).

5Tn fact, the Poisson geometry of finite-dimensional manifolds (N™,{-,-}p) is a zero differential order
sub-theory in the variational Poisson geometry of infinite jet spaces J°°(7). Indeed, let the fibres in
the bundle 7 be N™ and proclaim that only constant sections are allowed.

SMore examples of variational Poisson structures, which are relevant for our present purpose, can
be found in [19] or, e.g., in [20] (see also the references contained therein).
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3. THE DEFORMATION THEORY

Now that the generators of high polynomial degree Poisson structures are at our dis-
posal, let us recall several necessary facts from the deformation theory; this material is
standard [9, 17]. Denote by &; the parity-odd canonical conjugate of the variable z; for
every i = 1, ..., n (see [18] for discussion about the reverse parity symplectic duals).
Every bi-vector is then realised in terms of the local coordinates x; and &; on I[IT*N" by
using P = 3(& P (x)&;). We denote by [-,-] the Schouten bracket, i.e., the parity-odd
Poisson bracket which is determined on II7T*R"™ by the canonical symplectic structure
dx Ad¢ (see [12] for details and [14] for illustration). Currently, our working formula is”

EI EI

ow; . 8fz‘<Q) - <P) & . al’i(Q).

To be Poisson, a bi-vector P must satisfy the master-equation [P,P] = 0, of which
formula (1) is the component expansion with respect to the indices (i, j, k) in the tri-
vector [P, P](x,§).

Under an infinitesimal deformation P(e) = P+eQ+0(¢) of the bi-vector P satisfying
[P,P] = 0, the bi-vector P(g) remains Poisson only if [P(g),P(¢)] = o(e), whence
[P,Q] = 0. The violation of this requirement will be exemplified in what follows by
the deformation leading terms I';(P) and I'y(P) given by (2a) and (2b), respectively,
for the Poisson bi-vectors P which we generate using the techniques from section 2.

[P, Q] = (P)

Remark 2. For a Poisson bi-vector P, the operator Op = [P, ‘] is readily seen to be a
differential: by virtue of the Jacobi identity for the Schouten bracket [-,-] we have that
8% = 0. Therefore, the leading order terms Q in the deformations P(g) = P+cQ+0(¢)
can be trivial in the second @p-cohomology, meaning that @ = [P, X] for some one-
vector X (whence [P, [P, X]] = 0). Alternatively, for the dp-cocycles Q which are not
dp-coboundaries, the flows P(¢) stay infinitesimally Poisson but leave the 8p-cohomo-
logy class of the Poisson bi-vector P at ¢ = 0.

For consistency, let us recall that generally speaking, not every infinitesimal defor-
mation P +— P + £Q + o(e) of a Poisson bi-vector P can be completed to a Poisson
deformation P — P + Q(e) at all orders in €. All the obstructions are contained in
the third &p-cohomology group H} = {T € 1“(/\3 TN) | 0p(T) =0} / {T = 8p(R),
R € I’(/\2 TN)}. Indeed, cast the master-equation [P + Q(e), P + Q(e)] = 0 for the
Poisson deformation to the coboundary statement [Q(e), Q(e)] = Op(—P — 209(¢))
within O*(£?), whence 9»([Q(¢), Q(¢)] = 0 by 8% = 0. Therefore, the vanishing of the
third &p-cohomology group guarantees the existence of a power series solution Q(e) to
the cocycle-coboundary equation [Q(e), Q(e)] = —20p(Q(¢)): known to be a cocycle,
the left-hand side has been proven to be a coboundary as well.

Remark 3. Nowhere above should one expect that the leading deformation term Q
in P(e) =P +eQ+ o(e) itself would be a Poisson bi-vector. This may happen for Q
only incidentally.

"In the set-up of infinite jet spaces J> () (see [10] and [12, 13, 18]) the four partial derivatives
in the formula for [-,-] become the variational derivatives with respect to the same variables, which
now parametrise the fibres in the Whitney sum 7 X prm II7 of (super-)bundles over the m-dimensional
base M™.
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4. THE COUNTEREXAMPLES

We now examine the properties of both tetrahedral flows (2) whenever each of them is
evaluated at a given Poisson bi-vector (the examples of such bi-vectors are produced by
using the techniques from section 2). To motivate the composition of Tables 1-4 and
clarify the meaning of their content, let us consider an example: namely, we first take
the Poisson bi-vector which was obtained in section 2.1 (see p. 5).

Example 4 (continued). Rewriting the Poisson bi-vector P, € T(/\2 TN*) in terms
of the parity-odd variables &, we obtain that under the isomorphism F(/\' TN ") ~
C>(TIT*N") the bi-vector Py (x) d; A 9; becomes 1P () &,&;:
Py = —2 5252471669 — 3:63:623:4:615153 + 12 w35riw, 616,
— 234056085 + 2 2375056080 — 35T 5.

