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Abstract

We construct a matrix model that reproduces the topological string partition
function on arbitrary toric Calabi-Yau 3-folds. This demonstrates, in accord with
the BKMP “remodeling the B-model” conjecture, that Gromov-Witten invariants of
any toric Calabi-Yau 3- fold can be computed in terms of the spectral invariants of a
spectral curve. Moreover, it proves that the generating function of Gromov-Witten
invariants is a Tau-function for an integrable hierarchy. In a follow-up paper, we
will explicitly construct the spectral curve of our matrix model and argue that it
equals the mirror curve of the toric Calabi-Yau.
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In the topological string A-model, the object of study is the moduli space of maps from
a Riemann surface ¥, of genus g to a given Calabi-Yau target space X. Its partition
function is the generating function of Gromov-Witten invariants of X, which roughly
speaking count these maps.

In recent years, deep connections have been unrooted between the topological string on
various geometries and random matrix models. A classic result in the field is that inter-
section numbers, which are related to the Gromov-Witten theory of a point, are computed

by the Kontsevich matrix integral [1], see also [2].

In the Dijkgraaf-Vafa conjecture [3]



such a connection is obtained between the topological B-model on certain non-compact
Calabi-Yau manifolds and a 1-matrix model.

In the 20 years that have passed since topological string theory was formulated [4, 5], var-
ious techniques have been developed for computing the corresponding partition function.
The topological vertex method [6] solves this problem completely for toric Calabi-Yau
3-folds at large radius, furnishing the answer as a combinatorial sum over partitions.
On geometries with unit first Betti number (the conifold and O(—2) — CP! x C), this
formalism yields the partition function as a sum over a single partition with Plancherel
measure. In [7], such a sum was rewritten as a l-matrix integral. More complicated
examples, such as the topological string on geometries underlying Seiberg-Witten SU(n)
theory, can be written as sums over multiple partitions [8, 9, 10]. 1-matrix integrals that
reproduce the corresponding partition functions were formulated in [11]. Multi-matrix
integrals have arisen in rewriting the framed vertex as a chain of matrices integral [12].
Its Hurwitz-numbers limit (infinite framing of the framed vertex geometry) was shown to
be reproduced by a l-matrix model with an external field in [13, 14].

Here, generalizing the method of [7], we are able to formulate a matrix model which
reproduces the topological string partition function on a certain fiducial geometry, which
we introduce in the next section. Flop transitions and limits in the Kéhler cone relate the
fiducial geometry to an arbitrary toric Calabi-Yau. As we can follow the effect of both of
these operations on the topological string partition function, our matrix model provides
a description for the topological string on an arbitrary toric Calabi-Yau manifold.

By providing a matrix model realization, we are able to transcribe deep structural insights
into matrix models to the topological string setting. E.g., our matrix model involves
a chain of matrices, and chain of matrices integrals are always Tau functions for an
integrable system. By providing a matrix model realization, we hence prove integrability
of the generating function of Gromov-Witten invariants.

Moreover, matrix models satisfy loop equations, which are known to be equivalent to
We-algebra constraints. A general formal solution to these equations was found in [15],
centered around the introduction of an auxiliary Riemann surface, referred to as the
spectral curve of the system. The partition and correlation functions of the matrix model
are identified with so-called symplectic invariants of this curve. The BKMP conjecture [16]
identifies the spectral invariants of the mirror curve to a toric Calabi-Yau manifold with
the topological string partition function with the Calabi-Yau manifold as target space. In
a forthcoming publication [17], we will compute the spectral curve of our matrix model
explicitly, thus establishing the validity of this conjecture.

The outline of this paper is as follows. In section 2, after a very brief review of toric
geometry basics, we introduce the fiducial geometry and the notation that we will use in
discussing it throughout the paper. We also review the transformation properties of the
topological string partition function under flop transitions, which will relate the fiducial
to an arbitrary toric geometry, in this section. We recall the topological vertex formalism
and its application to geometries on a strip [18] in section 3. Section 4 contains our main
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result: we introduce a chain of matrices matrix model and demonstrate that it reproduces
the topological string partition function on the fiducial geometry. We discuss implications
of this result in section 5, and end with conclusions in section 6.

2 The fiducial geometry and flop transitions

Toric geometries present a rich class of very computable examples for many questions in
algebraic geometry. The topological vertex formalism provides an algorithm for computing
the generating function for Gromov-Witten invariants on toric 3 dimensional Calabi-Yau
manifolds. These are necessarily non-compact and have rigid complex structure.

The geometry of toric manifolds of complex dimension d can be encoded in terms of a d
dimensional fan ¥, consisting of cones of dimensions 0 to d. We denote the set of all n
dimensional cones as ¥(n). Each such n-cone represents the closure of a (C*)?~" orbit.
In particular, 1-cones correspond to hypersurfaces, and for d = 3, our case of interest,
2-cones correspond to curves.

The fan for the class of geometries we are interested in is constructed by triangulating
a finite connected region of the Z? lattice containing the origin, embedding this lattice
in Z3 within the (z,y) plane at z = 1, and defining the cones of the fan via half-lines
emanating at the origin and passing through the vertices of this triangulation.’

We can associate a dual diagram to such toric fans, a so-called web diagram, spanned by
lines orthogonal to the projection of 2-cones onto the Z? lattice. In the web diagram, the
relation between the dimension of the components of the diagram and the submanifold of
the toric geometry they represent coincide: 3-cones (points) correspond to vertices, and
2-cones (curves) to lines, see figure 1.

Figure 1: Example of a box triangulation, corresponding to a 3 dimensional toric fan. The diagram
in red is the dual web diagram. Vertices of the triangulations (faces of the web diagram) correspond to
1-cones, edges correspond to 2-cones, and faces (vertices of the dual) correspond to 3-cones.

IThe canonical class of a toric manifold is given by the sum over all torically invariant divisors. The
construction sketched above guarantees that this sum is principal, hence the canonical class trivial: the
monomial associated to the 1-cone (0,0, 1) generates the class in question. See e.g. [19].



2.1 The fiducial geometry

The geometry Xy we will take as the starting point of our considerations is depicted in
figure 2.

(Ov ) (170) (n, 0)

Figure 2: Fiducial geometry X, with boxes numbered.

