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Abstract
We show that for a rather generic set of regular spectral curves, the

Topological-Recursion invariants F, grow at most like O((5¢)!r~9) with some r > 0.

1 Introduction

Topological-Recursion [8, 4, 2, 7, 9, 1] associates to an object called a ”spectral curve”
S, a double sequence (indexed by two non-negative integers g,n) of differential forms,

that we shall call its " TR-invariants”:

TR : Spectral curves — invariants

S = {wgn(S)}on (1-1)

where w, ,,(S) is a symmetric multidifferential n-form, and for n = 0, w, ¢(S) is denoted
F

3(S) € Cis a complex number (a 0-form).

These invariants play an importamt role in enumerative geometry, in integrable
systems, in string theory, in WKB approximation, in random matrices, ... etc, see

reviews [7, 9].

The main question of this article is: how F,(S) behaves at large g, and more
generally how w,,(S) behaves at large g ? Is the series ) 7 h* *F,(S)

summable ?



We shall establish some bounds, under reasonable smoothness assumptions on the
spectral curve §. We shall find that the series

o0

SRS 12
g=0
is an asymptotic series with factorially bounded coefficients, thus having a Borel trans-
form converging in a disc. We postpone to a following article the issue of whether this

is a resurgent series and whether it can be Borel-ressumed.

2 Bound on the growth

2.1 Hypothesis

We consider a spectral curve
S =(%,x,y,B), (2-1)

where:

e Y is a Riemann surface (it needs not be compact neither connected, for example

it could be a union of disjoint discs, = a "local curve”),

e x: Y — CP! is a holomorphic function, it makes ¥ a ramified cover of (an open
domain of) the Riemann sphere CP!, and in particular it can have ramification

points.

We shall moreover assume that x has only simple ramification points, at which
the 1-form dx has only simple zeros, and only a finite number of them, we

denote the set of ramification points:

R = {a | dx(a) = 0}. (2-2)

e y is a meromorphic 1-form on X, that is holomorphic in a neighborhood of ramifi-
cation points. We shall denote y = ydx where y is thus a holomorphic function in
a neighborhood of ramification points. Remark: In the ”local curve” definition of
topological recursion, all what is needed is y to be a formal series, with possibly
a zero radius of convergence, here we assume something much stronger: that y is
analytic in a neighborhood of every a. However we don’t care about how y could

have poles or singularities outside of these neighborhoods of A.

We shall furthermore assume that at any ramification point a, we have

dy#0 at a. (2-3)



These assumptions are generic, they indicate that near a branch point a, y be-

haves like a square-root:
y(p) ~yla) +y'(a)vx(p) —x(a) + Ox(p) —x(a)) , y=ydz. (24

e B is a meromorphic bidifferential on ¥ x 3, with double pole at coinciding points,

and no other poles, normalized, in any local coordinate ( as

d¢(p1) ® d((p2)

B(pl’pQ)m:m (C(p1) — ¢(p2))?

+ analytic. (2-5)

e Let us define for p € >:

o) =  [T]xp) - a). (2-6)

a€ER

For some 0 < R < 1 we are going to consider the domain of X

Yr=A{peX||pp) < R}. (2-7)

We assume that the radius R is small enough so that > is a union of disjoint
discs, whose centers are the ramification points. We make once for all a choice
of squareroot in the definition of p, so that p is analytic in each disc, and is thus

a local coordinate in each disc.

Definition 2.1 Let
dp(p)

¢ poice K(pl’p)d,o(pl) 0(p)* = p(p1)] p(p)] (2-8)
= Ssu B(p—l’p) o 2 ]
7= pmesn | dp(p)dp(py) lp(p) = p(p1)|” - (2-9)

Here K is the Topological-Recursion kernel (see [8]), worth

_ 1 fpp:Ua(p) B, p)
K(pi.p) =5 (y(p) — y(oa(p)))’

where o,(p) denotes the unique point such that p(c,(p)) = —p(p) in the disc around a.

