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C.P. 6128, Succ. centre-ville Montréal, Qué, H3C 3J7, Canada.

Abstract

We construct a matrix model that reproduces the topological string partition
function on arbitrary toric Calabi-Yau 3-folds. This demonstrates, in accord with
the BKMP “remodeling the B-model” conjecture, that Gromov-Witten invariants of
any toric Calabi-Yau 3- fold can be computed in terms of the spectral invariants of a
spectral curve. Moreover, it proves that the generating function of Gromov-Witten
invariants is a Tau-function for an integrable hierarchy. In a follow-up paper, we
will explicitly construct the spectral curve of our matrix model and argue that it
equals the mirror curve of the toric Calabi-Yau.
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1 Introduction

In the topological string A-model, the object of study is the moduli space of maps from
a Riemann surface Σg of genus g to a given Calabi-Yau target space X. Its partition
function is the generating function of Gromov-Witten invariants of X, which roughly
speaking count these maps.

In recent years, deep connections have been unrooted between the topological string on
various geometries and random matrix models. A classic result in the field is that inter-
section numbers, which are related to the Gromov-Witten theory of a point, are computed
by the Kontsevich matrix integral [1], see also [2]. In the Dijkgraaf-Vafa conjecture [3]
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such a connection is obtained between the topological B-model on certain non-compact
Calabi-Yau manifolds and a 1-matrix model.

In the 20 years that have passed since topological string theory was formulated [4, 5], var-
ious techniques have been developed for computing the corresponding partition function.
The topological vertex method [6] solves this problem completely for toric Calabi-Yau
3-folds at large radius, furnishing the answer as a combinatorial sum over partitions.
On geometries with unit first Betti number (the conifold and O(−2) → CP1 × C), this
formalism yields the partition function as a sum over a single partition with Plancherel
measure. In [7], such a sum was rewritten as a 1-matrix integral. More complicated
examples, such as the topological string on geometries underlying Seiberg-Witten SU(n)
theory, can be written as sums over multiple partitions [8, 9, 10]. 1-matrix integrals that
reproduce the corresponding partition functions were formulated in [11]. Multi-matrix
integrals have arisen in rewriting the framed vertex as a chain of matrices integral [12].
Its Hurwitz-numbers limit (infinite framing of the framed vertex geometry) was shown to
be reproduced by a 1-matrix model with an external field in [13, 14].

Here, generalizing the method of [7], we are able to formulate a matrix model which
reproduces the topological string partition function on a certain fiducial geometry, which
we introduce in the next section. Flop transitions and limits in the Kähler cone relate the
fiducial geometry to an arbitrary toric Calabi-Yau. As we can follow the effect of both of
these operations on the topological string partition function, our matrix model provides
a description for the topological string on an arbitrary toric Calabi-Yau manifold.

By providing a matrix model realization, we are able to transcribe deep structural insights
into matrix models to the topological string setting. E.g., our matrix model involves
a chain of matrices, and chain of matrices integrals are always Tau functions for an
integrable system. By providing a matrix model realization, we hence prove integrability
of the generating function of Gromov-Witten invariants.

Moreover, matrix models satisfy loop equations, which are known to be equivalent to
W-algebra constraints. A general formal solution to these equations was found in [15],
centered around the introduction of an auxiliary Riemann surface, referred to as the
spectral curve of the system. The partition and correlation functions of the matrix model
are identified with so-called symplectic invariants of this curve. The BKMP conjecture [16]
identifies the spectral invariants of the mirror curve to a toric Calabi-Yau manifold with
the topological string partition function with the Calabi-Yau manifold as target space. In
a forthcoming publication [17], we will compute the spectral curve of our matrix model
explicitly, thus establishing the validity of this conjecture.

The outline of this paper is as follows. In section 2, after a very brief review of toric
geometry basics, we introduce the fiducial geometry and the notation that we will use in
discussing it throughout the paper. We also review the transformation properties of the
topological string partition function under flop transitions, which will relate the fiducial
to an arbitrary toric geometry, in this section. We recall the topological vertex formalism
and its application to geometries on a strip [18] in section 3. Section 4 contains our main

2



result: we introduce a chain of matrices matrix model and demonstrate that it reproduces
the topological string partition function on the fiducial geometry. We discuss implications
of this result in section 5, and end with conclusions in section 6.

2 The fiducial geometry and flop transitions

Toric geometries present a rich class of very computable examples for many questions in
algebraic geometry. The topological vertex formalism provides an algorithm for computing
the generating function for Gromov-Witten invariants on toric 3 dimensional Calabi-Yau
manifolds. These are necessarily non-compact and have rigid complex structure.

The geometry of toric manifolds of complex dimension d can be encoded in terms of a d
dimensional fan Σ, consisting of cones of dimensions 0 to d. We denote the set of all n
dimensional cones as Σ(n). Each such n-cone represents the closure of a (C∗)d−n orbit.
In particular, 1-cones correspond to hypersurfaces, and for d = 3, our case of interest,
2-cones correspond to curves.

The fan for the class of geometries we are interested in is constructed by triangulating
a finite connected region of the Z2 lattice containing the origin, embedding this lattice
in Z3 within the (x, y) plane at z = 1, and defining the cones of the fan via half-lines
emanating at the origin and passing through the vertices of this triangulation.1

We can associate a dual diagram to such toric fans, a so-called web diagram, spanned by
lines orthogonal to the projection of 2-cones onto the Z2 lattice. In the web diagram, the
relation between the dimension of the components of the diagram and the submanifold of
the toric geometry they represent coincide: 3-cones (points) correspond to vertices, and
2-cones (curves) to lines, see figure 1.

Figure 1: Example of a box triangulation, corresponding to a 3 dimensional toric fan. The diagram
in red is the dual web diagram. Vertices of the triangulations (faces of the web diagram) correspond to
1-cones, edges correspond to 2-cones, and faces (vertices of the dual) correspond to 3-cones.

1The canonical class of a toric manifold is given by the sum over all torically invariant divisors. The
construction sketched above guarantees that this sum is principal, hence the canonical class trivial: the
monomial associated to the 1-cone (0, 0, 1) generates the class in question. See e.g. [19].
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2.1 The fiducial geometry

The geometry X0 we will take as the starting point of our considerations is depicted in
figure 2.

Figure 2: Fiducial geometry X0 with boxes numbered.

Since the torically invariant curves play a central role in our considerations, we introduce
a labeling scheme for these in figure 3: (i, j) enumerates the boxes as in figure (2), and we
will explain the a-parameters further below. In the following, we will, when convenient,

Figure 3: Labeling curve classes, and introducing a-parameters.

use the same notation for a torically invariant curve Σ, its homology class [Σ] ∈ H2(X0,Z),
and its volume or associated Kähler parameter

∫
Σ
J , given a Kähler form J on X0. The

classes of the curves ri,j, si,j, ti,j are not independent. To determine the relations among
these, we follow [20, page 39, 40]. Consider the integer lattice Λ spanned by formal
generators eρ, ρ ∈ Σ(1) 1-cones of the toric fan,

Λ = {
∑
ρ∈Σ(1)

λρeρ|λρ ∈ Z} .
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Each torically invariant curve, corresponding to a 2-cone of the fan, maps to a relation
between 1-cones, and thus to an element of the lattice Λ, as follows: a 2-cone σ is spanned
by two integral generators v1 and v2, and it is contained in precisely two 3-cones, which
are each spanned by v1, v2 and one additional generator v3, v4 respectively. These vectors
satisfy the relation

∑4
i=1 λivi = 0, where the λi can be chosen as relatively prime integers,

and as v3 and v4 lie on opposite sides of σ, we can assume that λ3, λ4 > 0. [20] shows
that on a smooth variety, the sublattice Λh generated by the elements

∑4
i=1 λiei of Λ is

isomorphic to H2(X0,Z). We will also call this isomorphism λ,

λ : H2(X0,Z)→ Λh .