Since the torically invariant curves play a central role in our considerations, we introduce
a labeling scheme for these in figure 3: (7, j) enumerates the boxes as in figure (2), and we
will explain the a-parameters further below. In the following, we will, when convenient,

QAi,j+1 Si.j
@

t«,;_j
(i, 7)

@
@i, j

Figure 3: Labeling curve classes, and introducing a-parameters.

use the same notation for a torically invariant curve X, its homology class [X] € Hy (X, Z),
and its volume or associated Kahler parameter fz J, given a Kahler form J on X,. The
classes of the curves r; ;,s; ;,t; ; are not independent. To determine the relations among
these, we follow [20, page 39, 40]. Consider the integer lattice A spanned by formal
generators e,, p € 3(1) 1-cones of the toric fan,

A={)" Melr, €2}

pEX(1)



Each torically invariant curve, corresponding to a 2-cone of the fan, maps to a relation
between 1-cones, and thus to an element of the lattice A, as follows: a 2-cone ¢ is spanned
by two integral generators v; and v, and it is contained in precisely two 3-cones, which
are each spanned by vy, v and one additional generator vs, vy respectively. These vectors
satisfy the relation Zle A;v; = 0, where the \; can be chosen as relatively prime integers,
and as vz and vy lie on opposite sides of o, we can assume that A3, Ay, > 0. [20] shows
that on a smooth variety, the sublattice A, generated by the elements Z?Zl Aie; of Ais
isomorphic to Hy(Xo,Z). We will also call this isomorphism A,

A HQ(:{O7Z) - Ah-

Figure 4 exemplifies this map. It allows us to easily work out the relation between the

U1 V4

U3 V2

v : (0,1,1)
vyt (1,0,1)
v3 :(0,0,1) A=(-1-LL1)
ve: (1,1,1)

Figure 4: The 2-cone o corresponds to the relation X among 1-cones.

various curve classes. Consider figure 5. The images of the curve classes depicted there

Ve (%4
Tij
ti.j
Us V4 N\ Lit1,j-1] U5
U1 U2

Figure 5: Determining the relation between curve classes.

under \ are,

€5+ e —eq4 —e7
€y +e3—€1— ey
e3+e7 —ey — e

€1+ 65— € — €y



We read off the relation
tig+rig =t +Tij1. (2.1)

By symmetry, we also have
tij+ Sij—1=tiy1j-1+ Sit1,5-1-

A moment’s thought convinces us that this constitutes a complete basis for the space of
relations. We can solve these in terms of the classes of the curves r;, s;,t; 5, 4,7 = 0,1, ...
depicted in figure 6, which hence generate Hy(Xo,Z). The explicit relations are

Sm
592
S1 \
\ to,1,01,1,---5tn1
S0

10,051,055 tn,0

tO,?m tl,ma s 7tn,m

o T1 T2 T3 Tn

Figure 6: Fiducial geometry with choice of basis of Ha(Xo,Z).

J
Tig = Tit Z(ti-i-l,k—l —tir)
k=1

1
sij = S+ § (th—1j41 — thy)
k=1

Our computation for the partition function on Xy will proceed by first considering the hor-
izontal strips in the toric fan describing the geometry, as depicted in figure 2, individually,
and then applying a gluing algorithm to obtain the final result.

For each strip, we find it convenient to write the curve class wy; € Hy(Xo,Z) of the curve
extending between two 3-cones which we label by I and J (recall that 3-cones correspond
to vertices in the dual web diagram), with J to the right of I, as the difference between
two parameters a; and a; associated to each 3-cone,

Wry =ay —ayj. (22)

We call these parameters, somewhat prosaically, a-parameters. It is possible to label the
curve classes in this way due to their additivity along a strip. In terms of the notation
introduced in figure 3, we obtain

lij = Qij —Qijy1 5 Tij = Qije1 — Qi1 -



By invoking the relation (2.1), we easily verify that upon gluing two strips, the curve class
of a curve extending between two 3-cones I and J on the lower strip is equal to the class
of the curve between the 3-cones I’ and J’' on the upper strip, where the cones I and I’
are glued together, as are the cones J and .J',

Wrg = Wy g (23)

This allows us to identify the parameters a; = ap and a; = aj associated to 3-cones
glued together across strips.

Note that the basic curve classes s; are not captured by the parameters a; ;.

2.2 Flop invariance of toric Gromov-Witten invariants

Under the proper identification of curve classes, Gromov-Witten invariants (at least on
toric manifolds) are invariant under flops. Assume X and Xt are related via a flop
transition, ¢ : X — XT. In a neighborhood of the flopped (—1, —1) curve, the respective
toric diagrams are depicted in figure 7.

T2 T2
To o
T3 T1 T3 T1
T4 T4

Figure 7: X and X* in the vicinity of the (-1,-1) curve.

The 1-cones of X, corresponding to the toric invariant divisors of X, are not affected by
the flop, hence can be canonically identified with those of X*. The 2-cones 7; in these
diagrams correspond to toric invariant 2-cycles C;, C;" in the geometry. The curve classes
of X push forward to classes in X via

¢.([Co]) = =[C7],  o.(IC]) = [CF] + (G- (2.4)

All other curve classes of X are mapped to their canonical counterparts in X*. Under
appropriate analytic continuation and up to a phase factor (hence the o in the following
formula), the following identity then holds [21, 18, 22]

ZGW(%a QOa Qb <. 7@47 @) X ZGW<%+7 1/Q0a QOQb ey Q0Q47 Q) . (25)

i.e.

GWg(xu QO)Qh CI) Q47 Q) = GW9<%+7 ]-/QO: QOQh R QOQ47Q) .

Any toric Calabi-Yau manifold X with Kahler moduli @ can be obtained from a sufficiently
large fiducial geometry (Xo, QO) upon performing a series of flop transitions and taking
unwanted Kéhler moduli of X to co. As an example, we show how to obtain the P2
geometry from the fiducial geometry with 2 x 2 boxes in figure 8.
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Figure 8: We obtain local P? from the fiducial geometry with 2 x 2 boxes by performing five flops and
then sending the Kéhler parameters of the unwanted edges to co.

3 The partition function via the topological vertex

3.1 Gromov-Witten invariants

Gromov-Witten invariants N, p(X) roughly speaking count the number of maps from a
Riemann surface of genus g into the target space X, with image in a given homology class
D = (Dy,...,Dg) € Hy(X,Z). They can be assembled into a generating series

GW,(X,Q) = ZNgD

Each GW,(X,Q) is a formal series in powers QP = T, QP of the parameters Q =
(Q1,Qs, . ..,Qk), the exponentials of the Kahler parameters.