(2-10)

Our hypothesis imply that B and C' are < oc.



2.2 The bounds

The following theorem is the main result in this paper

Theorem 2.1 (Bound) If2g—2+n>0,n>1 and p1,...,p, € Xr, we have the
bound

D 2g—2+n Bg—1+n
dp(p1) ... dp(pn) (infz’e{l ..... n} |p(pz)’> o
where
dg,n = 3g —3+n 5 Dg,n = dg,n +n (2_12)

and Cy,, 15 the sequence defined by Cos3 =1, C11 =1, Cyo = 0, and by recursion

stable D 1
(Dg,n+1 + 1) g,n+1+

Cyn = 1Cy—1n Con Coyn
gn+1 <<n+ ) g—1,n+2 T Z g1,n1+1 “ga, 2+1> (Dg7n+1>Dg,n+l

g1+g92=g, ni+n2=n
+2C (2Dg i1 + 1)?Pomitt
g,n 33(2Dg,n+1 _ 2)2Dg,n+172

(2-13)
where “stable” means (g;,n; + 1) # (0,1),(0,2).

We shall use the following lemma, that we admit (proof straightforward)

Lemma 2.1 Ifk >0 andd >0

1 d+k k
f _ (d+ k) < et
neloaf (1 — n)knd kk dd kk

Proof of theorem 2.1.

Since this is the main result of this paper, we do the proof here in full detail.

(d+ k). (2-14)

First we write

W n(pl, cee apn)
W,npa"'7pn - ~ ) 2-15
anlpr )= Dolpr). dolon) 15
which is now a meromorphic function on (Xg)", with poles only at p(p;) = 0.
In all what follows we shall write
ri = |p(pi)l, (2-16)
Tmin = Min7;, (2-17)
ni = rr’i > 1. (2-18)

By definition of topological recursion [8] we have

1
Wyn+1(P1; - - - s Pot1) = 2%7{ K(php)[
acR peCa
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stable

Z wg1,1+\11|(p7 [1)wg2,1+\12|(0a(p>7[2>

91+g2=g,11Ul2={p2,....pn+1}

1
-+ Z % f;eca K(plap)wg_lmﬂ(p, Ua(p)>p27 .. vpn—i-l)

j=2 a€eR peCa
K(p1,p)B(0a(p),pj) wg,n(p7p27 s 7pj7 s 7pn+1>
(2-19)

where, for each term, C, is any small-enough circle around a, that we can choose to

write as a circle in the coordinate p(p) as:
p(p) =r e’ ; 0 € [0, 27]. (2-20)

”Small-enough” means that the value of the radius » > 0 has to be chosen so that the
circle doesn’t enclose any point other than a, at which the integrand could have poles,

in particular, since K(p,p;) has a pole at p(p) = £p(p1) , so we must have
r <, (2-21)

and for the last line of (2-19), for each value of j, since B(o,(p),p;) has a pole at
p(p) = —p(p;), we must have
r < ;. (2-22)
We shall thus choose
"=M1N"min , 7] 6]07 1[ (2_23)

The residue is independent of the value of 7 €]0, 1], and therefore we shall eventually
choose the value of 1 that will minimize the bound.
e We start with (¢g,n) = (1,1):

o) = Yorf  Koun)[Be.o0) (2-24)

acER

From (2-8), (2-9) we have for any n €]0, 1|

1 ldp(p)/p(p)|
Wia(py)| < 03—74
o 27 Jpl=r=nlorn)| 1P(P1)* = p(p)?| 4 |p(p)I?
- CB 1 27 de
B 2m Jo A (rE—12) 12
_ ¢B 1
= oAt (L=-n?)n?
CRB

