TEMPERED AUTOMORPHIC REPRESENTATIONS OF THE
UNITARY GROUP

PAUL-JAMES WHITE

ABSTRACT. Following Arthur’s study of the representations of the orthogonal
and symplectic groups, we prove many cases of both the local and global Arthur
conjectures for tempered representations of the unitary group. This completes
the proof of Arthur’s description of the discrete series representations of the
quasi-split p-adic unitary group, and Arthur’s description of the tempered
discrete automorphic representations of the unitary group, satisfying certain
technical conditions.

1. INTRODUCTION

Arthur [Art05, §30] has announced a proof of both the local and global Arthur
conjectures for irreducible admissible representations of the quasi-split groups SOs;, 41,
S P, and SOs,. Following Arthur, the aim of this article is to prove the analogous
results for tempered representations of inner forms of the quasi-split unitary group.
We warn the reader that, for technical reasons, we shall in fact work under more re-
strictive hypotheses. The tempered setting admits a number of simplifications over
the general setting. An ulterior aim of this article to provide a first step towards
the general result. Concerning anterior results in this direction, we remark that
Rogawski [Rog90] studied irreducible admissible representations of unitary groups
in two and three variables, and Clozel-Harris-Labesse [CHL09] were the first to
study endoscopic automorphic representations of higher rank unitary groups.

Let us begin by describing our local results. Let k'/k be a quadratic extension
of p-adic fields, and let U} (k’/k) denote the associated quasi-split unitary group in
n-variables. We remind the reader that the classification of the discrete series repre-
sentations of U} (k'/k) has been completed by Moeglin [Moeg07]. The classification
proceeds in two stages.

(1) Arrange the discrete series representations of U} (k'/k) into L-packets, and
classify the L-packets.
(2) Classify the discrete series representations inside a given L-packet.

Moeeglin arranges the discrete series representations into L-packets by requiring
that the representations appearing in a given L-packet have the same Langlands
base change to GL,, (k'). Moeglin shows that the L-packets are finite and dis-
joint, and calculates their cardinality. Mceglin then classifies the representations
of GL, (k') that appear as the Langlands base change of a discrete series repre-
sentation of U} (k'/k). These representations are the tempered 6-discrete stable
representations (cf. Definition 3.7). Using the local Langlands correspondence for
GL,, due to Harris-Taylor and Henniart, Mceglin assigns to each L-packet II of
discrete series representations of U} (k'/k), the L-parameter of GL,,/k’

’(/J Ly — GLn (C)
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which is associated to the Langlands base change of II.

Moeglin [Moeg07] completed the second stage of the classification by using certain
properties of Jacquet modules. Moeglin associated to each discrete series representa-
tion inside a given L-packet a character of a certain abelian group. We are interested
in obtaining an alternative description predicted by the local Arthur conjectures.
Let Sy be the centraliser of the image of ¢ in GL,, (C), and let Sf; be the subgroup
of f-invariant elements where 6 is the degree 2 automorphism defined in Section 2.
We shall study the quotient group S, = ng /{£1}. The group S, is isomorphic to
(Z/2Z)" for some non-negative integer r. Using the endoscopic properties of the
representations in the L-packet II, Arthur defines a pairing (see Section 10.2)

() Sy xT—C

This pairing is canonical, up to the arbitrary choice of a representation o ¢ II.
The local Arthur conjectures predict the following.

Theorem (A). The pairing (-, ) takes values in +1, and induces a bijection between
the representations in the L-packet II and the characters of Sy.

Proof. Theorem 10.6. (]

If instead k'/k ~ C/R, then the L-packets of discrete series representations
of a real unitary group U (p, q) were parameterised, in terms of L-parameters, by
Langlands who applied previous work of Harish-Chandra. Let IT be an L-packet
of discrete series representations of U (p, q), and let ¢ : Ly — LU (p, q) be the L-
parameter associated to II. One can perform the analogous constructions to those
in the non-archimedean case (cf. Section 10.1). The result in this case is due to
Shelstad [She08b] (cf. Theorem 10.2).

Theorem (B). The pairing (-,-) takes values in +1, and induces an injection from
the representations in the L-packet II to the characters of Sy.

Let us now describe our global results, which relate certain discrete automorphic
representations of unitary groups to automorphic representations of GL,,. Let E/F
be a totally imaginary quadratic extension of a totally real field, let U (E/F) be
the associated quasi-split unitary group in n-variables, and let U be an inner form of
Uy (E/F) that is quasi-split at all finite places. We shall be interested in the discrete
automorphic representations o of U (A ) that satisfy the following properties.

e For all archimedean places v, o, is a discrete series representation with the
same infinitesimal character as an irreducible algebraic representation of
GL,, whose highest weight is regular (cf. Section 3.3.1).

e For all non-archimedean places v that remain inert in F, o, is either un-
ramified or a discrete series representation.

The first global result is a mild generalisation of a result of Labesse [Lab09, Theorem
5.1, Theorem 5.9].

Theorem (C). There exists an automorphic representation I1 = 11, B --- B 1L, of
GL, (Ag) such that

e for all places v, I1,, is the Langlands base change of o,
o foralli=1,...,r, I; is cuspidal and I1; ~1I; 0 0, and
o foralli# j, Il; 2 11;.

Proof. This is a special case of Theorem 6.1. O

We shall now consider the converse problem. Let II = II; B -.- B II,. be an
automorphic representation of GL,, (Ag) that satisfies the following properties.
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e For all archimedean places v of F, II, is the Langlands base change of a
discrete series representation of U (F),) with the same infinitesimal character
as an irreducible algebraic representation of GL,, whose highest weight is
regular.

e For all non-archimedean places v of F' that are inert and unramified in F,
IT, is either unramified, or the Langlands base change of a discrete series
representation of U (E,/F,).

e For all non-archimedean places v of F' that are ramified in E, II, is the
Langlands base change of a discrete series representation of U} (E,/F,).

e Foralli=1,...,r, II; is cuspidal and II; ~ II; o 6.

e For all i # j, II; # 11;.

Let o be an irreducible admissible representation of U (A r) whose Langlands base
change is IT at all places.

The global Arthur conjectures predict the multiplicity with which o appears in
the discrete automorphic spectrum of U (A ), which we shall now describe. Let S
be the set of places v of F' such that either

e v is archimedean, or
e v is non-archimedean, inert in E, and II, is the Langlands base change of
a discrete series representation of U} (E,/F)).

For all places w of E, let ¢, : Ly, — GL, (C) be the L-parameter corresponding
to II,. Let St be the group of elements of GL,, (C) that commute with the image
¢, (2) in GL,, (C) for all z € Lg, and for all w. Let SY% be the subgroup of -
invariant points of Sp. We shall study the quotient group Sy = S§/{£1} There
exists a natural embedding, for all v € S,

SH — Swy

where 1), denotes the L-parameter associated to o,. The characters (-, 0,) : Sy, —
{%1}, defined for all v € S, induce by restriction a character

(o) =[] ¢ o) : Su = {£1}
ves

The global Arthur conjectures predicts the following.

Theorem (D). There exists a unique character
€11 - SH — {:l:l}

such that o appears in the discrete automorphic spectrum of U (A ) with multiplic-
ity equal to

Myjsc (0) =
aise (7) 0 : otherwise

{1 Dif (o) = en

Proof. Theorem 11.1 O

By combining the proved local and global Arthur conjectures, we obtain the
following result.
Theorem (E). Assume, in addition to the previous assumptions, that either

e II is cuspidal, or

o there exists a non-archimedean place v € S.
Then there exists a o as above, such that, o appears in the discrete automorphic
spectrum of U (A ) with multiplicity 1.

Proof. Corollary 11.2 O
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Remark 1.1. In the case where II is cuspidal and [F : Q] > 1, this result is due to
Labesse [Lab09, Theorem 5.4, Theorem 5.9].

The method of proof of these conjectures follows the work of Arthur [Art05,
§30] on the proof of these conjectures for general representations of the symplectic
and orthogonal groups. The proofs are mostly global in nature, and rely upon
the stabilisation of both Arthur’s invariant trace formula for the unitary group U
and Arthur’s invariant twisted trace formula for GL,, x 6. The stabilisation of the
invariant trace formula for a general connected reductive group was completed by
Arthur [Art02] [Art01] [Art03] under the assumption of the validity of the weighted
fundamental lemma. This is now a theorem due to the work of Chaudouard-Laumon
[CL10a] [CL10b], Ngbé [Ng610], and Walspurger [Wal09]. As of the time of this
writing, the complete stabilisation of the twisted trace formula for GL, x 0 is
unknown, however the stabilisation of a simple version of the twisted invariant trace
formula for GL,, x 6 has been completed by Labesse [Lab09] and Morel [Morl0].
This simple stable trace formula imposes a number of additional constraints upon
the choice of test functions, and it is for this reason that we have been forced to
work under the hypotheses described in the statements of our results. One would
expect that the complete stabilisation of Arthur’s invariant trace formula for GL %6
would enable one to treat the general case, however that is beyond the aim of this
article. We should also mention that, as of the time of writing, the results of this
article are conditional upon certain expected results on the inner product of elliptic
tempered representations of GL x 6 (cf. Hypothesis 8.0.1). These results would
follow from the generalisation of previous results of Arthur [Art93] to the twisted
setting.

Let us describe the contents of this article. In Section 2, we recall the groups
of interest to us. In Section 3, we recall some known cases of the local Lang-
lands correspondence. In Section 4, we recall the base change, and endoscopic
L-homomorphisms. In Section 5, we recall the necessary properties of the trace for-
mula. In Section 6, we follow Labesse and apply the trace formula to prove our base
change result. In Section 7, we recall a result of Shin on the existence of discrete au-
tomorphic representations of the unitary group satisfying certain local conditions,
and then combine this with our base change result. In Section 8, we prove that the
sum of the characters of the representations appearing in an L-packet II of discrete
series representations of the quasi-split p-adic unitary group is a stable distribution.
Meeglin had previously shown that a linear combination of the representations in
II is stable, as such, we are reduced to showing that Mceglin’s coefficients are equal
to 1. The result follows from two numerical constraints upon the possible values of
Moeglin’s coefficients. The first constraint is that the coefficients are non-negative
integers. This is shown by judiciously choosing automorphic representations satisfy-
ing certain local properties, and considering their contribution to the trace formula.
The second constraint relates to the norm of the coefficients, and follows from cer-
tain local character identities. Section 9 is the heart of this article in which we
prove certain properties of the spectral transfer factors via arguments similar to
those of Section 8. In Section 10, we recall and prove the local Arthur conjectures.
Section 11 contains a statement and proof of the global Arthur conjectures.

1.1. Notation. The strictly positive (resp. non-negative integers) shall be denoted
by N (resp. NY). The archimedean Weil groups shall be written as Wg = CX,
and Wr = C* U jC* where j2 = —1 and jzj~! = Z for all z € C*. Unless stated
otherwise, a representations shall be assumed to be irreducible and admissible with
complex coeflicients. The term induced representation shall refer to the unitarily
normalised induced representation.
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2. SOME GROUPS

We shall recall here the groups that shall be of interest to us. Let &'/k be a
quadratic extension of either local or global fields of characteristic 0. Consider the
group

ResGL,
K /k

where Res denotes the Weyl restriction of scalars. This groups admits a degree 2
automorphism

0="0,:z— o, (" ot
where ¢ € Gal (k'/k) denotes the non-trivial element and

-1

The quasi-split unitary group in n-variables, denoted as either U} (k' /k), U or U*,
is the k-algebraic group of 6,-invariant points of Resy//p G L.

Let B = M, (k') be the algebra of k’-valued n x n matrices. Let I : B — B be
an involution of the second kind, that is, |- = ¢. We define G to be the algebraic
group whose R-valued points are given by

Gy (R) = {ge (B &y R)” :gigzl}

for all k-algebras R. The algebraic group G; is an inner form of U} (k'/k), and
there exists a canonical, up to conjugation, isomorphism

Gi Xk k/ :> GLn

Let us enumerate some of the possible groups that are obtained via this con-
struction.

e Assume that k' /k ~ C/R. Then G; is isomorphic to one of the real unitary
groups U (p, q) where p+ ¢ =n.

o Assume that k’'/k is an extension of p-adic fields. If n is odd then Gy is
isomorphic to the quasi-split unitary group U} (k'/k). If n is even then Gy
is isomorphic to either U} (k'/k) or the unique inner form of U} (k¥'/k) that
is not quasi-split.

Consider the global setting where k'/k = E/F is a totally imaginary quadratic
extension of a totally real field. The groups Gy satisfy the Hasse principle (cf.
[HLO4, §1.2]), that is, they are determined, up to isomorphism, by their local forms
Gi,, = Gy xp F, where v runs through the places of F'. If v is either real or, finite
and inert in F, then the possible local forms are enumerated above. Let us consider
the case where v is finite and splits in F.

o Assume that v = ww® is finite and splits in £. Then Gy x g F}, is isomorphic
to GL,/F,. The isomorphism is non-canonical; it essentially depends upon
a choice of either w or w®. It will be important to distinguish between these
isomorphisms. Observe that

B RF, E, = (B RF, Ew) S (B QF, Ewc)
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and that I induces, by restriction, an isomorphism
1:B®F, E, = B®p, E,e
By projection onto the w (resp. w®) component, we obtain the isomorphism
tw: Gy xp F, 5 GL,, (resp. tye : Gy xp F, 5 GL,)

which is canonical up to conjugation.

In order to fix the choice of isomorphism Gj xp F, 5 GL, at finite split places,
we choose a set of places @ of FE containing either w or w€ for each finite split place
v = ww® of F, and then define

L,,ZLw/:GT_ XFFV;GLn
where W’ € Q.

The groups G; have been classified in the cases of interest to us.

Proposition 2.1. Let E/F be a totally imaginary quadratic extension of a totally
real field. Let n € N, and for all real places v of F, let p,,q, € N° such that
Py + g, = n. Then there exists an involution of the second kind I such that

o Gy xp F, U (py,q,) for all archimedean v, and
o Gy xp F, is quasi-split for all finite v

if and only if [],o0 € (U (P, qv)) =1 where
1 sif nois odd

(=1)"27P L ifn is even

€ (U (pv,qu)) = {
Proof. [HL04, Proposition 1.2.3]. O

3. THE LOCAL LANGLANDS CORRESPONDENCE

We shall recall here the local Langlands correspondence in the cases of interest
to us.

