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Abstract. Following Arthur’s study of the representations of the orthogonal
and symplectic groups, we prove many cases of both the local and global Arthur

conjectures for tempered representations of the unitary group. This completes

the proof of Arthur’s description of the discrete series representations of the
quasi-split p-adic unitary group, and Arthur’s description of the tempered

discrete automorphic representations of the unitary group, satisfying certain

technical conditions.

1. Introduction

Arthur [Art05, §30] has announced a proof of both the local and global Arthur
conjectures for irreducible admissible representations of the quasi-split groups SO2n+1,
SP2n, and SO2n. Following Arthur, the aim of this article is to prove the analogous
results for tempered representations of inner forms of the quasi-split unitary group.
We warn the reader that, for technical reasons, we shall in fact work under more re-
strictive hypotheses. The tempered setting admits a number of simplifications over
the general setting. An ulterior aim of this article to provide a first step towards
the general result. Concerning anterior results in this direction, we remark that
Rogawski [Rog90] studied irreducible admissible representations of unitary groups
in two and three variables, and Clozel-Harris-Labesse [CHL09] were the first to
study endoscopic automorphic representations of higher rank unitary groups.

Let us begin by describing our local results. Let k′/k be a quadratic extension
of p-adic fields, and let U∗n (k′/k) denote the associated quasi-split unitary group in
n-variables. We remind the reader that the classification of the discrete series repre-
sentations of U∗n (k′/k) has been completed by Mœglin [Mœg07]. The classification
proceeds in two stages.

(1) Arrange the discrete series representations of U∗n (k′/k) into L-packets, and
classify the L-packets.

(2) Classify the discrete series representations inside a given L-packet.

Mœglin arranges the discrete series representations into L-packets by requiring
that the representations appearing in a given L-packet have the same Langlands
base change to GLn (k′). Mœglin shows that the L-packets are finite and dis-
joint, and calculates their cardinality. Mœglin then classifies the representations
of GLn (k′) that appear as the Langlands base change of a discrete series repre-
sentation of U∗n (k′/k). These representations are the tempered θ-discrete stable
representations (cf. Definition 3.7). Using the local Langlands correspondence for
GLn, due to Harris-Taylor and Henniart, Mœglin assigns to each L-packet Π of
discrete series representations of U∗n (k′/k), the L-parameter of GLn/k

′

ψ : Lk′ → GLn (C)
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which is associated to the Langlands base change of Π.
Mœglin [Mœg07] completed the second stage of the classification by using certain

properties of Jacquet modules. Mœglin associated to each discrete series representa-
tion inside a given L-packet a character of a certain abelian group. We are interested
in obtaining an alternative description predicted by the local Arthur conjectures.
Let Sψ be the centraliser of the image of ψ in GLn (C), and let Sθψ be the subgroup
of θ-invariant elements where θ is the degree 2 automorphism defined in Section 2.
We shall study the quotient group Sψ = Sθψ/ {±1}. The group Sψ is isomorphic to

(Z/2Z)
r

for some non-negative integer r. Using the endoscopic properties of the
representations in the L-packet Π, Arthur defines a pairing (see Section 10.2)

〈·, ·〉 : Sψ ×Π→ C

This pairing is canonical, up to the arbitrary choice of a representation σbase ∈ Π.
The local Arthur conjectures predict the following.

Theorem (A). The pairing 〈·, ·〉 takes values in ±1, and induces a bijection between
the representations in the L-packet Π and the characters of Sψ.

Proof. Theorem 10.6. �

If instead k′/k ' C/R, then the L-packets of discrete series representations
of a real unitary group U (p, q) were parameterised, in terms of L-parameters, by
Langlands who applied previous work of Harish-Chandra. Let Π be an L-packet
of discrete series representations of U (p, q), and let ψ : Lk′ → LU (p, q) be the L-
parameter associated to Π. One can perform the analogous constructions to those
in the non-archimedean case (cf. Section 10.1). The result in this case is due to
Shelstad [She08b] (cf. Theorem 10.2).

Theorem (B). The pairing 〈·, ·〉 takes values in ±1, and induces an injection from
the representations in the L-packet Π to the characters of Sψ.

Let us now describe our global results, which relate certain discrete automorphic
representations of unitary groups to automorphic representations of GLn. Let E/F
be a totally imaginary quadratic extension of a totally real field, let U∗n (E/F ) be
the associated quasi-split unitary group in n-variables, and let U be an inner form of
U∗n (E/F ) that is quasi-split at all finite places. We shall be interested in the discrete
automorphic representations σ of U (AF ) that satisfy the following properties.

• For all archimedean places ν, σν is a discrete series representation with the
same infinitesimal character as an irreducible algebraic representation of
GLn whose highest weight is regular (cf. Section 3.3.1).

• For all non-archimedean places ν that remain inert in E, σν is either un-
ramified or a discrete series representation.

The first global result is a mild generalisation of a result of Labesse [Lab09, Theorem
5.1, Theorem 5.9].

Theorem (C). There exists an automorphic representation Π = Π1 � · · ·� Πr of
GLn (AE) such that

• for all places ν, Πν is the Langlands base change of σν ,
• for all i = 1, . . . , r, Πi is cuspidal and Πi ' Πi ◦ θ, and
• for all i 6= j, Πi 6' Πj.

Proof. This is a special case of Theorem 6.1. �

We shall now consider the converse problem. Let Π = Π1 � · · · � Πr be an
automorphic representation of GLn (AE) that satisfies the following properties.
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• For all archimedean places ν of F , Πν is the Langlands base change of a
discrete series representation of U (Fν) with the same infinitesimal character
as an irreducible algebraic representation of GLn whose highest weight is
regular.

• For all non-archimedean places ν of F that are inert and unramified in E,
Πν is either unramified, or the Langlands base change of a discrete series
representation of U∗n (Eν/Fν).

• For all non-archimedean places ν of F that are ramified in E, Πν is the
Langlands base change of a discrete series representation of U∗n (Eν/Fν).

• For all i = 1, . . . , r, Πi is cuspidal and Πi ' Πi ◦ θ.
• For all i 6= j, Πi 6' Πj .

Let σ be an irreducible admissible representation of U (AF ) whose Langlands base
change is Π at all places.

The global Arthur conjectures predict the multiplicity with which σ appears in
the discrete automorphic spectrum of U (AF ), which we shall now describe. Let S
be the set of places ν of F such that either

• ν is archimedean, or
• ν is non-archimedean, inert in E, and Πν is the Langlands base change of

a discrete series representation of U∗n (Eν/Fν).

For all places ω of E, let ϕω : LEω → GLn (C) be the L-parameter corresponding
to Πω. Let SΠ be the group of elements of GLn (C) that commute with the image
ϕω (z) in GLn (C) for all z ∈ LEν and for all ω. Let SθΠ be the subgroup of θ-
invariant points of SΠ. We shall study the quotient group SΠ = SθΠ/ {±1} There
exists a natural embedding, for all ν ∈ S,

SΠ ↪→ Sψν

where ψν denotes the L-parameter associated to σν . The characters 〈·, σν〉 : Sψν →
{±1}, defined for all ν ∈ S, induce by restriction a character

〈·, σ〉 =
∏
ν∈S
〈·, σν〉 : SΠ → {±1}

The global Arthur conjectures predicts the following.

Theorem (D). There exists a unique character

εΠ : SΠ → {±1}

such that σ appears in the discrete automorphic spectrum of U (AF ) with multiplic-
ity equal to

mdisc (σ) =

{
1 : if 〈·, σ〉 = εΠ

0 : otherwise

Proof. Theorem 11.1 �

By combining the proved local and global Arthur conjectures, we obtain the
following result.

Theorem (E). Assume, in addition to the previous assumptions, that either

• Π is cuspidal, or
• there exists a non-archimedean place ν ∈ S.

Then there exists a σ as above, such that, σ appears in the discrete automorphic
spectrum of U (AF ) with multiplicity 1.

Proof. Corollary 11.2 �
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Remark 1.1. In the case where Π is cuspidal and [F : Q] > 1, this result is due to
Labesse [Lab09, Theorem 5.4, Theorem 5.9].

The method of proof of these conjectures follows the work of Arthur [Art05,
§30] on the proof of these conjectures for general representations of the symplectic
and orthogonal groups. The proofs are mostly global in nature, and rely upon
the stabilisation of both Arthur’s invariant trace formula for the unitary group U
and Arthur’s invariant twisted trace formula for GLn o θ. The stabilisation of the
invariant trace formula for a general connected reductive group was completed by
Arthur [Art02] [Art01] [Art03] under the assumption of the validity of the weighted
fundamental lemma. This is now a theorem due to the work of Chaudouard-Laumon
[CL10a] [CL10b], Ngô [Ngô10], and Walspurger [Wal09]. As of the time of this
writing, the complete stabilisation of the twisted trace formula for GLn o θ is
unknown, however the stabilisation of a simple version of the twisted invariant trace
formula for GLn o θ has been completed by Labesse [Lab09] and Morel [Mor10].
This simple stable trace formula imposes a number of additional constraints upon
the choice of test functions, and it is for this reason that we have been forced to
work under the hypotheses described in the statements of our results. One would
expect that the complete stabilisation of Arthur’s invariant trace formula for GLoθ
would enable one to treat the general case, however that is beyond the aim of this
article. We should also mention that, as of the time of writing, the results of this
article are conditional upon certain expected results on the inner product of elliptic
tempered representations of GL o θ (cf. Hypothesis 8.0.1). These results would
follow from the generalisation of previous results of Arthur [Art93] to the twisted
setting.