(2-25)



so that the theorem holds with
Cl,l == 1 (2—26)

e Then for (g,n) = (0, 3), topological recursion gives:

coalmmm) = 2552 § Koup) B Bowm)] @20

1 |dp(p)/p(p)| 1 1
(Wos(p1,pasps)| < 20B*—
210 Jipwy=r 1P(P1)? = p(p)?| |p(p) — p(p2)|* |p(p) + p(p3)[?
< oope ! e 1
<2V a ) T R e
< 20 B? 1
T b =2 (2 —m)? (13— n)?
< 2C B? 1
B rr6nin (1 - 77)5
20 B? )
< .y +— with n — 0, (2-28)
so that the theorem holds with
Cos = 1. (2-29)

e The bound shall then be proved by recursion. Let (g,n) such that 2g +n > 2.
Assume that the bounds are already proved for all W ,» such that 2 < 2¢' +n’ <
2g + n + 1, we shall now prove it for Wy ;.

From the recursion hypotyhesis, and assuming that we choose the circle C, of radius

T = Nrmin, We have (we write |I1| = ny, |I3] = no, so that ny + ny = n)

1
Z 2_ j{ dp(p)ZK(plap)ng,1+n1 (p7 ]1) W92,1+n2 (Ua(p)7 ]2)
69}\ 1 pECa

C ’dp<p)/p<p)| nl! Cg1,1+n1 C291—2+1+n1 poitm

=271 Joee, p(p1)? — p(p)? |p(p) |Pdort4m F2na+2
712! ng,1+n2 0292*2+1+n2 B92+tn2
|p(p> |2dg2,1+n2 +2n2+2

29—2+n+1 —14n+1
< n1! ng! CghlJrnl Cg2,1+n2 c*9 BI
T[>  db 1
21 0 (T‘% — 7‘2) 72dg1 1401 F2dgy 140y +2n+4
1 1
| ] 2g—2+n+1 pg—1+n+1
< ! ng! Cygi4ny Cooign, C B o 72 12y
2g—2 1 —1 1
< n1! 7”L2! CghlJrnl 09271+n2 c9 Tl gg—ltnt 1
- 2dg,n+1+2(n+1) 2 _ 12\ p2dgnr1+2n
oin 29— 2+n+1 1+n+1 g =)
< ! ol Cgprany Cgpagmy CH71 B9 = (2-30)
= 2dg nr1+2(n+1) (1 — 52) pdamsrton’

min



By a similar reasoning we get when g > 0

Z 9 f pl p)Wg—l,n+2(p7 O-a(p)>p27 cee apn—i—l)
T Jpec,
e dp(p)/p(P)| (0 + 1)1 Cgynqn C2 2 Bo7Hm T
21 Jpec, |p(p1)? = p(p)?] |p(p)|*a-tms2t2(n42)
(n + 1>!Cg71’n+2 CQg—Q—i—n—i—l Bg—1+n+1 1 531
- rfrig;l,n+l+2(n+1) (1 — 772) n2d97’"«+1+2n‘ ( i )
By a similar reasoning we get whenn >0, and j =2,...,n+ 1:

plap)B(Ua(p>7pj) Wg,n(p7p27 s e 7@7 s 7pn+1>

27?1

eca
(n — 1)!C,,, C¥724n+l pg—lintl 1
= 2dg n+1+2(n+1) (77% —n?) (773' — )2 p2dsnt1+2n—2
(n—1)IC,, C2g 24+n+l pg—l+n+l 1
- ,',,2dg,n+l+2(n+1) (1 _ /)7)3 772dg,n+1+2n—2 . (2‘32)

min

Using lemma 2.1, the recursion hypothesis will be satisfied with

stable D 1
(Dgny1 + 1)7amt1t

g,n+1 ((n—l— ) g—1, +2+ Z g1,m1+1 “Ygo, 2+1> (Dg’n+1>Dg,n+1

g1+g92=g, nit+n2=n
+2C, (2Dgn41 + 1)Pamsit
P 33(2Dg g1 — 2)?Pomt1=2

(2-33)

O

Remark 2.1 The exponent of 1/ry, i.e. 2dg, + 2n is optimal, indeed it is reached for the
Airy spectral curve, and is in agreement with [5, 6].