We can introduce a generating function for Gromov-Witten invariants of all genera by
introducing a formal parameter g, (the string coupling constant) and writing

W(X,Q,g5) = Z 92972 GW,(X, Q).

It is in fact more convenient to introduce disconnected Gromov-Witten invariants N; p(X),
for possibly disconnected surfaces, of total Euler characteristics x, and to define

Zaw (X, Q, g) = VX9 ZQD ZQ_X Nibp

For toric Calabi-Yau manifolds, an explicit algorithm was presented in [6] for computing
Zew via the so-called topological vertex formalism, proved in [23, 24].



3.2 The topological vertex

In the topological vertex formalism, each vertex of the web diagram contributes a factor
Cy(a, B,7) to the generating function of GW-invariants, where the «, 3,7 are Young
tableaux associated to each leg of the vertex, and C,(«, 3,7) is a formal power series in
the variable ¢, where
qg=¢e%.

Topological vertices are glued along edges (with possible framing factors, see [6]) carrying
the same Young tableaux « by performing a sum over o, weighted by Q!®!, with @ encoding
the curve class of this connecting line,

Zvertex (-/{7 Qa Q) = Z H Qlea6| H Cq (a€1 y Oley s 0463) .

Young tableaux ot edgese vertices v=(e1,e2,€3)

Note than in practical computations, the sum over representations can ordinarily not be
performed analytically. A cutoff on the sum corresponds to a cutoff on the degree of the
maps being counted.

The equality
ZGW (%a Q: gs) = Zvertex(%a Q: Q)

holds at the level of formal power series in the @)’s, i.e. in the large radius expansion. It
was proved in [24] that the log of the right hand side indeed has a power series expansion
in powers of g,.

3.3 Notations for partitions and g-numbers

Before going further in the description of the topological vertex formula, we pause to fix
some notations and introduce special functions that we will need in the following.

3.3.1 Representations and partitions

Representations of the symmetric group are labelled by Young tableaux, or Ferrer dia-
grams.

For a representation ~, we introduce the following notation:

e ~;: number of boxes in the i-th row of the Young tableau associated to the repre-
sentation v, 71 > 72 > -+ =74 = 0.

e The weight |y| = > ,7: the total number of boxes in the corresponding Young
tableau.

e The length I(): the number of non-vanishing rows in the Young tableau, i.e. 7; =0
iff i > (7).
e The Casimir s(y) = >, (v — 20 + 1).



e 77 denotes the conjugate representation, which is obtained by exchanging the rows
and columns of the associated Young tableau. We have [y7| = |y, I(v') = 1, and

r(y") = —k(7).

Moreover, an integer d > 0 will denote a cut-off on the length of representations summed
over,

l(y) <d

Most expressions we are going to write will in fact be independent of d, and we shall argue
in [17], following the same logic as in [7] based on the arctic circle property [25], that our
results depend on d only non-perturbatively.

Also, to each representation +y, we shall associate a parameter a as introduced in (2.2).

Instead of dealing with a partition v, characterized by the condition v; > v9 > ... > 74 >
0, it will prove convenient to define the quantities

which satisfy instead
hi>hy>hs>--->hg>a.

The relation between v and h(7), for the off-set a = 0, is depicted in figure 9.

N S
L ° B VS I SRV B e NN e s BN e)

hl() h9 h8h7h6 h5 h4 h3h2 hl
Figure 9: Relation between a partition v and h(y).

We finally introduce the functions

In terms of the h;(y), we have
K(y) =Y hi—(2d+2a—1)) hi+dCyq,
where Cy, = 3(d —1)(2d — 1) + a(a +2d — 1).
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3.3.2 g-numbers

We choose a string coupling constant gs such that the quantum parameter ¢ = e 9%

satisfies |¢| < 1. A g-number [z] is defined as

L gs
5

g-numbers are a natural deformation away from the integers; in the limit ¢ — 1, gi [x] —

x.

(S

[2] = ¢ 2 — g2 = 2sinh (3.2)

We also define the ¢-product

n=1
The function g(z) is related to the quantum Pochhammer symbol, g(z) = [¢/7; ¢, and

to the g-deformed gamma function via T'y(z) = (1 — ¢)' ™" g(1)/g(¢" ™). g(z) satisfies the
functional relation

1
glqz) = (1 =) g(x).
For I';, this implies I'y(z + 1) = % I',(z), the quantum deformation of the functional

equation I'(x +1) = 2I'(z) of the gamma function, which is recovered in the classical limit
q — 1. The central property of g(x) for our purposes is that it vanishes on integer powers
of ¢,

9(¢") =0 if n e N*.

Moreover, it has the following small In ¢ behavior,

o) = i > B g L1/,

where Li,(x) = > 2, ’li—: is the polylogarithm, and B, are the Bernouilli numbers

Boki1 = 01if £ > 1 (see the appendix).
We shall also need the following function f(z),

L e/ g e
x

f(z) 9(1)* v

B —Ingq 0 lnx+1_ T =T
B (3 — &, —35) Ing 2 Ing Inq )’

Ing?” Ing

where 6 is the Riemann theta-function for the torus of modulus —2im/Ing. This relation-
ship is the quantum deformation of the classical gamma function identity

e ™ T(1 — x)['(x) = sin (7z) /.
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3.4 The partition function via the vertex

We begin by considering a single horizontal strip of the fiducial geometry, as depicted in
figure 10.

(071 (0% 3 (6 7]

Bi By B Bi

Figure 10: A horizontal strip of the fiducial geometry and its corresponding web diagram.

Of the three legs of the vertex, two point in the direction of the strip and connect the
vertex to its neighbors. One leg points out of the strip, either above or below. This leg
carries a free representation, a; or 37 in the notation of figure 10. The partition function
will hence depend on representations, one per vertex (i.e. face of the triangulation).

A note on notation: since each 3-cone carries a representation (which up to the final
paragraph of this subsection is held fixed) and an a-parameter (see figure 3), we will
identify the a-parameters by the corresponding representations when convenient.