Let us describe the contents of this article. In Section 2, we recall the groups
of interest to us. In Section 3, we recall some known cases of the local Lang-
lands correspondence. In Section 4, we recall the base change, and endoscopic
L-homomorphisms. In Section 5, we recall the necessary properties of the trace for-
mula. In Section 6, we follow Labesse and apply the trace formula to prove our base
change result. In Section 7, we recall a result of Shin on the existence of discrete au-
tomorphic representations of the unitary group satisfying certain local conditions,
and then combine this with our base change result. In Section 8, we prove that the
sum of the characters of the representations appearing in an L-packet Π of discrete
series representations of the quasi-split p-adic unitary group is a stable distribution.
Mœglin had previously shown that a linear combination of the representations in
Π is stable, as such, we are reduced to showing that Mœglin’s coefficients are equal
to 1. The result follows from two numerical constraints upon the possible values of
Mœglin’s coefficients. The first constraint is that the coefficients are non-negative
integers. This is shown by judiciously choosing automorphic representations satisfy-
ing certain local properties, and considering their contribution to the trace formula.
The second constraint relates to the norm of the coefficients, and follows from cer-
tain local character identities. Section 9 is the heart of this article in which we
prove certain properties of the spectral transfer factors via arguments similar to
those of Section 8. In Section 10, we recall and prove the local Arthur conjectures.
Section 11 contains a statement and proof of the global Arthur conjectures.

1.1. Notation. The strictly positive (resp. non-negative integers) shall be denoted
by N (resp. N0). The archimedean Weil groups shall be written as WC = C×,
and WR = C× t jC× where j2 = −1 and jzj−1 = z for all z ∈ C×. Unless stated
otherwise, a representations shall be assumed to be irreducible and admissible with
complex coefficients. The term induced representation shall refer to the unitarily
normalised induced representation.
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2. Some groups

We shall recall here the groups that shall be of interest to us. Let k′/k be a
quadratic extension of either local or global fields of characteristic 0. Consider the
group

Res
k′/k

GLn

where Res denotes the Weyl restriction of scalars. This groups admits a degree 2
automorphism

θ = θn : x 7→ Φn
t (xc)

−1
Φ−1
n

where c ∈ Gal (k′/k) denotes the non-trivial element and

Φn =


−1

1
. . . . . . . . . . . . . . . . . . .
(−1)

n


The quasi-split unitary group in n-variables, denoted as either U∗n (k′/k), U∗n or U∗,
is the k-algebraic group of θn-invariant points of Resk′/kGLn.

Let B = Mn (k′) be the algebra of k′-valued n × n matrices. Let ‡ : B → B be
an involution of the second kind, that is, ‡|k′ = c. We define G‡ to be the algebraic
group whose R-valued points are given by

G‡ (R) =
{
g ∈ (B ⊗k R)

×
: g‡g = 1

}
for all k-algebras R. The algebraic group G‡ is an inner form of U∗n (k′/k), and
there exists a canonical, up to conjugation, isomorphism

G‡ ×k k′
∼→ GLn

Let us enumerate some of the possible groups that are obtained via this con-
struction.

• Assume that k′/k ' C/R. Then G‡ is isomorphic to one of the real unitary
groups U (p, q) where p+ q = n.

• Assume that k′/k is an extension of p-adic fields. If n is odd then G‡ is
isomorphic to the quasi-split unitary group U∗n (k′/k). If n is even then G‡
is isomorphic to either U∗n (k′/k) or the unique inner form of U∗n (k′/k) that
is not quasi-split.

Consider the global setting where k′/k = E/F is a totally imaginary quadratic
extension of a totally real field. The groups G‡ satisfy the Hasse principle (cf.
[HL04, §1.2]), that is, they are determined, up to isomorphism, by their local forms
G‡,ν = G‡ ×F Fν where ν runs through the places of F . If ν is either real or, finite
and inert in E, then the possible local forms are enumerated above. Let us consider
the case where ν is finite and splits in E.

• Assume that ν = ωωc is finite and splits in E. Then G‡×F Fν is isomorphic
to GLn/Fν . The isomorphism is non-canonical; it essentially depends upon
a choice of either ω or ωc. It will be important to distinguish between these
isomorphisms. Observe that

B ⊗Fν Eν = (B ⊗Fν Eω)⊕ (B ⊗Fν Eωc)
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and that ‡ induces, by restriction, an isomorphism

‡ : B ⊗Fν Eω
∼→ B ⊗Fν Eωc

By projection onto the ω (resp. ωc) component, we obtain the isomorphism

ιω : G‡ ×F Fν
∼→ GLn (resp. ιωc : G‡ ×F Fν

∼→ GLn)

which is canonical up to conjugation.

In order to fix the choice of isomorphism G‡ ×F Fν
∼→ GLn at finite split places,

we choose a set of places Q of E containing either ω or ωc for each finite split place
ν = ωωc of F , and then define

ιν = ιω′ : G‡ ×F Fν
∼→ GLn

where ω′ ∈ Q.
The groups G‡ have been classified in the cases of interest to us.

Proposition 2.1. Let E/F be a totally imaginary quadratic extension of a totally
real field. Let n ∈ N, and for all real places ν of F , let pν , qν ∈ N0 such that
pν + qν = n. Then there exists an involution of the second kind ‡ such that

• G‡ ×F Fν ' U (pν , qν) for all archimedean ν, and
• G‡ ×F Fν is quasi-split for all finite ν

if and only if
∏
ν|∞ ε (U (pν , qν)) = 1 where

ε (U (pν , qν)) =

{
1 : if n is odd

(−1)
n/2−pν : if n is even

Proof. [HL04, Proposition 1.2.3]. �

3. The local Langlands correspondence

We shall recall here the local Langlands correspondence in the cases of interest
to us.

3.1. L-groups. We shall explicitly recall the L-groups of interest to us (cf. [Bor79]).
Let k be either a local or global field of characteristic 0. For G a connected

reductive k-algebraic group, the L-group is defined to be

LG = ĜoWk

where Ĝ denotes the Langlands dual group, and Wk the absolute Weil group which

acts on Ĝ via its natural action on the root datum. The action of the Weil group is

non-canonical; it depends upon a choice of splitting for the dual group Ĝ, however,
different choices of splittings give rise to canonically isomorphic L-groups. We recall
that inner forms give rise to isomorphic L-groups.

• Assume that G = GLn/k. Then Ĝ = GLn (C), and

LGLn = GLn (C)×Wk

• Assume that k′/k is a quadratic extension and that G = U∗n (k′/k). Then

Ĝ = GLn (C). The Weil group Wk acts on Ĝ through its projection onto
Gal (k′/k) = {1, c} where c acts as follows.

GLn (C)→ GLn (C)

g 7→ Φn
tg−1Φ−1

n
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• Assume that k′/k is a quadratic extension and thatG = Resk′/k U
∗
n (k′/k)×k k′.

Then Ĝ = GLn (C)×GLn (C). The Weil group Wk acts on Ĝ through its
projection onto Gal (k′/k) = {1, c} where c acts as follows.

GLn(C)×GLn(C)→ GLn (C)×GLn (C)

g1 × g2 7→ Φn
tg−1

2 Φ−1
n × Φn

tg−1
1 Φ−1

n

3.2. L-parameters. Let k be a local field of characteristic 0.
The Langlands group is defined to be

Lk =

{
Wk : if ν is archimedean

Wk × SU2 (R) : if ν is non-archimedean

Let G be a connected reductive k-algebraic group. An L-parameter for G is a
continuous homomorphism

ψ : Lk → LG

that satisfies the following conditions.

• For all w ∈ Lk, the image of ψ (w) in Wk is the same as the image of w in
Wk

• For all w ∈ Lk, ψ (w) is semi-simple.

Two L-parameters are said to be equivalent if they are conjugate by an element of

Ĝ. We shall also define the following properties of L-parameters.

• ψ is said to be unramified if
– G is unramified,
– ψ is trivial on the SU2 (R)-component, and

– the composite map Wk
ψ→ LG

1×v
� ĜoZ factors through the valuation

map v : Wk � Z
• ψ is said to be tempered if the image of ψ (Lk) in LG is bounded.

• ψ is said to be discrete if C (ψ)
0 ⊂ Z

(
Ĝ (C)

)
where C (ψ)

0
denotes the

identity component of

C (ψ) =
{
g ∈ Ĝ (C) : gψ (w) = ψ (w) g ∀w ∈ Lk

}
• ψ is said to be relevant if the image of ψ (Lk) does not lie in any parabolic

subgroup unless the corresponding parabolic subgroup of G is defined over
k. If G is quasi-split, then all L-parameters are relevant.

In the case of GLn, there is the obvious bijection between L-parameters and
continuous homomorphisms

ψ′ : Lk → GLn(C)

such that ψ′ (w) is semi-simple for all w ∈ Lk. We shall use this bijection without
comment throughout this article.

3.3. The local Langlands correspondence.

3.3.1. The archimedean case. The local Langlands classification here is due to Lang-
lands [Lan89] (see also [Kna94]).

Proposition 3.1. Let k ∈ {R,C}. Let G be a connected reductive k-group. To
each equivalence class of relevant L-parameters ψ : Lk → LG, one can naturally
associate Π (ψ), a finite non-empty set of infinitesimal equivalence classes of irre-
ducible admissible representations of G (k). The L-packets Π (ψ) are disjoint and
their union is equal to the set of infinitesimal equivalence classes of irreducible ad-
missible representations of G (k).
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Let us recall the correspondence for discrete series representations of the real
unitary groups G = U (p, q) (cf. [Kot90, §7]). The discrete series representations
of G are parameterised by the tempered discrete relevant L-parameters of G. The
tempered discrete relevant L-parameters of G are of the form

ψ : WR → GLn (C) oWR

z 7→ diag
(

(z/z)
p1+n+1

2 −1
, . . . , (z/z)

pn+n+1
2 −n

)
× z

j 7→ Φn × j

where p1 ≥ · · · ≥ pn are integers. Write Vψ for the algebraic representation of GLn
of highest weight (p1, . . . , pn) (relative to the standard torus and Borel subgroups).
The representation Vψ is said to have regular highest weight if p1 > · · · > pn. The
L-packet Π (ψ) contains the discrete series representations of G whose infinitesimal
character is equal to the infinitesimal character of Vψ. It will be convenient to also
denote the L-packet Π (ψ) by Π (Vψ).