Remark 2.2 But the coefficient Cj ,, is probably far from being optimal, it was obtained
by bounding the integral by the integral of the absolute value, ignoring the phase oscillations,
which could produce large cancellations. We are clearly overestimating here.

2.2.1 Factorial Bound

Theorem 2.2 We have the bounds:

Cyn <t 17 957" (5g — 5+ 3n)! (2-34)
Cym <9 (5g — 5+ 3n)! eto-4F3ng2o—2tngs=39=3n14-9 (2-35)
where o7

=— e 2-36
s=oce, (2-36)

14 x 27 _,
r= W e -, (2—37)

3P,

t=c5 € 2-38
02 (2-38)



The bound can also be written
Cyn <9 (59 — 5+ 3n)! et 43n3p9-54n1479,

proof:

We shall prove the theorem by recursion. First observe that it is

Cos =1, Cip =1and Cyp = 0. Assume that it is satisfied for all Cy

2¢' +n' <29+ n+ 1. We shall now prove it for C 4.
Define

Agn =59 —=5+3n |, Kgn=29—2+n , Dy,=39—3+2n.

For stable (g,n) (i.e. (g,n) # (0,1),(0,2)) and with n > 1 we have
Kgn=>1 , Agn>3 , Dygp,>2.

We shall need the following inequalities:

[ ]
Dy +1< Dy, + Kgn = Agn.
[
n=2A,,—5kgn <2A,, —5=2(A4,,—1)—1
e for all u €]0, 2[ we have

1 Ayn —3
—u(Ag,n—ung,n—Bn—i—un) <2 - = g1 <

1=
g 5— 2u

The case u = % gives
g+1<2(4,,—2).

ny + ne = n, is:

1
(g+1Dn+1)—-4< 4(Ag,n+1 - 2)(Ag,n+1 —1- 5)

We have

Agfl,n+2 = Ag,n+1 -2
Ag1,n1+1 + Agz,n2+1 -1= Ag,n+1 -3
Agn =Agny1 — 3.

(2-39)

satisfied for
n such that

(2-40)

(2-41)

(2-45)

The number of stable pairs (g1, 1 + n1), (g2, 1 + ny) such that g; + go = g and

(2-46)

(2-47)
(2-48)
(2-49)



We shall use the property that for any a,b strictly positive integers, we have
ald! < (a+ b —1)!. This implies that

Agl,n1+1!Ag2,n2+1! < (Aghm-&-l + Ag2,n2+1 - 1)' = (Ag,n-l-l - 3)' (2_5())
Ag—l,n+2! - (Ag,n-i—l - 2)! = (Agm-i-l - 3)!(Ag,n+1 - 2) (2‘51)
Agnl = (Ags1 — 3)! (2-52)

From lemma 2.1, we have:

stable

Cg,nJrl < <(n + 1>Cg*1,n+2 + Z Cg1,n1+1 ng,n2+1> e(ngH + 1)

g1+92=g, ni+n2=n
3

+2C,, =

g,n 33 (2D9,n+1 + 1)37 (2—53)

now using the recursion hypothesis we have

e 1 (T
Og,n—l—l S tr9s 1(g<n+ 1)Ag—1,n+2!

stable

gl 3 Agy ! AQWH!) e(Dgns1 + 1)
g1+92=g9, nl"l‘nQan
2 1
05 A S (D + ), (2-54)
’ 33 ’ 2
and thus
Cynt1 1 ((r
t r_gs_”_lAgm_,_l! A%,n-l—l(Ag,n-f—l — 1)(Ag,n+1 — 2) S( )( gl )
+=((g+ 1) +1) =4)) e(Dyi1 + 1)
24e3s 1
+?(Dg,n+1 + 5)3), (2-55)
Remark that Dy, 41 +1 < Ay 41 and Dy g + % < Ay nt1, therefore
Cont1 e <<r
: < T4 1)(Ay g —2
Cra Al S Uy = (A =\ e =2
—l—g((g +1)(n+1)— 4))
24e2s 1
—35 (Dgns1 + 5)2>> (2-56)
We define

er/s=c"=14/80 (2-57)
et/s =c=9/80 (2-58)
2'e3s5/3% = ¢/ = 16/80. (2-59)

