
DO THE KONTSEVICH TETRAHEDRAL FLOWS PRESERVE OR

DESTROY THE SPACE OF POISSON BI-VECTORS?

ANASS BOUISAGHOUANE AND ARTHEMY V. KISELEV

From the paper “Formality Conjecture” (see Ref. [1]):

I am aware of only one such a class, it corresponds to simplest good graph,

the complete graph with 4 vertices (and 6 edges). This class gives a remarkable

vector field on the space of bi-vector fields on Rd. The evolution with respect to

the time t is described by the following non-linear partial differential equation:
[see (2a) below], where α =

∑
i,j αij

∂
∂xi
∧ ∂

∂xj
is a bi-vector field on Rd. . . .

It follows from general properties of cohomology that 1) this evolution

preserves the class of (real-analytic) Poisson structures, . . .

In fact, I cheated a little bit. In the formula for the vector field on the

space of bivector fields which one get from the tetrahedron graph, an additional

term is present. This term is equal (up to a numerical factor) to [see (2b)
below]. It is possible to prove formally that if α is a Poisson bracket, i.e.

if [α, α] = 0 ∈ T 2(Rd), then the additional term shown above vanishes.

Abstract. By using twelve Poisson structures with high-order polynomial coeffi-
cients as explicit counterexamples, we show that both the above claims are false:
neither does the first flow preserve the property of bi-vectors to be Poisson nor does
the second flow vanish identically at the Poisson bi-vectors. The counterexamples at
hand themselves suggest a correction to the formula for the “exotic” flow on the space
of Poisson bi-vectors; in fact, this flow is encoded by the balanced sum involving both
the Kontsevich tetrahedral graphs (that give rise to the flows mentioned above). We
reveal that it is only the balance (1 : 6) for which the flow does preserve the space of
Poisson bi-vectors.

Introduction. The Kontsevich graph complex is the language of deformation quanti-
sation on finite-dimensional Poisson manifolds [2]. Let us consider the class of oriented
graphs with two sinks and k > 1 internal vertices (of which, each is the tail of two edges
and carries a copy of the Poisson bi-vector P). Encoding bi-differential operators, such
graphs determine the flows on the space of bi-vectors on the Poisson manifold at hand.
The two flows with k = 4 internal vertices in the graphs are provided by the two tetra-
hedra [1], see Fig. 1 on the reverse page. By producing 12 counterexamples, we prove
that the claim [1, 2] of preservation of the Poisson property is false as stated, so that
the (variational) Poisson bi-vectors are fragile with respect to the Kontsevich tetrahe-
dral flows. Simultaneously, we reveal that the flow which is determined by the second
graph is not always vanishing by virtue of the skew-symmetry and Jacobi identity for
the Poisson bi-vectors P.
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Figure 1. These tetraheral graphs encode flows (2a) and (2b), respec-
tively. Each oriented edge carries a summation index that runs from 1 to
the dimension of the Poisson manifold at hand. For each internal vertex
(where a copy of the Poisson bi-vector P is stored), the pair of out-going
edges is ordered, L ≺ R: the left edge (L) carries the first index and
the other edge (R) carries the second index in the bi-vector coefficients,
see section 1. (In retrospect, the ordering and labelling of the indexed
oriented edges can be guessed from formulas (2) on p. 3.)

This paper is structured as follows. First we recall the correspondence between graphs
and polydifferential operators [3, 4] and we indicate the mechanism for such an operator
to vanish, cf. [5]. In section 2 we recall three constructions of Poisson brackets with
polynomial coefficients of arbitrarily high degree (see [6, 7, 8]). Next, in section 3 we
recite the basics of Poisson structure deformation [9]. In Tables 1–4 on pp. 10–11 we
then summarise the properties of all structures from our 12 counterexamples to the
claim [1] that

(i) the flow Ṗ = Γ1(P) which the first graph in Fig. 1 encodes on the space of
bi-vectors P would preserve their property to be Poisson (in fact, it does not),
and that

(ii) the flow Ṗ = Γ2(P) would always be trivial whenever the bi-vector P is Poisson
(in fact, this is not true).

In particular, the twelfth counterexample pertains to the infinite-dimensional jet-space
geometry of variational Poisson structures [10]. (Quoted from [11], the Hamiltonian
differential operator for that variational Poisson bi-vector P is then processed by using
the techniques from [12, 13], cf. [14].)

Finally, we examine at which balance the linear combination of the Kontsevich tetra-
hedral flows preserves the space of Poisson structures on finite-dimensional manifolds.
We argue that the ratio 1 : 6 does the job.