The elements of the L-packet Π(ψ) can be parameterised, using Harish-Chandra’s
character formula, by elements of

ΩR/Ω
∼→ Sn/Sp ×Sq

where ΩR (resp. Ω) denotes the real (resp. complex) Weyl group of U (p, q). In
particular the cardinality of the L-packet is equal to |Π (ψ)| = n!

p!q!

3.3.2. The unramified case. The unramified local Langlands correspondence is due
to Langlands (see [Bor79]).

Proposition 3.2. Let k be a p-adic field, and let G be an unramified k-algebraic
group. Then to each equivalence class of unramified L-parameters ψ : Lk → LG
and to each conjugacy class K of hyperspecial subgroups of G (k), one can naturally
associate an equivalence class of K-unramified representation π (ψ,K) of G (k).
This correspondence induces a bijection between pairs (ψ,K) and equivalence classes
of unramified representations of G (k).

Remark 3.3. Recall that an irreducible admissible representation π of G (k) is said
to be K-unramified if πK 6= 0.

Remark 3.4. The unramified representations associated to an unramified L-parameter
ψ are expected to form a subset of the conjectured L-packet associated to ψ. In
general, the L-packet will contain additional representations that are not unrami-
fied.

Remark 3.5. If G = GLn, then there exists a single conjugacy class of hyperspecial
subgroups of G (k). For general groups, see [Tit79].

3.3.3. GLn. The local Langlands correspondence for GLn is due to Harris-Taylor
[HT01] and Henniart [Hen00].

Proposition 3.6. Let k be a p-adic field. Then to each equivalence class of L-
parameters ψ : Lk → LG, one can naturally associate Π (ψ), a set consisting of the
equivalence class of a single irreducible admissible representations of G (k). Fur-
thermore, the L-packets Π (ψ) are disjoint and their union is equal to the set of
equivalence classes of irreducible admissible representations of G (k).

3.4. ResE/F U
∗
n (E/F )×E F . Let E/F be a totally imaginary quadratic extension

of a totally real field, and let ν be a place of F . The canonical isomorphism

Res
E/F

(U∗n (E/F )×F E) (Fν)
∼→ GLn (Eν)
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induces a bijection between the equivalence classes of representations of the two
groups. There is a corresponding bijection between the equivalence classes of L-
parameters of the groups ResEν/Fν U

∗
n (E/F ) ×F Eν and GLn/Eν (cf. [Rog90,

§4.7]).

3.4.1. U∗n (E/F ). Let E/F be a totally imaginary quadratic extension of a totally
real field, and let ν be a finite place of F .

• Assume that ν = ωωc splits in E. As recalled in Section 2, there is a
non-canonical isomorphism

ιν : U∗n (E/F )×F Fν
∼→ GLn/Fν

which depends upon the choice of the place ω or ωc. This isomorphism
induces a bijection between the equivalence classes of representations of
the two groups; it also induces a bijection between the equivalence classes
of L-parameters of the two groups.

• Assume that ν remains inert in E. Then U∗n (E/F )×F Fν
∼→ U∗n (Eν/Fν).

Let k′/k be a quadratic extension of p-adic fields. We shall consider the repre-
sentations of the unitary group U∗n (k′/k).

Definition 3.7. Let ψ : Lk′ → GLn be an L-parameter for GLn/k
′ that decom-

poses into a direct sum of irreducible representations of the form

ψ = ⊕(ρ,a)∈Eρ⊗ σa : Lk′ → GLn

where ρ is an irreducible representation of Wk′ of dimension dρ, a is an integer and
σa denotes the unique a-dimensional irreducible representation of SU2 (R). We say
that ψ is tempered θ-discrete stable if

• ψ is a tempered L-homomorphism, and
• for all (ρ, a) ∈ E , (ρ⊗ σa)

∨ ' (ρ⊗ σa)
c

where c ∈ Gal (k′/k) denotes
the non-trivial element, and c acts on Lk′ via conjugation of the Wk′ -
component, and

• the representations ρ⊗ σa are pairwise non-isomorphic, and
• for all (ρ, a) ∈ E ,

– if n = adρ mod 2, then the Asai-Shahidi L-function (cf. [Gol94])
associated to ρ⊗ σa has a pole at s = 0

– if n 6= adρ mod 2, then the Asai-Shahidi L-function associated to
ρ⊗ σa does not have a pole at s = 0

We inform the reader that the property of the Asai-Shahidi L-function at
s = 0 can be changed by twisting by a certain character (cf. Remark 3.9).

It will be useful to extend this definition to L-parameters of the groups GLa ×
GLb/k

′. An L-parameter ψ = ψa × ψb : Lk′ → GLa ×GLb of GLa ×GLb/k′ shall
be said to be tempered θ-discrete stable if both ψa and ψb are tempered θ-discrete
stable L-parameters of GLa/k

′ and GLb/k
′ respectively.

We shall say that an irreducible admissible representation πa × πb of GLa ×
GLb (k′) is tempered θ-discrete stable if its L-parameter ψ (πa × πb) : Lk′ → GLa×
GLb is tempered θ-discrete stable.

Remark 3.8. Let π be an irreducible admissible representation of GLn (k′), and
write the cuspidal support of π as

×(ρ,a)∈E St (ρ, a)

where ρ is a supercuspidal representation of GLdρ (k′), a is an integer, and St (ρ, a)
denotes the generalised Steinberg representation. The condition that π be tempered
θ-discrete stable is equivalent to requiring the following.

• π is tempered.
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• For all (ρ, a) ∈ E , St (ρ, a) ◦ θ ' St (ρ, a).
• The representations St (ρ, a) are pairwise non-isomorphic.
• For all (ρ, a) ∈ E ,

– if n = adρ mod 2, then the Asai-Shahidi L-function associated to
St (ρ, a) has a pole at s = 0, and

– if n 6= adρ mod 2, then the Asai-Shahidi L-function associated to
St (ρ, a) does not have a pole at s = 0

Remark 3.9. If the Asai-Shahidi L-function associated to St (ρ, a) has a pole (resp.
does not have a pole) at s = 0, then the Asai-Shahidi L-function associated to
St (ρ, a) · µ1 does not have a pole (resp. has a pole) at s = 0 where µ1 is the
character defined in Section 4.2.1.

The local Langlands correspondence for discrete series representations of the
quasi-split unitary group is due to Mœglin [Mœg07]. Mœglin classifies the discrete
series representations in terms of their Langlands base change to the general linear
group (cf. Remark 5.11). It is important to note that Mœglin implicitly works
with a non-standard twist of the stable base change map, more precisely a twist
by the character µn1 , whilst we have chosen to work with the stable base change
map. It is for this reason that the normalisation of the correspondence recalled here
differs from [Mœg07]. Consequently our definition of a tempered θ-discrete stable
L-homomorphism also differs from the definition appearing in [Mœg07, p 161-162].

Proposition 3.10. To each equivalence class of tempered θ-discrete stable L-
parameters ψ : Lk′ → GLn/k

′, one can naturally associate Π (ψ), a finite non-
empty set of equivalence classes of discrete series representations of U∗n (k′/k) (k).
The L-packets Π (ψ) are disjoint and their union is equal to the set of equivalence
classes of discrete series representations of U∗n (k′/k) (k). The cardinality of the L-
packet Π (ψ) is equal to 2l(ψ)−1 where l (ψ) denotes the length of the representation
ψ.

4. Some L-homomorphisms

We shall recall here the L-homomorphisms that shall be of interest to us.
Let k be a local or global field of characteristic 0. Let H and G be connected

reductive groups defined over k. An L-homomorphism is a group homomorphism

ξ : LH → LG

such that

• ξ is a homomorphism over Wk,
• ξ is continuous, and

• the restriction of ξ to Ĥ induces a complex analytic homomorphism

ξ|Ĥ : Ĥ → Ĝ

If k is a local field then ξ is said to be unramified if the groups H and G are un-
ramified, and ξ induces a map from unramified L-parameters of H to unramified L-
parameters of G. If k is a global field of characteristic 0, then the L-homomorphism
ξ : LH → LG, induces a family of L-homomorphisms

ξ : LHν → LGν

where ν runs through the places of k.
If k is a local field of characteristic 0, then the L-homomorphism ξ : LH → LG

induces a map from the L-parameters of H to the L-parameters of G, which, in the
cases where the local Langlands correspondence is known, induces a correspondence
of L-packets. It will be useful to introduce the following notation, in the cases where
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the local Langlands correspondence is known. Let π (resp. Π) be an irreducible
admissible representation (resp. L-packet) of H. We shall write ψ (π) : Lk → LH
(resp. ψ (Π) : Lk → LH) for the L-parameter associated to π (resp. Π). An
irreducible admissible representation π′ (resp. L-packet Π′) of G is said to be a
ξ-transfer of π (resp. Π) if the L-parameters ψ (π′) ' ξ ◦ ψ (π) (resp. ψ (Π′) '
ξ ◦ ψ (Π)) are equivalent. We shall also write either Π (π) or Π (ψ (π)) for the
L-packet containing π.

4.1. Base change. Let k′/k be a quadratic extension of local or global fields of
characteristic 0. The base change L-homomorphism for unitary groups is defined
as follows.

BC : LU∗n (k′/k)→ L Res
k′/k

U∗n (k′/k)×k k′

g × w 7→ g × g × w

Assume now that k′/k = E/F is a totally imaginary quadratic extension of a totally
real field. Consider the induced map of L-parameters from a group U appearing in
Proposition 2.1 to GLn/E. Let ν be a place of F , and let ρν : LFν → LUν be a
relevant L-parameter.