3.1. L-groups. We shall explicitly recall the L-groups of interest to us (cf. [Bor79]).
Let k be either a local or global field of characteristic 0. For G a connected
reductive k-algebraic group, the L-group is defined to be

LG:@X]Wk

where G denotes the Langlands dual group, and W}, the absolute Weil group which
acts on G via its natural action on the root datum. The action of the Weil group is
non-canonical; it depends upon a choice of splitting for the dual group G , however,
different choices of splittings give rise to canonically isomorphic L-groups. We recall
that inner forms give rise to isomorphic L-groups.

e Assume that G = GL,/k. Then G =GL, (C), and
L@L, = GL, (C) x W}

e Assume that k'/k is a quadratic extension and that G = U} (k'/k). Then
G = GL, (C). The Weil group W}, acts on G through its projection onto
Gal (k' /k) = {1, ¢} where ¢ acts as follows.

GL, (C) = GL, (C)
g — (I)ntg_lq);l
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e Assume that k/k is a quadratic extension and that G = Resy /, Uy (K'/k) 3 K.

Then G = GL, (C) x GLy, (C). The Weil group W}, acts on G through its
projection onto Gal (k’/k) = {1, ¢} where c acts as follows.

GL,(C) x GL,(C) - GL, (C) x GL, (C)
g1 X gg — (Pntggl(bgl X <I>ntgl_1<1>_1

n

3.2. L-parameters. Let k be a local field of characteristic 0.
The Langlands group is defined to be

I Wi : if v is archimedean
b Wi x SUs (R) :if v is non-archimedean

Let G be a connected reductive k-algebraic group. An L-parameter for G is a
continuous homomorphism
1[1 : L — LG
that satisfies the following conditions.
e For all w € Ly, the image of ¢ (w) in W}, is the same as the image of w in
Wy
e For all w € Ly, 9 (w) is semi-simple.
Two L-parameters are said to be equivalent if they are conjugate by an element of
G. We shall also define the following properties of L-parameters.
e 1 is said to be unramified if
— ( is unramified,
— ) is trivial on the SUs (R)-component, and

— the composite map Wy S G o G x Z factors through the valuation
mapv: W, > Z
e ) is said to be tempered if the image of 1 (L) in LG is bounded.
e ¢ is said to be discrete if C ()’ € Z (é’(C)) where C (1)° denotes the
identity component of

C () ={g€G(C): g (w) = v (w)g Vw e Ly}

e ¢ is said to be relevant if the image of 1 (Lj) does not lie in any parabolic
subgroup unless the corresponding parabolic subgroup of G is defined over
k. If G is quasi-split, then all L-parameters are relevant.

In the case of GL,, there is the obvious bijection between L-parameters and
continuous homomorphisms

¥ L, — GL,(C)

such that ¢’ (w) is semi-simple for all w € Lj. We shall use this bijection without
comment throughout this article.

3.3. The local Langlands correspondence.

3.3.1. The archimedean case. The local Langlands classification here is due to Lang-
lands [Lan89] (see also [Kna94]).

Proposition 3.1. Let k € {R,C}. Let G be a connected reductive k-group. To
each equivalence class of relevant L-parameters ¢ : L, — LG, one can naturally
associate I1 (¥), a finite non-empty set of infinitesimal equivalence classes of irre-
ducible admissible representations of G (k). The L-packets 11 (1)) are disjoint and
their union is equal to the set of infinitesimal equivalence classes of irreducible ad-
missible representations of G (k).
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Let us recall the correspondence for discrete series representations of the real
unitary groups G = U (p,q) (cf. [Kot90, §7]). The discrete series representations
of G are parameterised by the tempered discrete relevant L-parameters of G. The
tempered discrete relevant L-parameters of G are of the form

wWR%GLn(C) x Wgr,
z > diag ((Z/E)]‘”JFTLTH*1 ety (Z/E)p’ﬁ%l*") X z
J= O

where p; > -+ > p,, are integers. Write V}, for the algebraic representation of GL,
of highest weight (p1,...,p,) (relative to the standard torus and Borel subgroups).
The representation Vy; is said to have regular highest weight if p; > --- > p,. The
L-packet II (¢) contains the discrete series representations of G whose infinitesimal
character is equal to the infinitesimal character of V,;,. It will be convenient to also
denote the L-packet II () by II (V).

The elements of the L-packet II(1)) can be parameterised, using Harish-Chandra’s
character formula, by elements of

Or/Q > 6,/6, x &,
where Qg (resp. ) denotes the real (resp. complex) Weyl group of U (p,q). In

particular the cardinality of the L-packet is equal to |II (¢)| = ﬁé!

3.3.2. The unramified case. The unramified local Langlands correspondence is due
to Langlands (see [Bor79]).

Proposition 3.2. Let k be a p-adic field, and let G be an unramified k-algebraic
group. Then to each equivalence class of unramified L-parameters ¢ : L, — LG
and to each conjugacy class K of hyperspecial subgroups of G (k), one can naturally
associate an equivalence class of K-unramified representation (¢, K) of G (k).
This correspondence induces a bijection between pairs (1, K) and equivalence classes
of unramified representations of G (k).

Remark 3.3. Recall that an irreducible admissible representation = of G (k) is said
to be K -unramified if 7% # 0.

Remark 3.4. The unramified representations associated to an unramified L-parameter
1) are expected to form a subset of the conjectured L-packet associated to . In

general, the L-packet will contain additional representations that are not unrami-
fied.

Remark 3.5. If G = GL,, then there exists a single conjugacy class of hyperspecial
subgroups of G (k). For general groups, see [Tit79)].

3.3.3. GL,. The local Langlands correspondence for GL,, is due to Harris-Taylor
[HT01] and Henniart [Hen00].

Proposition 3.6. Let k be a p-adic field. Then to each equivalence class of L-
parameters 1 : L, — YG, one can naturally associate 11 (1)), a set consisting of the
equivalence class of a single irreducible admissible representations of G (k). Fur-
thermore, the L-packets 11 () are disjoint and their union is equal to the set of
equivalence classes of irreducible admissible representations of G (k).

3.4. Resg/p U (E/F) xp F. Let E/F be a totally imaginary quadratic extension
of a totally real field, and let v be a place of F'. The canonical isomorphism
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induces a bijection between the equivalence classes of representations of the two
groups. There is a corresponding bijection between the equivalence classes of L-
parameters of the groups Resg, p, Uy (E/F) xp E, and GL,/E, (cf. [Rog90,
§4.7)).

3.4.1. U} (E/F). Let E/F be a totally imaginary quadratic extension of a totally
real field, and let v be a finite place of F.
e Assume that v = ww® splits in E. As recalled in Section 2, there is a
non-canonical isomorphism

v U (E/F) xp F, > GL,/F,

which depends upon the choice of the place w or w®. This isomorphism
induces a bijection between the equivalence classes of representations of
the two groups; it also induces a bijection between the equivalence classes
of L-parameters of the two groups.

e Assume that v remains inert in E. Then U} (E/F) xr F, = U} (E,/F,).

Let k'/k be a quadratic extension of p-adic fields. We shall consider the repre-
sentations of the unitary group U} (k'/k).

Definition 3.7. Let ¢ : Lyr — GL, be an L-parameter for GL,,/k’ that decom-
poses into a direct sum of irreducible representations of the form

P = @(p,a)€5p® 0q: Ly — GL,

where p is an irreducible representation of W} of dimension d,, a is an integer and
o, denotes the unique a-dimensional irreducible representation of SUs (R). We say
that 1 is tempered 0-discrete stable if

e 1) is a tempered L-homomorphism, and
o for all (p,a) € &, (p®R0a) ~ (p®04)" where ¢ € Gal(k'/k) denotes
the non-trivial element, and ¢ acts on Lj via conjugation of the Wy-
component, and
e the representations p ® o, are pairwise non-isomorphic, and
e for all (p,a) € &,
— if n = ad, mod 2, then the Asai-Shahidi L-function (cf. [Gol94])
associated to p ® o, has a pole at s =0
— if n # ad, mod 2, then the Asai-Shahidi L-function associated to
p ® o, does not have a pole at s =0
We inform the reader that the property of the Asai-Shahidi L-function at
s =0 can be changed by twisting by a certain character (cf. Remark 3.9).
It will be useful to extend this definition to L-parameters of the groups GL, x
GLy/k'. An L-parameter ¢ = 1, X 10y : Lyy — GL, X GLy, of GL, x GLp /K shall
be said to be tempered 0-discrete stable if both v, and v, are tempered #-discrete
stable L-parameters of GL,/k" and GLy/k’ respectively.
We shall say that an irreducible admissible representation w, X m, of GL, X
GLy (k') is tempered 0-discrete stable if its L-parameter ¢ (m, X mp) : Ly — GLg X
GLy is tempered 6-discrete stable.

Remark 3.8. Let m be an irreducible admissible representation of GL,, (k¥'), and
write the cuspidal support of 7 as

X (p,a)€E St (pa a)

where p is a supercuspidal representation of GLg, (k'), a is an integer, and St (p, a)
denotes the generalised Steinberg representation. The condition that 7w be tempered
f-discrete stable is equivalent to requiring the following.

e 7 is tempered.
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e For all (p,a) € &, St (p,a) ol ~ St (p,a).
e The representations St (p, a) are pairwise non-isomorphic.
e For all (p,a) € &,
— if n = ad, mod 2, then the Asai-Shahidi L-function associated to
St (p, a) has a pole at s = 0, and
— if n # ad, mod 2, then the Asai-Shahidi L-function associated to
St (p, a) does not have a pole at s =0

Remark 3.9. If the Asai-Shahidi L-function associated to St (p, a) has a pole (resp.
does not have a pole) at s = 0, then the Asai-Shahidi L-function associated to
St (p,a) - u1 does not have a pole (resp. has a pole) at s = 0 where p is the
character defined in Section 4.2.1.

The local Langlands correspondence for discrete series representations of the
quasi-split unitary group is due to Meeglin [Mceg07]. Meeglin classifies the discrete
series representations in terms of their Langlands base change to the general linear
group (cf. Remark 5.11). Tt is important to note that Mceglin implicitly works
with a non-standard twist of the stable base change map, more precisely a twist
by the character uf, whilst we have chosen to work with the stable base change
map. It is for this reason that the normalisation of the correspondence recalled here
differs from [Mceg07]. Consequently our definition of a tempered #-discrete stable
L-homomorphism also differs from the definition appearing in [Mceg07, p 161-162].

Proposition 3.10. To each equivalence class of tempered 0-discrete stable L-
parameters ¢ : Ly — GL,/K', one can naturally associate 11 (), a finite non-
empty set of equivalence classes of discrete series representations of Uk (K'/k) (k).
The L-packets I1 () are disjoint and their union is equal to the set of equivalence
classes of discrete series representations of U} (k' /k) (k). The cardinality of the L-
packet TL (1) is equal to 2" )= where | (1) denotes the length of the representation

Y.
4. SOME L-HOMOMORPHISMS

We shall recall here the L-homomorphisms that shall be of interest to us.
Let k be a local or global field of characteristic 0. Let H and G be connected
reductive groups defined over k. An L-homomorphism is a group homomorphism

¢:PH- G
such that
e ¢ is a homomorphism over Wy,

e ¢ is continuous, and
e the restriction of £ to H induces a complex analytic homomorphism

If k£ is a local field then £ is said to be unramified if the groups H and G are un-
ramified, and £ induces a map from unramified L-parameters of H to unramified L-
parameters of G. If k is a global field of characteristic 0, then the L-homomorphism
¢:1H — Q, induces a family of L-homomorphisms
¢:tH, - 1a,

where v runs through the places of k.

If k is a local field of characteristic 0, then the L-homomorphism & : 'H — LG
induces a map from the L-parameters of H to the L-parameters of GG, which, in the

cases where the local Langlands correspondence is known, induces a correspondence
of L-packets. It will be useful to introduce the following notation, in the cases where
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the local Langlands correspondence is known. Let 7 (resp. II) be an irreducible
admissible representation (resp. L-packet) of H. We shall write v () : Ly — “H
(resp. () : Ly — T“H) for the L-parameter associated to 7 (resp. II). An
irreducible admissible representation 7' (resp. L-packet IT') of G is said to be a
&-transfer of m (resp. II) if the L-parameters ¢ (') ~ & o ¢ (w) (resp. ¢ (II') ~
& o1 (1)) are equivalent. We shall also write either IT(7) or II (3 (7)) for the
L-packet containing 7.

4.1. Base change. Let k'/k be a quadratic extension of local or global fields of
characteristic 0. The base change L-homomorphism for unitary groups is defined
as follows.

BC: fU: (K [k) — LE?E U* (K JEk) xp k'
gXwWrH gXxXgXw

Assume now that k' /k = E/F is a totally imaginary quadratic extension of a totally
real field. Consider the induced map of L-parameters from a group U appearing in
Proposition 2.1 to GL,/E. Let v be a place of F, and let p, : Ly, — “U, be a
relevant L-parameter.

e Assume that v = ww® splits in E where w € @ (cf. Section 2). Then,
identifying F,, = E,, = E,,c, we have that

BC(py) =~ pu X pyy

seen as an L-parameter of GL,/FE, x E,.. In terms of L-packets, writing
I (p,) = {m,}, we have that I (BC (p,)) = {m, x 7,/ }.
e Assume that v remains inert in £. Then

BC (p,) =~ p,,|LEV :Lg, — LGLn/EV

If p, is unramified, then the correspondence of unramified representations
can be explicitly described in terms of Satake parameters (cf. [Min09,
Theorem 4.1]). If we consider Mceglin’s reformulation of the local Langlands
correspondence (cf. Section 3.4.1) where p, : Ly, — GL, is a tempered
f-discrete stable L-parameter. Then, by definition,

BC (pv) = pv

seen as an L-parameter of GL,,/E,.
e Assume that v is real. Then

BC (p,) ~ pulwe : We — YGL, /C
4.2. Endoscopic transfer.

4.2.1. Some Hecke characters. Let k'/k be a quadratic extension of either local or
global fields of characteristic 0. If k is local (resp. global) let 5 : k* — C* (resp.
n:k* /A — C*) be the character associated to the extension k/k via class field
theory. For all @ € N, fix a character j, : k' — C* (resp. pq : k' /A}, = CX)
that extends n®. We remark that u, can be seen, via class field theory, as a character
of the Weil group Wy,. The Hecke characters are easily seen to satisfy the following
properties (cf. [BC09, §6.9.2]).