Figure 4 exemplifies this map. It allows us to easily work out the relation between the

 

Figure 4: The 2-cone σ corresponds to the relation ~λ among 1-cones.

various curve classes. Consider figure 5. The images of the curve classes depicted there

Figure 5: Determining the relation between curve classes.

under λ are,

λ(ri,j) = e5 + e6 − e4 − e7

λ(ri,j−1) = e2 + e3 − e1 − e4

λ(ti,j) = e3 + e7 − e4 − e6

λ(ti+1,j−1) = e1 + e5 − e2 − e4
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We read off the relation
ti,j + ri,j = ti+1,j−1 + ri,j−1 . (2.1)

By symmetry, we also have

ti,j + si,j−1 = ti+1,j−1 + si+1,j−1 .

A moment’s thought convinces us that this constitutes a complete basis for the space of
relations. We can solve these in terms of the classes of the curves ri, si, ti,j, i, j = 0, 1, . . .
depicted in figure 6, which hence generate H2(X0,Z). The explicit relations are

Figure 6: Fiducial geometry with choice of basis of H2(X0,Z).

ri,j = ri +

j∑
k=1

(ti+1,k−1 − ti,k)

si,j = sj +
i∑

k=1

(tk−1,j+1 − tk,j)

Our computation for the partition function on X0 will proceed by first considering the hor-
izontal strips in the toric fan describing the geometry, as depicted in figure 2, individually,
and then applying a gluing algorithm to obtain the final result.

For each strip, we find it convenient to write the curve class wIJ ∈ H2(X0,Z) of the curve
extending between two 3-cones which we label by I and J (recall that 3-cones correspond
to vertices in the dual web diagram), with J to the right of I, as the difference between
two parameters aI and aJ associated to each 3-cone,

wIJ = aI − aJ . (2.2)

We call these parameters, somewhat prosaically, a-parameters. It is possible to label the
curve classes in this way due to their additivity along a strip. In terms of the notation
introduced in figure 3, we obtain

ti,j = ai,j − ai,j+1 , ri,j = ai,j+1 − ai+1,j .
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By invoking the relation (2.1), we easily verify that upon gluing two strips, the curve class
of a curve extending between two 3-cones I and J on the lower strip is equal to the class
of the curve between the 3-cones I ′ and J ′ on the upper strip, where the cones I and I ′

are glued together, as are the cones J and J ′,

wIJ = wI′J ′ (2.3)

This allows us to identify the parameters aI = aI′ and aJ = aJ ′ associated to 3-cones
glued together across strips.

Note that the basic curve classes si are not captured by the parameters ai,j.

2.2 Flop invariance of toric Gromov-Witten invariants

Under the proper identification of curve classes, Gromov-Witten invariants (at least on
toric manifolds) are invariant under flops. Assume X and X+ are related via a flop
transition, φ : X→ X+. In a neighborhood of the flopped (−1,−1) curve, the respective
toric diagrams are depicted in figure 7.

τ0 τ+
0τ1

τ2

τ3

τ4

τ1

τ4

τ3

τ2

Figure 7: X and X+ in the vicinity of the (-1,-1) curve.

The 1-cones of ΣX, corresponding to the toric invariant divisors of X, are not affected by
the flop, hence can be canonically identified with those of X+. The 2-cones τi in these
diagrams correspond to toric invariant 2-cycles Ci, C

+
i in the geometry. The curve classes

of X push forward to classes in X+ via

φ∗([C0]) = −[C+
0 ] , φ∗([Ci]) = [C+

i ] + [C+
0 ] . (2.4)

All other curve classes of X are mapped to their canonical counterparts in X+. Under
appropriate analytic continuation and up to a phase factor (hence the ∝ in the following
formula), the following identity then holds [21, 18, 22]

ZGW (X, Q0, Q1, . . . , Q4, ~Q) ∝ ZGW (X+, 1/Q0, Q0Q1, . . . , Q0Q4, ~Q) . (2.5)

i.e.

GWg(X, Q0, Q1, . . . , Q4, ~Q) = GWg(X
+, 1/Q0, Q0Q1, . . . , Q0Q4, ~Q) .

Any toric Calabi-Yau manifold X with Kähler moduli ~Q can be obtained from a sufficiently
large fiducial geometry (X0, ~Q0) upon performing a series of flop transitions and taking
unwanted Kähler moduli of X0 to ∞. As an example, we show how to obtain the P2

geometry from the fiducial geometry with 2× 2 boxes in figure 8.

7



Figure 8: We obtain local P2 from the fiducial geometry with 2× 2 boxes by performing five flops and
then sending the Kähler parameters of the unwanted edges to ∞.

3 The partition function via the topological vertex

3.1 Gromov-Witten invariants

Gromov-Witten invariants Ng,D(X) roughly speaking count the number of maps from a
Riemann surface of genus g into the target space X, with image in a given homology class
D = (D1, . . . , Dk) ∈ H2(X,Z). They can be assembled into a generating series

GWg(X, Q) =
∑
D

Ng,D(X)QD.

Each GWg(X, Q) is a formal series in powers QD =
∏

iQ
Di
i of the parameters Q =

(Q1, Q2, . . . , Qk), the exponentials of the Kähler parameters.

We can introduce a generating function for Gromov-Witten invariants of all genera by
introducing a formal parameter gs (the string coupling constant) and writing

GW (X, Q, gs) =
∞∑
g=0

g2g−2
s GWg(X, Q) .

It is in fact more convenient to introduce disconnected Gromov-Witten invariantsN ∗χ,D(X),
for possibly disconnected surfaces, of total Euler characteristics χ, and to define

ZGW (X, Q, gs) = eGW (X,Q,gs) =
∑
D

QD
∑
χ

g−χs N ∗χ,D(X).

For toric Calabi-Yau manifolds, an explicit algorithm was presented in [6] for computing
ZGW via the so-called topological vertex formalism, proved in [23, 24].
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3.2 The topological vertex

In the topological vertex formalism, each vertex of the web diagram contributes a factor
Cq(α, β, γ) to the generating function of GW-invariants, where the α, β, γ are Young
tableaux associated to each leg of the vertex, and Cq(α, β, γ) is a formal power series in
the variable q, where

q = e−gs .

Topological vertices are glued along edges (with possible framing factors, see [6]) carrying
the same Young tableaux α by performing a sum over α, weighted byQ|α|, withQ encoding
the curve class of this connecting line,

Zvertex(X, Q, q) =
∑

Young tableauxαe

∏
edges e

Q|αe|e

∏
vertices v=(e1,e2,e3)

Cq(αe1 , αe2 , αe3) .

Note than in practical computations, the sum over representations can ordinarily not be
performed analytically. A cutoff on the sum corresponds to a cutoff on the degree of the
maps being counted.

The equality
ZGW (X, Q, gs) = Zvertex(X, Q, q)

holds at the level of formal power series in the Q’s, i.e. in the large radius expansion. It
was proved in [24] that the log of the right hand side indeed has a power series expansion
in powers of gs.