• Assume that ν = ωωc splits in E where ω ∈ Q (cf. Section 2). Then,
identifying Fν = Eω = Eωc , we have that

BC (ρν) ' ρν × ρ∨ν

seen as an L-parameter of GLn/Eω × Eωc . In terms of L-packets, writing
Π (ρν) = {πν}, we have that Π (BC (ρν)) = {πν × π∨ν }.
• Assume that ν remains inert in E. Then

BC (ρν) ' ρν |LEν : LEν → LGLn/Eν

If ρν is unramified, then the correspondence of unramified representations
can be explicitly described in terms of Satake parameters (cf. [Min09,
Theorem 4.1]). If we consider Mœglin’s reformulation of the local Langlands
correspondence (cf. Section 3.4.1) where ρν : LEν → GLn is a tempered
θ-discrete stable L-parameter. Then, by definition,

BC (ρν) = ρν

seen as an L-parameter of GLn/Eν .
• Assume that ν is real. Then

BC (ρν) ' ρν |WC
: WC → LGLn/C

4.2. Endoscopic transfer.

4.2.1. Some Hecke characters. Let k′/k be a quadratic extension of either local or
global fields of characteristic 0. If k is local (resp. global) let η : k× → C× (resp.
η : k×/A×k → C×) be the character associated to the extension k′/k via class field

theory. For all a ∈ N0, fix a character µa : k′× → C× (resp. µa : k′×/A×k′ → C×)
that extends ηa. We remark that µa can be seen, via class field theory, as a character
of the Weil group Wk′ . The Hecke characters are easily seen to satisfy the following
properties (cf. [BC09, §6.9.2]).

• µa is unitary.
• µa ◦ θ ' µa
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• For all complex places ω of k′, if a is even (resp. odd) the L-parameter of
µa,ω is of the form

WC → C× ×WC

z 7→ (z/z)
αa,ω × z

for some integer (resp. half integer) αa,ω.

4.2.2. Endoscopic transfer. Let a, b ∈ N0 and let n = a+ b. We shall consider the
endoscopic L-homomorphism

ξa,b : LU∗a (k′/k)× U∗b (k′/k)→ LU∗n (k′/k)

g1 × g2 × 1 7→ diag (g1, g2)× 1

In1 × In2 × w 7→ diag (µb (w) Ia, µa (w) Ib)× w ∀w ∈WE

In1
× In2

× wc 7→ diag (Φa,Φb) Φ−1
n × wc

where wc denotes a chosen lift of c, the non-trivial element of Gal (k′/k) = {1, c}.
It is often simplest to study the endoscopic L-homomorphism in tandem with

the base change L-homomorphism. The next lemma follows immediately from the
respective definitions.

Lemma 4.1. Let H = U∗a (k′/k) × U∗b (k′/k). Let ν be a place of k, and let
ρν = ρa,ν × ρb,ν : Lkν → LHν be an L-parameter. Then

BC (ξa,b (ρν)) ' µb,ν · BC (ρa,ν)× µa,ν · BC (ρb,ν)

5. The Arthur-Selberg trace formula

We shall recall, in this section, the stable base change identity and the stable
trace formula for the unitary group.

We begin by introduction some notation. Let G+ be a reductive algebraic group
defined over a local or global field k of characteristic 0. Let G0 be the connected
component containing the identity element of G+, and let G be any connected
component of G+. An element γ ∈ G is said to be semisimple (resp. strongly
regular) if, viewed as an element of G+, γ is semisimple (resp. strongly regular).
Recall that an element γ ∈ G+ is said to be strongly regular if the centraliser of γ
in G0 is a torus. We shall denote the connected component of the centraliser of γ
in G0 by G0

γ . We shall define Γss (G) (resp. Γreg,ss (G)) to be the set of semisimple
(resp. strongly regular semisimple) elements of G. Two elements γ, γ′ ∈ G (k) are
said to be conjugates if they are conjugate by an element of G0 (k). Two elements
γ, γ′ ∈ Γreg,ss (G) are said to be stable conjugates if they are conjugate by an element

of G0
(
k
)
.

Assume momentarily that k is local. Let γ ∈ Γreg,ss (G), and let f ∈ C∞c (G (k))
(resp. f ∈ S (G (k))) if k is non-archimedean (resp. archimedean). We remind
the reader that C∞c (G (k)) denotes the space of smooth functions with compact
support on G (k), and S (G (k)) denotes the space of Schwartz functions on G (k).
The orbital integral of f at γ is defined to be

Φ (γ, f) =

∫
G0
γ(k)\G0(k)

f
(
g−1γg

)
dg

The stable orbital integral of f at γ is defined to be

Φst (γ, f) =
∑
γ′

Φ (γ′, f)

where the summation is taken over a set of representatives γ′ of the conjugacy
classes inside the stable conjugacy class of γ.
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If k is local, then a distribution

A : C∞c (G (k))→ C

is said to be stable if, for all f ∈ C∞c (G (k)), A (f) depends only upon the values
of the stable orbital integrals Φst (γ, f) for γ ∈ Γreg,ss (G). If k is global, then a
distribution

A =
⊗
ν

Aν : C∞c (G (Ak))→ C

is said to be stable if the individual Aν are stable.
Throughout this article, we shall normalise our Haar measures such that

• the Haar measures satisfy the usual compatibility conditions (cf. [LS87]),
• if G is a connected reductive unramified p-adic group, then the measure of

any hyperspecial subgroup of G is equal to 1, and
• if G is a connected reductive group defined over a number field k, then

the product measure dg =
∏
ν dgν on G (Ak) is equal to the Tamagawa

measure.

5.1. Stable base change. Throughout this section, we shall denote by k′/k ei-
ther a quadratic extension of local fields of characteristic 0, or a totally imaginary
quadratic extension of a totally real number field.

Let H = U∗a (k′/k)× U∗b (k′/k) where a, b ∈ N0. Define the connected reductive
group G0 = GLa ×GLb/k′. The group G0 admits a degree 2 automorphism

θ = θa × θb : GLa ×GLb → GLa ×GLb
where θa and θb are defined in Section 2. We define the non-connected group
G+ = G0 o 〈θ〉, and the connected component G = G0 × θ. There exists a natural
bijection

C∞c
(
G0 (k′)

)
→ C∞c (G (k′))

f 7→ f × θ
which identifies the two spaces of functions.

5.1.1. The norm map. Assume that k is local throughout this section.
Labesse [Lab99, §2.4] defines the norm map

N : Γreg,ss (G)→ Γss (H)

which canonically maps conjugacy classes of G (k′) to stable conjugacy classes of
H (k). An element γG ∈ Γreg,ss (G) is said to be H-strongly regular semisimple
if N (γG) is strongly regular semisimple. We define ΓH-reg,ss (G) to be the set of
H-strongly regular semisimple elements of G (k′). An element γH ∈ Γreg,ss (H) is
said to be a norm of an element γG ∈ ΓH-reg,ss (G) if γH and N (γG) are stable
conjugates.

5.1.2. Intertwining operators. Assume that k is local throughout this section.
Let V be a complex vector space, and let π : G0 (k′)→ GL (V ) be an irreducible

admissible representation such that π ' π◦θ. There exists an intertwining operator

Aπ : π → π ◦ θ
By Schur’s lemma, Aπ is uniquely determined, up to a non-zero constant, and A2

π

is a non-zero constant. The operator Aπ is said to be normalised if A2
π = 1. A

normalised intertwining operator is uniquely determined up to a sign.
If π is generic, then a canonical choice for the intertwining operator Aπ can be

made via Whittaker models. Let

λ : V → C
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be a Whittaker functional on π (which depends upon the choice of a non-trivial
additive character of k′). The intertwining operator Aπ is said to be Whittaker
normalised if

Aπλ = λ

where Aπ acts, via its dual action, on the space of Whittaker functionals of π. We
shall denote the Whittaker normalised intertwining operator by AW .

5.1.3. The transfer. Assume that k is local throughout this section.
Following Labesse [Lab99, §3.2], two functions φ ∈ C∞c (G (k′)) and fH ∈ C∞c (H (k))

are said to be associated if, for all γH ∈ Γreg,ss (H),

Φst
(
γH , f

H
)

=

{
Φ (γG, φ) : if γH is a norm of some γG ∈ ΓH-reg,ss (G)

0 : otherwise

We shall now recall some results on the existence and properties of associated
functions. In what follows, we shall assume that k′/k = E/F is a totally imaginary
quadratic extension of a totally real field.

5.1.4. The transfer: archimedean places. Assume that ν is a real place of F .
We begin by recalling the important class of twisted Euler-Poincaré functions.

Let V be an irreducible algebraic representation of GLa × GLb. Consider the
algebraic representation V ⊗ V θ of

Res
Eν/Fν

G0 ×E Eν
∼→ (GLa ×GLb)× (GLa ×GLb)

and the intertwining operator

AV⊗V θ : V ⊗ V θ → V θ ⊗ V
v1 ⊗ v2 7→ v2 ⊗ v1

Let K be a maximal compact θ-invariant subgroup of ResEν/Fν
(
G0 ×E Eν

)
(Fν),

and let g = Lie
(
ResEν/Fν G

0 ×E Eν
)
. For all irreducible admissible representations

π of ResEν/Fν
(
G0 ×E Eν

)
(Fν) ' G0 (Eν) such that π ' π ◦ θ, equipped with

normalised intertwining operator Aπ, the twisted Euler-Poincaré characteristic is
defined to be

ep
(
g,K;π ⊗ V ⊗ V θ, Aπ ⊗Aθ

)
=
∑
i

(−1)
i
Tr
(
Aπ ⊗Aθ|Hi

(
g,K, π ⊗ V ⊗ V θ

))
Lemma 5.1. Let π be an irreducible admissible representation of G0 (Eν) such that
π ' π ◦ θ. Assume that

ep
(
g,K;π ⊗ V ⊗ V θ, Aπ ⊗Aθ

)
6= 0

Then the infinitesimal characters of π and
(
V ⊗ V θ

)∨
are equal.

Proof. This follows from well-known properties of the relative Lie-algebra cohomol-
ogy (cf. [Lab91, §7]). �

Lemma 5.2. There exists a unique irreducible generic unitary representation π of
G0 (Eν) such that π ' π ◦ θ and

ep
(
g,K;π ⊗ V ⊗ V θ, Aπ ⊗Aθ

)
6= 0

For this π,

ep
(
g,K;π ⊗ V ⊗ V θ, AW ⊗Aθ

)
= (−1)

q(Hν)
2n

where q (Hν) = 1
2 dim (Hν (Fν) /K); furthermore, π is the Langlands base change of

the L-packet of discrete series representations Π (V ∨) of H (Fν) (cf. Section 3.3.1).