® (i, 1s unitary.
o ool i,
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e For all complex places w of k', if a is even (resp. odd) the L-parameter of
Ha,w is of the form

We — C* x We
2 (2/2)% X 2
for some integer (resp. half integer) g, -

4.2.2. Endoscopic transfer. Let a,b € N° and let n = a + b. We shall consider the
endoscopic L-homomorphism

Eap  FU (K Jk) x U (K k) — FU (K k)
g1 X go X 1 — diag (g1,92) X
I, x I, x w— diag (up (w) a,ua( V1) X w Yw € Wg

I, x I,, X we +— diag (®,, ®p) ®, 1 x w,

where w, denotes a chosen lift of ¢, the non-trivial element of Gal (k¥'/k) = {1, c}.

It is often simplest to study the endoscopic L-homomorphism in tandem with
the base change L-homomorphism. The next lemma follows immediately from the
respective definitions.

Lemma 4.1. Let H = U} (K'/k) x U (K'/k). Let v be a place of k, and let
Pv = Pay X Py - Ly, — LH, be an L-parameter. Then

BC (fa,b (pu)) = Wb BC (pa,u) X fa,v - BC (wa)

5. THE ARTHUR-SELBERG TRACE FORMULA

We shall recall, in this section, the stable base change identity and the stable
trace formula for the unitary group.

We begin by introduction some notation. Let GT be a reductive algebraic group
defined over a local or global field k of characteristic 0. Let G° be the connected
component containing the identity element of G*, and let G be any connected
component of GT. An element v € G is said to be semisimple (resp. strongly
reqular) if, viewed as an element of GT, 7 is semisimple (resp. strongly regular).
Recall that an element v € G is said to be strongly reqular if the centraliser of ~y
in GO is a torus. We shall denote the connected component of the centraliser of ~y
in G° by GY. We shall define T's (G) (resp. Treg,ss (G)) to be the set of semisimple
(resp. strongly regular semisimple) elements of G. Two elements v,~" € G (k) are
said to be conjugates if they are conjugate by an element of G° (k). Two elements
7,7 € Tiegss (G) are said to be stable conjugates if they are conjugate by an element
of G° ().

Assume momentarily that & is local. Let v € I'ieg 55 (G), and let f € C° (G (k))
(resp. f € S(G(k))) if k is non-archimedean (resp. archimedean). We remind
the reader that C2° (G (k)) denotes the space of smooth functions with compact
support on G (k), and S (G (k)) denotes the space of Schwartz functions on G (k).
The orbital integral of f at « is defined to be

®(y,f) = / f(97"v9) dg
G5 ()\GO (k)
The stable orbital integral of f at 7y is defined to be

o (v, f) = Z@vf

where the summation is taken over a set of representatives ' of the conjugacy
classes inside the stable conjugacy class of ~.
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If k£ is local, then a distribution
A:CX(G (k) —C

is said to be stable if, for all f € C° (G (k)), A(f) depends only upon the values
of the stable orbital integrals @ (v, f) for v € Tyegss (G). If k is global, then a
distribution

A=A, :CZ(G(Ar) — C

is said to be stable if the individual A, are stable.
Throughout this article, we shall normalise our Haar measures such that

e the Haar measures satisfy the usual compatibility conditions (cf. [LS87]),

e if G is a connected reductive unramified p-adic group, then the measure of
any hyperspecial subgroup of G is equal to 1, and

e if (G is a connected reductive group defined over a number field k, then
the product measure dg = [[, dg, on G (Ay) is equal to the Tamagawa
measure.

5.1. Stable base change. Throughout this section, we shall denote by k'/k ei-
ther a quadratic extension of local fields of characteristic 0, or a totally imaginary
quadratic extension of a totally real number field.

Let H = U} (K'/k) x U; (k' /k) where a,b € N. Define the connected reductive
group G = GL, x GLy/K'. The group G° admits a degree 2 automorphism

0:9ax0b:GLa><GLbHGLa><GLb
where 6, and 6, are defined in Section 2. We define the non-connected group
GT = G x (0), and the connected component G = G° x f. There exists a natural
bijection
C (G (k) — € (G (k)
f—fx0

which identifies the two spaces of functions.

5.1.1. The norm map. Assume that k is local throughout this section.
Labesse [Lab99, §2.4] defines the norm map

N i Tregs (G) = Ty (H)

which canonically maps conjugacy classes of G (k') to stable conjugacy classes of
H (k). An element vg € Thiegss (G) is said to be H-strongly regular semisimple
if N (v¢) is strongly regular semisimple. We define ' yeg,ss (G) to be the set of
H-strongly regular semisimple elements of G (k'). An element vy € T'yeg o (H) is
said to be a norm of an element Yo € I'Hoyeg,ss (G) if v and N (7¢) are stable
conjugates.

5.1.2. Intertwining operators. Assume that k is local throughout this section.
Let V be a complex vector space, and let 7 : G® (k') — GL (V') be an irreducible
admissible representation such that m ~ wo#. There exists an intertwining operator

A :m—mol

By Schur’s lemma, A, is uniquely determined, up to a non-zero constant, and A2
is a non-zero constant. The operator A, is said to be normalised if A2 = 1. A
normalised intertwining operator is uniquely determined up to a sign.

If 7 is generic, then a canonical choice for the intertwining operator A, can be
made via Whittaker models. Let

ANV —=C
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be a Whittaker functional on 7 (which depends upon the choice of a non-trivial
additive character of k). The intertwining operator A, is said to be Whittaker
normalised if

A=A

where A, acts, via its dual action, on the space of Whittaker functionals of w. We
shall denote the Whittaker normalised intertwining operator by AW.

5.1.3. The transfer. Assume that k is local throughout this section.
Following Labesse [Lab99, §3.2], two functions ¢ € C=° (G (k')) and f7 € C* (H (k))
are said to be associated if, for all vy € T'ieq ss (H),

o ('YH; fH) _ ® (yG,¢) :if yg is a norm of some Yg € I'iregss (G)
0 : otherwise

We shall now recall some results on the existence and properties of associated
functions. In what follows, we shall assume that k' /k = E/F is a totally imaginary
quadratic extension of a totally real field.

5.1.4. The transfer: archimedean places. Assume that v is a real place of F.

We begin by recalling the important class of twisted Euler-Poincaré functions.
Let V' be an irreducible algebraic representation of GL, x GL;. Consider the
algebraic representation V @ V¢ of

ER/e; G xp E, 5 (GLy x GLy) x (GLg x GLy)

and the intertwining operator
Aygro : VRV s VieV
V1 Q@ Vg — Vg ® U1
Let K be a maximal compact f-invariant subgroup of Resg, /r, (GO XE El,) (Fy),
and let g = Lie (Resp, /r, G° x g E,)). For all irreducible admissible representations
7 of Resg, ), (G° xg E,) (F,) ~ G°(E,) such that 7 ~ 7 o 6, equipped with

normalised intertwining operator A,, the twisted Euler-Poincaré characteristic is
defined to be

ep (0. K;m @V @Vl Ar®Ag) = (—1)' Tr (A, @ Ag|H' (9. K. 7@V @ V7))

i
Lemma 5.1. Let 7 be an irreducible admissible representation of G° (E,) such that
T~ mof. Assume that

ep (g, K;m@ VeVl A, Ag) #0
Then the infinitesimal characters of ™ and (V ® Ve)\/ are equal.

Proof. This follows from well-known properties of the relative Lie-algebra cohomol-
ogy (ct. [Lab9l, §7]). O

Lemma 5.2. There exists a unique irreducible generic unitary representation w of
G° (E,) such that 7 ~ 7o 6 and

ep (8, K;m @V @V Ay @ Ag) #0
For this ,
€p (gaK;ﬂ'@V@ Vo, AV ®A9) — (_1)q(HV) on

where q (H,) = § dim (H, (F,) /K); furthermore, 7 is the Langlands base change of
the L-packet of discrete series representations IL(VY) of H (F,) (cf. Section 3.5.1).
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Proof. Labesse [Lab09, Lemma 4.7] shows the existence and uniqueness of such a 7
and calculates the twisted Euler-Poicaré characteristic up to a sign. The determina-
tion of the sign for the Whittaker normalised intertwining operator is due to Clozel
[Clo09, Corollary 2.2]. Finally, the fact that 7 is the Langlands base change of the
L-packet IT (V) follows from the properties of the local Langlands correspondence
(cf. [Kna94]). O

Lemma 5.3. There exists a twisted Euler-Poincaré function ¢y gye € C° (G (E,))
such that
o dygyoe is K-finite and cuspidal (cf. [Art88, §7]), and
e for all irreducible admissible representations m of G° (E,) such that m ~
mTod,

Trrmo Ar (dveve) =ep (g, K;m @V @V, A @ Ay)
Proof. [Lab91, Proposition 12] O

Lemma 5.4. The twisted Euler-Poincaré function ¢y gye € C° (G (E,)) is associ-
ated to fy € C° (H (F,)) where fy denotes the Euler-Poincaré function associated
to V (cf. Section 5.2.5).

Proof. [Lab09, Lemma, 4.4] O

5.1.5. The transfer: unramified case. Assume that v is a finite place of F' that is
unramified in F.

Let Kgo (resp. Kpr) be a hyperspecial subgroup of G* (E,,) (resp. H (F,)). The
base change L-homomorphism BC : YH — T Resg, /r, G° xp E, is unramified
and induces a map from the Kg-unramified representations of H (F),) to the Kgo-
unramified representations of G° (E,) (cf. Section 4). Dual to this transfer, there
exists a morphism of spherical Hecke algebras (see Minguez [Min09, §4] for an
explicit description)

BC:C® (G (E,),Kgo) = C* (H (F,),Kp)
Lemma 5.5. For all ¢ € C° (G° (E,), Kgo), the function BC (¢) € C2° (H (F,), Kg)

is associated to ¢.

Proof. If v splits in E then the result is straight forward (cf. [Lab99, §3.4]). Assume
now that v remains inert in E. If ¢ = 1x_, x 0, then the result is due to Kottwitz
[Kot86]. For general ¢, the result is due to Clozel [Clo90] and Labesse [Lab90]. O

Lemma 5.6. Let ¢ € C° (G°(E,),Kgo), and let let f7 € C*(H (F,),Kn).
Assume that ¢ and f are associated. Let g be a K -unramified representation

of H(F,), and let © be an unramified representation of GO (E,). Assume that 7 is
the Langlands base change of wy, that is, ¢ (w) ~ BC (¢ (7g)). Then

Trmy (fH) =+Trmo A, (¢)

where the sign depends upon the choice of the normalised intertwining operator
Ar. If mis generic and Ay is chosen to be the Whittaker normalised intertwining
operator, then

Trry (f7) =Trmo AV (¢)

Proof. Tt follows from Lemma 5.5 that
Trry (f7) = £Trnm (¢)
The result then follows from the following observations.

e A normalised intertwining operator acts on the 1-dimensional vector space
7Keo by multiplication by +1.
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e The Whittaker normalised intertwining operator A" acts as the identity
Kgo
on w60,

O

5.1.6. The transfer: split places. Assume that v = ww® is a finite place of F' that
splits in E. The results are well known in this case (cf. [Lab99, §3.4]).

Let m, = 7, X m,e be an irreducible admissible representation of G° (E,) =
G° (E,) x G°(E,:.) such that m, ~ m, o #. There is a natural choice for the
normalised intertwining operator

ATy X Tye — Ty X Mye
V1 X Vg — Vg X U1

If 7 is generic, then A coincides with the Whittaker normalised intertwining oper-
ator AW,

Lemma 5.7. For all ¢ € C° (G (E,)), there exists f1 € C° (H (F,)) such that ¢
and fH are associated.

Lemma 5.8. Let ¢ € C®° (G (E,)), and let f7 € C* (H(F,)). Assume that ¢
and fH are associated. Then for all irreducible admissible representations Tg of
H(F,),

Trry (f7) =Trmo A(9)

where m is the irreducible admissible representation of G° (E,) which is the Lang-
lands base change of wp, that is, 1 (m) ~ BC (¢ (7gr)).

5.1.7. The transfer: inert places. Assume that v is a finite place of F' that remains
inert in E.

Lemma 5.9. For all ¢ € C® (G (E,)), there exists f1 € C° (H (F,)) such that ¢
and fH are associated.

Proof. [Lab99, Theorem 3.3.1] O

Lemma 5.10. Let ¢ : L, — “GY be a tempered -discrete stable L-parameter.
Then there exist unique complex numbers n (i, o) for all irreducible admissible
representations o of H (F,), such that, for all associated ¢ € C* (G (E,)) and
fHece(H(F)),

Trmo AV (¢) =) n(¢,0)Tro (f¥)
where T is the irreducible admissible representation of G° (E,) such that 1 (1) ~ 1),
seen as L-parameters of GY.
Proof. [Mceg07, §5.7] O

Remark 5.11. One defines the L-packet IT (1) to be the set of o such that n (¢, o) #
0, which are shown to be discrete series representations (cf. [Moeg07, §5.5]).

Lemma 5.12. Keeping the notation and the assumptions of Lemma 5.10. The
distribution
Z n(y,0)Tro

o€Tl(v))

is stable, and is the unique, up to a scalar, linear combination of representations in
the L-packet T () which is stable.

Proof. [Maeg07, §5.5] O
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5.1.8. Stable base change. Let E/F be a totally imaginary quadratic extension of a
totally real number field. Let H = U} (E/F) x U} (E/F), let G® = GL, x GL/E,
let G = GY x (0), and let G = G° x 0. Let S;am denote the finite set of places v
of F' such that either v is archimedean, or v is non-archimedean and ramified in E.

Proposition 5.13. Let S D Sam be a finite set of places of F'. Let ¢5 = Qycs50, €
Cx (GO (AS)), and let ¢ = ¢g @ 1gs where K5 = Hygzs K, is a product of hy-
perspecial subgroups K, of G°(F,). Assume that f# = @,fH € C>* (H (A)) is
associated to ¢ at all places v. Assume that for all archimedean places v, f2 and
o, are, up to a multiple, those functions appearing in Lemma 5.4. Then

ooy )2 1(¢): ifab=0
ST )_{4~I(¢): otherwise

where I denotes Arthur’s twisted invariant trace formula for G (cf. [Art88]), and
SH denotes Arthur’s stable trace formula for Hy (cf. [Art02]).

Proof. If [F : Q] > 2, then this result is due to Labesse [Lab09]. It is important
to note that the constant (either 2 or 4) does not explicitly appear in [Lab09] as it
is subsumed in Labesse’s chosen normalisation of Arthur’s twisted invariant trace
formula, which differs by, in the notation of [Lab09], the constant .J (G) This

constant J (é) is equal to 2 if ab = 0 and otherwise 4.