Using the topological vertex, it was shown in [18] that the A-model topological string
partition function of the strip is given by a product of terms, with the individual factors
depending on the external representations and all possible pairings of these. Applied to
the fiducial strip, the results there specialize to

Zstrip(ao;ﬁT) = ﬁ ][5, HKj[ai’aﬂQ”i’“j Hi<j[ﬁi”8.7r]Qﬁiﬁj

-0 [ﬁl? O‘zT]Qﬁi,ai Hi<j [aia ﬁ]T] Qa5 [ﬁ“ O‘;A‘F]Qﬁi,aj

(2

. (3.3)
We explain each factor in turn.

e Each vertex v = o; or v = (31 contributes a representation dependent factor to the
partition function, which we have denoted by [v]. It is the n — oo limit of the Schur

12



polynomial evaluated for z; = q%_i, 1=1,...,n, given explicitly by

W] = (_1)dq%n('y) H [vi — %+J HH d+]—z

gy ] - Z
1<i<j<d =1 j5=1

= ][ @ -4 ﬁ (g<qa7_—hi) qéh?(av+d1>h¢+‘”(‘”;d‘”+(d‘1)1(22d_1))
1<i<j<d i=1 g(1)

= AX(9)) e~ 2T UX(M,a9) = gotr Ui (X (7),04)

We recall that h;(y) = v;—i+d+a,, and we have defined z; = ¢"* and X () is the diagonal

matrix X (y) = diag(¢™,¢",...,¢"). Furthermore, A(X) denotes the Vandermonde

determinant of the matrix X

1<i<j<d
and we have written .
U(X,a) =—gsIn 9(%) ,
g(1)
In X)?
Ui(X,a) = (n2 ) —(a+d—1)InX Ing+ C(a,d),
where C(a, d) = 44 4 (LURED,
We have .
w(y
W=a7 1], &) =-k()),
and thus
[’)/T] = A(X("y)) e s 2o trU(X(7),a4) G*étrﬁl(x(W)vav)’
where

- 1 .
Ui(X,a) = §1nX Ing+ C(a,d).

and C~’a7d is another constant which depends only on a and d and which will play no role
for our purposes.

e In addition, each pair of representations contributes a factor, reflecting the contribution
of the curve extended between the respective vertices. In the nomenclature of [18], the
representations «; are all of same type, and of opposite type relative to the 3;. If we take

i < j, representations of same type (corresponding to (-2,0) curves) contribute a factor
of

[Oéiaoé;"r] or | iT,ﬁj],
whereas representations of different type (corresponding to (-1,-1) curves) contribute a

factor of
1 1
or

[O‘ivﬁj] [ ?7a?] '

13



The pairing is given by [26, 9, 27, 18]

ly,67] = QW‘:‘“‘S' — E()=x(®) HH [hi(V)—hj.(fg)].

lay —as+j — 1]

=1 j=1
d Yi 1 d 61
-1 —k:
X
HH[ —a5+j—z+dH_ s —as—j+i—d Hg 84
=1 5=1 =1 ]—1
_ d(d N H q% (hs(8)2—hs(5 )(2aw+2d71)fa§+2awa5+(d721)a7+(217d71)a5) 11[(_1)51_
[a, — as)|? .
i=1 =1
ﬁ( _ i) Hg g —hi®)) g(gus—h())
J
e’ qor— a5 (qag—a—y)

x A(X(’Y),X((S)) e—g%TrU(X( )a(;)e—g—sTrU(X((S),a,y) T (TrUz(X(v),ag)-&-Tr02(X(6),a7))

I

(3.4)

where the square brackets on the RHS denote g-numbers as defined in (3.2), the symbol
A(X (), X(9)) signifies

A(X (), X(9)) = H(Xi(fS) - X;(7) = H(q}”“” —¢"), (3.5)

and

U2(X7 CL) = 07

02(X7 o) = (In X)?

1
—(a+d- 5) InX Ing+irln X.

The parameter @), reflects, given a choice of Kahler class J of the metric on X, the
curve class of the curve C extended between the vertices labeled by + and § via

Wys = / T Qv =g
c
and by the definition of the a-parameters
Wr 5 = Ay — Q5.
Substituting these expressions into (3.3), we obtain
Zstrip(CVOa s 7an;ﬁg7- o 767’1;) =

[T AX () Ty AX (), X(ay) TLAKXB)) Ty AKX (B, X(5)))
[L; AKX (), X(65)))

14




> H oo tr ;i) =V5(X () He oo trVi(X ()
xHel tr(V (X ﬁz He 95 tl"‘/z ﬂz (36)

where we have denoted by @ = (ag, s, . . ., an) (resp. b= (by, bs, . . ., b,)) the a-parameters
of representations on the upper side (resp. lower side) of the strip, and defined

= —g, Zln (¥ /X)) (3.7)

and

1
Vi(X)=InX Ingq <§ —Z(aj —bj)> +imn X

Vi(X)=InX Ingq (%—Z(ly—aﬁ) :

3.5 Gluing strips

To obtain the partition function for the full multistrip fiducial geometry X, we must glue
these strips along the curves labelled s; ; in figure 3.

Denoting the representations «;; on line 7 collectively by

o = (Oéo,i, al,i) cee ,Oén,i) 3
this yields
m+1 n m
— =T — S: s |las s
Zyertex(X0) = Z(n,m)(Ami1, d) = > H Zawsp(@s, @) [T Lo
aj,i,7=0,...,n;1=1,...,m 7=01i=1

(3.8)

Our goal now is to find a matrix integral which evaluates to this sum.

4 The matrix model

4.1 Definition

Consider the fiducial geometry X, of size (n 4+ 1) x (m + 1), with K&hler parameters
tij = Qij — Qi j+1, Tij = Gij+1 — Git14, and s;;, as depicted in figures 3 and 6. We

write
a; = (CLOJ‘, A1y 7an,i>~

15



Assume that the external representations are fixed to @pi1 = (0 m+15 X1 m+1s - - - s Ynmt1)
on the upper line, and dy = (g, ¥1,0, - - ., @np) on the lower line (for most applications,
one prefers to choose these to be trivial).