TEMPERED AUTOMORPHIC REPRESENTATIONS OF THE UNITARY GROUP 15

Proof. Labesse [Lab09, Lemma 4.7] shows the existence and uniqueness of such a π
and calculates the twisted Euler-Poicaré characteristic up to a sign. The determina-
tion of the sign for the Whittaker normalised intertwining operator is due to Clozel
[Clo09, Corollary 2.2]. Finally, the fact that π is the Langlands base change of the
L-packet Π (V ∨) follows from the properties of the local Langlands correspondence
(cf. [Kna94]). �

Lemma 5.3. There exists a twisted Euler-Poincaré function φV⊗V θ ∈ C∞c (G (Eν))
such that

• φV⊗V θ is K-finite and cuspidal (cf. [Art88, §7]), and
• for all irreducible admissible representations π of G0 (Eν) such that π '
π ◦ θ,

Trπ ◦Aπ (φV⊗V θ ) = ep
(
g,K;π ⊗ V ⊗ V θ, Aπ ⊗Aθ

)
Proof. [Lab91, Proposition 12] �

Lemma 5.4. The twisted Euler-Poincaré function φV⊗V θ ∈ C∞c (G (Eν)) is associ-
ated to fV ∈ C∞c (H (Fν)) where fV denotes the Euler-Poincaré function associated
to V (cf. Section 5.2.5).

Proof. [Lab09, Lemma 4.4] �

5.1.5. The transfer: unramified case. Assume that ν is a finite place of F that is
unramified in E.

Let KG0 (resp. KH) be a hyperspecial subgroup of G0 (Eν) (resp. H (Fν)). The
base change L-homomorphism BC : LH → L ResEν/Fν G

0 ×E Eν is unramified
and induces a map from the KH -unramified representations of H (Fν) to the KG0-
unramified representations of G0 (Eν) (cf. Section 4). Dual to this transfer, there
exists a morphism of spherical Hecke algebras (see Minguez [Min09, §4] for an
explicit description)

BC : C∞c
(
G0 (Eν) ,KG0

)
→ C∞c (H (Fν) ,KH)

Lemma 5.5. For all φ ∈ C∞c
(
G0 (Eν) ,KG0

)
, the function BC (φ) ∈ C∞c (H (Fν) ,KH)

is associated to φ.

Proof. If ν splits in E then the result is straight forward (cf. [Lab99, §3.4]). Assume
now that ν remains inert in E. If φ = 1KG0 × θ, then the result is due to Kottwitz
[Kot86]. For general φ, the result is due to Clozel [Clo90] and Labesse [Lab90]. �

Lemma 5.6. Let φ ∈ C∞c
(
G0 (Eν) ,KG0

)
, and let let fH ∈ C∞c (H (Fν) ,KH).

Assume that φ and fH are associated. Let πH be a KH-unramified representation
of H (Fν), and let π be an unramified representation of G0 (Eν). Assume that π is
the Langlands base change of πH , that is, ψ (π) ' BC (ψ (πH)). Then

TrπH
(
fH
)

= ±Trπ ◦Aπ (φ)

where the sign depends upon the choice of the normalised intertwining operator
Aπ. If π is generic and Aπ is chosen to be the Whittaker normalised intertwining
operator, then

TrπH
(
fH
)

= Trπ ◦AW (φ)

Proof. It follows from Lemma 5.5 that

TrπH
(
fH
)

= ±Trπ (φ)

The result then follows from the following observations.

• A normalised intertwining operator acts on the 1-dimensional vector space
πKG0 by multiplication by ±1.
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• The Whittaker normalised intertwining operator AW acts as the identity
on πKG0 .

�

5.1.6. The transfer: split places. Assume that ν = ωωc is a finite place of F that
splits in E. The results are well known in this case (cf. [Lab99, §3.4]).

Let πν = πω × πωc be an irreducible admissible representation of G0 (Eν) =
G0 (Eω) × G0 (Eωc) such that πν ' πν ◦ θ. There is a natural choice for the
normalised intertwining operator

A : πω × πωc → πω × πωc
v1 × v2 7→ v2 × v1

If π is generic, then A coincides with the Whittaker normalised intertwining oper-
ator AW .

Lemma 5.7. For all φ ∈ C∞c (G (Eν)), there exists fH ∈ C∞c (H (Fν)) such that φ
and fH are associated.

Lemma 5.8. Let φ ∈ C∞c (G (Eν)), and let fH ∈ C∞c (H (Fν)). Assume that φ
and fH are associated. Then for all irreducible admissible representations πH of
H (Fν),

TrπH
(
fH
)

= Trπ ◦A (φ)

where π is the irreducible admissible representation of G0 (Eν) which is the Lang-
lands base change of πH , that is, ψ (π) ' BC (ψ (πH)).

5.1.7. The transfer: inert places. Assume that ν is a finite place of F that remains
inert in E.

Lemma 5.9. For all φ ∈ C∞c (G (Eν)), there exists fH ∈ C∞c (H (Fν)) such that φ
and fH are associated.

Proof. [Lab99, Theorem 3.3.1] �

Lemma 5.10. Let ψ : LEν → LG0
ν be a tempered θ-discrete stable L-parameter.

Then there exist unique complex numbers n (ψ, σ) for all irreducible admissible
representations σ of H (Fν), such that, for all associated φ ∈ C∞c (G (Eν)) and
fH ∈ C∞c (H (Fν)),

Trπ ◦AW (φ) =
∑
σ

n (ψ, σ) Trσ
(
fH
)

where π is the irreducible admissible representation of G0 (Eν) such that ψ (π) ' ψ,
seen as L-parameters of G0

ν .

Proof. [Mœg07, §5.7] �

Remark 5.11. One defines the L-packet Π (ψ) to be the set of σ such that n (ψ, σ) 6=
0, which are shown to be discrete series representations (cf. [Mœg07, §5.5]).

Lemma 5.12. Keeping the notation and the assumptions of Lemma 5.10. The
distribution ∑

σ∈Π(ψ)

n (ψ, σ) Trσ

is stable, and is the unique, up to a scalar, linear combination of representations in
the L-packet Π (ψ) which is stable.

Proof. [Mœg07, §5.5] �



TEMPERED AUTOMORPHIC REPRESENTATIONS OF THE UNITARY GROUP 17

5.1.8. Stable base change. Let E/F be a totally imaginary quadratic extension of a
totally real number field. Let H = U∗a (E/F )×U∗b (E/F ), let G0 = GLa×GLb/E,
let G+ = G0 o 〈θ〉, and let G = G0 × θ. Let Sram denote the finite set of places ν
of F such that either ν is archimedean, or ν is non-archimedean and ramified in E.

Proposition 5.13. Let S ⊃ Sram be a finite set of places of F . Let φS = ⊗ν∈Sφν ∈
C∞c

(
G0 (AS)

)
, and let φ = φS ⊗ 1KS where KS =

∏
ν 6∈S Kν is a product of hy-

perspecial subgroups Kν of G0 (Fν). Assume that fH = ⊗νfHν ∈ C∞c (H (A)) is
associated to φ at all places ν. Assume that for all archimedean places ν, fHν and
φν are, up to a multiple, those functions appearing in Lemma 5.4. Then

SH
(
fH
)

=

{
2 · I (φ) : if ab = 0

4 · I (φ) : otherwise

where I denotes Arthur’s twisted invariant trace formula for G (cf. [Art88]), and
SH denotes Arthur’s stable trace formula for Ha,b (cf. [Art02]).

Proof. If [F : Q] ≥ 2, then this result is due to Labesse [Lab09]. It is important
to note that the constant (either 2 or 4) does not explicitly appear in [Lab09] as it
is subsumed in Labesse’s chosen normalisation of Arthur’s twisted invariant trace

formula, which differs by, in the notation of [Lab09], the constant J
(
G̃
)

. This

constant J
(
G̃
)

is equal to 2 if ab = 0 and otherwise 4.

If F = Q, then the result is due to Morel [Mor10, Proposition 8.3.1]. Morel
demonstrates the result, up to a constant, which in the case of the unitary group
is equal to the desired constant (cf. proof of [Lab09, Theorem 4.12]) �

We remark that Arthur’s stable trace formula for connected reductive groups (cf.
[Art02] [Art01] [Art03]) is now unconditional due to the proof of the generalised
fundamental lemma by Chaudouard-Laumon [CL10a] [CL10b], Ngô [Ngô10], and
Walspurger [Wal09]. Arthur’s [Art88] twisted invariant trace formula is also uncon-
ditional due to the work of Kottwitz-Rogawski [KR00] and Delorme-Mezo [DM08].
Furthermore, the twisted invariant trace formula admits a simple expression here
due to the fact that our chosen φ is cuspidal at infinity (cf. [Art88, Theorem 7.1]).

I (f) = Idisc (f) =
∑
L0∈L0

|WL0
0 |

|WG0

0 |
∑

s∈WG(aL0)
reg

|det (s− 1)aGL0

|−1

∑
π̃∈Πdisc(L0o〈s〉)

mdisc (π̃) Tr

(
MQ0|sQ0

(0) ρQ0,t (s, 0, f) |
IndG

0
Q0

π

)
where the notation is that of [Art88], in particular,

• M0 is a minimal θ-invariant Levi subgroup of G0,
• L0 is the set of Levi subgroups of G0 containing M0,
• AL0 is the maximal split torus contained in the restriction of scalars to Q

of the centre of L0,
• aL0

is the Lie algebra of AL0
,

• aGL0
is the quotient of aL0

by the subgroup of θ-invariant points of aG0 ,

• the Weyl group WL0
0 is the group of isomorphisms of aL0

induced by G,

• WG (aL0
) is the quotient of WG0

0 by WL0
0 ,

• WG (aL0
)reg =

{
s ∈WG (aL0

) : det (s− 1) |aGL0
6= 0
}

• Πdisc (L0 o 〈s〉) is the set of irreducible unitary representations π̃ of (L0 × 〈s〉) (A)
whose restriction π to L0 remains irreducible and appears in the discrete
automorphic spectrum of L0 with non-zero multiplicity,
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• mdisc (π̃) is the multiplicity of π̃ in the discrete automorphic spectrum of
L0 o 〈s〉, which in our situation, due to the multiplicity 1 theorem for
GLn, is equal to mdisc (π) the multiplicity of π in the discrete automorphic
spectrum of L0, and
• MQ0|sQ0

(0) and ρQ0,t (s, 0, f) are the operators defined by Arthur [Art88]

where Q0 denotes the standard parabolic subgroup of G0 containing L0.