If FF = Q, then the result is due to Morel [Morl0, Proposition 8.3.1]. Morel
demonstrates the result, up to a constant, which in the case of the unitary group
is equal to the desired constant (cf. proof of [Lab09, Theorem 4.12]) O

We remark that Arthur’s stable trace formula for connected reductive groups (cf.
[Art02] [Art01] [Art03]) is now unconditional due to the proof of the generalised
fundamental lemma by Chaudouard-Laumon [CL10a] [CL10b], Ngb [Ng610], and
Walspurger [Wal09]. Arthur’s [Art88] twisted invariant trace formula is also uncon-
ditional due to the work of Kottwitz-Rogawski [KR00] and Delorme-Mezo [DMO0S].
Furthermore, the twisted invariant trace formula admits a simple expression here
due to the fact that our chosen ¢ is cuspidal at infinity (cf. [Art88, Theorem 7.1]).

Lo
I(f)=Tase (f) = > |VM[;%O| > |det(s—1)a§0|_1

LoeLo | 0 | SGWG(GLO)

reg

Z Mdisc (%) Tr <MQOSQ0 (0) PQo.t (S, 0, f) ‘Indgo 7r>
T€aisc(Lox(s)) 0

where the notation is that of [Art88], in particular,

e My is a minimal 6-invariant Levi subgroup of G©,

o L0 is the set of Levi subgroups of G° containing My,

e Ay, is the maximal split torus contained in the restriction of scalars to Q

of the centre of Ly,

e ay, is the Lie algebra of Ay,

. afﬂ is the quotient of ar,, by the subgroup of #-invariant points of ago,

e the Weyl group VVOL0 is the group of isomorphisms of az,, induced by G,

o WC (ag,) is the quotient of WE" by Wi,

o WO (aLy),ey = {s € WO (ar,) s det (s — 1) [y # o}
o Ilgisc (Lo % (s)) is the set of irreducible unitary representations 7 of (Lg X (s)) (A)
whose restriction m to Lg remains irreducible and appears in the discrete

automorphic spectrum of Ly with non-zero multiplicity,
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e myjsc (7) is the multiplicity of 7 in the discrete automorphic spectrum of
Lo x (s), which in our situation, due to the multiplicity 1 theorem for
GL,, is equal to mgjsc (7) the multiplicity of 7 in the discrete automorphic
spectrum of Lg, and

o Mg, 1sq, (0) and pg, ¢ (5,0, f) are the operators defined by Arthur [Art88]
where Qg denotes the standard parabolic subgroup of G° containing L.

For our choice of f, the stable trace formula admits a spectral expansion,

ST (%) = Sfiee (f7) Zn )Tro (1)

where n (o) is a rational number, and o ranges over a set of irreducible admissible
representations of H (Ap). The o for which n (o) # 0 are called the stable discrete
automorphic representations of H.

Remark 5.14. We warn the reader that a stable discrete automorphic representation
of H need not be automorphic.

Remark 5.15. The work of Muller [Miil98] on the traceability of the discrete spec-
trum has allowed us to omit the summation over ‘¢’ utilised by Arthur.

Lemma 5.16. Let s =0,, x---x 0, . Then
‘det (S — l)ag‘)' =2

Proof. We see that afo =ar, ~ R", and s acts by multiplication by —1. The result
follows. O

Lemma 5.17. Let s € W¢ (0o ) egs and let @ € Taisc (Lo % (s)). Write m =
T X Wy X« -+ X 7, where each m; € Haise (GLy,) for somen; € N. Then m; 060 ~ ;
foralli=1,...,7r. Furthermore, if m; % m; for all i # j, then s ~ 0, X --- X 0, .
Proof. [Lab09, Lemma 3.8] O

Lemma 5.18. Let s € W& (00 ) s and let T € Haise (Lo » (s)). Write m = m1 X
Ty X+ - - X, where each 7; is a cuspidal automorphic representation of GL,, for some
n; € N. Assume that 7; % 7; for all i # j. Then Arthur’s implicit normalisation
of the intertwining operators is compatible with the Whittaker normalisation in the
sense that

0
Tr (MQOISQO (0) PQo,t (Sv 0, f) |1ndgz 7r> =Tr Indgg oAV (f)

where AW = ®, AW is the product of the local Whittaker normalised intertwining
operator at each place v.

Proof. Firstly by Lemma 5.17, we see that s ~ 6,,, X --- x 8, . Arthur’s operators
implicitly define an intertwining operator A, = ®,A,, via the identity

0
Tr (MQOSQO (0) PQo,t (3707 f) |Indgg Tl') = Trlndgo mo Aﬂ' (f)

We recall that Arthur’s operators act on the following representations

ao pQg.t(5,0,f) Mg1sQq(0)
IndQ I e —— (Inqu ﬂ') 0§ — (IndQ ) os

The operators act in a componentwise on G° = GL, x GLy, as such, it will suffice
to demonstrate this result when G° = GL,,.

Let A = ®,\, be a Whittaker functional on 7 = ®,m, (this depends upon
the choice of a non-trivial additive character of F). The Whittaker functional A

0
induces Whittaker functionals on both the induced representations Indg0 7 and
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(Indgz 7r) o s. We shall also denote these Whittaker functionals by A. The result

will follow upon confirmation that the operator Mg, |sq, (0) pq,. (5,0, f) preserves
the Whittaker functional, that is, maps A to A.

The operator pg,.: (s,0, f) preservers the Whittaker functional (cf. [CHLO9,
§4.4]), that is, it maps A to A\. Consider now the operator Mg, |50, (0). Decompose
§ = SNy—1 -+ -S1 where the s; are simple reflections and the decomposition is
reduced. Shahidi [Sha81] [Sha83] shows that Mg,|sq, (0) maps A to c(m,s) - A
where where ¢ (7, s) is equal to the value at o = 0 of

N-1 (Y L
c(m,s,a) = H € (Mg X o, ) (my X i 2, @)

i=1

L (771-71 X WXQ, a)

where ;1 and 7; 2 are the representations of the adjacent Levi-blocks of Ly that
are interchanged by s;. Since m; 1 % 7; 2, the L-functions extend holomorphically
to the entire complex plane. Furthermore they satisfy the functional equation

L (7ri)1 X F;{z,a) =€ (71'1»71 X 772{2,04) L (ﬂxl X T, 1 — a)

It follows that c(m,s) = 1, that is, Mg, |sq, (0) preserves the Whittaker functional.
O

5.2. The Stable Trace Formula for the Unitary Group. Throughout this
section k' /k shall denote either a quadratic extension of local fields of characteristic
0 or a totally imaginary quadratic extension of a totally real field. Let U denote an
inner form of U} (k'/k) that is quasi-split at all finite places. Let G denote either
GL,/kor U.

5.2.1. Endoscopic data. We recall that an endoscopic data for G is a quadruple
H = (H,H,s,§&) where

H is a quasi-split k-group,

H is a split extension of Wy by H ,

s is a semisimple element of é, and

e £:H — G is an L-homomorphism

such that £ induces an isomorphism of H with the connected component of the
centraliser of s in G, and the conditions of [LS87, §1.2] are satisfied. There is a
notion of equivalence for endoscopic data, and also a notion of an elliptic endoscopic
data (cf. [LS87, §1.2]).

For unitary groups, the classification of the elliptic endoscopic data is due to
Rogawski [Rog90, Proposition 4.6.1].

Definition 5.19. For all a,b € N° such that a + b = n, we define the quadruple

Ha,b = (Ha,ba LHa,b7 Sa,b ga,b)
where
o Hy,=U(K/E) xU; (K'/k),
o 5, = diag(1,...,1,—1,...,—1) where 1 (resp. —1) appears with multi-
plicity a (resp. b), and
® &, is the endoscopic L-homomorphism of Section 4.

Lemma 5.20. The H,; are endoscopic data for U, and H,y is equivalent to Hy q.
If k is global, then the H,; are elliptic, and

{Ha,b . a § b}

is a set of representations of the equivalence classes of elliptic endoscopic data for
U.
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5.2.2. The norm map. Assume that k is local throughout this section.
Let H = (H, LH,s, f) be an endoscopic data for G. Then there exists a canonical
map of semisimple conjugacy classes (cf. [LS87, §1.3])

Apsc:Tss (H (k) = T'ss (G (K))
An element vy € H (k) is said to be semisimple G-strongly regular if Agc(vi)
is semisimple strongly regular. We define I'q_reg ss (H) to be the set of semisimple
G-strongly regular elements of H (k). The map Ap /¢ induces a canonical map (cf
[LS87, §1.3])

-AH/G' : 1_‘G—reg,ss (H) — Freg,ss (G)
An element vy € I'qoreg,ss (H) is said to be a norm of an element v¢ € G (k) if ¢
lies in the conjugacy class of Ag,q (vr)-

5.2.3. The Langlands-Shelstad geometric transfer factors. Assume that k is local
throughout this section. The geometric transfer factors of Langlands-Shelstad
[LS87] are functions

A Tgegss (H) X Tiegss (G) = C

defined for all endoscopic data H = (H JLH ,575) of G. They are canonically
defined up to a constant, and are given a specific normalisation as follows. Choose
Y € Daregss (H) and Fg € Tyeg ss (G) such that ¥ is a norm of J. The relative
geometric transfer factor

A (’YH7 ’YG)
A Vg, Va)
is canonically defined for all yg € T'greg,ss (H) and for all yg € Thieg,ss (G). To

specify a normalisation of the geometric transfer factors, one arbitrarily fixes the
value of A (F,%¢) as a complex number of norm 1, and then defines

A(’YH?’YG :WHaWG) =

A(ve,v6) = AT Ve)A (a6 T Ta)
for all Y € T'Goreg,ss (H) and for all vg € T'yeg s (G).

5.2.4. The transfer. Assume that k is local throughout this section.

Let H = (H,*H,s,£) be an endoscopic data for G. If k is archimedean (resp.
non-archimedean) then let f € S(G (k)) (resp. f € C® (G (k)) and let fH €
S (H (k)) (resp. f € C> (H (k))). The function f¥ is said to be a A-transfer of f
if

(I)St(fYHafH): Z A(’yHa’y)(I)(PYaf)
YET reg,ss (G)
for all yg € T'Goreg,ss (H (k).

We shall now recall some results on the existence and properties of the transfer.
In what follows E/F shall denote a totally imaginary quadratic extension of a
totally real field, U shall denote a unitary group appearing in Proposition 2.1, and
H shall denote an endoscopic data appearing in Definition 5.19.

5.2.5. The transfer: archimedean places. Assume that v is a real place of F.

Lemma 5.21. Let f € S(U(F,)). Then there exists f € S(H (F,)) such that

fH is a A-transfer of f.

Proof. [She08a, Theorem 14.3]. O
The geometric transfer induces a dual spectral transfer of tempered representa-

tions. In studying the spectral transfer, Shelstad [Shel0] explicitly defines complex

valued spectral transfer factors Agpec (¥m, ) for all tempered L-parameters ¢y of
H, and tempered representations 7 of U(F,). They satisfy the following properties.
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® Agpee (Yu,m) =0if 7 I1(§ 0 bm)

® |Aspec (Yu,m)| =1if m €L ({0pn)
The spectral transfer factors are canonically defined up to a constant. They are in
a sense dual to the geometric transfer factors, and choosing a normalisation of one
induces a normalisation of the other.

Lemma 5.22. Letvy : Ly, — “H, be a tempered L-parameter. Let f € S (U (F,))
and let f% € S(H (F,)). Assume that f2 is a A-transfer of f. Then

o Trra (F7) = > Aspec (Wu,m) Trr ()
T E(Ym) TE€Memp (Uy)
Proof. [Shel0, Theorem 5.1] O
An important class of test functions are the pseudo-coefficients and Euler-Poincaré
functions. Let L denote either U x g F,, or H X F,,, which is a real connected re-
ductive group. Let 7 be a discrete series representation of L (R). A function

f €S (L(R)) is said to be a pseudo-coefficient of 7 if for all tempered representa-
tions o of L (R),
1 ifo~nw

TYU(f)Z{

A function f € S(L(R)) is said to be an Euler-Poincaré function if for all irre-
ducible admissible representations o of L (R),

Tro(f)=ep(g.K;0@V) =) (-1) dmH' (g, K;0 @ V)

i

0 : otherwise

where
e g=LielL,
e K is a maximal compact subgroup of L (R), and
e V is an irreducible algebraic representation of L.

Lemma 5.23. Let m be a discrete series representation of L(R). Then there
exists a pseudo-coefficient fr € C° (L (R)) of m. The pseudo-coefficient fr is K-
finite and cuspidal. Furthermore, if Tro (fz) # 0 for some irreducible admissible
representation o of L (R), then the infinitesimal characters of o and ® are equal.

Proof. The existence of pseudo-coefficients is due to Clozel-Delorme [CD90]. Labesse
[Lab91] has shown that these functions can be chosen to be cuspidal. O

Lemma 5.24. Let m be a discrete series representation of L (R) whose infinites-
imal character is equal to that of an irreducible algebraic representation V. whose
highest weight is regular (cf. Section 3.3.1). Then for all irreducible admissible
representations o of L (R),

Tra(fﬂ) = {

1 :ifo~n
0 : otherwise

Proof. By Lemma 5.23, we only have to consider the case where ¢ is non-tempered.
By the local Langlands classification, such a ¢ can be realised as a constituent of an
. . L(R) : . . .

induced representation Ind P(R) P where p is a discrete series representation of some

Levi-subgroup. It can be seen that p can not have the same infinitesimal character
as V. The result then follows by Lemma 5.23. (]

Lemma 5.25. Let V be an irreducible algebraic representation of L. We define

the test function
fv=Y ()P

Tell(VV)



22 PAUL-JAMES WHITE

where q (L) = 1 dim (L (R) /K). Then fv is an Euler-Poincaré function, and, for
all irreducible admissible representations o of L (R),

Tro(f) =ep(g, K;00V)
Proof. [Lab91, §6] =

Lemma 5.26. Let V be an irreducible algebraic representation of L whose highest
weight is reqular. Then for all irreducible admissible representations o of L (R),

(-1 ifeeTI(VY)
0 : otherwise

Tro(fv)= {

Proof. The result follows Lemma 5.24, and Lemma 5.25 O

When the highest weight of V' is no longer assumed regular, we have the following
result of Kottwitz.