We now define the following matrix integral Zyn (yw for Matrix Model),

m+1 m+1
Bunn(Qu et @) = AX (@) AX(@) [[ [ [] [ am
i=0 HN(Fi) i=1 HN(RJr)
Hei tr [V, (Mi)—Va, , (M3)] Heg—; tr [Va,  (Mi—1)—Va, (Mi_1)]
i=1 i=1
m—+1 m
H itI‘(]\41'—]\41‘,1)]%1‘ H (Si-i-il)tr In M;
€9s e gs
=1 i=1
etr lnf()(M()) etr lnfm+1(M7n+1) Hetr lnfl(Ml) (41)
i=1

All matrices are taken of size

N=n+1)d,
where d is the cut-off discussed in section (3.3.1). We have introduced the notation
X (Omy1) = diag(X (Fpm+1)i)i=1,...N X (Omt1)jdrk = g (@gmer)
X(dp) = diag(X (do)i)i=1,..¥ , X(do)jask = qhk(aj’0)7
for k=1,...,d,j=0,...,n. A(X)=][,;(X; — X;) is the Vandermonde determinant.
Vz,(z) was introduced in (3.7). For ¢ = 1,...,m, we have defined
n 9(1)2 6(%+ﬁ) In (zq' ™ %1) e(h](wq;;:j*i))Q
fl(x):H 1—aj; aj i
i g(xq'=%1) g(q%i/x)
The denominator of these functions induces simple poles at x = ¢%-i* for j = 0,...,n and

[ € Z. The numerator is chosen such that they satisfy the relation f;(gz) = fi(z). This
enforces a simple [-dependence of the residues taken at x = ¢%#*!, given by a prefactor ¢
— a fact which will be important in the following. These residues are in fact given by

(n (¢ 1387 k,i))2

(3+1%) (14aj,i—ag ;) Ing
2 . g(1)? e'2" g 3Tk, e 295
Res fi(x) =gt f;;, = — ¢4 — — ——, (42)
gt ’ g g(g=em) (1 — goram @) g(ge=)
where f;z is independent of the integer [.
The parameters S; are defined by
Si = 50,i—1 + toi—1 = Sji-1 — Z lr,; + Z Tki—1 - (4.3)

k<j k<j
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The final equality holds for arbitrary j, and can be verified upon invoking (2.3) repeat-
edly.

For i = 0 and ¢« = m + 1, we define

folz) = !

ITj [T (2 — gs(es0)
1
ITj— [T (& — (o))

Notice that if the representations @y or @41 are trivial, i.e. h;(aj0) = d — i+ a;p or
hi(0jm+1) = d — i+ ajmy1, we have

fm-i-l(x) =

fo(z) = Y g(w gimwod)

o rtglrgtmae) ;

B n g(x qlfaj’erl*d)
fm+1 (x) - HO xd g(x ql_aj’m+1)

respectively. The functions fy and f,,41 have simple poles at z = ¢"(%0) (resp. x =
gM@m1)) for [ = 1,...,d, with residue

N 1 1
01 = Res T) = 5
fj,o,l Silor0) fO( ) Hj/#j H;l:1 (th(ajvo) _ qh"(aﬂ‘"(’)) H#l(qhz(ag‘,o) _ qhz’(Oéj,O))
A 1 1
im+1;1 — R m - .
f]’ +1l th(aﬁiﬂ) f + (:E) Hj’#j H?Zl(th(aj,mﬂ) _ qhi(aj’,mﬂ)) Hi#(th(aj,mﬂ) — qhi(aj,mﬂ))

The [ dependence here is more intricate than above, but this will not play any role since
the partitions ;o and «; 41 are kept fixed, and not summed upon.

The integration domains for the matrices R; are Hy(RY), i.e. the set of hermitian ma-
trices having only positive eigenvalues. For the matrices M;,7 = 1,...,m, the integration
domains are Hy(I';), where

n
L= 1] ()"
=0
7, is defined as a contour which encloses all points of the form ¢%+™ and does not
intersect any contours 7, (7,7) # (k,l). For this to be possible, we must require that

the differences a;; —a; ;» be non-integer. The normalized logarithms of two such contours
are depicted in figure 11.

We have defined
Hy(Ty) ={M =UAU', UcU(N), A=diag(\,...,\y) €T},

i.e. Hy(T;) is the set of normal matrices with eigenvalues on I';. By definition, the
measure on Hy(I';) is (see [28])

1
dM = i A(A)? dU dA | (4.4)
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Figure 11: Two contours surrounding points @ + N and b + N, such that a — b ¢ Z.

where dU is the Haar measure on U(N), (normalized not to 1, but to a value depending
only on N, such that the Itzykson-Zuber integral evaluates as given in (4.6) with pre-
factor 1), and dA is the product of the measures for each eigenvalue along its integration
path.

The integration domains for the matrices My, M1 are Hy(Ty), Hy(I';n41) respectively,

where .
FO = (Z ’yj70)N ) m+1 Z Y5, m+1 . (45)
§=0

The goal of the rest of this section is to prove that the matrix integral (4.1) reproduces
the topological string partition function for target space the fiducial geometry X,.

4.2 Diagonalization
Let us first diagonalize all matrices. We write
M, =U, X; U],
R; = U;Y; U},
where U; and Ul are unitary matrices.

By the definition (4.4), the measures dM; and dR; are given by

1
dM; = MA(Xi)QdUidXi : dRi:—A( )2 dU; dY; .

The matrix integral thus becomes

m+1

A 2
H/RNdY

o A(X(@,, a)) Tr
ZMM(Q,QS,OZmH;%T) = X (;\rfll 2m+3 H/ dX; A(X

m+1 m+1
H du; H du;
I1

=1

eq—tr[v (Xi)=Va, ,(X3)] Hegtr[vai,gxi_l)—vai(xi_l)]

i=1
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m+1 _ _ ~ _ m )
H eitrXinUmUjUi e;—;trXi_lUlT_lUi}QUJUi_l He(Sﬁ—%)tr In X;

i=1 i=1
m
et Info(Xo) otr In frnp1(Xme1) H ott In fi(X3)
i=1
Next, we introduce the matrices U;, U;, for i =1,...,m + 1, via

A~

U, =UlU, , U,=0lU_,.
We can express Uy, . .., Uy, 11, and U,.... Um+1, in terms of these matrices and U, 1,

Ui = Um+1 Um—‘rl Um—‘rl Um Um SR Ui—l—l Ui—‘rl )

Ui = Um+1 Um—i—l Um—‘rl Um Um ce Ui-l—l Ui+1 Uz .

With this change of variables, we arrive at

Zum(Q. gss Omgr, @) = (Nv)2m+3 H X A(X H . dY; A(Y;)?
m—+1 m+1

/ Ui [] dU: ] dU:
i1 i1
He—l tr [V (X) @ 1(X1)] Heisltr [Vaiil(Xifl)—Vai(Xifl)]

i=1 =1
m+1
H e—trX Rinai efltrxl Uy, 0; He(S i+40) tr In X;
=1
m

et In fo(Xo) tr In frnt1 (Xmt1) Hetr In f;(X;)

=1

Notice that the integral over U, 41 decouples, and [ dU,,+1 = Vol(U(N)).