3.3 Notations for partitions and q-numbers

Before going further in the description of the topological vertex formula, we pause to fix
some notations and introduce special functions that we will need in the following.

3.3.1 Representations and partitions

Representations of the symmetric group are labelled by Young tableaux, or Ferrer dia-
grams.

For a representation γ, we introduce the following notation:

• γi: number of boxes in the i-th row of the Young tableau associated to the repre-
sentation γ, γ1 ≥ γ2 ≥ · · · ≥ γd ≥ 0.

• The weight |γ| =
∑

i γi: the total number of boxes in the corresponding Young
tableau.

• The length l(γ): the number of non-vanishing rows in the Young tableau, i.e. γi = 0
iff i > l(γ).

• The Casimir κ(γ) =
∑

i γi(γi − 2i+ 1).

9



• γT denotes the conjugate representation, which is obtained by exchanging the rows
and columns of the associated Young tableau. We have |γT | = |γ|, l(γT ) = γ1, and
κ(γT ) = −κ(γ).

Moreover, an integer d > 0 will denote a cut-off on the length of representations summed
over,

l(γ) ≤ d.

Most expressions we are going to write will in fact be independent of d, and we shall argue
in [17], following the same logic as in [7] based on the arctic circle property [25], that our
results depend on d only non-perturbatively.

Also, to each representation γ, we shall associate a parameter a as introduced in (2.2).

Instead of dealing with a partition γ, characterized by the condition γ1 ≥ γ2 ≥ . . . ≥ γd ≥
0, it will prove convenient to define the quantities

hi(γ) = γi − i+ d+ a , (3.1)

which satisfy instead
h1 > h2 > h3 > · · · > hd ≥ a .

The relation between γ and h(γ), for the off-set a = 0, is depicted in figure 9.

10 hh hh hhhh hh 23 1456789

!
2!
1

!
3

!
4

!
5

!
6

!
7
8
!
!
9

Figure 9: Relation between a partition γ and h(γ).

We finally introduce the functions

xi(γ) = qhi(γ) .

In terms of the hi(γ), we have

κ(γ) =
∑
i

h2
i − (2d+ 2a− 1)

∑
i

hi + dCd,a ,

where Cd,a = 1
3
(d− 1)(2d− 1) + a(a+ 2d− 1).
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3.3.2 q-numbers

We choose a string coupling constant gs such that the quantum parameter q = e−gs

satisfies |q| < 1. A q-number [x] is defined as

[x] = q−
x
2 − q

x
2 = 2 sinh

x gs
2

. (3.2)

q-numbers are a natural deformation away from the integers; in the limit q → 1, 1
gs

[x]→
x.

We also define the q-product

g(x) =
∞∏
n=1

(1− 1

x
qn) .

The function g(x) is related to the quantum Pochhammer symbol, g(x) = [q/x; q]∞, and
to the q-deformed gamma function via Γq(x) = (1− q)1−x g(1)/g(q1−x). g(x) satisfies the
functional relation

g(qx) = (1− 1

x
) g(x) .

For Γq, this implies Γq(x + 1) = 1−qx
1−q Γq(x), the quantum deformation of the functional

equation Γ(x+1) = xΓ(x) of the gamma function, which is recovered in the classical limit
q → 1. The central property of g(x) for our purposes is that it vanishes on integer powers
of q,

g(qn) = 0 if n ∈ N∗.
Moreover, it has the following small ln q behavior,

ln g(x) =
1

ln q

∞∑
n=0

(−1)nBn

n!
(ln q)n Li2−n(1/x) ,

where Lin(x) =
∑∞

k=1
xk

kn is the polylogarithm, and Bn are the Bernouilli numbers

B0 = 1 , B1 = −1

2
, B2 =

1

6
, . . .

B2k+1 = 0 if k ≥ 1 (see the appendix).

We shall also need the following function f(x),

1

f(x)
=

g(x) g(q/x)

g(1)2
√
x

e
(ln x)2

2 ln q e
−iπ ln x

ln q

=
− ln q

θ′(1
2
− iπ

ln q
,− 2iπ

ln q
)
θ

(
lnx

ln q
+

1

2
− iπ

ln q
,
−2iπ

ln q

)
,

where θ is the Riemann theta-function for the torus of modulus −2iπ/ ln q. This relation-
ship is the quantum deformation of the classical gamma function identity

e−iπx/Γ(1− x)Γ(x) = sin (πx)/π .
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3.4 The partition function via the vertex

We begin by considering a single horizontal strip of the fiducial geometry, as depicted in
figure 10.

Figure 10: A horizontal strip of the fiducial geometry and its corresponding web diagram.

Of the three legs of the vertex, two point in the direction of the strip and connect the
vertex to its neighbors. One leg points out of the strip, either above or below. This leg
carries a free representation, αi or βTi in the notation of figure 10. The partition function
will hence depend on representations, one per vertex (i.e. face of the triangulation).

A note on notation: since each 3-cone carries a representation (which up to the final
paragraph of this subsection is held fixed) and an a-parameter (see figure 3), we will
identify the a-parameters by the corresponding representations when convenient.

Using the topological vertex, it was shown in [18] that the A-model topological string
partition function of the strip is given by a product of terms, with the individual factors
depending on the external representations and all possible pairings of these. Applied to
the fiducial strip, the results there specialize to

Zstrip(α0; βT ) =
n∏
i=0

[αi][β
T
i ]

[βi, αTi ]Qβi,αi

∏
i<j[αi, α

T
j ]Qαi,αj

∏
i<j[βi, β

T
j ]Qβi,βj∏

i<j[αi, β
T
j ]Qαi,βj [βi, α

T
j ]Qβi,αj

. (3.3)

We explain each factor in turn.

• Each vertex γ = αi or γ = βTi contributes a representation dependent factor to the
partition function, which we have denoted by [γ]. It is the n → ∞ limit of the Schur
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polynomial evaluated for xi = q
1
2
−i, i = 1, . . . , n, given explicitly by

[γ] = (−1)dq
1
4
κ(γ)

∏
1≤i<j≤d

[γi − γj + j − i]
[j − i]

d∏
i=1

γi∏
j=1

1

[d+ j − i]

=
∏

1≤i<j≤d

(qhj − qhi)
d∏
i=1

(
g(qaγ−hi)

g(1)
q

1
2
h2
i−(aγ+d−1)hi+

aγ (aγ+d−1)

2
+

(d−1)(2d−1)
12

)
= ∆(X(γ)) e−

1
gs

trU(X(γ),aγ) e−
1
gs

trU1(X(γ),aγ).

We recall that hi(γ) = γi−i+d+aγ, and we have defined xi = qhi and X(γ) is the diagonal
matrix X(γ) = diag(qh1 , qh2 , . . . , qhd). Furthermore, ∆(X) denotes the Vandermonde
determinant of the matrix X

∆(X) =
∏

1≤i<j≤d

(xj − xi) ,

and we have written

U(X, a) = −gs ln

(
g( q

a

X
)

g(1)

)
,

U1(X, a) =
(lnX)2

2
− (a+ d− 1) lnX ln q + C(a, d) ,

where C(a, d) = a(a+d−1)
2

+ (d−1)(2d−1)
12

.

We have
[γ] = q

κ(γ)
2 [γT ] , κ(γT ) = −κ(γ) ,

and thus

[γT ] = ∆(X(γ)) e−
1
gs

trU(X(γ),aγ) e−
1
gs

tr Ũ1(X(γ),aγ) ,

where

Ũ1(X, a) =
1

2
lnX ln q + C̃(a, d).

and C̃a,d is another constant which depends only on a and d and which will play no role
for our purposes.