For our choice of f , the stable trace formula admits a spectral expansion,

SH
(
fH
)

= SHdisc

(
fH
)

=
∑
σ

n (σ) Trσ
(
fH
)

where n (σ) is a rational number, and σ ranges over a set of irreducible admissible
representations of H (AF ). The σ for which n (σ) 6= 0 are called the stable discrete
automorphic representations of H.

Remark 5.14. We warn the reader that a stable discrete automorphic representation
of H need not be automorphic.

Remark 5.15. The work of Muller [Mül98] on the traceability of the discrete spec-
trum has allowed us to omit the summation over ‘t’ utilised by Arthur.

Lemma 5.16. Let s = θn1
× · · · × θnr . Then

|det (s− 1)aGL0

| = 2r

Proof. We see that aGL0
= aL0 ' Rr, and s acts by multiplication by −1. The result

follows. �

Lemma 5.17. Let s ∈ WG (aL0
)reg, and let π̃ ∈ Πdisc (L0 o 〈s〉). Write π =

π1 × π2 × · · · × πr where each πi ∈ Πdisc (GLni) for some ni ∈ N. Then πi ◦ θ ' πi
for all i = 1, . . . , r. Furthermore, if πi 6' πj for all i 6= j, then s ' θn1 × · · · × θnr .

Proof. [Lab09, Lemma 3.8] �

Lemma 5.18. Let s ∈ WG (aL0)reg, and let π̃ ∈ Πdisc (L0 o 〈s〉). Write π = π1 ×
π2×· · ·×πr where each πi is a cuspidal automorphic representation of GLni for some
ni ∈ N. Assume that πi 6' πj for all i 6= j. Then Arthur’s implicit normalisation
of the intertwining operators is compatible with the Whittaker normalisation in the
sense that

Tr

(
MQ0|sQ0

(0) ρQ0,t (s, 0, f) |
IndG

0
Q0

π

)
= Tr IndG

0

Q0
π ◦AW (f)

where AW = ⊗νAW is the product of the local Whittaker normalised intertwining
operator at each place ν.

Proof. Firstly by Lemma 5.17, we see that s ' θn1 × · · · × θnr . Arthur’s operators
implicitly define an intertwining operator Aπ = ⊗νAπν via the identity

Tr

(
MQ0|sQ0

(0) ρQ0,t (s, 0, f) |
IndG

0
Q0

π

)
= Tr IndG

0

Q0
π ◦Aπ (f)

We recall that Arthur’s operators act on the following representations

IndG
0

Q0
π

ρQ0,t
(s,0,f)

−−−−−−−−−−→
(

IndG
0

Qs0
π
)
◦ s

MQ0|sQ0
(0)

−−−−−−−−−−→
(

IndG
0

Q0
π
)
◦ s

The operators act in a componentwise on G0 = GLa ×GLb, as such, it will suffice
to demonstrate this result when G0 = GLn.

Let λ = ⊗νλν be a Whittaker functional on π = ⊗νπν (this depends upon
the choice of a non-trivial additive character of E). The Whittaker functional λ

induces Whittaker functionals on both the induced representations IndG
0

Q0
π and
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IndG

0

Q0
π
)
◦ s. We shall also denote these Whittaker functionals by λ. The result

will follow upon confirmation that the operator MQ0|sQ0
(0) ρQ0,t (s, 0, f) preserves

the Whittaker functional, that is, maps λ to λ.
The operator ρQ0,t (s, 0, f) preservers the Whittaker functional (cf. [CHL09,

§4.4]), that is, it maps λ to λ. Consider now the operator MQ0|sQ0
(0). Decompose

s = sN−1 · · · · · s1 where the si are simple reflections and the decomposition is
reduced. Shahidi [Sha81] [Sha83] shows that MQ0|sQ0

(0) maps λ to c (π, s) · λ
where where c (π, s) is equal to the value at α = 0 of

c (π, s, α) =

N−1∏
i=1

ε
(
πi,1 × π∨i,2, α

)L (π∨i,1 × πi,2, 1− α)
L
(
πi,1 × π∨i,2, α

)
where πi,1 and πi,2 are the representations of the adjacent Levi-blocks of L0 that
are interchanged by si. Since πi,1 6' πi,2, the L-functions extend holomorphically
to the entire complex plane. Furthermore they satisfy the functional equation

L
(
πi,1 × π∨i,2, α

)
= ε

(
πi,1 × π∨i,2, α

)
L
(
π∨i,1 × πi,2, 1− α

)
It follows that c (π, s) = 1, that is, MQ0|sQ0

(0) preserves the Whittaker functional.
�

5.2. The Stable Trace Formula for the Unitary Group. Throughout this
section k′/k shall denote either a quadratic extension of local fields of characteristic
0 or a totally imaginary quadratic extension of a totally real field. Let U denote an
inner form of U∗n (k′/k) that is quasi-split at all finite places. Let G denote either
GLn/k or U .

5.2.1. Endoscopic data. We recall that an endoscopic data for G is a quadruple
H = (H,H, s, ξ) where

• H is a quasi-split k-group,

• H is a split extension of Wk by Ĥ,

• s is a semisimple element of Ĝ, and
• ξ : H → LG is an L-homomorphism

such that ξ induces an isomorphism of Ĥ with the connected component of the

centraliser of s in Ĝ, and the conditions of [LS87, §1.2] are satisfied. There is a
notion of equivalence for endoscopic data, and also a notion of an elliptic endoscopic
data (cf. [LS87, §1.2]).

For unitary groups, the classification of the elliptic endoscopic data is due to
Rogawski [Rog90, Proposition 4.6.1].

Definition 5.19. For all a, b ∈ N0 such that a+ b = n, we define the quadruple

Ha,b =
(
Ha,b,

LHa,b, sa,b, ξa,b
)

where

• Ha,b = U∗a (k′/k)× U∗b (k′/k),
• sa,b = diag (1, . . . , 1,−1, . . . ,−1) where 1 (resp. −1) appears with multi-

plicity a (resp. b), and
• ξa,b is the endoscopic L-homomorphism of Section 4.

Lemma 5.20. The Ha,b are endoscopic data for U , and Ha,b is equivalent to Hb,a.
If k is global, then the Ha,b are elliptic, and

{Ha,b : a ≤ b}

is a set of representations of the equivalence classes of elliptic endoscopic data for
U .
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5.2.2. The norm map. Assume that k is local throughout this section.
Let H =

(
H, LH, s, ξ

)
be an endoscopic data for G. Then there exists a canonical

map of semisimple conjugacy classes (cf. [LS87, §1.3])

AH/G : Γss

(
H
(
k
))
→ Γss

(
G
(
k
))

An element γH ∈ H (k) is said to be semisimple G-strongly regular if AH/G(γH)
is semisimple strongly regular. We define ΓG-reg,ss (H) to be the set of semisimple
G-strongly regular elements of H (k). The map AH/G induces a canonical map (cf
[LS87, §1.3])

AH/G : ΓG-reg,ss (H)→ Γreg,ss (G)

An element γH ∈ ΓG-reg,ss (H) is said to be a norm of an element γG ∈ G (k) if γG
lies in the conjugacy class of AH/G (γH).

5.2.3. The Langlands-Shelstad geometric transfer factors. Assume that k is local
throughout this section. The geometric transfer factors of Langlands-Shelstad
[LS87] are functions

∆ : ΓG-reg,ss (H)× Γreg,ss (G)→ C

defined for all endoscopic data H =
(
H, LH, s, ξ

)
of G. They are canonically

defined up to a constant, and are given a specific normalisation as follows. Choose
γH ∈ ΓG-reg,ss (H) and γG ∈ Γreg,ss (G) such that γH is a norm of γG. The relative
geometric transfer factor

∆ (γH , γG : γH , γG) =
∆ (γH , γG)

∆ (γH , γG)

is canonically defined for all γH ∈ ΓG-reg,ss (H) and for all γG ∈ Γreg,ss (G). To
specify a normalisation of the geometric transfer factors, one arbitrarily fixes the
value of ∆ (γH , γG) as a complex number of norm 1, and then defines

∆ (γH , γG) = ∆ (γH , γG)∆ (γH , γG : γH , γG)

for all γH ∈ ΓG-reg,ss (H) and for all γG ∈ Γreg,ss (G).

5.2.4. The transfer. Assume that k is local throughout this section.
Let H = (H, LH, s, ξ) be an endoscopic data for G. If k is archimedean (resp.

non-archimedean) then let f ∈ S (G (k)) (resp. f ∈ C∞c (G (k)) and let fH ∈
S (H (k)) (resp. f ∈ C∞c (H (k))). The function fH is said to be a ∆-transfer of f
if

Φst
(
γH , f

H
)

=
∑

γ∈Γreg,ss(G)

∆ (γH , γ) Φ (γ, f)

for all γH ∈ ΓG-reg,ss (H (k)).
We shall now recall some results on the existence and properties of the transfer.

In what follows E/F shall denote a totally imaginary quadratic extension of a
totally real field, U shall denote a unitary group appearing in Proposition 2.1, and
H shall denote an endoscopic data appearing in Definition 5.19.

5.2.5. The transfer: archimedean places. Assume that ν is a real place of F .

Lemma 5.21. Let f ∈ S (U (Fν)). Then there exists fH ∈ S (H (Fν)) such that
fH is a ∆-transfer of f .