4.3 Itzykson-Zuber integral and Cauchy determinants
The U; and U; appear in the form of Itzykson-Zuber integrals [29],

det,, ,(e*r¥a)

AX)A(Y) (46)

I(X, Y) — /deetrXUYUJr _

where z, and y, are the eigenvalues of X and Y. We thus have

m—+1

H/RNdYA

o A(X (&, ) Tr
ZMM(Q;Qs,am+17aoT) X X (]J\r[1|§2m+3 H/ dX; A(X
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m m

Heg [V (Xi)=Vg 1(Xi)] He%tr{Vﬁifl(Xi—l)_V%‘(X"—l)]

o .
[T 7w v 1L vy [T v
i=1 Ys i=1

etr In fo(Xo) etr In frt1(Xm+1) H tr ln f; (X

A(X(Fni1)) AX(a + pas,
x (N1)2m+3 / dX; H /]RN dY;
A( m+1 Hegltr Va;_ 1(X
6;751 tr [Vdifl(X’ 1)—Va, (Xi- 1)} He(si—&—;—:)tr In X;
i=1 i=1
m—+1

H det(egis(xi)l’(yi)q) det(e;*;(xi—l)P(Yi)Q)
. p?q p,q

m

etr nfo(Xo) otr In frny1(Xims1) H et o fi(Xi)

i=1

Y

where we have dropped an overall sign, powers of g5, and the group volume Vol(U(N))
which are constant prefactors of no interest to us.

: N
Next, we perform the integrals over Y; along RZ'.

/ deet(eg%(Xi)p(Y)q) det(eg—:(Xm)p(Y)q)
]RN

D.q X
- ZZ(_l)U(_1)5 ﬁ/oo dyp6%((Xi)a(p)—(xzel)&(p))
c & p=170
N
— _1\o(_1\0 Js
;;( 1)7(-1) ]_II(XZ_I)&@)_(XZ)J@)

p:
1
= NlgV det( )
pa \ (Xi—1)p — (Xi)g

Note that the integral is only convergent for (X;),) — (Xi-1)s() < 0. For X; that violate
this inequality, we will define the integral via its analytic continuation given in the third
line.

An application of the Cauchy determinant formula,

< 1 ) _ hcicjzan(®y —2)(y; —4i)

zi +Y; I17= (2 + ) ’
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yields

1(x, “1(x, N A(X;) A(X; 1)
de t(e9s (Xz)p (Y)q d t 9s (Xz—l)P (Y)q = (—1 (Q)N' N 7 7
[ avdette ) det(c )= (n®mgy ol

where the notation A(X;_1, X;) was introduced in (3.5). Evaluating the Y; integrals thus,
and continuing to drop overall signs and powers of gy, our matrix integral becomes

A(X (@me1)) AX (@) Tr

) m+3 H/ dX; A(X

Hegltr (X0~ Va, (X)) Hegltr (X)) =V, (Xio1)]
=1

ZMM(Q7gSa&m+17&g) X

m+1 m
H H e (S: —‘rm tr In X;
A X’L 17X
i=1
m
et Info(Xo) otrIn frnt1(Xms1) H et I fi(Xq)
=1

4.4 Recovering the sum over partitions

Following the steps introduced in [11] in reverse, we next decompose the diagonal matrix
X, into blocks,
X; = diag (Xo4, X145+ -+, Xni) s

where each matrix Xj; is a d x d diagonal matrix whose eigenvalues are integrated on the
contours 7;; surrounding points of the form ¢%+™. We arrive at

) ) A X &m _, m+1 n
ZMM(QagS7am+17ag> X ( ( (Xfll))m—&-S H H/

1030 (v,0)

m—+1
A(Xi1)A(X;)
A
( m+1 n A(Xz 17X)

=1

Heg—l r [Va, (Xi)—Va, , (X3)] Heq—tr[va L (Xi1) =V, (Xiow)]
i=1

m
etI‘ lnf()(X()) etr lnfm+1(Xm+1) H etI‘ lnfl(Xl) H 6(51+£)tr lnXl ,

with
A(Xl_l)A(Xl) H A( 78— 1) H A( jl) H i<l A( 7yi—1> Xlz 1) H]<l A( ijl,i)
A(Xi—laXi) B H]lA( Jyi— 17Xlz) '

Our next step is to evaluate the dX;; integrals via Cauchy’s residue theorem. The poles
of the integrands lie at the poles of f;, and the zeros of A(X;_1,X;). However, we have
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been careful to define our contours 7;, in a way that only the poles of f; contribute.
These lie at the points ¢%+ ™. Hence, the integrals evaluate to a sum of residues over the
points

(X = qaj’ﬁ(hj‘i)l )
where each (h;;); is a positive integer.
Since the integrand contains a Vandermonde of the eigenvalues of X ;, the residues vanish
whenever two eigenvalues are at the same pole of f;, i.e. if two (h;;); coincide. Moreover,
since the integrand is symmetric in the eigenvalues, upon multiplication by N!, we can
assume that the (h;;); are ordered,

(hji)r > (hji)2 > (hji)s > -+ > (Rji)q > 0.

The (h;;); hence encode a partition a;; via (h;;); = (o) —i+d, and we have reduced our
integrals to a sum over partitions. In terms of the function h;(«) introduced in (3.1),

(X0 =¢" %) hy(ays) = (hja)i + ajq

hl(ozj7i) > hg(Oéjﬂ') > > hd(Oljﬂ') > Qi
Notice that unlike f;, i =1,...,m, fo and f,,,1 only have a finite number of N = (n+1)d
poles. Since the (o)1, (hjm+1): respectively can be chosen pairwise distinct and ordered,

fo and f,,+1 act as delta functions in the integrals over the N x N matrices Xy and X1,
and fix these to the prescribed values X (dp) and X (&,,41) respectively.