• In addition, each pair of representations contributes a factor, reflecting the contribution
of the curve extended between the respective vertices. In the nomenclature of [18], the
representations αi are all of same type, and of opposite type relative to the βi. If we take
i < j, representations of same type (corresponding to (-2,0) curves) contribute a factor
of

[αi, α
T
j ] or [βTi , βj] ,

whereas representations of different type (corresponding to (-1,-1) curves) contribute a
factor of

1

[αi, βj]
or

1

[βTi , α
T
j ]
.
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The pairing is given by [26, 9, 27, 18]

[γ, δT ] = Q
− |γ|+|δ|

2
γ,δ q−

κ(γ)−κ(δ)
4

d∏
i=1

d∏
j=1

[hi(γ)− hj(δ)]
[aγ − aδ + j − i]

×
d∏
i=1

γi∏
j=1

1

[aγ − aδ + j − i+ d]

d∏
i=1

δi∏
j=1

1

[aγ − aδ − j + i− d]

∞∏
k=0

g(Q−1
γ,δq

−k)

= (−1)
d(d−1)

2

d∏
i=1

q
1
2

(hi(δ)
2−hi(δ)(2aγ+2d−1)−a2

δ+2aγaδ+(d−2i)aγ+(2i−d−1)aδ)

[aγ − aδ]d
d∏
i=1

(−1)δi

d∏
i,j=1

(qhj(δ) − qhi(γ))
d∏
i=1

g(qaγ−hi(δ))

g(qaγ−aδ)

g(qaδ−hi(γ))

g(qaδ−aγ )

∝ ∆(X(γ), X(δ)) e−
1
gs

TrU(X(γ),aδ)e−
1
gs

TrU(X(δ),aγ) e−
1
gs

(TrU2(X(γ),aδ)+Tr Ũ2(X(δ),aγ)) ,

(3.4)

where the square brackets on the RHS denote q-numbers as defined in (3.2), the symbol
∆(X(γ), X(δ)) signifies

∆(X(γ), X(δ)) =
∏
i,j

(Xi(δ)−Xj(γ)) =
∏
i,j

(qhi(δ) − qhj(γ)) , (3.5)

and

U2(X, a) = 0 ,

Ũ2(X, a) =
(lnX)2

2
− (a+ d− 1

2
) lnX ln q + iπ lnX.

The parameter Qγ,δ reflects, given a choice of Kähler class J of the metric on X0, the
curve class of the curve C extended between the vertices labeled by γ and δ via

wγ,δ =

∫
C
J , Qγ,δ = qwγ,δ ,

and by the definition of the a-parameters

wγ,δ = aγ − aδ.

Substituting these expressions into (3.3), we obtain

Zstrip(α0, . . . , αn; βT0 , . . . , β
T
n ) =

=

∏
i ∆(X(αi))

∏
i<j ∆(X(αi), X(αj))

∏
i ∆(X(βi))

∏
i<j ∆(X(βi), X(βj))∏

i,j ∆(X(αi), X(βj))
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×
∏
i

e−
1
gs

tr (V~a(X(αi))−V~b(X(αi)))
∏
i

e−
1
gs

trVi(X(αi))

×
∏
i

e
1
gs

tr (V~a(X(βi))−V~b(X(βi)))
∏
i

e−
1
gs

tr Ṽi(X(βi)) , (3.6)

where we have denoted by ~a = (a0, a2, . . . , an) (resp. ~b = (b0, b2, . . . , bn)) the a-parameters
of representations on the upper side (resp. lower side) of the strip, and defined

V~a(X) = −gs
n∑
j=0

ln (g(qaj/X)) (3.7)

and

Vi(X) = lnX ln q

(
1

2
−
∑
j≤i

(aj − bj)

)
+ iπ lnX

Ṽi(X) = lnX ln q

(
1

2
−
∑
j<i

(bj − aj)

)
.

3.5 Gluing strips

To obtain the partition function for the full multistrip fiducial geometry X0, we must glue
these strips along the curves labelled si,j in figure 3.

Denoting the representations αj,i on line i collectively by

~αi = (α0,i, α1,i, . . . , αn,i) ,

this yields

Zvertex(X0) = Z(n,m)(~αm+1, ~α
T
0 ) =

∑
αj,i, j=0,...,n; i=1,...,m

m+1∏
i=1

Zstrip(~αi, ~α
T
i−1)

n∏
j=0

m∏
i=1

qsj,i |αj,i| .

(3.8)

Our goal now is to find a matrix integral which evaluates to this sum.

4 The matrix model

4.1 Definition

Consider the fiducial geometry X0 of size (n + 1) × (m + 1), with Kähler parameters
ti,j = ai,j − ai,j+1, ri,j = ai,j+1 − ai+1,j, and si,j, as depicted in figures 3 and 6. We
write

~ai = (a0,i, a1,i, . . . , an,i).
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Assume that the external representations are fixed to ~αm+1 = (α0,m+1, α1,m+1, . . . , αn,m+1)
on the upper line, and ~α0 = (α0,0, α1,0, . . . , αn,0) on the lower line (for most applications,
one prefers to choose these to be trivial).

We now define the following matrix integral ZMM (MM for Matrix Model),

ZMM(Q, gs, ~αm+1, ~α
T
0 ) = ∆(X(~αm+1)) ∆(X(~α0))

m+1∏
i=0

∫
HN (Γi)

dMi

m+1∏
i=1

∫
HN (R+)

dRi

m∏
i=1

e
−1
gs

tr [V~ai (Mi)−V~ai−1
(Mi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Mi−1)−V~ai (Mi−1)]

m+1∏
i=1

e
1
gs

tr (Mi−Mi−1)Ri

m∏
i=1

e(Si+
iπ
gs

) tr lnMi

etr ln f0(M0) etr ln fm+1(Mm+1)

m∏
i=1

etr ln fi(Mi) . (4.1)

All matrices are taken of size
N = (n+ 1) d ,

where d is the cut-off discussed in section (3.3.1). We have introduced the notation

X(~αm+1) = diag(X(~αm+1)i)i=1,...,N , X(~αm+1)jd+k = qhk(αj,m+1),

X(~α0) = diag(X(~α0)i)i=1,...,N , X(~α0)jd+k = qhk(αj,0),

for k = 1, . . . , d, j = 0, . . . , n. ∆(X) =
∏

i<j(Xi −Xj) is the Vandermonde determinant.
V~ai(x) was introduced in (3.7). For i = 1, . . . ,m, we have defined

fi(x) =
n∏
j=0

g(1)2 e( 1
2

+ iπ
ln q

) ln (xq1−aj,i ) e
(ln (xq

1−aj,i ))2
2gs

g(x q1−aj,i) g(qaj,i/x)
.

The denominator of these functions induces simple poles at x = qaj,i+l for j = 0, . . . , n and
l ∈ Z. The numerator is chosen such that they satisfy the relation fi(qx) = fi(x). This
enforces a simple l-dependence of the residues taken at x = qaj,i+l, given by a prefactor ql

– a fact which will be important in the following. These residues are in fact given by

Res
qaj,i+l

fi(x) = qaj,i+l f̂j,i = − qaj,i+l
∏
k 6=j

g(1)2 e( 1
2

+ iπ
ln q

) (1+aj,i−ak,i) ln q e
(ln (q

1+aj,i−ak,i ))2
2gs

g(qaj,i−ak,i) (1− qak,i−aj,i)g(qak,i−aj,i)
, (4.2)

where f̂j,i is independent of the integer l.