1. The graphs and operators

Let us formalise a way to encode polydifferential operators using oriented graphs. Con-
sider the space Rn with Cartesian coordinates x = (x1, . . ., xn), here 3 6 n < ∞;
for typographical reasons only do we use the lower indices to enumerate the variables,

so that x2
1 = (x1)

2, etc. By definition, the indexed edge •
i
−→ • denotes at once

the derivation ∂/∂xi ≡ ∂i (that acts on the content of the arrowhead vertex) and the
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summation
∑n

i=1 (over the index i in the object which is contained within the ar-

rowtail vertex). For example, the graph •
i
←− P ij(x)

j
−→ • encodes the bi-differential

operator
∑n

i=1(·)
←−
∂i P

ij(x)
−→
∂j (·). If its coefficients P ij are antisymmetric, then the graph

•
i
←− •

j
−→ • encodes the bi-vector P = P ij ∂i ∧∂j , where ∂i ∧∂j =

1
2
(∂i⊗∂j −∂j ⊗∂i).

It then specifies the Poisson bracket {·, ·}P if the n(n−1)
2

-tuple of coefficients solves the
equation

(P ij)
←−
∂ℓ · P

ℓk + (Pjk)
←−
∂ℓ · P

ℓi + (Pki)
←−
∂ℓ · P

ℓj = 0, (1)

that is, the bracket •
i
←− P ij j

−→ • satisfies the Jacobi identity. Clearly, we then have
P ij(x) = {xi, xj}P .

From now on, let us consider only the oriented graphs whose vertices are either sinks,
with no issued edges, or tails for an ordered pair of arrows, each carrying its own index
(see Fig. 1 on p. 2). Allowing the only exception in footnote 1 on p. 4 below, we shall
always assume that there are neither tadpoles, nor double oriented edges, nor two-edge
loops so that none of the three graphs which are shown here (or similar graphs) will be
considered in what follows:

(excluded).

We also postulate that every vertex which is not a sink carries a copy of a given Poisson
bi-vector P = P ij(x) ∂i∧∂j ; the ordering of indexed out-going edges coincides with the
ordering “first ≺ second” of the indexes in the coefficients of P.

Example 1. Under all these assumptions, the two tetrahedra which are portrayed in
Fig. 1 are, up to a symmetry, the only admissible graphs with k = 4 internal vertices,
2k = 6 + 2 edges, and two sinks.

The first graph in Fig. 1 encodes the bi-vector

Γ1(P) =
n∑

i,j=1

(
n∑

k,ℓ,m,k′,ℓ′,m′=1

∂3P ij

∂xk∂xℓ∂xm

∂Pkk′

∂xℓ′

∂Pℓℓ′

∂xm′

∂Pmm′

∂xk′

)
∂

∂xi

∧
∂

∂xj

. (2a)

Likewise, the second graph in Fig. 1 yields the bi-vector

Γ2(P) =
n∑

i,m=1

(
n∑

j,k,ℓ,k′,ℓ′,m′=1

∂2P ij

∂xk∂xℓ

∂2Pkm

∂xk′∂xℓ′

∂Pk′ℓ

∂xm′

∂Pm′ℓ′

∂xj

)
∂

∂xi

∧
∂

∂xm

. (2b)

In this paper we examine

(i) whether the respective flows d
dε
(P) = Γα(P) at α = 1, 2 preserve or, in fact,

destroy the property of bi-vectors P(ε) to be Poisson, provided that the Cauchy
datum P

∣∣
ε=0

is such; we also inspect
(ii) whether the second flow is (actually, it is not) vanishing identically at all ε,

provided that the Cauchy datum is a Poisson bi-vector.

Remark 1. Whenever the bi-vector P in every internal vertex of a non-empty graph Γ
is Poisson, the bi-differential operator which is encoded by Γ can vanish identically.
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First, this occurs due to the skew-symmetry of coefficients of the bi-vector.1 Second,
the operators encoded using graphs (with a copy of the Poisson bi-vector P at every
internal vertex) can vanish by virtue of the Jacobi identity, see (1), or its differential
consequences. This mechanism has been illustrated in [5]; making a part of our present
argument (see section 3), it will be a key to the (re-)proof of the fact that the balanced
flow d

dε
(P) = Γ1(P)+6Γ2(P) does preserve the property of bi-vectors P(ε) to be Poisson

whenever the Cauchy datum P
∣∣
ε=0

is such.

So, each of the two claims (i–ii) is false if it does not hold for at least one Poisson
structure (itself already known to have skew-symmetric coefficients and turn the left-
hand side of the Jacobi identity into zero for any triple of arguments of the Jacobiator).
To examine both claims, we clearly need a store of Poisson structures such that the
coefficients P ij(x) are not mapped to zero by the third or second order derivatives
in (2a) and (2b), respectively. For that, a regular generator of Poisson structures with
polynomial coefficients of arbitrarily high degree would suffice.