Performing the integrals hence yields
(d))*

(“ A(X d;))

ZMM(Qagsa&m+lv&g> (S8 A( (Oém+1))

A(X
Z T A(
, , . A(
{a;,ili=0,...,n;i=1,...,m+1} =1

1tr[vai(x(&i))—vai_l(X(&i))} H ;}tr[vai_l(X(ai_l))_vai(X(ai_l))]

e 9s
=1
m .
He(Si—F%)tr In X (@;)
=1 i

Notice that
H H Res fo= ;,
g0 A(X(d))?
TIIT , Res  foi = oo
gt ey AX (Gmt1))?
Furthermore,

ReS fz _ th(a] 7.) f;z

hl(aj i) ’
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where f;; computed in (4.2) is independent of /;(c;;). We thus have

R, . — (S;+1)tr In X (&;) A'i d
ejsn f) € ]HO (fj, )

StrlnX(al f[:ll:[ <

Upon substituting the expression (4.3) for S;, we finally arrive at

(4.7)

— T
ZMM(Qa s, Omy1, O )
m n

III] (e >

i=1 j=0 {a;,i]7=0,...,n;i=1,...,m+1}

T AKX (gi-)) TT AX () TTio AX (i), X(awio1) Tio AX (i), X (o4))

1:[ [T AX(ai-1), X (i)

ﬁ Shr [Va, (X(@:)~Va,_, (X(@ ﬁ - o (3= <k(05i—a5,i-1) = T)tr In X ()
i=1 i=1 k=0

ﬁeg;tr [Va,_y (X (&i-1))=Va, (X (di-1))] ﬁﬁe 5 ek (@g.i—az,041))tr In X (o)
i i=1 k=0

Comparing to (3.6) and (3.8), we conclude

ZMM<Q7 Js, O_ZTYH-IJ 623;) X

1.e.

m+1

H Zstrip<05 «
=1

m

n

siqlagg
) TITT o
7=01

=0 =1

2.

aj,i:j:()w"vn; =1,...,m

— ezg 959_2 GWQ(XO) .

ZMM(Qa Js, &m—l—la 070T) X Zvertex(%O)

Up to a trivial proportionality constant, we have thus succeeded in rewriting the topolog-
ical string partition function on the fiducial geometry Xy as a chain of matrices matrix

integral.

By our reasoning in section 2.2, this result extends immediately to arbitrary

toric Calabi-Yau 3-folds as follows. We have argued that any such 3-fold can be obtained
from a sufficiently large choice of fiducial geometry via flops and limits. The respective
partition functions are related via (2.5). Upon the appropriate variable identification, we
hence arrive at a matrix model representation of the topological string on an arbitrary

toric Calabi-Yau 3-fold.

5 Implications of our result

We have rewritten the topological string partition function as a matrix integral.

This

allows us to bring the rich theory underlying the structure of matrix models to bear on
the study of topological string.
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The type of matrix integral we have found to underlie the topological string on toric
Calabi-Yau 3-folds is a so-called chain of matrices. This class of models has been studied
extensively [30, 28], and many structural results pertaining to it are known.

5.1 Loop equations and Virasoro constraints

The loop equations of matrix models provide a set of relations among correlation functions.
They are Schwinger-Dyson equations; they follow from the invariance of the matrix inte-
gral under a change of integration variables, or by an integration by parts argument.

Loop equations for a general chain of matrices have been much studied in the litera-
ture, in particular in [31, 32, 33, 34]. They can be viewed as W-algebra constraints (a
generalization of Virasoro constraints) [35]. Having expressed the topological string parti-
tion function as a matrix integral, we can hence conclude that Gromov-Witten invariants
satisfy W-algebra constraints.

Moreover, a general formal solution of loop equations was found in [34], and expressed in
terms of so-called symplectic invariants Fj of a spectral curve. The spectral curve for a
matrix integral is related to the expectation value of the resolvent of the first matrix in

the chain,
NG
W(z) = {t .
(x) <fx_M0>

The superscript (9 indicates that the expectation value is evaluated to planar order in a
Feynman graph expansion.

The symplectic invariants Fj,(C) of an arbitrary spectral curve C were defined in [36]. [34]
proved that for any chain of matrices integral Z, one has

nZ =Y F,C)

with C the spectral curve associated to the matrix integral.

Calculating the spectral curve of a chain of matrices matrix model with complicated
potentials poses some technical challenge. We will present the spectral curve for our
matrix model (4.1) in a forthcoming publication [17].

5.2 Mirror symmetry and the BKMP conjecture

The mirror X of a toric Calabi-Yau 3-fold X is a conic bundle over C* x C*. The fiber
is singular over a curve, which we will refer to as the mirror curve Sy of X. It is a plane
curve described by an equation

Sk : H(e" eY) =0,
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where H is a polynomial whose coefficients follow from the toric data of X and the Kahler
parameters of the geometry.

Mirror symmetry is the statement that the topological A-model partition function with
target space X is equal to the topological B-model partition function with target space

X.
Bouchard, Klemm, Marino and Pasquetti (BKMP) have conjectured in [16] that

GW,y(X) = Fy(Sy) -

Here, the F,’s are the symplectic invariants introduced in [36]. The main interest of this
conjecture is that it provides a systematic method for computing the topological string
partition function, genus by genus, away from the large radius limit, and without having
to solve differential equations.

This conjecture was motivated by the fact that symplectic invariants have many intriguing
properties reminiscent of the topological string free energies. They are invariant under
transformations S — S which conserve the symplectic form dz A dy = dZ A d§j, whence
their name [36]. They satisfy holomorphic anomaly equations [37], they have an integrable
structure similar to Givental’s formulae [38, 39, 40, 41, 42|, they satisfy some special
geometry relations, WDVV relations [43], and they give the Witten-Kontsevich theory as
a special case [36, 44].

BKMP succesfully checked their claim for various examples to low genus.

The conjecture was proved for arbitrary genus in [7] for X a Hirzebruch rank 2 bundle
over P! (this includes the conifold). Marshakov and Nekrasov [10] proved F = GWj for
the family of SU(n) Seiberg-Witten models. Klemm and Sutkowski [11], generalizing [7]
to Nekrasov’s sums over partitions for SU(n) Seiberg-Witten gauge theories, proved the
relation for Fj, building on work in [45]. In fact, it seems easy to extend their computation
to arbitrary genus Fj. In [46], Sutkowski provided a matrix model realization of SU(n)
gauge theory with a massive adjoint hypermultiplet, using again a generalization of [7]
for more general sums over partitions. Bouchard and Marino [47] noticed that an infinite
framing limit of the BKMP conjecture for the framed vertex X = C3 implies another
conjecture for the computation of Hurwitz numbers, namely that the Hurwitz numbers of
genus g are the symplectic invariants of genus ¢ for the Lambert spectral curve e* = ye™Y.
That conjecture was proved recently by another generalization of [7] using a matrix model
for summing over partitions [13], and also by a direct cut and join combinatorial method
[48]. The BKMP conjecture was also proved for the framed vertex X = C? in [49, 50],
using the ELSV formula and a cut and join combinatorial approach.