Lemma 5.27. Let f, € C° (F,) be an Euler-Poincaré function for all archimedean
places v of F'. Let S be a finite set of places of F' including all archimedean places.
Let TOS be an irreducible admissible representation of U (AS). Then there exists a
sign € € {1,—1} such that if

H Trr(f,) #0

v|oco
then its sign is €, for all discrete automorphic representations T of U such that
9~ 7y
Proof. Kottwitz [Kot92, Theorem 1] proved the analogous result for the group GU
using Shimura varieties. Clozel-Labesse [CL99, §A.4] have shown that Kottwitz’s
argument extends to the setting of unitary groups. O

Lemma 5.28. Let o be a discrete series representation of U(F,). Let

A1,

H _ Sspec\YH, ) , 0

re X St Xk
Eoyp (o) 7€l (Yn)

where 1y runs through the tempered L-parameter for H,. Then T is a A-transfer

of fo-
Proof. We remark that

Z Tr 71';_1 (fH) = Z Aspec (lev U,) Tr OJ (fd)

TI'/HGH(’L/J/H) a/entemp(UU)

for all tempered L-parameters ¢y : Ly, — “H,. It follows by [Shel0, Theorem
5.1] that f# is a A-transfer of f,. O

5.2.6. The transfer: unramified case. Assume that v is a finite place of F' that is
unramified in FE.

Let Ky (resp. Kp) be a hyperspecial subgroup of U (F,) (resp. H (Fy)). The
L-homomorphism ¢ is unramified at v, and induces a transfer of Ky-unramified
representations to Ky-unramified representations (cf. Section 4). Dual to this
transfer, there is a morphism of spherical Hecke algebras (see [Min09, §4] for an
explicit description)

§:C(U(Fy), Ky) = C= (H (F,), Kn)

Lemma 5.29. There exists a complex number ¢ (A, Ky, Kgr) of norm 1, depending

only upon the chosen normalisation of the geometric transfer factor, Ky, and Ky,
such that ¢ (A, Ky, Kg) - £(f) is a A-transfer of f for all f € C° (U (F,), Ky).
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Proof. If v splits in F, then the result is well known (cf. [ShilOb, §3.3]). Assume
that v remains inert in £. When f = 1k, the characteristic function on Ky, this
is the fundamental lemma for unitary groups, which was proved by Laumon-Ngo
[LNO8] and Waldspurger [Wal06]. Hales [Hal95] deduced the result for general f
from the fundamental lemma.

U

This allows us to define the spectral transfer factors
Aspec (7TH7 7T) =c (A7 KU; KH)

for all Kg-unramified representations 7y and for all Ky-unramified representations
7 such that ¢ (7) ~ o) (my).

Lemma 5.30. Let f € C° (U (F,),Ky) and let fH € C* (H (F,),Kg) be a A-
transfer of f. Let my be Ky-unramified and let m be Ky-unramified. If ¢ (7)) ~
o (my), then

Tr g (fH) = Aspec (ﬂ—Hy 7T) Trm (f)

Proof. This is a direct consequence of Lemma 5.29. (]

5.2.7. The transfer: split places. Assume that v is a finite place of F' that splits
in E. The existence and properties of the transfer are well known in this case (cf.
[ShilOb, §3.3]).

Lemma 5.31. Let f € C>° (U (F,)). There exists f% € C>* (H (F,)) such that f¥
is a A-transfer of f.

Lemma 5.32. There exists a complexr number c¢(A) of norm 1, depending only
upon the chosen normalisation of the geometric transfer factor, such that, if we
define the spectral transfer factors

0 cifm €I (Eoy)

c(A) :tifmeI(Eoyn)

for all L-parameters 1y : Ly, — “H, and all irreducible admissible representations
m of U (F,), then the spectral transfer factors satisfy the following identity. For all
fecCx(U(F)) and fH € C (H (F,)) such that f1 is a A-transfer of f, for all
L-parameters g : Ly, — VH,,

Tr TH (fH) = Z Aspec (wHa 7T) Trm (f)

where H(¢Yy) = {ry}.

Remark 5.33. It is a consequence of Lemma 5.32 and Lemma 5.30 that the definition
of spectral transfer factors at split places is consistent with the definition given for
unramified representations, that is, Agpec (Ta,T) = Agpec(¥ (7r) ,7) for all Ky-
unramified 7 and for all Kpg-unramified 7y such that ¢ (7) ~ o ¢ (7g).

Aspec (va ’/T) = {

5.2.8. The transfer: inert places. Assume that v is a finite place of F of that
remains inert in F.

Lemma 5.34. Let f € C° (U (F,)). Then there exists f# € C° (H (F,)) such
that fH is a A-transfer of f.

Proof. The existence of the transfer is due to Laumon-Ngo [LN08] and Waldspurger
[Wal06] [Wal97]. O

Lemma 5.35. There exist spectral transfer factors Agpec (Yrr, ™) defined for all
L-parameters g : Lp, — YH, such that & oYy is a tempered 0-discrete stable
L-parameter, and discrete series representations m of U (F,), such that,
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L4 Aspec (vaﬂ-) =0 Zfﬂ- ¢H(50¢H)7 and

® |Aspec (Vu,m)| € C* if m € IL(§ 0 Ym).
The spectral transfer factors satisfy the following identity. For all f € C° (U (Fy))
and fH € C® (H (F,)) such that f is a A-transfer of f,

o n@mme)Trrg (F7) = > Aspee (b, m) Trr (f)

T €(Yp) mE€Maisc(Uy)

where the n (Y, mr) are defined in Lemma 5.10.
Proof. [Mceg07, §7] O

Remark 5.36. If mp is a Kpy-unramified discrete series representation of H (F),),
then it follows by Lemma 5.6 and Lemma 5.10 that n (¢ (7g),7g) = 1. It is
then a consequence of Lemma 5.35 and Lemma 5.30 that the definition of spectral
transfer factors at inert places is consistent with the definition given for unramified
representations, that is, Agpec (Ta,T) = Agpec(¥ (7a),m) for all Ky-unramified
discrete series m and for all Ky-unramified discrete series mp such that ¢ (7) ~

§otp(my).

Lemma 5.37. Assume that there exists an identity consisting of finite linear com-
binations of irreducible admissible representations

Z (mw) Trmg (f7) Zb Trm (f

TH
for all f € C* (U (F,)) and fH € C° (H (F,)) such that f is a A-transfer of f.
Furthermore, assume that the LHS of the identity is a stable distribution. Then for
all tempered O-discrete stable L-parameters ¢ : Ly, — LU,

> a(ra)Trrg (F7) = Y b(m) T (f)
gorp(mpy )p h(m)ep
for all f € C® (U (F,)) and fH € C* (H (F,)) such that f¥ is a A-transfer of f.
Proof. By [Art96, Theorem 6.2], we can deduce the identity

Z (mw) Trmg (f7) Zb Trm (f

where the summations are taken over the subset of representations that are elliptic
tempered. The result then follows from [Moeg07, §7]. O

5.2.9. Normalisation of the transfer factors. Let us now describe our specific nor-
malisation of the geometric transfer factors. This will consequently fix the normal-
isation of the spectral transfer factors. Fix 75 € H (F) and 7 € U (F') such that
for all places v of F, 7y € T'Goregss (H (F))) is a norm of 5y € Thegss (U (Fy)).
Writing A, for the local geometric transfer factor at a place v of F', we fix the value
of Ay (Fp,7y) as a complex number of norm 1 such that the following conditions
are satisfied.

o If the groups H, and U, are unramified, then we hyperspecial subgroups

KH and Ky, of H (F,) and U (F),) respectively. We require that ¢ (A, Ky, , Kg,) =

1 (cf. Section 5.2.6).
e If v is finite and splits in E, then we require that ¢(A,) = 1 (c¢f. Section
5.2.7).
i HVAV (WHaWU) =1
If U ~ U*, then the geometric transfer factors for the principal endoscopic
group H = U* are, up to constant, trivial (cf. [Lab09, §4.2]). In this case, we shall
normalise the geometric transfer factors to be trivial, that is, identifying the groups
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U = U* = H, we have that for all places v, for all v, € T'Greg,ss (H (Fy)), and
for all Yu,u € Freg,ss (U (FV))7

1 :if yg, and vy, are stable conjugates

A, (7H,v,7U,u) = {

0 :otherwise

Lemma 5.38. Assume that U ~ U* ~ H, and that the transfer factors are nor-
malised to be trivial. Then the dual spectral transfer factors satisfy the following
properties
e [fH, and U, are unramified, then c (A,, Ky,,Kpn,) =1 for all hyperspecial
subgroups Kp, and Ky, of H (F,) and U (F,) respectively.
o Ifv is finite and splits in E, then c(A,) = 1.
o If v is archimedean, then

AS. ec , ) =
pec (V11 7) 0 : otherwise

{1 cif m eIl (Yg)

for all tempered L-parameters ¢y of H, and tempered representations m of
U* (F,).
e If v is finite and inert in E, then

{n(z/;H,W) Cifr e I (Yp)

Agpec (Ym,m) = 0 : otherwise

for all tempered 0-discrete stable L-parameters g : Ly, — LH, and for
all discrete series representations m of U (F),).

Proof. We shall prove here the last property. The other properties can be proved
by using the same argument, and the details are left to the reader. Firstly, we
recall that Agpec (Y, m) =0if 7 11 (). We are left to consider the case where
7w € II (). The spectral transfer factors satisfy the identity (cf. Lemma 5.35),

(5.1) S on@rm)Trr () = ) Agpec () Trw (f)

mell(ym) mell(vYm)
for all f € C° (U (F,)) and f € C> (H (F,)) such that f is a A-transfer of f.
By Lemma 5.12, the distribution on the LHS is stable. Since the geometric transfer
factors are trivial, this implies that the distribution on the RHS is also stable. By
Lemma 5.12, there exists a constant C' such that

Aspec (wH77T) =C- n(vaTr)

for all m € I (¢g). By considering Equation 5.1, we see that C' = 1.
O

5.2.10. The Stable Trace Formula. Let E/F be a totally imaginary quadratic exten-
sion of a totally real number field, and let U denote a group appearing in Proposition
2.1. Let S;.m denote the finite set of places v of F' such that either v is archimedean,
or v is non-archimedean and ramified in E.

Proposition 5.39. Let S D S;am be a finite set of places of F. Let fs = Quesf, €
Cx (U (Ag)), and assume that f, is as in Lemma 5.23 for all archimedean v. Let
f=fs®1gs where K° = Hugs K, is a product of hyperspecial subgroups K, of
U(F,). Assume that for alla < b, fHebr = ® it € C® (Hap (A)) is a A-transfer
of [ at all places v. Then

I(f)= ZL (U, Hyp) SHar (fHer)

a<b
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where I denotes the invariant trace formula for U (cf. [Art88]), SHav denotes the
stable trace formula for Hyp (cf. [Art02]), and

1 :ifa=0
(U, Hgp) = i cifa=10
% : otherwise

Proof. The stabilisation of the invariant trace formula for a connected reductive
group has been completed by Arthur [Art02] [Art01] [Art03] under the assumption
of the validity of the weighted fundamental lemma. This is now proven due to
the work of Chaudouard-Laumon [CL10a] [CL10b], Ng6 [Ng610], and Walspurger
[Wal09]. For the evaluation of the constants ¢ (U, H, ) see [Lab09, Proposition
4.11]. O

The invariant trace formula admits a simple expression due to the fact that f is
cuspidal at infinity (cf. [Art88, Theorem 7.1]).

I(f)=Tase(f)= D maise (m) Trm (f)

mE€Maisc(U)

where myjsc (7) denotes the multiplicity of 7 in the discrete automorphic spectrum
of U.

6. BASE CHANGE

In this section, we obtain a result on Langlands base change which mildly im-
proves upon a previous result of Labesse [Lab09, Theorem 5.1, Theorem 5.9].

In order to succinctly state the results, we begin by recalling the definition of
a cohomological representation. Let G be a connected reductive algebraic group
defined over k where k is the field of either real or complex numbers. Let G’ =
Resy/r G, let g’ = LieG’, and let K’ be a maximal compact subgroup of G’ (R). A
system of coefficients for G is an irreducible algebraic representation V of G’. An
irreducible admissible representation o of G’ (R) is said to have cohomology (for
the system of coefficients V') if

H' (¢, K';00V)#0
for some integer ¢. This is equivalent to demanding that the Euler-Poincaré char-
acteristic

ep (¢, K';0@V) #0
be non-zero (cf. [CL99, Lemma A.4.1]).

Theorem 6.1. Let E/F be a totally imaginary quadratic extension of a totally
real field. Let U be a unitary group appearing in Proposition 2.1. Let o be a
discrete automorphic representation of U (Afp). Assume that o, has cohomology
for a system of coefficients V,, for all archimedean places v of F. Then there exists
an automorphic representation Il of GL,, (Ag) such that
e for all archimedean places v, 11, has cohomology for the system of coeffi-
cients (VV ® V,f), and
e II, is the Langlands base change of o, at finite places v for which either
— v splits in E, or
— o, 1s unramified, or
— 0, 1S a discrete series representation.

The automorphic representation 11 can be written as an isobaric sum

=T BI,---B1I,
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where each 11; is a discrete automorphic representation of some GLy, (Ag) such
that

o II; ~ 11, 00 for all i, and

o II; 211, for all i # j.
Furthermore, if each I1; is cuspidal, then 11, is the Langlands base change of o, at
archimedean places v where o, is a discrete series representation.

Remark 6.2. If there exists an archimedean place v such that the highest weight of
V., is regular, then by considering the infinitesimal characters of the II; in conjunc-
tion with the Moeglin-Waldspurger [MW89] description of the discrete spectrum of
GL, we see that the II; are cuspidal.

Proof. Let S denote the finite set of places v of F' for which o, is not unramified.
Let S’ denote the subset of places v € S such that

e v is archimedean, or

e v is finite inert in F, and o, is not a discrete series representation.
For all v ¢ S and for all H, fix hyperspecial subgroups Ky, and Kp, of U (F,) and

H (F),) respectively such that ol £ .
The stable trace formula of Proposition 5.39 provides us with the identity

1V.(f) = _o(UH) ™ (f7)
H
where
o fH =w,fH is a A-transfer of f = ®, f, at each place v, and
e for all v|oo, f, is the Euler-Poincaré function associated to V, as in Lemma
5.25, and fH is a linear combination of the Euler-Poincaré functions ap-
pearing in Lemma 5.28.