2. The generators

Let us recall three regular ways to generate the Poisson brackets or modify a given
one, thus obtaining a new such structure. These generators will be used in section 4 to
produce the counterexamples to both claims from [1].

2.1. The determinant construction. This generator of Poisson bi-vectors is de-
scribed in [6], cf. [15] and references therein. The construction goes as follows. Let
x1, . . ., xn be the Cartesian coordinates on Rn>3. Let ~g = (g1, . . ., gn−2) be a fixed tuple
of smooth functions in these variables. For any a, b ∈ C∞(Rn), put

{a, b}~g = det
(
J(g1, . . . , gn−2, a, b)

)

where J(·, . . . , ·) is the Jacobian matrix. Clearly, the bracket {·, ·}~g is bi-linear and
skew-symmetric. Moreover, it is readily seen to be a derivation in each of its arguments:
{a, b · c}~g = {a, b}~g · c+ b · {a, c}~g. For the validity mechanism of the Jacobi identity for
this particular instance of the Nambu bracket we refer to [15] again (see also [16]).

To obtain the coefficients P ij(x) of the respective Poisson bi-vector P, one evaluates
the bracket at the coordinate functions: P ij(x) = {xi, xj}~g

∣∣
x

.

1For example, consider the oriented graph with ordered pairs of indexed edges (i ≺ j, k ≺ ℓ, m ≺ n,
p ≺ q):

m

n

k

ℓ

j
i

p

q

We claim that due to the antisymmetry of P which is contained in each of the four internal vertices,
the operator (which this graph encodes) vanishes identically. Indeed, it equals minus itself:

∂m∂n(P
pq)∂p(P

km)∂q(P
ℓn)∂k∂ℓ(P

ij) ∂i ∧ ∂j = −∂m∂n(P
qp)∂p(P

km)∂q(P
ℓn)∂k∂ℓ(P

ij) ∂i ∧ ∂j

= −∂n∂m(Ppq)∂q(P
ℓn)∂p(P

km)∂ℓ∂k(P
ij) ∂i ∧ ∂j = 0.

To establish the second equality, we interchanged the labelling of indices (p ⇄ q, k ⇄ ℓ, and m ⇄ n)
and we recalled that the partial derivatives commute.
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Example 2 (see entry 3 in Table 2 on p. 10). Fix the functions g1 = x3
2x

2
3x4 and

g2 = x4
3x4x1, and insert them in the determinant generator of Poisson bi-vectors. We

thus obtain the bi-vector P, the coefficients of which are given in the matrix



0 −2 x3
2x

5
3x4x1 −3 x

2
2x

6
3x4x1 12 x2

2x
5
3x

2
4x1

2 x3
2x

5
3x4x1 0 −x6

3x4x
3
2 2 x5

3x
2
4x

3
2

3 x2
2x

6
3x4x1 x6

3x4x
3
2 0 −3 x6

3x
2
4x

2
2

−12 x2
2x

5
3x

2
4x1 −2 x5

3x
2
4x

3
2 3 x6

3x
2
4x

2
2 0




.

By construction, the above matrix is skew-symmetric. The validity of Jacobi iden-
tity (1) is straightforward: indexed by i, j, k, all the components [[P,P ]]ijk of the
tri-vector vanish.2 This Poisson bi-vector P will be used in section 4 in the list of our
counterexamples to the claims under study.

2.2. Pre-multiplication in the 3-dimensional case. Let x, y, z be the Cartesian
coordinates on the vector space R3. For every bi-vector P = P ij ∂i ∧ ∂j , introduce the
differential one-form P = P1 dx+P2 dy+P3 dz by setting P := −P dx∧dy∧dz, so that
P1 = −P23, P2 = P13, and P3 = −P12. It is readily seen [7] that the original Jacobi
identity for the bi-vector P now reads3 dP ∧ P = 0 for the respective one-form P. But
let us note that the pre-multiplication P 7→ f ·P of the form P by a smooth function f
preserves this reading of the Jacobi identity:

d(fP) ∧ (fP) = f ·
[
df ∧ P ∧ P + f · dP ∧ P

]
= f 2 · dP ∧ P = 0.