The parameters Si are defined by

Si = s0,i−1 + t0,i−1 = sj,i−1 −
∑
k<j

tk,i +
∑
k≤j

tk,i−1 . (4.3)
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The final equality holds for arbitrary j, and can be verified upon invoking (2.3) repeat-
edly.

For i = 0 and i = m+ 1, we define

f0(x) =
1∏n

j=0

∏d
i=1(x− qhi(αj,0))

,

fm+1(x) =
1∏n

j=0

∏d
i=1(x− qhi(αj,m+1))

.

Notice that if the representations ~α0 or ~αm+1 are trivial, i.e. hi(αj,0) = d − i + aj,0 or
hi(αj,m+1) = d− i+ aj,m+1, we have

f0(x) =
n∏
j=0

g(x q1−aj,0−d)

xd g(x q1−aj,0)
, fm+1(x) =

n∏
j=0

g(x q1−aj,m+1−d)

xd g(x q1−aj,m+1)

respectively. The functions f0 and fm+1 have simple poles at x = qhl(αj,0) (resp. x =
qhl(αj,m+1)) for l = 1, . . . , d, with residue

f̂j,0;l = Res
qhl(αj,0)

f0(x) =
1∏

j′ 6=j
∏d

i=1(qhl(αj,0) − qhi(αj′,0))

1∏
i 6=l(q

hl(αj,0) − qhi(αj,0))
,

f̂j,m+1;l = Res
qhl(αj,m+1)

fm+1(x) =
1∏

j′ 6=j
∏d

i=1(qhl(αj,m+1) − qhi(αj′,m+1))

1∏
i 6=l(q

hl(αj,m+1) − qhi(αj,m+1))
.

The l dependence here is more intricate than above, but this will not play any role since
the partitions αj,0 and αj,m+1 are kept fixed, and not summed upon.

The integration domains for the matrices Ri are HN(RN
+ ), i.e. the set of hermitian ma-

trices having only positive eigenvalues. For the matrices Mi, i = 1, . . . ,m, the integration
domains are HN(Γi), where

Γi =
n∏
j=0

(γj,i)
d .

γj,i is defined as a contour which encloses all points of the form qaj,i+N, and does not
intersect any contours γk,l, (j, i) 6= (k, l). For this to be possible, we must require that
the differences aj,i−aj′,i′ be non-integer. The normalized logarithms of two such contours
are depicted in figure 11.

We have defined

HN(Γi) = {M = U ΛU † , U ∈ U(N) , Λ = diag(λ1, . . . , λN) ∈ Γi} ,

i.e. HN(Γi) is the set of normal matrices with eigenvalues on Γi. By definition, the
measure on HN(Γi) is (see [28])

dM =
1

N !
∆(Λ)2 dU dΛ , (4.4)
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0 1 2 3 4

Figure 11: Two contours surrounding points a+ N and b+ N, such that a− b /∈ Z.

where dU is the Haar measure on U(N), (normalized not to 1, but to a value depending
only on N , such that the Itzykson-Zuber integral evaluates as given in (4.6) with pre-
factor 1), and dΛ is the product of the measures for each eigenvalue along its integration
path.

The integration domains for the matrices M0, Mm+1 are HN(Γ0), HN(Γm+1) respectively,
where

Γ0 = (
n∑
j=0

γj,0)N , Γm+1 = (
n∑
j=0

γj,m+1)N . (4.5)

The goal of the rest of this section is to prove that the matrix integral (4.1) reproduces
the topological string partition function for target space the fiducial geometry X0.

4.2 Diagonalization

Let us first diagonalize all matrices. We write

Mi = UiXi U
†
i ,

Ri = Ũi Yi Ũ
†
i ,

where Ui and Ũi are unitary matrices.

By the definition (4.4), the measures dMi and dRi are given by

dMi =
1

N !
∆(Xi)

2 dUi dXi , dRi =
1

N !
∆(Yi)

2 dŨi dYi .

The matrix integral thus becomes

ZMM(Q, gs, ~αm+1, ~α
T
0 ) =

∆(X(~αm+1)) ∆(X(~α0))

(N !)2m+3

m+1∏
i=0

∫
Γi

dXi ∆(Xi)
2

m+1∏
i=1

∫
RN+

dYi ∆(Yi)
2

m+1∏
i=0

dUi

m+1∏
i=1

dŨi

m∏
i=1

e
−1
gs

tr [V~ai (Xi)−V~ai−1
(Xi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Xi−1)−V~ai (Xi−1)]
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m+1∏
i=1

e
1
gs

trXiU
†
i ŨiYiŨ

†
i Ui e

−1
gs

trXi−1U
†
i−1ŨiYiŨ

†
i Ui−1

m∏
i=1

e(Si+
iπ
gs

) tr lnXi

etr ln f0(X0) etr ln fm+1(Xm+1)

m∏
i=1

etr ln fi(Xi) .

Next, we introduce the matrices Ûi, Ǔi, for i = 1, . . . ,m+ 1, via

Ûi = U †i Ũi , Ǔi = Ũ †i Ui−1 .

We can express U0, . . . , Um+1, and Ũ1, . . . , Ũm+1, in terms of these matrices and Um+1,

Ui = Um+1 Ûm+1 Ǔm+1 Ûm Ǔm . . . Ûi+1 Ǔi+1 ,

Ũi = Um+1 Ûm+1 Ǔm+1 Ûm Ǔm . . . Ûi+1 Ǔi+1 Ûi .

With this change of variables, we arrive at

ZMM(Q, gs, ~αm+1, ~α
T
0 ) =

∆(X(~αm+1)) ∆(X(~α0))

(N !)2m+3

m+1∏
i=0

∫
Γi

dXi ∆(Xi)
2

m+1∏
i=1

∫
RN+

dYi ∆(Yi)
2

∫
dUm+1

m+1∏
i=1

dÛi

m+1∏
i=1

dǓi

m∏
i=1

e
−1
gs

tr [V~ai (Xi)−V~ai−1
(Xi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Xi−1)−V~ai (Xi−1)]

m+1∏
i=1

e
1
gs

trXiÛiYiÛ
†
i e

−1
gs

trXi−1Ǔ
†
i YiǓi

m∏
i=1

e(Si+
iπ
gs

) tr lnXi

etr ln f0(X0) etr ln fm+1(Xm+1)

m∏
i=1

etr ln fi(Xi) .

Notice that the integral over Um+1 decouples, and
∫
dUm+1 = Vol(U(N)).