We shall further require that f, (resp. fI7) is bi-invariant under Ky, (resp. Kp,)
forall v € S.

By Lemma 5.30, Lemma 5.32, Lemma 5.37 and using the linear independence of
characters, we can separate the chain of representations

(6.1) > Maise () Tro (f) =Y (U H)> n(ru) Trra (F7)
o’ H TH
where
e ¢’ runs through the discrete automorphic representations of U such that
— for all archimedean v, o/, has cohomology for the system of coefficients
Vo,
—forallv &S, o), ~0,, and
— for all v € S', o/, and o, are elements of the same L-packet, that is,
V(o) =1 (o)
e 7 runs through the stable discrete automorphic representations of H such
that
— for all archimedean v, 7y, has cohomology for a system of coeflicients
Vi, such that £ o (IT (V) ~ o (IT(V,,)),
— forallv ¢ S, 7y, is Ky, -unramified and € o ¢ (1,) ~ ¢ (0,,), and
—forallv g5, Eotp(Th,) = (0,)
By Lemma 5.27 and using the linear independence of characters, we see that the
distribution is non-trivial. This implies that there exists a H = U; x U}’ for which
the distribution

(6.2) Zn('rH) Trry (7)

TH
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is non-trivial.
The stable base change identity of Proposition 5.13 provides us with the identity

where

o Gy =GLy x GLy x 0,

O 2 ifH=U}
)4 :otherwise

o ' =g, f'H and ¢/ = ®,¢! are associated at each place v, and
e for all archimedean v, f/ = fH as in Equation 6.1, and ¥ is a linear

combination of the twisted Euler-Poincaré functions appearing in Lemma
5.4.

We shall further require that f/* is bi-invariant under Ky, for all v ¢ S.
By Lemma 5.6, Lemma 5.8, Lemma 5.10, Lemma 5.12, and using the linear
independence of characters, we can separate the chain of representations

(6.3)

[wke| _
> |W°G0| > [det (s = 1)qg |

LoeL® 0" | e (ag,)

reg

Zmdisc (7) Tr (MQQSQO (0) pgo.t (5,0,0™) IIndSE W) = Z” (i) Tr o (f7)

TH
where

e the 7 are those appearing in Equation 6.2, and
e 7 runs through the T € Tlgisc (Lo % (s)) such that

— for all archimedean v, Indgg‘“XGLb

m, is cohomological for a system of
coefficients Vi, ® V}GIV where Vp, is one of the previously described
algebraic representations (cf. Equation 6.1),

—forallvegs, Indg(f“XGL’“ m, is unramified, and is the Langlands base
change of 7, where 7y is a representation appearing in Equation 6.2,

—forall v ¢ 5, IndgoL“XGLb m, is the Langlands base change of 7g ,
where 7 is a representation appearing in Equation 6.2.

Invoking the Moeglin-Waldspurger [MW89] and Jacquet-Shalika [JS81] description
of the automorphic spectrum of GL, (Ag), we see that there exists a partition
ni +---+n, =n, and a corresponding set of discrete automorphic representations
II; of GL,, (Ag), such that, the representations 7 appearing in Equation 6.3 are
exactly those for which

™= (Hjllu’b_l X X Hj,./.ub_l) X (Hj,./+1:u‘(;1 R eriu‘gl)

where {j1,...,75.} ={1,...,r} and n;, +--- 4+ n; , = a. Furthermore, by Lemma
517, II; ;00 for alli=1,...r.
It follows from Lemma 4.1 that the automorphic representation of GL,,

Mm=I,8.--HII,

is the Langlands base change of o outside of S’, and that IT, has cohomology in the
system of coefficients V,, ® V¢ for all archimedean v. By considering infinitesimal
characters, we see that II; % II; for all 7 # j. Finally if the II; are cuspidal, then
by Lemma 5.2, IT,, is the Langlands base change of o, at the archimedean places v
for which o, is a discrete series representation. O
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7. CERTAIN REPRESENTATIONS

In this section, we shall combine some results of Shin [ShilOa] on the limit
multiplicity with our results on base change. This allows us to deduce the existence
of automorphic representations 7w of GL,, such that m ~ 7 o §, and which satisfy
certain imposed local conditions. These representations shall be extensively used
throughout this article.

Lemma 7.1. Let E/F be a totally imaginary quadratic extension of a totally real
field, and let U be a unitary group appearing in Proposition 2.1. Let S be a finite
set of places of F including all archimedean places, and all non-archimedean places
which are ramified in E. For all v € S,

o if v is archimedean, let T, be a discrete series representation of U (F,)
that has cohomology for a system of coefficients V,, whose highest weight is
regular, and

e if v is non-archimedean, let 7, be a discrete series representation of U (F,).

Then there exists a discrete automorphic representation o of U (Ar) such that

o if v € S is archimedean, then o, is a discrete series representation which
appears in the same L-packet as T, that is, ¥ (0,) ~ ¢ (1,),

o if v € S is non-archimedean, then o, is a discrete series representation
which is isomorphic to a twist of T, by some unitary character x,, and

o if v & S is non-archimedean and inert in F, then o, is unramified.

Proof. [ShilOa, Theorem 5.7] O

Remark 7.2. By applying the result of Shin [Shil0a, Theorem 5.7] to a finite product
of unitary groups, we can demand the following slightly stronger result. For ¢ =
1,...,t, let U; be a unitary group associated to E/F and let {t;, :v € S} be a
finite collection of representations as in Lemma 7.1. Then there exist discrete
automorphic representations o1,...,0; as in Lemma 7.1 such that for all v € S,
the characters x1, =~ --- >~ x¢, are isomorphic.

Lemma 7.3. Let E/F be a totally imaginary quadratic extension of a totally real
field, and let U be a unitary group appearing in Proposition 2.1. Let S be a finite
set of places of F including all archimedean places, and all non-archimedean places
which are ramified in E. For all v € S,

e if v is archimedean, let 1, be a discrete series representation of U (F),)
that has cohomology for a system of coefficients V,, whose highest weight is
regular, and

e if v is non-archimedean, let 7, be a discrete series representation of U (F,).

Then there exists a cuspidal automorphic representation m of GLy,, (Ag) such that

e T~rmol,

o if v € S is archimedean, then mw, is the Langlands base change of T, that
is, P (ﬂ'u) ~ BC (1/1 (Tu));

o if v € S is non-archimedean, then m, is isomorphic to the Langlands base
change of a discrete series representation 1), of U (F,) which is isomorphic
to a twist of T, by some unitary character x,, and

o if v &S is non-archimedean and inert in E, then m, is unramified.

Proof. Let w ¢ S be a non-archimedean place of F' that splits in F, and let 7,
be a supercuspidal representation of U (F,) = GL, (F,). Let o be a discrete
automorphic representation of U (A ) obtained by applying Lemma 7.1 at the set
of places S U {w}. Let m be the Langlands base change of o given by Theorem
6.1. The result will follow upon confirmation that 7 is cuspidal. However, 7, is a
supercuspidal representation, and it follows that w is cuspidal. O
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8. L-PACKETS OF DISCRETE SERIES REPRESENTATIONS OF THE p-ADIC
QUASI-SPLIT UNITARY GROUP

The aim of this section is to show that the non-trivial coefficients n (¢, w) of
Moeglin appearing in Lemma 5.10 are equal to 1. In order to do so, we shall assume
the existence of twisted analogues of some results of Arthur [Art93] on the inner
product of elliptic tempered representations of p-adic groups (cf. Hypothesis 8.0.1).

Let k'/k be a quadratic extension of p-adic fields. Let ¢ : Ly — GL, be a
tempered #-discrete stable L-parameter of GL,,/k’. Let 7 denote the irreducible
admissible representation of GL,, (k') corresponding to v viewed as an L-parameter
of GL, /K'. There exists a natural inner product on the space of tempered #-discrete
stable representations of GL,, (k') (cf. [Moeg07, §1]). We shall admit the following
hypothesis.

Hypothesis 8.0.1.
<7Tk’a7rk’> — 2“"/’)*1

Remark 8.1. This would follow from the existence of the twisted analogues of some
results of Arthur [Art93].

Lemma 8.2. The coefficients n (¥, 0r) of Meglin appearing in Lemma 5.10 are

equal to
1 :ifor elI(y)
0 : otherwise

n(?/J,O'k) = {

for all irreducible admissible representations oy, of U* (k' /k).

Proof. We remark that if oy, & II(¢)), then the result is trivial (cf. Remark 5.11).
There exists for any connected reductive p-adic group, a natural inner product on
the space of elliptic tempered representations (cf. [Art93]). We also know that (cf
[Moeg07))

(Wk’»ﬂk’>< > n(on)ok, Y n(¢70k)0k>

o €II(v) o €II(v)

Arthur [Art93, Corollary 6.2] has shown that the discrete series representations of
U* (K'/k) are orthonormal for this inner product. Thus

(Ther s Thr) = Z n (¥, o0)[?
o, €I1(v)
By admitting Hypothesis 8.0.1, we deduce that
W = @)= Y In@on)f
or€I()

Since the n (¢, 0)) are non-zero, the result will then follow upon confirmation
that the n (1, o)) are non-negative integers. This is accomplished by the following
lemma. U

Lemma 8.3. n (¥, 0;) € N° for all oy, € I1(1).

Proof. Choose a totally imaginary quadratic extension of a totally real field E/F,
and a place v’ of F such that

e £, /F, ~k'/k, and
e E/F is unramified outside of v'.

By Lemma 7.3, we can find a cuspidal automorphic representation II of GL,, (Ag)
such that

o [Tof ~1I,
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e for all archimedean v, II,, has cohomology in a system of coefficients V,, @ V¢
where V,, is an irreducible algebraic representation of GL, with regular
highest weight,

e II,/ is the Langlands base change of a discrete series representation which is
isomorphic to a twist of some discrete series representation in the L-packet
II (¢) by some unitary character y,, and

e for all non-archimedean places v # v/ that are inert in F, II,, is unramified.

Let o0 = ®,0, be an irreducible admissible representation of U* (Ar) such that

e II is the Langlands base change of o at all places v, and

e for all non-archimedean v # v/ inert in E, o, is unramified.

Let S be the finite set of places v of F' such that either

e v is archimedean, or

e v=1" or

e v is non-archimedean and o, is not unramified.

For all v ¢ S and for all H, let Ky and Kp, be hyperspecial subgroups of U* (F,)

Ky
and H (F,) respectively such that o, 7 # 0.
The stable trace formula of Proposition 5.39 provides us with the identity

LI(f)=_«(U.H)S" (1)
H
where
o fH =w,fH is a A-transfer of f = ®, f, at each place v, and
e for all archimedean v, f, is a pseudo-coefficient of ¢, and f is as in Lemma
5.28.
We shall further require that f, (resp. f) is bi-invariant under Ky (resp. Kp,)
forallv € S.
By Lemma 5.30, Lemma 5.32, Lemma 5.37, and using the linear independence
of characters, we can separate the chain of representations

(8.1) > Mmaice () Tro’ () = > (U, H) > n(ra) Tera ()
o’ H TH
where
e ¢’ runs through the discrete automorphic representations of U* such that
— for all v|oo, 0, ~ 0y,
— for all v ¢ S, 0, is Ky,-unramified, and
— for all v, 0, and o), are in the same L-packet, that is, ¢ (o,) ~ 9 (a7,).
e 7 runs through the stable discrete automorphic representations of H such
that
— forall v ¢ S, 7y, is Ky, -unramified, and
— forall v, ¥ (0,) ~ &0t (Tm,).
For each H, we have the stable base change identity of Proposition 5.13

where
e Gy =GL, x GLy x 0,
[ ]
2 if H=U}
C = ! “n
4 : otherwise
o ' =g, f'H and ¢! = ®,¢! are associated at each place v, and
e for all archimedean v, f/1 = fH asin Equation 8.1, and ¢! is the associated
twisted Euler-Poincaré function given by Lemma 5.4.
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We shall further require that fl’,H is bi-invariant under Ky, for all v ¢ S.
By Lemma 5.6, Lemma 5.8, Lemma 5.10, Lemma 5.12, and using the linear
independence of characters, we can separate the chain of representations

(8.2)
wiko _
c- > ||W0G°|| > [det (s — 1), | !

LoeL® 0 1 e (ag,)

reg
Zmdisc (%) Tr (MQOSQO (O> PQo,t (37 07 ¢H) |1ndgg ﬂ.) = Z n (TH) T‘I‘TH (fH)
b TH
where

e the 7 are those appearing in Equation 8.1, and
e 7 runs through the 7 € Ilgisc (Lo % s) such that
— forallv &5, IndgoL“XGLb m, is unramified, and

— for all v, InngL“XGL*’ m, is the Langlands base change 7y, where 7
is a representation appearing in Equation 8.1

It follows from Lemma 4.1 that, writing m = m, X 7, seen as a representation of
a Levi-subgroup of GL, x GLj, we have that

GL
IndQO " Ta,v * Hb,v X Ty y Ha,v = HV

for all v ¢ S. Now II is cuspidal, and it follows from the Mceglin-Waldspurger
[MW89] and Jacquet-Shalika [JS81] description of the automorphic spectrum of
GL, (Ag) that H = U} and © ~ II. It then follows from Lemma 5.16, Lemma
5.17, and Lemma 5.18 that Equation 8.2 is equal to

0 it H AU
Trllo AW (¢f) :if H="U;

By Lemma 5.2, Lemma 5.6, Lemma 5.8, Lemma 5.10, and Lemma 5.24, we see
that the 7y« appearing in Equation 8.2 (and hence also Equation 8.1) are exactly
the representations

/ / /
®V|OOTU*,V ® TU*,I/ ® ®y€{oko’}TU*7y
where

o for all archimedean v, 7{;. , is in the same L-packet as o,
® 7{;.,, is in the same L-packet as o,/, and
o for all non-archimedean v # v/, 7{,. , ~ 0,.