This shows that the bi-vector fP which the form fP yields on R3 is also Poisson.
This pre-multiplication trick provides the examples of Poisson structures of arbitrarily

high polynomial degree coefficients (in a manifestly non-symplectic three-dimensional
set-up).4

2.3. The Vanhaecke construction. In [8], Vanhaecke created another construction
of high polynomial degree Poisson bi-vectors. Let u be a monic degree d polynomial

2Indeed, there are four tuples of distinct values of the indices i, j, and k up to permutations; we
let 1 6 i < j < k 6 n = 4 so that the check runs over the set of triples {(1, 2, 3), (1, 2, 4), (1, 3, 4),
(2, 3, 4)}. For example,

[[P ,P ]]123 = 6x5

2x
11

3 x2

4x1 − 6x5

2x
11

3 x2

4x1 − 6x5

2x
11

3 x2

4x1 + 6x5

2x
11

3 x2

4x1

− 18x5

2x
11

3 x2

4x1 + 18x5

2x
11

3 x2

4x1 + 12x5

2x
11

3 x2

4x1 − 6x5

2x
11

3 x2

4x1 − 6x5

2x
11

3 x2

4x1 = 0.

Therefore, [[P ,P]] =
∑

16i<j<k64

[[P ,P]]ijk(x) ∂i ∧ ∂j ∧ ∂k = 0.

3The exterior differential dP is equal to

dP = (∂xP
13 + ∂yP

23) dx ∧ dy + (−∂xP
12 + ∂zP

23) dx ∧ dz + (−∂yP
11 − ∂zP

13) dy ∧ dz.

The wedge product is

dP ∧ P =
(
∂xP

31P12 + ∂yP
23P21 + ∂xP

12 P13 + ∂zP
23P31 + ∂yP

12P23 + ∂zP
31 P32

)
dx ∧ dy ∧ dz

= (−[[P ,P]] dx ∧ dy ∧ dz) dx ∧ dy ∧ dz.
4In dimension three, this pre-multiplication procedure also provides the examples of Poisson bi-

vectors at which the second flow (2b) does not vanish identically.
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in λ and v be a polynomial of degree d− 1 in λ:

u(λ) = λd + u1λ
d−1 + . . .+ ud−1λ+ ud,

v(λ) = v1λ
d−1 + . . .+ vd−1λ+ vd.

Consider the space k2d (e.g., set k := R) with Cartesian coordinates u1, . . ., un, v1,
. . ., vd. To define the Poisson bracket, fix a bivariate polynomial φ(·, ·) and for all
1 6 i, j 6 d set

{ui, uj} = {vi, vj} = 0, (3a)

{ui, vj} = coeff. of λj in

(
φ
(
λ, v(λ)

)
·

[
u(λ)

λd−i+1

]

+

mod u(λ)

)
, (3b)

where we denote by [. . .]+ the argument’s polynomial part and where the remainder
modulo the degree d polynomial u(λ) is obtained using the Euclidean division algorithm.

Let us emphasise that these Poisson bi-vector are defined on the even-dimensional
spaces. Indeed, the coefficients of Poisson bracket (3) are arranged in the block matrix(

0 U
−U 0

)
, where the components of the matrix U are U ij = {ui, vj}.

2.4. The Hamiltonian differential operators on jet spaces. The variational Pois-
son brackets {·, ·}P for functionals of sections of fibre bundles generalise the notion of
Poisson brackets {·, ·}P for functions on finite-dimensional Poisson manifolds (Nn, {·, ·}P).
Namely, let us consider the space J∞(π) of infinite jets of sections for a given bundle π
over a manifold Mn of positive dimension m. The variational Poisson brackets {·, ·}P
on J∞(π) are then specified by using the Hamiltonian differential operators (which we
shall denote by A and the order of which is typically positive).5 The formalism of vari-

ational Poisson bi-vectors P = 1
2
〈ξ · ~A(ξ)〉 and the variational Schouten bracket [[·, ·]] is

standard (see [10, 18] and section 3 below). The geometry of iterated variations is re-
vealed in [12]; the correspondence between the Kontsevich graphs and local variational
polydifferential operators is explained in [13].

Example 3. For an inspection whether any of the two claims (which we quoted from [1]
on the title page) would hold in the variational set-up, it is enough to consider a
Hamiltionian differential operator with (differential-)polynomial coefficients of degree >
3. Let us conveniently take the Hamiltonian operator6

A = u2 ◦
d

dx
◦ u2

for the Harry–Dym equation (see [11]); here u is the fibre coordinate in the trivial
bundle π : R × R → R and x is the base variable. This operator is obviously skew-
adjoint, whence the variational Poisson bracket {·, ·}P is skew-symmetric. The Jacobi
identity for {·, ·}P is also easy to check: the variational master equation [[P ,P ]] ∼= 0

does hold for the variational bi-vector P = 1
2
〈ξ · ~A(ξ)〉.