Now, we calculate the right-hand sides Py := I';(Py) and P, := I's(Py) of tetrahedral
flows (2). The coefficient matrix of the bi-vector Py is

0 —24480 2920w r; —51840 22 xiaSry 12960 2225252,
i | 24480 w9 xia 0 —15480 x3'zjx) 2448 2202379
! 51840 22 adaSe, 15480 a2 aia) 0 —18144 232528
—12960 22025250, —2448 220232 18144 22 258 0

In a similar way, the polydifferential operator I's (encoded by the second tetrahedral
graph in Fig. 1) yields the matrix

1692025230227 —12060 2923 xjry  —16380 a3 wiadey 42840 23z x5xy
i _ 2700 29230 x4 1, —7200 2302202} 4680 23 vix) —252 2202529
? —13140 23 z{ 287, 5040 23z} —12060 252322} 13716 x3'zixs
—80280 x3%z523x;  —18036 22252 21708 x3'2528  —58104 2302525

Notice that this coefficient matrix is not yet antisymmetric, but its symmetric coun-
terpart is skipped out in the construction of the bi-vector P, and its transcription by
using the anticommuting variables €. Therefore, we antisymmetrise the above matrix
at once, the output to be used in what follows. We obtain that the bi-vector Py is

Py = —7380x53 wyx1&16y — 162003 2jad2,&,E3 + 6156003 v rbr 616,
— 18023 2] 29EE3 + 88922302529 E0E, — 399623 155E5E .

We now see that for the Poisson bi-vector Py from Example 2 on p. 5, the bi-vector P»
does not vanish, thereby disavowing the second claim from [1].

To check the compatibility of the original Poisson bi-vector Py with the newly ob-
tained bi-vector Pi, we calculate their Schouten bracket:

[Po, P1] = 46008 2y 2302w &1 €085 + 852768 w12y 03 1561 €264
+ 1246752 2175 130251 €364 + 340200 23 23025606564 # 0.
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The above expression is not identically zero. Therefore, the leading term P; in
the deformation Py — P(c) = Py + Py + o(e) destroys the property of bi-
vector P(g) to be Poisson at € # 0 for all x € R

The same compatibility test for Py and its second flow (2b) yields that

[[PQ, PQ]] == —7668 ZL‘%1{E§6ZL‘ZI‘1§1§2§3 — 142128 l‘1$%1$§5$4€1€2€4
— 207792 212502300561 €3€, — 56700 25" 230 25€,E58,.

Again, this expression does not vanish identically at points @ of the Poisson manifold
(R*, {-,-}p,). We conclude that neither of two flows (2) preserve the property of
bi-vector P(e) to stay (infinitesimally) Poisson at ¢ # 0 for this example of Poisson
bi-vector.®

Remark 4. In the above example, the Schouten brackets [Py, P;] and [Py, P2] are
determined by the same polynomials in the variables  and &: we see that [Py, P;] =
—6 - [Py, P2]. This implies that for this example of Poisson bi-vector Py, the leading
term Q := Py + 6P, does (infinitesimally) preserve the property of P(g) to be Poisson
in the course of deformation Py — Py +Q + 0(¢). Indeed, we have that

[Po, Q] = [Po, P1 + 6P2] = [Po, P1] +6[Po,P2] =0

due to the linearity of the Schouten bracket.

Moreover, it is readily seen that the ratio 1 : 6 is the only way to balance the two
flows, (2a) vs (2b), such that their nontrivial linear combination Q is compatible with
the given Poisson bi-vector P, from Example 2.°

Remark 5. The linear combination Q of two flows (2) is compatible with the initial
Poisson bi-vector Py in a nontrivial manner, that is, the bi-vector Q@ = P; + 6Py # 0 is
not identically equal to zero. (For other examples this may happen incidentally.) We
expect that the leading term @ in the infinitesimal deformation Py — Py + £Q + 0(¢)
is nontrivial in the Poisson cohomology with respect to dp,, that is, Q # [Py, X] for
any vector X on the four-dimensional space.”

In the three tables below we summarise the results about the flows P; and P,, which
we evaluate at the examples of Poisson bi-vectors Py. Our special attention is paid
to the leading deformation term Q = P; + 6P, in each case: we inspect whether this
bi-vector incidentally vanishes and whether it is (indeed, always) compatible with the
original Poisson structure Pj.

8Let us also inspect whether the Jacobi identity holds for any of the bi-vectors P; and P,. For Py
we have that the left-hand side of the Jacobi identity is equal to

[P1,P1] = —2963589120 - (x3 x4z2 Tz1&16285 +5x3 ZL'4:L'2 Tx1&162E4 — 2x3 z4x2 x1§1§3§4)
which does not vanish. (Therefore the Jacobi identity is not satisfied for P;.) For P, the left-hand
side of the Jacobi identity equals

[[PQ,PQ]] = —262517760 - (‘TS .1'4.1'2 .Tlflfgfg + 5$3 .T4$2 $1€1€2§4 — 2$3 .Z‘4$2 $1§1€3€4)

This expression also does not vanish, so that neither 7P; nor P, are Poisson bi-vectors.

9The balance 1 : 2 was advocated in [21, §5.2] for the linear combination of flows (2a) and (2b),
respectively; our present argument and the counterexamples which follow withdraw that claim.