We also see that
1 (ujoc Tl @ Tre 1 @ Qg oo} o) =1 (Y (), 770 1)
It follows that Equation 8.1 can be written as
> e (00l T (o 0 )
o, EM(Y(IL,))
- Z n (d) (IT,/) ,T['J*M) Tr (®V‘OOT[/]*7V ® T[,]*W/ ® ®,,€{00U,,I}T{]*,V) (fU*)

It then follows from the spectral transfer results of Lemma 5.22, Lemma 5.30,
Lemma 5.32, and Lemma 5.35 that

H Aspec (7/} (Tl/]*,ll) 70”) * Aspec (¢ (I0,r) 701//') = Mdisc (UV’ ® U:/)
v|oo
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for all o/, € II (¢ (II,+)). Due to our normalisation of the transfer factors for the
principal endoscopic group (cf. Lemma 5.38), this reduces to give

n (v (1) ,0l,) = maise (0 © 01, )

It follows that n (¢ (IL,+) ,0),) is a non-negative integer for all o/, € II (¢ (II,/)) as
the multiplicity of a representation in the discrete automorphic spectrum of U is a
non-negative integer. The result then follows since for all o), € II (¢),

n(,or) =n ¥ (I,),0,)
where o/, € II (¢ (I1,+)) is the twist of o}, by the unitary character x,-. d

9. SOME PROPERTIES OF THE SPECTRAL TRANSFER FACTORS

The aim of this section is to prove some properties of the spectral transfer factors.
These properties shall form the basis of our proof of the Arthur conjectures.
Let E/F be a totally imaginary quadratic extension of a totally real field, and
let U be a unitary group in n-variables appearing in Proposition 2.1. Let
m=m9m.. .\’
be an automorphic representation of GL,, (Ag) where
e foralli=1,...,r, I1?is a cuspidal automorphic representation of GL,,, (Af)
such that I19 ~ I19 o 6,
e for all archimedean places v of F, IIY has cohomology for a system of
coefficients V! ® VVOH where the highest weight of V¥ is regular,
e for all non-archimedean places v of F' that are inert and unramified in F,
I1Y is either unramified or tempered 6-discrete stable, and
e for all non-archimedean places v of F that are ramified in F, I19 is tempered
f-discrete stable.
Let 0¥ be an irreducible admissible representation of U (A r) whose Langlands base
change is IT at all places v. Let S be a finite set of places of F' such that
e S contains all archimedean places,
e S contains all non-archimedean places v that are ramified in F,
e if v € § is non-archimedean, then v is inert E¥ and II, is tempered #-discrete
stable, and
e if v ¢ S is non-archimedean and inert in E, then o0 is unramified.

9.1. Properties involving a single endoscopic data.

Lemma 9.1. [, cs Aspec ( 8,03) = 1 where 1Y denotes the L-parameter associ-
ated to 00, viewed as an L-parameter of U* (F,).

Proof. By Lemma 7.3, we can find a cuspidal automorphic representation II of
GL, (Ag) such that
e [I~1Ilod,
e for all archimedean v, IT,, ~ 112, and
e for all non-archimedean v € S, II,, is the Langlands base change of a discrete
series representation o, of U (F,) which is isomorphic to a twist of o0 by a
unitary character y,, and
e for all non-archimedean places v ¢ S that are inert in E, I, is unramified.

Let o be an irreducible admissible representation of U (A p) such that

e II is the Langlands base change of o at all places v,
e for all archimedean v, o, ~ 09,

e for all non-archimedean v € S, o, is the twist of o by the character y,,
and
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e for all non-archimedean v ¢ S that are inert in F, ¢, is unramified.

We see that
H Aspec (wua Ju) = H Aspec ( Ba UB)

veS veS
where 1, denotes the L-parameter associated to o,, viewed as an L-parameter of
U* (F,). By arguing as in the proof of Lemma 8.3, we deduce that

I Acpec (¥, 0,) € NO

vesS
By Lemma 5.38 and Lemma 8.2, |Agpec (¢0,0,)] = 1 for all v € S. The result
follows. O
9.2. Properties involving two endoscopic data. Let j1,...,j, € N such that

(b U, ek = {1, )
Let @ = nj, +---+mn;, and let b = n;,  +---n;. We define the following
automorphic representations 112 and I1Y of GL, (A) and GL; (A) respectively.

0 0 ,—1 0o -1
M =105y, 8- B,
9 =119 uglEBmBHH‘;Tu;l

Jrl 41

ab,v
of Hap for which BC ( 27b7u) ~ o (115 ) x 9 (Hg,v)'

Proof. This will follow from the next two results: Lemma 9.3 and Lemma 9.4. O

Lemma 9.2. Hues Agpec (wgb,y,ag) = 41 where 0 denotes the L-parameter

Lemma 9.3. ], s Aspec (1/22,;),V»03) €Z

Proof. By Lemma 7.3, we can find cuspidal automorphic representations II, and
I, of GL, (Ag) and GL;, (Ag) respectively such that
o I, ~II,060 and II, ~II; 00,
o for all archimedean v, 11, , =~ Hg’y (resp. Iy, =~ ng)’
e for all non-archimedean v € S, I, , (resp. II,,) is the Langlands base
change of a discrete series representation o, (resp. oy, ) and there exists
a unitary character y, such that Hgyy (resp. Hg)y) is the Langlands base
change of 04, - x; ! (resp. op, - X, 1), and
e for all non-archimedean places v ¢ S that are inert in E, II,, (resp. I ,)
is unramified.

We define the automorphic representation II of GL,, (Ag):
IT= Ha,ulb B Hblffa
Let o be an irreducible admissible representation of U (A p) such that
IT is the Langlands base change of o at all places v,
for all archimedean v, o, ~ o9,
for all non-archimedean v € S, o, ~ 00 - x,,, and
for all non-archimedean v ¢ S that are inert in F, o, is unramified.

We see that

H Agpec ("/}a,b,ua o,) = H ASpec (¢2,b,w Uzoz)

veS veS
where t,p,,, denotes the L-parameter of H,; for which BC (¢4,4,,) =~ ¥ (Il,,) X
1 (I, ). The result will follow upon confirmation that

H Aspec (wa,b,ua Uu) </

ves
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Let S be a finite set of places v such that either

e veS, or
e o, is not unramified.

For all H and for all v ¢ S, let Ky, and Ky, be hyperspecial subgroups of U (F,)

and H (F,) respectively such that ohur # 0. By arguing as in the proof of Lemma
8.3, we can deduce the following identity.

Z Mgisc (Uoo ® ®ye{5_oo}0';, ® O'S) Tr (Uoo [029] ®V€{S—OO}J:/ X O’S) (f)
o, €ll(oy)

1 .
=5 Z Tr (®V€ST{]: ® ®V§g37{]:> (fU )

7'{]: €ll(o,)

1
+5 Y Tr(Sesth,,, ©Cuesth,,,) (F7)
T;_Iayb,uen(wa,b,u)

where

1 =®,fF is a A-transfer of f = ®, f, for all v,

e for all archimedean v, f, is a pseudo-coefficient of o, and f is the associ-
ated Euler-Poincaré function appearing in Lemma 5.4,

o forall v ¢ S, f, (resp. fH) is bi-invariant under Ky, (resp. Ky, ),

o forall v ¢ S, 77;. is the unique Ky --unramified representation whose Lang-
lands base chanlée is 11,

o for all v € S — S, 7. is the unique representation whose Langlands base
change is 11, ’

e forallv ¢S, 7y , , is the unique Kp, , ,-unramified representation whose
Langlands base change is 11, ,, x Il ., and

o forallve S-S, T}{a’b’y is the unique representation whose Langlands base

change is I, , x II} ,,

Applying the results of Section 5, we deduce that

1 1
Mdisc (U) = 5 H Aspec (wua OV) + 5 H Aspec (wa,b,m O',,)

veS veS

where 1, denotes the L-parameter associated to o,, viewed as an L-parameter of
U*(F,). By Lemma 9.1, we see that ], csAspec (¥1,0,) = 1. It follows that

Hues ASpec (wa,b,y> (I,,) is integral. 0

Lemma 9.4. Let k'/k be a quadratic extension of p-adic fields. Let g : Ly —
GL, x GLy be an L-parameter such that £ o ¥y is a tempered 6-discrete stable
L-parameter. Then

1 if&ovpy >~ (ok)

0 : otherwise

|Aspcc (wH,Uk” = {

for all discrete series representations oy, of Uk (k' /k).

Proof. We remark that if £ o by % 9 (01 ), then the result is part of Lemma 5.35.
Let vy : Ly — GL, X GLy be an L-parameter such that £ o ¢y is a tempered
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f-discrete stable L-parameter. We know that (cf. [Moeg07, §7])

< > n@u,on)om, Y n(¢H,0H)JH>

o €l(Ym) o €N(YH)
= < Z Aspec (1/1}'1, Uk) Ok, Z Aspec (dJH» Uk) Uk>
or€I(Eon) o €I(Eom)

By Lemma 8.2, n (¢Yg,op) =1 for all oy € I (¢gr). By a result of Arthur [Art93,
Corollary 6.2], the discrete series representations of H (k) and U* (k) are orthonor-
mal. It follows that

L (¢u)| = Z |Aspec (¢H70k)|2
o €(Eo0ty)
Now
[T ()| = 210 =1 = 2! Covm =1 — I (€ 0 gy )|
and by Lemma 5.35, Agpec (Ymr,0%) # 0 for all o € II(§ 0 p). The result will
thus follow upon confirmation that |Aspec (¥, 0%)| € N for all o € IL(£ 0 p).
Let o € IT (£ o ¢y). Choose a totally imaginary quadratic extension of a totally

real field E/F, and a place v’ such that

e F,/F, ~k/k and

e F/F is unramified outside of v/’

Write ¢ = ¥4 X ¢p, and let m, 1 (resp. mp k) be the tempered 6-discrete stable

representation of GL, (k') (resp. GLy (k')) corresponding to 9, (resp. i) viewed

as an L-parameter of GL, (resp. GL;). By Lemma 7.3, we can find cuspidal
automorphic representations II9 and IIY of GL, (Ag) and GL, (Afg) respectively
such that, writing T1° = 19 ;, B3 nga, we have that
o 119 ~ %06 and I1 ~ 119 0 0,
e for all archimedean v, IT% has cohomology for a system of coefficients V,, @V
where V is an algebraic representation with regular highest weight,

° Hgﬁy, (resp. Hgy,) is the Langlands base change of a discrete series repre-
sentation o ,, (resp. oy ) and there exists a unitary character y,. such
that m, r (resp. mp ) is the Langlands base change of the discrete series
representation o, - X, (resp. oy, - X, ), and

e for all non-archimedean places v # v/ that are inert in F, 119 is unramified.

Let 0¥ be an irreducible admissible representation of U (A ) such that

e IIY is the Langlands base change of ¢° at all places v,
o 0% ~ 0 xu, and
e for all non-archimedean v # v/ that remain inert in £, 00 is unramified.
We see that
Aspec (¢2,b,yu US') = Aspec (Y1, 0%)

where wgb,y/ denotes the L-parameter of H, ; for which
BC (Vo) =¥ (IIg,,) x ¢ (1L,
Thus the result will follow upon confirmation that |Agpec (1&2@”,, aB,>| e NO.
By Lemma 9.3,
ASPeC (wg,b,uuag/> ’ H Aspec ( g,b,wag) €Z

v|oco

0
a,b,v

BC ( 27b,11) = w (Hg,l/) X w (Hg,y)

where for archimedean v, v denotes the L-parameter of H, ; for which
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The result then follows as [Agpec (wg,b,w 02)| =1 for all archimedean v. O
9.3. Properties involving multiple endoscopic data. Let ji,...,j- € N such

that
Ut de y UG, Gy UGy de b = {1,001}
Let a; =mnj, +---+n;_, and let by =n —a;. We define the automorphic represen-
tations of GL,, (Ag) and GLy, (AE)
0 1 0o -1
II,, = B..--H Hj , M,

) = H?T ol Y@ B pgt

Let as = Njopy 0015, and let by = n — as. Define the automorphic representa-
tions of GL,, (Ag) and GLy, (Ag):
0 0 0o -1
IT, —H] /+1/“‘b2 |H - Bﬂl‘[-”,ub2

0 0 -1 0 —1 0o -1
1, =10 g 8- BT p B0, p 8B

Jr"+1
Let ag =nj, ,,, +---nj, and let by = n—as. Define the representations G'Lq, (Ag)
and GLy, (Ag):
0 _ 170 -1 0
IL,, = II; i Mg B -BII ,ub3

_ 170 1
Hb3 =115 pg, B---H Hj , uad

Lemma 9.5.

0 0 0
L1 Aspec (90 00000) = 1T Aspee (V0,000 00) - T Dspec (40 0000)

ves vesS veES

where fori=1,2,3, ° is the L-parameter of Hg, p, for which

a;,bi,v
BC (48, 4,0) ~ ¢ (115,,) x ¥ (113, )

Proof. By Lemma 7.3, we can find cuspidal automorphic representations Il,,, Il,,
and II,, of GL,, (Ag), GL4, (Ag), and GL,, (Ag) respectively such that for all
i=1,2,3,

o II,, ~1I,, o6,

o for all archimedean v, 11,, , ~ Hgi,y,

o for all non-archimedean v € S, 1l,,, is the Langlands base change of a
discrete series representation o,,, and there exists a unitary character,
independent of 7, x, such that HO is the Langlands base change of the
twist o4, . - Xy, and

o for all non-archimedean places v ¢ & that are inert in E, Il,, ,, is unramified.

WV

We then define the following automorphic representations.
Iy, = Moy by g, BB Moy i, pry,
My, = Ta, o, oy BB Tl ping pig,
My, = Mo, fin, frgy B Tay o, 1)

We also define the automorphic representation of GL,, (Ag),
= Hal Moy H Hbl Hay = Haz:ubz B Hb2ll‘a2 = Ha3ﬂb3 &) Hb3,u'a3

Let o be an irreducible admissible representation of U (A ) such that

IT is the Langlands base change of ¢ at all places,

for all archimedean v, o, ~ o9,

for all non-archimedean v € S, o, ~ 00 - x,,, and

for all non-archimedean v ¢ S that are inert in F, o, is unramified.
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We see that, for i = 1,2, 3,

T Asvee (Variwr00) = [T Dspec (V0 4.0:07)

veS veS

where for i = 1,2, 3, ¥° is the L-parameter of H,, p, for which BC (¢, p,..) ~

a;,b;,v

¥ (I, ») X ¥ (I, ). The result will follow upon confirmation that,

H Aspec (wal,bl,V7 Uu) == H Aspec (wa27b2,l/7 JV) : H Aspec (d&z:;,by,,u, Uu)

ves ves ves
Let S be the set of places v such that either

e ves§, or
e o, is not unramified.

For all H and for all v ¢ S, let Ky, and Ky, be hyperspecial subgroups of U (F,)

and H (F,) respectively such that o # 0. By arguing as in the proof of Lemma
8.3, we can deduce the following identity.