5In fact, the Poisson geometry of finite-dimensional manifolds (Nn, {·, ·}P) is a zero differential order
sub-theory in the variational Poisson geometry of infinite jet spaces J∞(π). Indeed, let the fibres in
the bundle π be Nn and proclaim that only constant sections are allowed.

6More examples of variational Poisson structures, which are relevant for our present purpose, can
be found in [19] or, e.g., in [20] (see also the references contained therein).
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3. The deformation theory

Now that the generators of high polynomial degree Poisson structures are at our dis-
posal, let us recall several necessary facts from the deformation theory; this material is
standard [9, 17]. Denote by ξi the parity-odd canonical conjugate of the variable xi for
every i = 1, . . ., n (see [18] for discussion about the reverse parity symplectic duals).
Every bi-vector is then realised in terms of the local coordinates xi and ξi on ΠT ∗Nn by
using P = 1

2
〈ξiP

ij(x) ξj〉. We denote by [[·, ·]] the Schouten bracket, i.e., the parity-odd
Poisson bracket which is determined on ΠT ∗Rn by the canonical symplectic structure
dx∧dξ (see [12] for details and [14] for illustration). Currently, our working formula is7

[[P,Q]] = (P)

←−
∂

∂xi

·

−→
∂

∂ξi
(Q)− (P)

←−
∂

∂ξi
·

−→
∂

∂xi

(Q).

To be Poisson, a bi-vector P must satisfy the master-equation [[P,P ]] = 0, of which
formula (1) is the component expansion with respect to the indices (i, j, k) in the tri-
vector [[P,P ]](x, ξ).

Under an infinitesimal deformation P(ε) = P+εQ+ ō(ε) of the bi-vector P satisfying
[[P,P ]] = 0, the bi-vector P(ε) remains Poisson only if [[P(ε),P(ε)]] = ō(ε), whence
[[P,Q]] = 0. The violation of this requirement will be exemplified in what follows by
the deformation leading terms Γ1(P) and Γ2(P) given by (2a) and (2b), respectively,
for the Poisson bi-vectors P which we generate using the techniques from section 2.

Remark 2. For a Poisson bi-vector P, the operator ∂P = [[P, ·]] is readily seen to be a
differential: by virtue of the Jacobi identity for the Schouten bracket [[·, ·]] we have that
∂2

P
= 0. Therefore, the leading order terms Q in the deformations P(ε) = P+εQ+ ō(ε)

can be trivial in the second ∂P-cohomology, meaning that Q = [[P,X]] for some one-
vector X (whence [[P, [[P,X]]]] ≡ 0). Alternatively, for the ∂P-cocycles Q which are not
∂P-coboundaries, the flows P(ε) stay infinitesimally Poisson but leave the ∂P-cohomo-
logy class of the Poisson bi-vector P at ε = 0.

For consistency, let us recall that generally speaking, not every infinitesimal defor-
mation P 7→ P + εQ + ō(ε) of a Poisson bi-vector P can be completed to a Poisson
deformation P 7→ P + Q(ε) at all orders in ε. All the obstructions are contained in
the third ∂P-cohomology group H3

P
=
{
T ∈ Γ

(∧3 TN
)
| ∂P(T) = 0

} / {
T = ∂P(R),

R ∈ Γ
(∧2 TN

)}
. Indeed, cast the master-equation [[P +Q(ε),P +Q(ε)]] = 0 for the

Poisson deformation to the coboundary statement [[Q(ε),Q(ε)]] = ∂P(−P − 2Q(ε))
within O∗(ε2), whence ∂P([[Q(ε),Q(ε)]] ≡ 0 by ∂2

P
= 0. Therefore, the vanishing of the

third ∂P-cohomology group guarantees the existence of a power series solution Q(ε) to
the cocycle-coboundary equation [[Q(ε),Q(ε)]] = −2∂P(Q(ε)): known to be a cocycle,
the left-hand side has been proven to be a coboundary as well.

Remark 3. Nowhere above should one expect that the leading deformation term Q
in P(ε) = P + εQ + ō(ε) itself would be a Poisson bi-vector. This may happen for Q
only incidentally.

7In the set-up of infinite jet spaces J∞(π) (see [10] and [12, 13, 18]) the four partial derivatives
in the formula for [[·, ·]] become the variational derivatives with respect to the same variables, which
now parametrise the fibres in the Whitney sum π×Mm Ππ̂ of (super-)bundles over the m-dimensional
base Mm.
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4. The counterexamples

We now examine the properties of both tetrahedral flows (2) whenever each of them is
evaluated at a given Poisson bi-vector (the examples of such bi-vectors are produced by
using the techniques from section 2). To motivate the composition of Tables 1–4 and
clarify the meaning of their content, let us consider an example: namely, we first take
the Poisson bi-vector which was obtained in section 2.1 (see p. 5).