Proof. [She08a, Theorem 14.3]. �

The geometric transfer induces a dual spectral transfer of tempered representa-
tions. In studying the spectral transfer, Shelstad [She10] explicitly defines complex
valued spectral transfer factors ∆spec (ψH , π) for all tempered L-parameters ψH of
Hν and tempered representations π of U(Fν). They satisfy the following properties.
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• ∆spec (ψH , π) = 0 if π 6∈ Π (ξ ◦ ψH)
• |∆spec (ψH , π)| = 1 if π ∈ Π (ξ ◦ ψH)

The spectral transfer factors are canonically defined up to a constant. They are in
a sense dual to the geometric transfer factors, and choosing a normalisation of one
induces a normalisation of the other.

Lemma 5.22. Let ψH : LFν → LHν be a tempered L-parameter. Let f ∈ S (U (Fν))
and let fH ∈ S (H (Fν)). Assume that fH is a ∆-transfer of f . Then∑

πH∈Π(ψH)

TrπH
(
fH
)

=
∑

π∈Πtemp(Uν)

∆spec (ψH , π) Trπ (f)

Proof. [She10, Theorem 5.1] �

An important class of test functions are the pseudo-coefficients and Euler-Poincaré
functions. Let L denote either U ×F Fν or H ×F Fν , which is a real connected re-
ductive group. Let π be a discrete series representation of L (R). A function
f ∈ S (L (R)) is said to be a pseudo-coefficient of π if for all tempered representa-
tions σ of L (R),

Trσ (f) =

{
1 : if σ ' π
0 : otherwise

A function f ∈ S (L (R)) is said to be an Euler-Poincaré function if for all irre-
ducible admissible representations σ of L (R),

Trσ (f) = ep (g,K;σ ⊗ V ) =
∑
i

(−1)
i
dimHi (g,K;σ ⊗ V )

where

• g = LieL,
• K is a maximal compact subgroup of L (R), and
• V is an irreducible algebraic representation of L.

Lemma 5.23. Let π be a discrete series representation of L (R). Then there
exists a pseudo-coefficient fπ ∈ C∞c (L (R)) of π. The pseudo-coefficient fπ is K-
finite and cuspidal. Furthermore, if Trσ (fπ) 6= 0 for some irreducible admissible
representation σ of L (R), then the infinitesimal characters of σ and π are equal.

Proof. The existence of pseudo-coefficients is due to Clozel-Delorme [CD90]. Labesse
[Lab91] has shown that these functions can be chosen to be cuspidal. �

Lemma 5.24. Let π be a discrete series representation of L (R) whose infinites-
imal character is equal to that of an irreducible algebraic representation V whose
highest weight is regular (cf. Section 3.3.1). Then for all irreducible admissible
representations σ of L (R),

Trσ (fπ) =

{
1 : if σ ' π
0 : otherwise

Proof. By Lemma 5.23, we only have to consider the case where σ is non-tempered.
By the local Langlands classification, such a σ can be realised as a constituent of an

induced representation Ind
L(R)
P (R) ρ where ρ is a discrete series representation of some

Levi-subgroup. It can be seen that ρ can not have the same infinitesimal character
as V . The result then follows by Lemma 5.23. �

Lemma 5.25. Let V be an irreducible algebraic representation of L. We define
the test function

fV =
∑

π∈Π(V ∨)

(−1)
q(L)

fπ
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where q (L) = 1
2 dim (L (R) /K). Then fV is an Euler-Poincaré function, and, for

all irreducible admissible representations σ of L (R),

Trσ (f) = ep (g,K;σ ⊗ V )

Proof. [Lab91, §6] �

Lemma 5.26. Let V be an irreducible algebraic representation of L whose highest
weight is regular. Then for all irreducible admissible representations σ of L (R),

Trσ (fV ) =

{
(−1)

q(L)
: if σ ∈ Π (V ∨)

0 : otherwise

Proof. The result follows Lemma 5.24, and Lemma 5.25 �

When the highest weight of V is no longer assumed regular, we have the following
result of Kottwitz.

Lemma 5.27. Let fν ∈ C∞c (Fν) be an Euler-Poincaré function for all archimedean
places ν of F . Let S be a finite set of places of F including all archimedean places.
Let τS0 be an irreducible admissible representation of U

(
AS
)
. Then there exists a

sign ε ∈ {1,−1} such that if ∏
ν|∞

Tr τ (fν) 6= 0

then its sign is ε, for all discrete automorphic representations τ of U such that
τS ' τS0 .

Proof. Kottwitz [Kot92, Theorem 1] proved the analogous result for the group GU
using Shimura varieties. Clozel-Labesse [CL99, §A.4] have shown that Kottwitz’s
argument extends to the setting of unitary groups. �

Lemma 5.28. Let σ be a discrete series representation of U(Fν). Let

fH =
∑

ξ◦ψH'ψ(σ)

∆spec(ψH , σ)

|Π (ψH)|
∑

π∈Π(ψH)

fπ

where ψH runs through the tempered L-parameter for Hν . Then fH is a ∆-transfer
of fσ.

Proof. We remark that∑
π′H∈Π(ψ′H)

Trπ′H
(
fH
)

=
∑

σ′∈Πtemp(Uν)

∆spec (ψ′H , σ
′) Trσ′ (fσ)

for all tempered L-parameters ψ′H : LFν → LHν . It follows by [She10, Theorem
5.1] that fH is a ∆-transfer of fσ. �

5.2.6. The transfer: unramified case. Assume that ν is a finite place of F that is
unramified in E.

Let KU (resp. KH) be a hyperspecial subgroup of U (Fν) (resp. H (Fν)). The
L-homomorphism ξ is unramified at ν, and induces a transfer of KH -unramified
representations to KU -unramified representations (cf. Section 4). Dual to this
transfer, there is a morphism of spherical Hecke algebras (see [Min09, §4] for an
explicit description)

ξ : C∞c (U (Fν) ,KU )→ C∞c (H (Fν) ,KH)

Lemma 5.29. There exists a complex number c (∆,KU ,KH) of norm 1, depending
only upon the chosen normalisation of the geometric transfer factor, KU , and KH ,
such that c (∆,KU ,KH) · ξ (f) is a ∆-transfer of f for all f ∈ C∞c (U (Fν) ,KU ).
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Proof. If ν splits in E, then the result is well known (cf. [Shi10b, §3.3]). Assume
that ν remains inert in E. When f = 1KU , the characteristic function on KU , this
is the fundamental lemma for unitary groups, which was proved by Laumon-Ngô
[LN08] and Waldspurger [Wal06]. Hales [Hal95] deduced the result for general f
from the fundamental lemma.

�

This allows us to define the spectral transfer factors

∆spec (πH , π) = c (∆,KU ,KH)

for all KH -unramified representations πH and for all KU -unramified representations
π such that ψ (π) ' ξ ◦ ψ (πH).

Lemma 5.30. Let f ∈ C∞c (U (Fν) ,KU ) and let fH ∈ C∞c (H (Fν) ,KH) be a ∆-
transfer of f . Let πH be KH-unramified and let π be KU -unramified. If ψ (π) '
ξ ◦ ψ (πH), then

TrπH
(
fH
)

= ∆spec (πH , π) Trπ (f)

Proof. This is a direct consequence of Lemma 5.29. �

5.2.7. The transfer: split places. Assume that ν is a finite place of F that splits
in E. The existence and properties of the transfer are well known in this case (cf.
[Shi10b, §3.3]).

Lemma 5.31. Let f ∈ C∞c (U (Fν)). There exists fH ∈ C∞c (H (Fν)) such that fH

is a ∆-transfer of f .

Lemma 5.32. There exists a complex number c (∆) of norm 1, depending only
upon the chosen normalisation of the geometric transfer factor, such that, if we
define the spectral transfer factors

∆spec (ψH , π) =

{
0 : if π 6∈ Π (ξ ◦ ψH)

c (∆) : if π ∈ Π (ξ ◦ ψH)

for all L-parameters ψH : LFν → LHν and all irreducible admissible representations
π of U (Fν), then the spectral transfer factors satisfy the following identity. For all
f ∈ C∞c (U (Fν)) and fH ∈ C∞c (H (Fν)) such that fH is a ∆-transfer of f , for all
L-parameters ψH : LFν → LHν ,

TrπH
(
fH
)

=
∑
π

∆spec (ψH , π) Trπ (f)

where Π(ψH) = {πH}.

Remark 5.33. It is a consequence of Lemma 5.32 and Lemma 5.30 that the definition
of spectral transfer factors at split places is consistent with the definition given for
unramified representations, that is, ∆spec (πH , π) = ∆spec(ψ (πH) , π) for all KU -
unramified π and for all KH -unramified πH such that ψ (π) ' ξ ◦ ψ (πH).

5.2.8. The transfer: inert places. Assume that ν is a finite place of F of that
remains inert in E.

Lemma 5.34. Let f ∈ C∞c (U (Fν)). Then there exists fH ∈ C∞c (H (Fν)) such
that fH is a ∆-transfer of f .

Proof. The existence of the transfer is due to Laumon-Ngô [LN08] and Waldspurger
[Wal06] [Wal97]. �

Lemma 5.35. There exist spectral transfer factors ∆spec (ψH , π) defined for all
L-parameters ψH : LFν → LHν such that ξ ◦ ψH is a tempered θ-discrete stable
L-parameter, and discrete series representations π of U (Fν), such that,
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• ∆spec (ψH , π) = 0 if π 6∈ Π (ξ ◦ ψH), and
• |∆spec (ψH , π)| ∈ C× if π ∈ Π (ξ ◦ ψH).

The spectral transfer factors satisfy the following identity. For all f ∈ C∞c (U (Fν))
and fH ∈ C∞c (H (Fν)) such that fH is a ∆-transfer of f ,∑

πH∈Π(ψH)

n (ψH , πH) TrπH
(
fH
)

=
∑

π∈Πdisc(Uν)

∆spec (ψH , π) Trπ (f)

where the n (ψH , πH) are defined in Lemma 5.10.