9



writing A = Ay 41, we have

4 1) (Agar =)+ el(g + 1)+ 1) = 4) + (D + 3
< CRA-T1) = 1)(A—2) +c(2(A—2)2A—1)— 1) —4) + (A — %)2
< 2 +40)(A-1)(A—=2) = (" +2c)(A—2) —4dc+ (A — A+ %)
< 2 4+40)(A-1)(A=-2)— ("+20)(A=2) —dc+(A-1)(A—2)+2A -2+
< @ et D A—1)A—2) — (' +20)(A—2) —de+ (24— 2+ }l)
< @t At IA—1)A—2) — (¢ +20—2)(A—2) —de+ (24 }l)
(2-60)
We have
"+ 2c—2 =0 (2-61)
9,
4c — il 0 (2-62)
and
2" +4c+ = 1. (2-63)

This implies

1
1) Ay —2) 4 el(g+ )0+ 1) )+ Dy + ) < (Agir — )(Agnir —2)
(2-64)
which implies the bound for Cy ;1. O
2.3 Bounds for F|
For g > 2 we have [§]
1 1
F, = d 2-
)= 53 o # wnwew (2:65)

where d® = (y — y(a))dz. Our assumption that y behaves like a square-root implies
that ®(p) — ®(a) behaves like O(p(p)?). Let us define

o #L%Bcps;g B(p) — ®(a)] |o(p)|* (2:66)

Theorem 2.3 For g > 2 we have

~ 1 Coa
F < 29—2Bg—1 9, . 2_
|F,| < CC s 593 (2-67)
~ 9 PR | _.(5g —2)!
< 29—2 pg—1 g ) _
IF,| < CocCH B e 292 (2-68)

10
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proof:  Choosing the circle of radius |p(p)| = R, one has

29 — 2)|F,| < 1 C 2W(12~‘7—2+1Bg—1+1(1 1 Rdf
(29 -2)IF] < 5-55 ; 91 R2dg1+2
- 1
29—2 -1
S ch Bg Csth
- 1
< 0029_239_109’1W' (2-69)

U
Remark that R was constrained by the condition that discs |p(p)| < R are disjoints,
in other words R somehow measures the ”distance between ramification points”, and

thus we recover the well known fact that Fj, diverges when ramification points meet.

Conclusion: Borel transform and resurgence

In this article, we have showed that, under reasonable generic asumptions Fy(S) has a
factorial growth at large g, of speed at most (5g)!. We already pointed out that this
is an upper bound, probably overestimated, and indeed for most known examples, F
has actually a factorial growth of order (2¢)!.

Let us assume that Fj, has a factorial growth of order (8¢g)! with g <5.

We may define
N o By
F(S.9) =3 o FulS) (2-70)

9=0

which is absolutely convergent in a disc.

It may happen that it is an entire function convergent in the whole complex plane
C (this is the case where the growth of F, was actually slower than (fg)!, and one
could choose a smaller value of 3).

If F (S, s) would be analytically continuable beyond its convergence disc, up to oo,

we would recover F' by the Laplace transform

o) _2
F(S, ) =23 / dse= 7 (S, ). (2-71)
0
This requires to know if F (S, s) can be analytically continued beyond its convergence
disc, up to oo, in other words this requires to know if Fj is a resurgent series [3].

Equivalently this needs to know where the singularities of F (S, s) can be, or what
are the possible divergences at oc.

If F' has singularities at finite distance, we may get contributions to F' of the type

h

@

e_ssing

(2-72)
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If B =2 we would get corrections in e "'

If 3> 2 and F is an entire function and behaves at oo as

F ~é° (2-73)
We may get contributions to F' of the type

T (2-74)
For instance if o = % we would get corrections in e

We shall study the resurgence properties in a forthcoming work...
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