Example 4 (continued). Rewriting the Poisson bi-vector P0 ∈ Γ
(∧2 TN4

)
in terms

of the parity-odd variables ξ, we obtain that under the isomorphism Γ
(∧

• TNn
)
≃

C∞(ΠT ∗Nn) the bi-vector P ij
0 (x) ∂i ∧ ∂j becomes 1

2
P ij

0 (x) ξiξj:

P0 = −2 x
3
2x

5
3x4x1ξ1ξ2 − 3 x2

2x
6
3x4x1ξ1ξ3 + 12 x2

2x
5
3x

2
4x1ξ1ξ4

− x6
3x4x

3
2ξ2ξ3 + 2 x5

3x
2
4x

3
2ξ2ξ4 − 3 x6

3x
2
4x

2
2ξ3ξ4.

Now, we calculate the right-hand sides P1 := Γ1(P0) and P2 := Γ2(P0) of tetrahedral
flows (2). The coefficient matrix of the bi-vector P1 is

P ij
1 =




0 −24480 x9
2x

20
3 x4

4x1 −51840 x
21
3 x4

4x
8
2x1 12960 x20

3 x5
4x

8
2x1

24480 x9
2x

20
3 x4

4x1 0 −15480 x21
3 x4

4x
9
2 2448 x20

3 x5
4x

9
2

51840 x21
3 x4

4x
8
2x1 15480 x21

3 x4
4x

9
2 0 −18144 x21

3 x5
4x

8
2

−12960 x20
3 x5

4x
8
2x1 −2448 x20

3 x5
4x

9
2 18144 x21

3 x5
4x

8
2 0




.

In a similar way, the polydifferential operator Γ2 (encoded by the second tetrahedral
graph in Fig. 1) yields the matrix

P ij
2 =




16920x8
2x

20
3 x4

4x
2
1 −12060 x9

2x
20
3 x4

4x1 −16380 x
21
3 x4

4x
8
2x1 42840 x20

3 x5
4x

8
2x1

2700 x9
2x

20
3 x4

4x1 −7200 x10
2 x20

3 x4
4 4680 x21

3 x4
4x

9
2 −252 x20

3 x5
4x

9
2

−13140 x21
3 x4

4x
8
2x1 5040 x21

3 x4
4x

9
2 −12060 x8

2x
22
3 x4

4 13716 x21
3 x5

4x
8
2

−80280 x20
3 x5

4x
8
2x1 −18036 x20

3 x5
4x

9
2 21708 x21

3 x5
4x

8
2 −58104 x20

3 x6
4x

8
2




.

Notice that this coefficient matrix is not yet antisymmetric, but its symmetric coun-
terpart is skipped out in the construction of the bi-vector P2 and its transcription by
using the anticommuting variables ξ. Therefore, we antisymmetrise the above matrix
at once, the output to be used in what follows. We obtain that the bi-vector P2 is

P2 = −7380x
9
2x

20
3 x4

4x1ξ1ξ2 − 1620x21
3 x4

4x
8
2x1ξ1ξ3 + 61560x20

3 x5
4x

8
2x1ξ1ξ4

− 180x21
3 x4

4x
9
2ξ2ξ3 + 8892x20

3 x5
4x

9
2ξ2ξ4 − 3996x21

3 x5
4x

8
2ξ3ξ4.

We now see that for the Poisson bi-vector P0 from Example 2 on p. 5, the bi-vector P2

does not vanish, thereby disavowing the second claim from [1].
To check the compatibility of the original Poisson bi-vector P0 with the newly ob-

tained bi-vector P1, we calculate their Schouten bracket:

[[P0,P1]] = 46008 x11
2 x26

3 x5
4x1ξ1ξ2ξ3 + 852768 x1x

11
2 x25

3 x6
4ξ1ξ2ξ4

+ 1246752 x1x
10
2 x26

3 x6
4ξ1ξ3ξ4 + 340200 x11

2 x26
3 x6

4ξ2ξ3ξ4 6= 0.
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The above expression is not identically zero. Therefore, the leading term P1 in

the deformation P0 7→ P(ε) = P0 + εP1 + ō(ε) destroys the property of bi-

vector P(ε) to be Poisson at ε 6= 0 for all x ∈ R4.
The same compatibility test for P0 and its second flow (2b) yields that

[[P0,P2]] = −7668 x
11
2 x26

3 x5
4x1ξ1ξ2ξ3 − 142128 x1x

11
2 x25

3 x6
4ξ1ξ2ξ4

− 207792 x1x
10
2 x26

3 x6
4ξ1ξ3ξ4 − 56700 x11

2 x26
3 x6

4ξ2ξ3ξ4.