4.3 Itzykson-Zuber integral and Cauchy determinants

The Ûi and Ǔi appear in the form of Itzykson-Zuber integrals [29],

I(X, Y ) =

∫
dU etrXUY U† =

detp,q(e
xp yq)

∆(X) ∆(Y )
, (4.6)

where xp and yq are the eigenvalues of X and Y . We thus have

ZMM(Q, gs, ~αm+1, ~α
T
0 ) ∝ ∆(X(~αm+1)) ∆(X(~α0))

(N !)2m+3

m+1∏
i=0

∫
Γi

dXi ∆(Xi)
2

m+1∏
i=1

∫
RN+

dYi ∆(Yi)
2
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m∏
i=1

e
−1
gs

tr [V~ai (Xi)−V~ai−1
(Xi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Xi−1)−V~ai (Xi−1)]

m+1∏
i=1

I(
1

gs
Xi, Yi) I(− 1

gs
Xi−1, Yi)

m∏
i=1

e(Si+
iπ
gs

) tr lnXi

etr ln f0(X0) etr ln fm+1(Xm+1)

m∏
i=1

etr ln fi(Xi)

∝ ∆(X(~αm+1)) ∆(X(~α0))

(N !)2m+3

m+1∏
i=0

∫
Γi

dXi

m+1∏
i=1

∫
RN+

dYi

∆(X0) ∆(Xm+1)
m∏
i=1

e
−1
gs

tr [V~ai (Xi)−V~ai−1
(Xi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Xi−1)−V~ai (Xi−1)]

m∏
i=1

e(Si+
iπ
gs

) tr lnXi

m+1∏
i=1

det
p,q

(e
1
gs

(Xi)p (Yi)q) det
p,q

(e
−1
gs

(Xi−1)p (Yi)q)

etr ln f0(X0) etr ln fm+1(Xm+1)

m∏
i=1

etr ln fi(Xi) ,

where we have dropped an overall sign, powers of gs, and the group volume Vol(U(N))
which are constant prefactors of no interest to us.

Next, we perform the integrals over Yi along RN
+ .∫

RN+
dY det

p,q
(e

1
gs

(Xi)p (Y )q) det
p,q

(e
−1
gs

(Xi−1)p (Y )q)

=
∑
σ

∑
σ̃

(−1)σ(−1)σ̃
N∏
p=1

∫ ∞
0

dyp e
yp
gs

((Xi)σ(p)−(Xi−1)σ̃(p))

=
∑
σ

∑
σ̃

(−1)σ(−1)σ̃
N∏
p=1

gs
(Xi−1)σ̃(p) − (Xi)σ(p)

= N ! gNs det
p,q

(
1

(Xi−1)p − (Xi)q

)
.

Note that the integral is only convergent for (Xi)σ(p)− (Xi−1)σ̃(p) < 0. For Xi that violate
this inequality, we will define the integral via its analytic continuation given in the third
line.

An application of the Cauchy determinant formula,

det

(
1

xi + yj

)
1≤i<j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
,
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yields∫
RN+
dY det

p,q
(e

1
gs

(Xi)p (Y )q) det
p,q

(e
−1
gs

(Xi−1)p (Y )q) = (−1)(
N
2 )N ! gNs

∆(Xi) ∆(Xi−1)

∆(Xi−1, Xi)
,

where the notation ∆(Xi−1, Xi) was introduced in (3.5). Evaluating the Yi integrals thus,
and continuing to drop overall signs and powers of gs, our matrix integral becomes

ZMM(Q, gs, ~αm+1, ~α
T
0 ) ∝ ∆(X(~αm+1)) ∆(X(~α0))

(N !)m+3

m+1∏
i=0

∫
Γi

dXi ∆(Xi)
2

m∏
i=1

e
−1
gs

tr [V~ai (Xi)−V~ai−1
(Xi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Xi−1)−V~ai (Xi−1)]

m+1∏
i=1

1

∆(Xi−1, Xi)

m∏
i=1

e(Si+
iπ
gs

) tr lnXi

etr ln f0(X0) etr ln fm+1(Xm+1)

m∏
i=1

etr ln fi(Xi) .

4.4 Recovering the sum over partitions

Following the steps introduced in [11] in reverse, we next decompose the diagonal matrix
Xi into blocks,

Xi = diag (X0,i, X1,i, . . . , Xn,i) ,

where each matrix Xj,i is a d× d diagonal matrix whose eigenvalues are integrated on the
contours γj,i surrounding points of the form qaj,i+N. We arrive at

ZMM(Q, gs, ~αm+1, ~α
T
0 ) ∝ ∆(X(~αm+1)) ∆(X(~α0))

(N !)m+3

m+1∏
i=0

n∏
j=0

∫
(γj,i)d

dXj,i

∆(X0) ∆(Xm+1)
m+1∏
i=1

∆(Xi−1)∆(Xi)

∆(Xi−1, Xi)
m∏
i=1

e
−1
gs

tr [V~ai (Xi)−V~ai−1
(Xi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Xi−1)−V~ai (Xi−1)]

etr ln f0(X0) etr ln fm+1(Xm+1)

m∏
i=1

etr ln fi(Xi)

m∏
i=1

e(Si+
iπ
gs

) tr lnXi ,

with

∆(Xi−1)∆(Xi)

∆(Xi−1, Xi)
=

∏
j ∆(Xj,i−1)

∏
j ∆(Xj,i)

∏
j<l ∆(Xj,i−1, Xl,i−1)

∏
j<l ∆(Xj,i, Xl,i)∏

j,l ∆(Xj,i−1, Xl,i)
.

Our next step is to evaluate the dXj,i integrals via Cauchy’s residue theorem. The poles
of the integrands lie at the poles of fi, and the zeros of ∆(Xi−1, Xi). However, we have
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been careful to define our contours γj,i in a way that only the poles of fi contribute.
These lie at the points qaj,i+N. Hence, the integrals evaluate to a sum of residues over the
points

(Xj,i)l = qaj,i+(hj,i)l ,

where each (hj,i)l is a positive integer.

Since the integrand contains a Vandermonde of the eigenvalues of Xj,i, the residues vanish
whenever two eigenvalues are at the same pole of fi, i.e. if two (hj,i)l coincide. Moreover,
since the integrand is symmetric in the eigenvalues, upon multiplication by N !, we can
assume that the (hj,i)l are ordered,

(hj,i)1 > (hj,i)2 > (hj,i)3 > · · · > (hj,i)d ≥ 0.

The (hj,i)l hence encode a partition αj,i via (hj,i)l = (αj,i)l−i+d, and we have reduced our
integrals to a sum over partitions. In terms of the function hl(α) introduced in (3.1),

(Xj,i)l = qhl(αj,i) , hl(αj,i) = (hj,i)l + aj,i ,

h1(αj,i) > h2(αj,i) > · · · > hd(αj,i) ≥ aj,i.

Notice that unlike fi, i = 1, . . . ,m, f0 and fm+1 only have a finite number of N = (n+1)d
poles. Since the (hj,0)l, (hj,m+1)l respectively can be chosen pairwise distinct and ordered,
f0 and fm+1 act as delta functions in the integrals over the N×N matrices X0 and Xm+1,
and fix these to the prescribed values X(~α0) and X(~αm+1) respectively.

Performing the integrals hence yields

ZMM(Q, gs, ~αm+1, ~α
T
0 ) ∝ ∆(X(~αm+1))2∆(X(~α0))2∑

{αj,i|j=0,...,n; i=1,...,m+1}

m+1∏
i=1

∆(X(~αi−1))∆(X(~αi))

∆(X(~αi−1), X(~αi))

m∏
i=1

e
−1
gs

tr [V~ai (X(~αi))−V~ai−1
(X(~αi))]

m∏
i=1

e
−1
gs

tr [V~ai−1
(X(~αi−1))−V~ai (X(~αi−1))]

m∏
i=1

e(Si+
iπ
gs

) tr lnX(~αi)
m+1∏
i=0

n∏
j=0

d∏
l=1

(
Res
qhl(αj,i)

fi

)
.

Notice that ∏
j

∏
l

Res
qhl(αj,0)

f0 =
1

∆(X(~α0))2
,

∏
j

∏
l

Res
qhl(αj,m+1)

fm+1 =
1

∆(X(~αm+1))2
.