Since we have demonstrated that the topological string partition function is reproduced
by a matrix model, we can conclude that the Gromov-Witten invariants coincide with the

symplectic invariants
D gHTGW, =) F0),
g G
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with C the spectral curve of our matrix model. We will compute C explicitly in a forthcom-
ing work [17], and demonstrate that it indeed coincides, up to symplectic transformations,
with the mirror curve Sj.

5.3 Simplifying the matrix model

The matrix models associated to the conifold or to geometries underlying Seiberg-Witten
theory have a remarkable property: the spectral curve is the same (perturbatively and up
to symplectic transformations) as the one of a simpler matrix model withe all g-functions
replaced by only the leading term in their small In ¢ expansion. We will demonstrate in a
forthcoming work [17] that this property also holds for our matrix integral (4.1). We can
hence simplify the potentials of our matrix model, arriving at

m+1 m+1

— T —
Za(Qugs st 6) = AN () A (0[] [ am I1 /.
7, (Ts) (R4
m
Heétr 27 o (Liz(q“9t /M;)—Liz (q%3-i=1 /M)
=1
m—1
T 5 = Siotbiata®st M —Lisas41 /1)
=0
m—+1 m
1 M . i )
eg—str (M;—M;_1)R; H 6(SergS)tr In M; 7
i=1 =1

where the matrix M; is of size n; = Zj N

Classical limit

In the classical limit, the dilogarithm Liy becomes the function z Inx, and we have

m+1 m+1
- T -
Zeff. Cl(Q? sy Om41, aO) = A<X(Oém+1> H / dM H /
g (F ) n R+)

m
H 1trzn oMi—aj ;) In(aj;—M;)—(M;—aj;—1) In(aj;—1—M;)
i=1
m—1

eg%tr i=o(Mi—aji) In(a;;—M;)—(Mi—aj,it1) In(a;,i41—M;)
=0
m—+1 m )
H eétl‘ (Mi_Mi—l)Ri H e(Sl—f—%)tr lan‘ .
=1 =1

This model shares features with the Eguchi-Yang matrix model [51], see also [10].
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6 Conclusion

We have rewritten the topological vertex formula for the partition function of the topo-
logical A-model as a matrix integral.

Having expressed the topological string in terms of a matrix model, we can bring the
immense matrix model toolkit which has been developed since the introduction of random
matrices by Wigner in 1951 to bear on questions concerning the topological string and
Gromov-Witten invariants. We already started down this path in section 5 above. Going
further, we can apply the method of bi-orthogonal polynomials [28] to our matrix model to
unearth the integrable system structure (Miwa-Jimbo [52, 53]) underlying the topological
string, at least in the case of toric targets, together with its Lax pair, its Hirota equations
(which arise as orthogonality relations), etc. In a related vein, free fermions [54, 55]
arise in the theory of matrix models when invoking determinantal formulae to express
the matrix model measure [56]. It will be very interesting to explore how this is related
to the occurrence of free fermions in topological string theory, as studied in [57, 58, 59,
60]. More generally, one should study what can be learned about the non-perturbative
topological string from its perturbative reformulation as a matrix model, as in the works
(61, 62, 63, 64]. A recurrent such question, which could be addressed in the matrix model
framework (in fact, it was already latently present in the calculations in this work), is
that of the quantization of Kahler parameters.

On a different note, notice that the matrix model derived in this article, with a potential
which is a sum of logs of g-deformed I' functions, looks very similar to the matrix model
counting plane partitions introduced in [65]. This is a hint that it could be possible to
recover the topological vertex formula, corresponding to the topological string with target
C3 and appropriate boundary conditions, directly from the matrix model approach. Either
along these lines or the lines pursued in this paper, it would be interesting to derive a
matrix model related to the Nekrasov deformation [8, 66] of the topological string.

A completely open question is whether the close relation between topological strings and

matrix models persists beyond toric target spaces, and more ambitiously yet, whether
there exists a general notion of geometry underlying matrix models.
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A qg-product

The g-function, which plays a central role in the definition of our matrix model, is defined
as an infinite product,
~Tlo-1o
=1

It is the quantum Pochhammer symbol g(z ) = [q/7; (], and it is related to the g-
deformed gamma function via T'y(z) = (1 — ¢)' " g(1)/g9(¢* ™).

The RHS is convergent for |¢| < 1 and arbitrary complex = # 0. g(x) satisfies the
functional equation

olax) = (1= ) gla).

For n € N, we have

9(¢") =0
and
wiy 1T (nt1) iy g(1)?
J@) =(0)""gW)g 7 [[Iml=9)g "7 1= (-1)""qg "> T
m=1 g(q )
Via the triple product representation of the theta function,
9(277_) _ H(l . 62m’m7)(1 + €(2m—1)77i7—+277iz)(1 + 6(2m—1)7ri7'—27riz)7
m=1
we obtain the identity
1 1 q Ingq q
0 —In—; = =)g(1).
(2 b 2m) o()g( Do)
We have
g(q;) (q/) <12nl:c>2 sinlne —Ing 0 (lnx 1 s —22'7T>
(& ng e ngq e - - o
91?2 0'(3 — s —ts) Ing 2 Ing Ing

where 6 is the Riemann theta-function for the torus of modulus —2i7/Ingq.

At small In ¢, the following expansion is valid,

’Vl

1 (0.0
1 = (Inq)" Lis_n(1/x),
ng(e) = - Z (1ng)" Lis (1/%)

where we have used the definition of the Bernoulli numbers B,, as the coefficients in the
expansion of t/(e! — 1),




Li, is the polylogarithm function, defined as

> k

Liy(x) = )

k=1

Ellke

This is a generalization of the logarithm function, recovered at n =1,
Li;j(x) = —In(1 — x).

It satisfies the functional relation

Ii(x)::iLg_ﬂx). (A1)

n

Note in particular that this implies that Li, is an algebraic function of x for n < 0.
E.g.,

ngzlfx
We also define the function /()
g (x

Vo) =2

Using the functional equation (A.1) of the polylogarithm, we find its small In(q) expan-
sion

Yy(z) = “ng nonOnCI) Li;_n(1/x)
1 1 Ingq 2. By, o T
= — In(l—=)— ——— Ing)™ Li; 2, ]
Ing [ n x) 2(x —1) ; (2n)! (Ing)™ Liz—n(x)
For the second equality, we have used By =1, B; = —%, and By,11 =0 for n > 1.
We have near xr — oo 4
q _
Yy(z) ~ T—quz +0(a7?)
and near x — 0: L iral
Y(@) ~ 5+ + 0w,
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