Again, this expression does not vanish identically at points x of the Poisson manifold(
R4, {·, ·}P0

)
. We conclude that neither of two flows (2) preserve the property of

bi-vector P(ε) to stay (infinitesimally) Poisson at ε 6= 0 for this example of Poisson
bi-vector.8

Remark 4. In the above example, the Schouten brackets [[P0,P1]] and [[P0,P2]] are
determined by the same polynomials in the variables x and ξ: we see that [[P0,P1]] =
−6 · [[P0,P2]]. This implies that for this example of Poisson bi-vector P0, the leading
term Q := P1 + 6P2 does (infinitesimally) preserve the property of P(ε) to be Poisson
in the course of deformation P0 7→ P0 + εQ+ ō(ε). Indeed, we have that

[[P0,Q]] = [[P0,P1 + 6P2]] = [[P0,P1]] + 6[[P0,P2]] = 0

due to the linearity of the Schouten bracket.
Moreover, it is readily seen that the ratio 1 : 6 is the only way to balance the two

flows, (2a) vs (2b), such that their nontrivial linear combination Q is compatible with
the given Poisson bi-vector P0 from Example 2.9

Remark 5. The linear combination Q of two flows (2) is compatible with the initial
Poisson bi-vector P0 in a nontrivial manner, that is, the bi-vector Q = P1 + 6P2 6= 0 is
not identically equal to zero. (For other examples this may happen incidentally.) We
expect that the leading term Q in the infinitesimal deformation P0 7→ P0 + εQ+ ō(ε)
is nontrivial in the Poisson cohomology with respect to ∂P0

, that is, Q 6= [[P0,X]] for
any vector X on the four-dimensional space.10

In the three tables below we summarise the results about the flows P1 and P2, which
we evaluate at the examples of Poisson bi-vectors P0. Our special attention is paid
to the leading deformation term Q = P1 + 6P2 in each case: we inspect whether this
bi-vector incidentally vanishes and whether it is (indeed, always) compatible with the
original Poisson structure P0.

8Let us also inspect whether the Jacobi identity holds for any of the bi-vectors P1 and P2. For P1

we have that the left-hand side of the Jacobi identity is equal to

[[P1,P1]] = −2963589120 ·
(
x41

3
x8

4
x17

2
x1ξ1ξ2ξ3 + 5 x40

3
x9

4
x17

2
x1ξ1ξ2ξ4 − 2 x41

3
x9

4
x16

2
x1ξ1ξ3ξ4

)
,

which does not vanish. (Therefore the Jacobi identity is not satisfied for P1.) For P2 the left-hand
side of the Jacobi identity equals

[[P2,P2]] = −262517760 ·
(
x41

3
x8

4
x17

2
x1ξ1ξ2ξ3 + 5 x40

3
x9

4
x17

2
x1ξ1ξ2ξ4 − 2 x41

3
x9

4
x16

2
x1ξ1ξ3ξ4

)
.

This expression also does not vanish, so that neither P1 nor P2 are Poisson bi-vectors.
9The balance 1 : 4

3
was advocated in [21, §5.2] for the linear combination of flows (2a) and (2b),

respectively; our present argument and the counterexamples which follow withdraw that claim.
10In all the two-dimensional Poisson geometries, the first flow P1 is always cohomologically trivial,

i.e., it is of the form P1 = [[P0,X]] for some one-vector X, see [1].
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Table 1. The Poisson bi-vectors P0 are generated using the determi-
nant method from section 2.1 (the dimension is equal to 3, so we spec-
ify the fixed argument g1); that generator is combined with the pre-
multiplication (f ·) as explained in section 2.2.

� dim Argument & pre-factor [[P0,P1]] P2
?
= 0 [[P0,P2]] Q

?
= 0 [[P0,Q]]

= 0 ? = 0 ? = 0 ?

1. 3 [x5
1x

3
2x

4
3 + x2

1x
5
3 + x1x

5
2x3] ✗ ✗ ✗ ✗ ✓

x3
1 + x2

2

2. 3 [x1x2 + x3x1 + x2x3] ✗ ✗ ✗ ✗ ✓

x2
1 + x2

For both examples in Table 1 we have that neither does P1 preserve the property
of P0+εP1+ ō(ε) to be (infinitesimally) Poisson nor does P2 vanish identically — which
is in contrast with both the claims from [1].

Table 2. In dimensions higher than 3, we generate the Poisson bi-vec-
tors P0 by using the determinant method from section 2.1: the auxiliary
arguments g1, . . ., gn−2 are specified.

� dim Arguments [[P0,P1]] P2
?
= 0 [[P0,P2]] Q

?
= 0 [[P0,Q]]

= 0 ? = 0 ? = 0 ?