Z Myisc (O'OO & ®V€{3700}0',/, &® O'S) Tr (Uoo 02y ®V€{Sfoo}0-1// ® US) (f)
ol €ll(oy,)

1 "
= Z Z Tr (®V€ST[/]J X ®V€ST{];> (fU )

T[/]; €ll(oy)

1 Ha. b,
+ 44 Z Tr (®V€ST}I%1’%>V © ®V€ST;{%>’H»”) (f al'bl)
EN(Ya;,b5,0)

o fH =, is a A-transfer of f = ®,f, for all v,

e for all archimedean v, f, is a pseudo-coefficient of ¢, and ff is the associ-
ated Euler-Poincaré function as appearing in Lemma 5.4,

o forall v ¢ S, f, (resp. fH) is bi-invariant under Ky, (resp. Ky, ),

o forall v ¢ S, 77,. is the unique Ky --unramified representation whose Lang-
lands base chanlée is 11,

o for all v € S — S, 7. is the unique representation whose Langlands base
change is IT,,, ’

o for i = 1,2,3, forall v ¢ S, 75y, , is the unique Ky, , -unramified
representation whose Langlands base change is I, , x Iy, ,,, and

e fori=1,23 forallve S-S, T}’q%bwu is the unique representation whose

sV

Langlands base change is I, , x I, .,
Applying the results of Section 5, we deduce that

3

Mdisc (U) = 1 H Aspec (’(/}V7 UV) + 1 Z H Aspec (wai,bi,ua Uu)
4 4

veS i=1veS

By Lemma 9.1,
H Aspec (/(/)llvo-lj) =1
veS
and by Lemma 9.2, for ¢ = 1,2, 3,

H Aspec (@[}ai,bi,ua Uu) ==+1

vesS



TEMPERED AUTOMORPHIC REPRESENTATIONS OF THE UNITARY GROUP 39

The multiplicity majsc (o) is a non-negative integer, and it follows that mgis (o) is
equal to either 0 or 1. By considering the possible values of the terms, we see that

H Aspec (wal,bl,ua O',,) = H Aspec (waz,b27V7 UV) . H Aspec (wag,b;g,yy 0',,)

ves veS veES

10. THE LOCAL ARTHUR CONJECTURES

The main aim of this section is to prove a formulation of the local Arthur conjec-
tures for discrete series representations of the quasi-split p-adic unitary group. Our
proof of the local Arthur conjectures follows the work of Arthur [Art05, Theorem
30.1] who has proved these conjectures for general representations of the orthogo-
nal and symplectic groups. For tempered representations of real groups, the local
Arthur conjectures are due to Shelstad [She08b]. We shall also recall a formulation
of Shelstad’s result for discrete series representations of real unitary groups.

10.1. Discrete series representations of real unitary groups. Let U = U (p, q)
be a real unitary group. Let ¢ : Lg — “U be a tempered discrete L-parameter;
we shall also have need of its Langlands base change BC (¢) : Lc — GL,, (C). We
shall denote by Sy the centraliser of the image of BC (¢) (z) in GL,, (C) for all
z € C, and we shall denote by 53} the subgroup of #-invariant points of Sy. We

shall study the quotient group S, = Sz, /{£1}. By Schur’s lemma, we see that
S, ~ (Z/22)""

For all s € Sy, one associates to s an endoscopic data H; = H,; and a tempered
discrete L-parameter

Vs Ly — VH,
such that ¢ ~ £ o 14 via the following construction. The centraliser of a represen-
tative of s in GL,, (C) is of the following form.

C (5,GLy (C)) 5 (GLy x GLy) (C)

for a unique a,b € N such that a < b. The endoscopic data H, is then defined to
be Hs = H, as in Definition 5.19. The L-homomorphism ), is defined to be the
L-homomorphism whose Langlands base change

BC (¢s) : Le = (GL, x GLy) (C)
is the pull back of BC (¢)) through the morphism
(GL, x GLy) (C) = (GL, x GLy) (C) = C (5,GL, (C)) — GL, (C)
where the first isomorphism is defined as follows.
(GL, x GLy) (C) — (GL, x GLy) (C)
Ga X Gb = Ga - p (det ga) X go - f1a (9b)

Remark 10.1. The 1 are easily seen to be in bijection with the equivalence classes
of L-parameters 1 : Lr — “H such that £ o ¢y ~ ).

We fix a representation o2 € TI (1) in the L-packet of discrete series represen-
tations of U (R). Arthur defines the pairing

() : Sy x I () — C*
Aspec (wsa U)
Aspec (wm O-base)

This pairing is canonical: it depends only upon the equivalence class of the L-
homomorphism 1 and the choice of a base point representation o?® ¢ I1 ().

S X O
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In particular, the pairing does not depend upon the chosen normalisation of the
transfer factors.

Theorem 10.2. The pairing (-,-) takes values in {£1}, and induces an injection
from the elements of the L-packet I1 (1)) to the characters of S..

Proof. This is a simple reformulation of a result of Shelstad [She08b]. O

Remark 10.3. The results of Shelstad [She08b] are in fact stronger, and include a
study of the characters that appear in the image of this injective map.

Remark 10.4. If we restrict ourselves to L-packets of discrete series representa-
tions IT (V') where V is an irreducible algebraic representation with regular highest
weight, then our method of proof of the local Arthur conjectures for discrete series
representations of the p-adic quasi-split unitary group can be adapted to give a
global proof of Theorem 10.2.

10.2. Discrete series representations of the p-adic quasi-split unitary group.
Let k' /k be a quadratic extension of p-adic fields. We shall study the discrete series
representations of the p-adic quasi-split unitary group U* (k’'/k). Let ¢ : Ly —
LGL, /K be a tempered 6-discrete stable L-parameter. We shall denote by S, the
centraliser of the image of ¢ in GL,, (C), and we shall denote by SZ) the subgroup

of f-invariant points of Sy,. We shall study the quotient group Sy = Si /{£1}. By
Schur’s lemma, we see that
Sy ~ (Z/2Z)' !

For all s € Sy, one associates to s an endoscopic data H, = H, 3, and a tempered
f-discrete L-parameter

Vs Ly — “GLy x GLy /K
such that ¢ ~ £ o1 via the following construction. The centraliser of a represen-
tative of s in GL,, (C) is of the following form.

C(s,GL, (C)) = (GLa x GLy) (C)
for a unique a,b € N such that a < b. The endoscopic data H, is then defined to
be Hy = H, as in Definition 5.19. The L-homomorphism 1), is defined to be the
pull back of ¢ through the morphism
(GL, x GLy) (C) = (GL, x GLy) (C) = C (5,GL, (C)) = GL, (C)
where the first isomorphism is defined as follows.
(GL, x GLp) (C) = (GL, x GLy) (C)

Ja X b+ Ga o (det ga) X g - pa (g0)

Remark 10.5. The 15 are easily seen to be in bijection with the equivalence classes

of L-parameters ¢ : Ljs — YGL, x GLy/K' such that & o ¢y ~ 1.

We fix a representation o5 € II (1)) in the L-packet of discrete series represen-
tations of U* (k'/k). Arthur defines the pairing

(,+) : Sy x II () — C*
Aspec (1/1.@7 U)
Aspec (1/)5, Ubase)
This pairing is canonical: it depends only upon the equivalence class of the L-
homomorphism 1 and the choice of base point representation o®®¢ € II (). In

particular, the pairing does not depend upon the chosen normalisation of the trans-
fer factors.

S X O
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Theorem 10.6. The pairing (-, ) takes values in {£1}, and induces a bijection
between the elements of the L-packet I1 (¢0) and the characters of Sy.

Proof. Choose a totally imaginary quadratic extension of a totally real field E/F,
and a place v’ of F such that

[] EV//F r~ kl/k” and
e E/F is unramified outside of v’.

By Lemma 7.3, we can find r = [ (¢)) cuspidal automorphic representations I1{ of
GL,, (Ag) such that, writing I = TI{ B --- B II?, the following conditions are
satisfied.

e For all archimedean v, I1Y has cohomology in a system of coefficients V.0 ®

V9 where V0 is an irreducible algebraic representation of GL,, with regular
highest weight.

e Foralli=1,...,r, 1Y 0§ ~ TI9.

° HB, is the Langlands base change of an L-packet of discrete series represen-
tations whose elements are isomorphic to a twist of the representations in
the L-packet II (v)) by some unitary character y,.

e For all non-archimedean places v # v/ that are inert in £, I is unramified.

We can identify the L-packets via the natural bijection
I (¢) — T (")

Ok = OkXv'

where 90 = 1 (Hlo,,). Similarly, we can identify the groups S,, = Syo. We see that,
for all s € Sy, and for all oy, € II (),

Aspec (1/&, Uk) = Aspec (1/127 JkXV’)

Thus the theorem will follow from the analogous statement concerning the L-packet
IT (¢9).

Let 0 = ®,09 be an irreducible admissible representation of U* (A r) such that

e for all non-archimedean v # v/ that are inert in F, ¢¥ is unramified, and
e IIY is the Langlands base change of ¢° at all places v.

We remark that we have the natural injections
Sy(oy) = Syo
for all v|oo. By the results of Section 9, we see that the function
Sﬂ,o — C*
A 0 0 A 0 0
S > Qgpec ( 370'1//) spec (1/} (Uy)s agu)

v|oo

is a £1 valued character. Write Jllf,ase ell (wo) for the chosen base point represen-

tation. Consider now the function associated to the representation o*” © gbase
Swo — C*

s Aspee (00,008%) T Aspec (v (07) 1 07)

v|oco

which by the results of Section 9, is also a +1 valued character. By multiplying
the first character by the inverse of the second character, we see that the function
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induced by Arthur’s pairing
(,02) 1 Syo — C*
Aspec ( ga 010//)
Aspee (¥, 0,7°°)

is a +1 valued character. Since 0¥, € II (wo) can be chosen to be any element of the
L-packet, we see that Arthur’s pairing (-, -) induces a map from the elements of the
L-packet IT (¢0) to the characters of S;;0. The map is known to be injective; this can
be seen by inverting the spectral transfer factors and expressing the distribution of a
representation in the L-packet I1 (z/JO) in terms of the stable distributions associated
to the L-packets IT (¢0) (cf. [Moeg07, §8.1]). The result follows as the sets have
the same cardinality

S =

0\ _ ~
[ ()] = 20 = (S
where §wo denotes the group of characters of So. O

11. THE GLOBAL ARTHUR CONJECTURES

The main aim of this section is to prove a formulation of the global Arthur
conjectures for certain representations of the unitary group. Our proof follows the
work of Arthur [Art05, Theorem 30.2] who has proved these conjectures for general
representations of the orthogonal and symplectic groups.

Let E/F be a totally imaginary quadratic extension of a totally real field, and
let U be a unitary group appearing in Proposition 2.1. Let II = II; B --- B II, be
an automorphic representation of GL,, (Ag) that satisfies the following properties.

e Foralli=1,...,r, II; is cuspidal and II; ~ II; o 6.

e For all archimedean places v of F, II, is the Langlands base change of a
discrete series representation of U (F),) with the same infinitesimal character
as an irreducible algebraic representation of GL, whose highest weight is
regular.

e For all non-archimedean places v of F' that are inert and unramified in F,
II, is either unramified, or tempered 6-discrete stable.

e For all non-archimedean places v of F' that are ramified in F, I1,, is tempered
f-discrete stable.

Let o be an irreducible admissible representation of U (A r) whose Langlands base
change is IT at all places.

The global Arthur conjectures predict the multiplicity with which o appears in
the discrete automorphic spectrum of U (A ), which we shall now describe. Let S
be the set of places v of F' such that either

e v is archimedean, or

e v is non-archimedean, inert in F, and II, is tempered 6-discrete stable.
For all places w of E, let ¢, : Lg, — GL, (C) be the L-parameter corresponding
to II,,. Let Sy be the group of elements of GL,, (C) that commute with the image
of 9, (2) in GL,, (C) for all z € Lg, and for all w. Let SY be the subgroup of -
invariant points. We shall study the quotient group Sy = S§/ {#1}. There exists
a natural embedding for all v € S,

S — Swy
The local characters (-,0,) : Sy, — {%1}, defined for all v € S, induce by restric-

tion a character
<~,o’> = H<'7UV>|SH : SH — {:t]-}

veS
The global Arthur conjectures predicts the following.
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Theorem 11.1. There exists a unique character
€ : S — {:l:].}

such that o appears in the discrete automorphic spectrum of U (A ) with multiplic-

ity equal to
1 :if(,0)=en
Myjsc (0) =
aise (7) {O : otherwise

Proof. By considering the trace formula, and arguing as in the proof of Lemma 8.3,
we deduce that

1
Mdisc (U) = m Z H Aspec (1/} (Uu)s 70V)
I seSveS
By Lemma 9.2, we see that each term in the summation is equal to £1. It follows
that
Mgige (0) _ 1 :ifVs G.Sl_h HVES Aspec ("/) (Uu)s ) 0'1/) =1
0 :otherwise

We define the function

EH:SH%CX

s I Aspee (¥ (027),,00™)

ves

where oP*¢ € TI (¢ (0,)) denotes the chosen base point representation of the IL-
packet. It follows from the results of Section 9 that Zp is a +1-valued character.
We define the character e = Eﬁl. The result now follows from the definition of
the local pairings (-, -). O

Corollary 11.2. Assume in addition to the previous assumptions that either

e II is cuspidal, or

e there exists a non-archimedean place V' € S.
Then there exists a o as above such that o appears in the discrete automorphic
spectrum of U (A g) with multiplicity 1.

Remark 11.3. In the case where II is cuspidal and [F': Q] > 1, this result is due to
Labesse [Lab09, Theorem 5.4, Theorem 5.9].

Proof. Firstly if II is cuspidal, then the group Sy = {1} is trivial. It follows by
Theorem 11.1 that mgjs (0) = 1 for any representation o as above.

Consider now the second case, that is, assume that there exists a non-archimedean
place v/ € S. Let o be any irreducible admissible representation as above. Let o/,
be a discrete series representation of U (F),) lying in the same L-packet of o,/ such
that the following characters are equal

<'30—1//’>|Sn =€ H <';Uu>71|Sn :Sp — C*
ve{S—v'}
This is possible by Theorem 10.6. Define the irreducible admissible representation
o' =0 @0/, of U(Ap). We see that (-,0") = er. It follows by Theorem 11.1 that
Mgise (07) = 1.
U
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