Furthermore,
Res
qhl(αj,i)

fi = qhl(αj,i) f̂j,i
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where f̂j,i computed in (4.2) is independent of hl(αj,i). We thus have

eSi tr lnX(~αi)

n∏
j=0

d∏
l=1

(
Res
qhl(αj,i)

fi

)
= e(Si+1)tr lnX(~αi)

n∏
j=0

(f̂j,i)
d .

Upon substituting the expression (4.3) for Si, we finally arrive at

ZMM(Q, gs, ~αm+1, ~α
T
0 )

∝
m∏
i=1

n∏
j=0

(f̂j,i)
d

∑
{αj,i|j=0,...,n; i=1,...,m+1}

m+1∏
i=1

∏
j ∆(X(αj,i−1))

∏
j ∆(X(αj,i))

∏
j<l ∆(X(αj,i−1), X(αl,i−1))

∏
j<l ∆(X(αj,i), X(αl,i))∏

j,l ∆(X(αj,i−1), X(αl,i))
m∏
i=1

e
−1
gs

tr [V~ai (X(~αi))−V~ai−1
(X(~αi))]

m∏
i=1

n∏
k=0

e( 1
2
−

P
j≤k(aj,i−aj,i−1)− iπ

gs
)tr lnX(αk,i)

m∏
i=1

e
−1
gs

tr [V~ai−1
(X(~αi−1))−V~ai (X(~αi−1))]

m∏
i=1

n∏
k=0

e( 1
2
−

P
j<k(aj,i−aj,i+1))tr lnX(αk,i)

m∏
i=1

n∏
j=0

esj,itr lnX(αj,i) .

(4.7)

Comparing to (3.6) and (3.8), we conclude

ZMM(Q, gs, ~αm+1, ~α
T
0 ) ∝

∑
αj,i,j=0,...,n; i=1,...,m

m+1∏
i=1

Zstrip(~αi, ~α
T
i−1)

n∏
j=0

m∏
i=1

qsj,i |αj,i| ,

i.e.
ZMM(Q, gs, ~αm+1, ~α

T
0 ) ∝ Zvertex(X0) = e

P
g g

2g−2
s GWg(X0) .

Up to a trivial proportionality constant, we have thus succeeded in rewriting the topolog-
ical string partition function on the fiducial geometry X0 as a chain of matrices matrix
integral. By our reasoning in section 2.2, this result extends immediately to arbitrary
toric Calabi-Yau 3-folds as follows. We have argued that any such 3-fold can be obtained
from a sufficiently large choice of fiducial geometry via flops and limits. The respective
partition functions are related via (2.5). Upon the appropriate variable identification, we
hence arrive at a matrix model representation of the topological string on an arbitrary
toric Calabi-Yau 3-fold.

5 Implications of our result

We have rewritten the topological string partition function as a matrix integral. This
allows us to bring the rich theory underlying the structure of matrix models to bear on
the study of topological string.
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The type of matrix integral we have found to underlie the topological string on toric
Calabi-Yau 3-folds is a so-called chain of matrices. This class of models has been studied
extensively [30, 28], and many structural results pertaining to it are known.

5.1 Loop equations and Virasoro constraints

The loop equations of matrix models provide a set of relations among correlation functions.
They are Schwinger-Dyson equations; they follow from the invariance of the matrix inte-
gral under a change of integration variables, or by an integration by parts argument.

Loop equations for a general chain of matrices have been much studied in the litera-
ture, in particular in [31, 32, 33, 34]. They can be viewed as W-algebra constraints (a
generalization of Virasoro constraints) [35]. Having expressed the topological string parti-
tion function as a matrix integral, we can hence conclude that Gromov-Witten invariants
satisfy W-algebra constraints.

Moreover, a general formal solution of loop equations was found in [34], and expressed in
terms of so-called symplectic invariants Fg of a spectral curve. The spectral curve for a
matrix integral is related to the expectation value of the resolvent of the first matrix in
the chain,

W (x) =

〈
tr

1

x−M0

〉(0)

.

The superscript (0) indicates that the expectation value is evaluated to planar order in a
Feynman graph expansion.

The symplectic invariants Fg(C) of an arbitrary spectral curve C were defined in [36]. [34]
proved that for any chain of matrices integral Z, one has

lnZ =
∑
g

Fg(C)

with C the spectral curve associated to the matrix integral.

Calculating the spectral curve of a chain of matrices matrix model with complicated
potentials poses some technical challenge. We will present the spectral curve for our
matrix model (4.1) in a forthcoming publication [17].

5.2 Mirror symmetry and the BKMP conjecture

The mirror X̂ of a toric Calabi-Yau 3-fold X is a conic bundle over C∗ × C∗. The fiber
is singular over a curve, which we will refer to as the mirror curve SX̂ of X̂. It is a plane
curve described by an equation

SX̂ : H(ex, ey) = 0 ,
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where H is a polynomial whose coefficients follow from the toric data of X and the Kähler
parameters of the geometry.

Mirror symmetry is the statement that the topological A-model partition function with
target space X is equal to the topological B-model partition function with target space
X̂.

Bouchard, Klemm, Mariño and Pasquetti (BKMP) have conjectured in [16] that

GWg(X)
?
= Fg(SX̂) .

Here, the Fg’s are the symplectic invariants introduced in [36]. The main interest of this
conjecture is that it provides a systematic method for computing the topological string
partition function, genus by genus, away from the large radius limit, and without having
to solve differential equations.

This conjecture was motivated by the fact that symplectic invariants have many intriguing
properties reminiscent of the topological string free energies. They are invariant under
transformations S → S̃ which conserve the symplectic form dx ∧ dy = dx̃ ∧ dỹ, whence
their name [36]. They satisfy holomorphic anomaly equations [37], they have an integrable
structure similar to Givental’s formulae [38, 39, 40, 41, 42], they satisfy some special
geometry relations, WDVV relations [43], and they give the Witten-Kontsevich theory as
a special case [36, 44].

BKMP succesfully checked their claim for various examples to low genus.

The conjecture was proved for arbitrary genus in [7] for X a Hirzebruch rank 2 bundle
over P1 (this includes the conifold). Marshakov and Nekrasov [10] proved F0 = GW0 for
the family of SU(n) Seiberg-Witten models. Klemm and Su lkowski [11], generalizing [7]
to Nekrasov’s sums over partitions for SU(n) Seiberg-Witten gauge theories, proved the
relation for F0, building on work in [45]. In fact, it seems easy to extend their computation
to arbitrary genus Fg. In [46], Su lkowski provided a matrix model realization of SU(n)
gauge theory with a massive adjoint hypermultiplet, using again a generalization of [7]
for more general sums over partitions. Bouchard and Mariño [47] noticed that an infinite
framing limit of the BKMP conjecture for the framed vertex X = C3 implies another
conjecture for the computation of Hurwitz numbers, namely that the Hurwitz numbers of
genus g are the symplectic invariants of genus g for the Lambert spectral curve ex = y e−y.
That conjecture was proved recently by another generalization of [7] using a matrix model
for summing over partitions [13], and also by a direct cut and join combinatorial method
[48]. The BKMP conjecture was also proved for the framed vertex X = C3 in [49, 50],
using the ELSV formula and a cut and join combinatorial approach.

Since we have demonstrated that the topological string partition function is reproduced
by a matrix model, we can conclude that the Gromov-Witten invariants coincide with the
symplectic invariants ∑

g

g2g−2
s GWg =

∑
G

Fg(C) ,
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with C the spectral curve of our matrix model. We will compute C explicitly in a forthcom-
ing work [17], and demonstrate that it indeed coincides, up to symplectic transformations,
with the mirror curve SX̂.