101 all the two-dimensional Poisson geometries, the first flow P; is always cohomologically trivial,
i.e., it is of the form P; = [Py, X] for some one-vector X, see [1].
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TABLE 1. The Poisson bi-vectors P, are generated using the determi-
nant method from section 2.1 (the dimension is equal to 3, so we spec-
ify the fixed argument g;); that generator is combined with the pre-
multiplication (f-) as explained in section 2.2.

Ne | dim | Argument & pre-factor | [Po, Pi] | P2 20 [Po, Ps] | Q < [Po, 9]
=07 =07 =07
L| 3 | [x}adad + a¥al + xyadas)] X X X X 4
23+ a2
2. 3 [561372 + T3r1 + SCQ.T3] X X X X 4
2]+ o

For both examples in Table 1 we have that neither does P; preserve the property
of Py+¢eP1+0(e) to be (infinitesimally) Poisson nor does P, vanish identically — which
is in contrast with both the claims from [1].

TABLE 2. In dimensions higher than 3, we generate the Poisson bi-vec-
tors Py by using the determinant method from section 2.1: the auxiliary
arguments ¢i, ..., g,_o are specified.

Ne | dim | Arguments [Po, P1] | P2 0 [Po, P2] | Q 20 [Po, Q]
=07 =07 =07

3. 4 | [w3x3xy, vhwam) X X X X v

4. | 4 | [2P3xdxiad, mimoxsny] X X X v v

5.1 4 [x2x3x4, xlxgxi] X X X v v

6. | 5 |[v3xdwy, vhzamy, 2iiad] X X X X v

In Table 2 we again have that neither is the property preserved for Py + eP; + o(¢)
to be (infinitesimally) Poisson nor is the bi-vector P, vanishing identically.

TABLE 3. The results for the Vanhaecke method from section 2.3: we
here specify the bivariate polynomials ¢.

Ne | dim | ¢(z,y) | [Po, Pi] <0 P =0 [Po, Ps] £0/Q=0 [P0, 9] =0
7.1 4 | [2%7 X X X X v
8. | 4 |[x%y] X X X X v
9. | 4 |[x*? X X X X v
10. | 4 | [2%7 X X X X v
11.] 6 |[z%? X X X X v

The entries in Table 3 report on the use of the generator from section 2.3: experi-
mentally established, the properties of these Poisson bi-vectors do not match both the
claims from [1].
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TABLE 4. The results for the infinite-dimensional case.

7 7
Ne | dim | Operator | [Po,P1] =0 | P2 =0
12.| oo |u?o % o u? X v

The variational bi-vector Py = 3 (¢ - A, (€)), which we construct from the variational

Poisson bi-vector Py = (¢ - u? L (u?¢)) by using the geometric technique from [12)]
(see also [13]), is determined by the (skew-adjoint part of the) first order differential
operator A; = 192 (9u8umum — uguwm) % in total derivatives. Again, the two varia-
tional bi-vectors are not compatible: we check that [Pg, P1] 2 0 under the variational
Schouten bracket.

Remarkably, the variational bi-vector P5 is specified by the second-order total dif-
ferential operator whose skew-adjoint component vanishes, whence the respective vari-
ational bi-vector is equal to zero (modulo exact terms within its horizontal cohomology

class [10]).

Conclusion. The linear combination @ = P; + 6P, of the Kontsevich tetrahedral
flows preserves the space of Poisson bi-vectors Py under the infinitesimal deformations
Py — Po+eQ+0(e). This is manifestly true for all the examples of Poisson bi-vectors on
finite-dimensional (vector or affine) spaces R™ which we have considered so far. We now
conjecture that the leading deformation term Q = Q(Py) always has this property, that
is, the bi-vector Q marks a 8p,-cohomology class for every Poisson bi-vector Py on a
finite-dimensional affine manifold. (Recall that such class can be 0p,-trivial; moreover,
it can vanish identically — yet the above examples confirm the existence of Poisson
geometries where neither of the two options is realised.)

Let us conclude that every claim of an object’s vanishing by virtue of the skew-
symmetry and Jacobi identity for a given Poisson bi-vector, which that object depends
on by construction, must be accompanied with an explicit description of that factori-
sation mechanism (e.g., see [5]) or at least, with a proof of that mechanism’s existence.
Apart from the trivial case (here, @ = 0 so that [Py, Q] = 0), such factorisation through
the master-equation [Py, Po] = 0 can be immediate: here, we have that'!

[Po. Q] = [Po, [Po, X]] = 3[[Po, Pol. X] = (5[, X]) ([P0, Pol)

for all Op,-exact infinitesimal deformations Q@ = 8p,(X) of the Poisson bi-vectors Py.
Elaborated in [5], the Poisson cohomology estimate mechanism of the vanishing [Py, Q] =
0 via [Po, Po] = 0 works — for the nontrivial cocycles Q ¢ im &p, in the p,-cohomology —
due to much more refined principles. We shall address this mechanism in a subsequent

paper.
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