3. 4 [x3
2x

2
3x4, x

4
3x4x1] ✗ ✗ ✗ ✗ ✓

4. 4 [x2
1x

3
2x

4
3x

5
4, x1x2x3x4] ✗ ✗ ✗ ✓ ✓

5. 4 [x2
2x

2
3x

2
4, x

2
1x

2
3x

2
4] ✗ ✗ ✗ ✓ ✓

6. 5 [x3
2x

2
3x4, x

4
3x4x1, x

4
5x

2
4x

3
3] ✗ ✗ ✗ ✗ ✓

In Table 2 we again have that neither is the property preserved for P0 + εP1 + ō(ε)
to be (infinitesimally) Poisson nor is the bi-vector P2 vanishing identically.

Table 3. The results for the Vanhaecke method from section 2.3: we
here specify the bivariate polynomials φ.

� dim φ(x, y) [[P0,P1]]
?
= 0 P2

?
= 0 [[P0,P2]]

?
= 0 Q

?
= 0 [[P0,Q]]

?
= 0

7. 4 [x2y2] ✗ ✗ ✗ ✗ ✓

8. 4 [x2y] ✗ ✗ ✗ ✗ ✓

9. 4 [x3y2] ✗ ✗ ✗ ✗ ✓

10. 4 [x3y3] ✗ ✗ ✗ ✗ ✓

11. 6 [x2y2] ✗ ✗ ✗ ✗ ✓

The entries in Table 3 report on the use of the generator from section 2.3: experi-
mentally established, the properties of these Poisson bi-vectors do not match both the
claims from [1].
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Table 4. The results for the infinite-dimensional case.

� dim Operator [[P0,P1]]
?
∼= 0 P2

?
∼= 0

12. ∞ u2 ◦ d
dx
◦ u2 ✗ ✓

The variational bi-vector P1 =
1
2
〈ξ · ~A1(ξ)〉, which we construct from the variational

Poisson bi-vector P0 = 1
2
〈ξ · u2 ~d

dx
(u2 ξ)〉 by using the geometric technique from [12]

(see also [13]), is determined by the (skew-adjoint part of the) first order differential
operator A1 = 192

(
9u8uxuxx − u9uxxx

)
d
dx

in total derivatives. Again, the two varia-
tional bi-vectors are not compatible: we check that [[P0,P1]] ≇ 0 under the variational
Schouten bracket.

Remarkably, the variational bi-vector P2 is specified by the second-order total dif-
ferential operator whose skew-adjoint component vanishes, whence the respective vari-
ational bi-vector is equal to zero (modulo exact terms within its horizontal cohomology
class [10]).

Conclusion. The linear combination Q = P1 + 6P2 of the Kontsevich tetrahedral
flows preserves the space of Poisson bi-vectors P0 under the infinitesimal deformations
P0 7→ P0+εQ+ō(ε). This is manifestly true for all the examples of Poisson bi-vectors on
finite-dimensional (vector or affine) spaces Rn which we have considered so far. We now
conjecture that the leading deformation term Q = Q(P0) always has this property, that
is, the bi-vector Q marks a ∂P0

-cohomology class for every Poisson bi-vector P0 on a
finite-dimensional affine manifold. (Recall that such class can be ∂P0

-trivial; moreover,
it can vanish identically — yet the above examples confirm the existence of Poisson
geometries where neither of the two options is realised.)

Let us conclude that every claim of an object’s vanishing by virtue of the skew-
symmetry and Jacobi identity for a given Poisson bi-vector, which that object depends
on by construction, must be accompanied with an explicit description of that factori-
sation mechanism (e.g., see [5]) or at least, with a proof of that mechanism’s existence.
Apart from the trivial case (here, Q = 0 so that [[P0,Q]] ≡ 0), such factorisation through
the master-equation [[P0,P0]] = 0 can be immediate: here, we have that11

[[P0,Q]] = [[P0, [[P0,X]]]] =
1
2
[[[[P0,P0]],X]] =

(
1
2
[[·,X]]

) (
[[P0,P0]]

)

for all ∂P0
-exact infinitesimal deformations Q = ∂P0

(X) of the Poisson bi-vectors P0.
Elaborated in [5], the Poisson cohomology estimate mechanism of the vanishing [[P0,Q]]

.
=

0 via [[P0,P0]] = 0 works – for the nontrivial cocyclesQ /∈ im∂P0
in the ∂P0

-cohomology –
due to much more refined principles. We shall address this mechanism in a subsequent
paper.
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dε
(P) = [[P ,X(P)]] is tautologically Poisson with respect to its native

structure P .
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