5.3 Simplifying the matrix model

The matrix models associated to the conifold or to geometries underlying Seiberg-Witten
theory have a remarkable property: the spectral curve is the same (perturbatively and up
to symplectic transformations) as the one of a simpler matrix model withe all g-functions
replaced by only the leading term in their small ln q expansion. We will demonstrate in a
forthcoming work [17] that this property also holds for our matrix integral (4.1). We can
hence simplify the potentials of our matrix model, arriving at

Zsimp(Q, gs, ~αm+1, ~α
T
0 ) = ∆(X(~αm+1)) ∆(X(~α0))

m+1∏
i=0

∫
Hn̄i (Γi)

dMi

m+1∏
i=1

∫
Hn̄(R+)

dRi

m∏
i=1

e
1
gs

tr
Pn
j=0(Li2(qaj,i/Mi)−Li2(qaj,i−1/Mi))

m−1∏
i=0

e
1
gs

tr
Pn
j=0(Li2(qaj,i/Mi)−Li2(qaj,i+1/Mi))

m+1∏
i=1

e
1
gs

tr (Mi−Mi−1)Ri

m∏
i=1

e(Si+
iπ
gs

) tr lnMi ,

where the matrix Mi is of size n̄i =
∑

j n̄j,i.

Classical limit

In the classical limit, the dilogarithm Li2 becomes the function x lnx, and we have

Zeff. cl(Q, gs, ~αm+1, ~α
T
0 ) = ∆(X(~αm+1)) ∆(X(~α0))

m+1∏
i=0

∫
Hn̄i (Γi)

dMi

m+1∏
i=1

∫
Hn̄(R+)

dRi

m∏
i=1

e
1
gs

tr
Pn
j=0(Mi−aj,i) ln (aj,i−Mi)−(Mi−aj,i−1) ln (aj,i−1−Mi)

m−1∏
i=0

e
1
gs

tr
Pn
j=0(Mi−aj,i) ln (aj,i−Mi)−(Mi−aj,i+1) ln (aj,i+1−Mi)

m+1∏
i=1

e
1
gs

tr (Mi−Mi−1)Ri

m∏
i=1

e(Si+
iπ
gs

) tr lnMi .

This model shares features with the Eguchi-Yang matrix model [51], see also [10].
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6 Conclusion

We have rewritten the topological vertex formula for the partition function of the topo-
logical A-model as a matrix integral.

Having expressed the topological string in terms of a matrix model, we can bring the
immense matrix model toolkit which has been developed since the introduction of random
matrices by Wigner in 1951 to bear on questions concerning the topological string and
Gromov-Witten invariants. We already started down this path in section 5 above. Going
further, we can apply the method of bi-orthogonal polynomials [28] to our matrix model to
unearth the integrable system structure (Miwa-Jimbo [52, 53]) underlying the topological
string, at least in the case of toric targets, together with its Lax pair, its Hirota equations
(which arise as orthogonality relations), etc. In a related vein, free fermions [54, 55]
arise in the theory of matrix models when invoking determinantal formulae to express
the matrix model measure [56]. It will be very interesting to explore how this is related
to the occurrence of free fermions in topological string theory, as studied in [57, 58, 59,
60]. More generally, one should study what can be learned about the non-perturbative
topological string from its perturbative reformulation as a matrix model, as in the works
[61, 62, 63, 64]. A recurrent such question, which could be addressed in the matrix model
framework (in fact, it was already latently present in the calculations in this work), is
that of the quantization of Kähler parameters.

On a different note, notice that the matrix model derived in this article, with a potential
which is a sum of logs of q-deformed Γ functions, looks very similar to the matrix model
counting plane partitions introduced in [65]. This is a hint that it could be possible to
recover the topological vertex formula, corresponding to the topological string with target
C3 and appropriate boundary conditions, directly from the matrix model approach. Either
along these lines or the lines pursued in this paper, it would be interesting to derive a
matrix model related to the Nekrasov deformation [8, 66] of the topological string.

A completely open question is whether the close relation between topological strings and
matrix models persists beyond toric target spaces, and more ambitiously yet, whether
there exists a general notion of geometry underlying matrix models.
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A q-product

The g-function, which plays a central role in the definition of our matrix model, is defined
as an infinite product,

g(x) =
∞∏
n=1

(1− 1

x
qn) .

It is the quantum Pochhammer symbol g(x) = [q/x; q]∞, and it is related to the q-
deformed gamma function via Γq(x) = (1− q)1−x g(1)/g(q1−x).

The RHS is convergent for |q| < 1 and arbitrary complex x 6= 0. g(x) satisfies the
functional equation

g(qx) = (1− 1

x
) g(x) .

For n ∈ N, we have
g(qn) = 0

and

g′(qn) = (−1)n−1g(1) q−
n(n+1)

4

n−1∏
m=1

[m] = g(1) q−
n(n+1)

2 [n− 1]! = (−1)n−1 q−
n(n+1)

2
g(1)2

g(q1−n)
.

Via the triple product representation of the theta function,

θ(z; τ) =
∞∏
m=1

(1− e2πimτ )(1 + e(2m−1)πiτ+2πiz)(1 + e(2m−1)πiτ−2πiz) ,

we obtain the identity

θ

(
1

2
+

1

4πi
ln

q

x2
;

ln q

2πi

)
= g(x)g(

q

x
)g(1) .

We have

g(x) g(q/x)

g(1)2
√
x

e
(ln x)2

2 ln q e
−iπ ln x

ln q =
− ln q

θ′(1
2
− iπ

ln q
,− 2iπ

ln q
)
θ

(
lnx

ln q
+

1

2
− iπ

ln q
,
−2iπ

ln q

)
where θ is the Riemann theta-function for the torus of modulus −2iπ/ ln q.

At small ln q, the following expansion is valid,

ln g(x) =
1

ln q

∞∑
n=0

(−1)nBn

n!
(ln q)n Li2−n(1/x) ,

where we have used the definition of the Bernoulli numbers Bn as the coefficients in the
expansion of t/(et − 1),

t

et − 1
=
∞∑
n=0

Bn
tn

n!
.

29



Lin is the polylogarithm function, defined as

Lin(x) =
∞∑

k=1

xk

kn
.

This is a generalization of the logarithm function, recovered at n = 1,

Li1(x) = − ln (1− x) .

It satisfies the functional relation

Li′n(x) =
1

x
Lin−1(x) . (A.1)

Note in particular that this implies that Lin is an algebraic function of x for n ≤ 0.
E.g.,

Li0(x) =
x

1− x
.

We also define the function

ψq(x) = x
g′(x)

g(x)
.

Using the functional equation (A.1) of the polylogarithm, we find its small ln(q) expan-
sion

ψq(x) = − 1

ln q

∞∑
n=0

(−1)nBn

n!
(ln q)n Li1−n(1/x)

=
1

ln q

[
ln (1− 1

x
)− ln q

2(x− 1)
−
∞∑
n=1

B2n

(2n)!
(ln q)2n Li1−2n(x)

]
.

For the second equality, we have used B0 = 1, B1 = −1
2
, and B2n+1 = 0 for n > 1.

We have near x→∞
ψq(x) ∼ q

1− q
1

x
+O(x−2)

and near x→ 0:

ψ(x) ∼ 1

2
+
iπ + lnx

gs
+O(x).
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