Proof. [Mœg07, §7] �

Remark 5.36. If πH is a KH -unramified discrete series representation of H (Fν),
then it follows by Lemma 5.6 and Lemma 5.10 that n (ψ (πH) , πH) = 1. It is
then a consequence of Lemma 5.35 and Lemma 5.30 that the definition of spectral
transfer factors at inert places is consistent with the definition given for unramified
representations, that is, ∆spec (πH , π) = ∆spec(ψ (πH) , π) for all KU -unramified
discrete series π and for all KH -unramified discrete series πH such that ψ (π) '
ξ ◦ ψ (πH).

Lemma 5.37. Assume that there exists an identity consisting of finite linear com-
binations of irreducible admissible representations∑

πH

a (πH) TrπH
(
fH
)

=
∑
π

b (π) Trπ (f)

for all f ∈ C∞c (U (Fν)) and fH ∈ C∞c (H (Fν)) such that fH is a ∆-transfer of f .
Furthermore, assume that the LHS of the identity is a stable distribution. Then for
all tempered θ-discrete stable L-parameters ψ : LFν → LUν ,∑

ξ◦ψ(πH)'ψ

a (πH) TrπH
(
fH
)

=
∑

ψ(π)'ψ

b (π) Trπ (f)

for all f ∈ C∞c (U (Fν)) and fH ∈ C∞c (H (Fν)) such that fH is a ∆-transfer of f .

Proof. By [Art96, Theorem 6.2], we can deduce the identity∑
a (πH) TrπH

(
fH
)

=
∑

b (π) Trπ (f)

where the summations are taken over the subset of representations that are elliptic
tempered. The result then follows from [Mœg07, §7]. �

5.2.9. Normalisation of the transfer factors. Let us now describe our specific nor-
malisation of the geometric transfer factors. This will consequently fix the normal-
isation of the spectral transfer factors. Fix γH ∈ H (F ) and γU ∈ U (F ) such that
for all places ν of F , γH ∈ ΓG-reg,ss (H (Fν)) is a norm of γU ∈ Γreg,ss (U (Fν)).
Writing ∆ν for the local geometric transfer factor at a place ν of F , we fix the value
of ∆ν (γH , γU ) as a complex number of norm 1 such that the following conditions
are satisfied.

• If the groups Hν and Uν are unramified, then we hyperspecial subgroups
KHν andKUν ofH (Fν) and U (Fν) respectively. We require that c (∆ν ,KUν ,KHν ) =
1 (cf. Section 5.2.6).

• If ν is finite and splits in E, then we require that c (∆ν) = 1 (cf. Section
5.2.7).

•
∏
ν ∆ν (γH , γU ) = 1

If U ' U∗, then the geometric transfer factors for the principal endoscopic
group H = U∗ are, up to constant, trivial (cf. [Lab09, §4.2]). In this case, we shall
normalise the geometric transfer factors to be trivial, that is, identifying the groups
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U
∼→ U∗

∼→ H, we have that for all places ν, for all γH,ν ∈ ΓG-reg,ss (H (Fν)), and
for all γU,ν ∈ Γreg,ss (U (Fν)),

∆ν (γH,ν , γU,ν) =

{
1 : if γH,ν and γU,ν are stable conjugates

0 : otherwise

Lemma 5.38. Assume that U ' U∗ ' H, and that the transfer factors are nor-
malised to be trivial. Then the dual spectral transfer factors satisfy the following
properties

• If Hν and Uν are unramified, then c (∆ν ,KUν ,KHν ) = 1 for all hyperspecial
subgroups KHν and KUν of H (Fν) and U (Fν) respectively.

• If ν is finite and splits in E, then c (∆ν) = 1.
• If ν is archimedean, then

∆spec (ψH , π) =

{
1 : if π ∈ Π (ψH)

0 : otherwise

for all tempered L-parameters ψH of Hν and tempered representations π of
U∗ (Fν).

• If ν is finite and inert in E, then

∆spec (ψH , π) =

{
n (ψH , π) : if π ∈ Π (ψH)

0 : otherwise

for all tempered θ-discrete stable L-parameters ψH : LFν → LHν and for
all discrete series representations π of U (Fν).

Proof. We shall prove here the last property. The other properties can be proved
by using the same argument, and the details are left to the reader. Firstly, we
recall that ∆spec (ψH , π) = 0 if π 6∈ Π (ψH). We are left to consider the case where
π ∈ Π (ψH). The spectral transfer factors satisfy the identity (cf. Lemma 5.35),

(5.1)
∑

π∈Π(ψH)

n (ψH , π) Trπ
(
fH
)

=
∑

π∈Π(ψH)

∆spec (ψH , π) Trπ (f)

for all f ∈ C∞c (U (Fν)) and fH ∈ C∞c (H (Fν)) such that fH is a ∆-transfer of f .
By Lemma 5.12, the distribution on the LHS is stable. Since the geometric transfer
factors are trivial, this implies that the distribution on the RHS is also stable. By
Lemma 5.12, there exists a constant C such that

∆spec (ψH , π) = C · n (ψH , π)

for all π ∈ Π (ψH). By considering Equation 5.1, we see that C = 1.
�

5.2.10. The Stable Trace Formula. Let E/F be a totally imaginary quadratic exten-
sion of a totally real number field, and let U denote a group appearing in Proposition
2.1. Let Sram denote the finite set of places ν of F such that either ν is archimedean,
or ν is non-archimedean and ramified in E.

Proposition 5.39. Let S ⊃ Sram be a finite set of places of F . Let fS = ⊗ν∈Sfν ∈
C∞c (U (AS)), and assume that fν is as in Lemma 5.23 for all archimedean ν. Let
f = fS ⊗ 1KS where KS =

∏
ν 6∈S Kν is a product of hyperspecial subgroups Kν of

U(Fν). Assume that for all a ≤ b, fHa,b = ⊗νf
Ha,b
ν ∈ C∞c (Ha,b (A)) is a ∆-transfer

of f at all places ν. Then

I (f) =
∑
a≤b

ι (U,Ha,b)S
Ha,b

(
fHa,b

)
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where I denotes the invariant trace formula for U (cf. [Art88]), SHa,b denotes the
stable trace formula for Ha,b (cf. [Art02]), and

ι (U,Ha,b) =


1 : if a = 0
1
4 : if a = b
1
2 : otherwise

Proof. The stabilisation of the invariant trace formula for a connected reductive
group has been completed by Arthur [Art02] [Art01] [Art03] under the assumption
of the validity of the weighted fundamental lemma. This is now proven due to
the work of Chaudouard-Laumon [CL10a] [CL10b], Ngô [Ngô10], and Walspurger
[Wal09]. For the evaluation of the constants ι (U,Ha,b) see [Lab09, Proposition
4.11]. �

The invariant trace formula admits a simple expression due to the fact that f is
cuspidal at infinity (cf. [Art88, Theorem 7.1]).

I (f) = Idisc (f) =
∑

π∈Πdisc(U)

mdisc (π) Trπ (f)

where mdisc (π) denotes the multiplicity of π in the discrete automorphic spectrum
of U .

6. Base change

In this section, we obtain a result on Langlands base change which mildly im-
proves upon a previous result of Labesse [Lab09, Theorem 5.1, Theorem 5.9].

In order to succinctly state the results, we begin by recalling the definition of
a cohomological representation. Let G be a connected reductive algebraic group
defined over k where k is the field of either real or complex numbers. Let G′ =
Resk/RG, let g′ = LieG′, and let K ′ be a maximal compact subgroup of G′ (R). A
system of coefficients for G is an irreducible algebraic representation V of G′. An
irreducible admissible representation σ of G′ (R) is said to have cohomology (for
the system of coefficients V ) if

Hi (g′,K ′;σ ⊗ V ) 6= 0

for some integer i. This is equivalent to demanding that the Euler-Poincaré char-
acteristic

ep (g′,K ′;σ ⊗ V ) 6= 0

be non-zero (cf. [CL99, Lemma A.4.1]).

Theorem 6.1. Let E/F be a totally imaginary quadratic extension of a totally
real field. Let U be a unitary group appearing in Proposition 2.1. Let σ be a
discrete automorphic representation of U (AF ). Assume that σν has cohomology
for a system of coefficients Vν for all archimedean places ν of F . Then there exists
an automorphic representation Π of GLn (AE) such that

• for all archimedean places ν, Πν has cohomology for the system of coeffi-
cients

(
Vν ⊗ V θν

)
, and

• Πν is the Langlands base change of σν at finite places ν for which either
– ν splits in E, or
– σν is unramified, or
– σν is a discrete series representation.

The automorphic representation Π can be written as an isobaric sum

Π = Π1 � Π2 · · ·� Πr
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where each Πi is a discrete automorphic representation of some GLni (AE) such
that

• Πi ' Πi ◦ θ for all i, and
• Πi 6' Πj for all i 6= j.

Furthermore, if each Πi is cuspidal, then Πν is the Langlands base change of σν at
archimedean places ν where σν is a discrete series representation.

Remark 6.2. If there exists an archimedean place ν such that the highest weight of
Vν is regular, then by considering the infinitesimal characters of the Πi in conjunc-
tion with the Mœglin-Waldspurger [MW89] description of the discrete spectrum of
GL, we see that the Πi are cuspidal.

Proof. Let S denote the finite set of places ν of F for which σν is not unramified.
Let S′ denote the subset of places ν ∈ S such that

• ν is archimedean, or
• ν is finite inert in E, and σν is not a discrete series representation.

For all ν 6∈ S and for all H, fix hyperspecial subgroups KUν and KHν of U (Fν) and

H (Fν) respectively such that σ
KUν
ν 6= 0.

The stable trace formula of Proposition 5.39 provides us with the identity

IU (f) =
∑
H

ι (U,H)SH
(
fH
)

where

• fH = ⊗νfHν is a ∆-transfer of f = ⊗νfν at each place ν, and
• for all ν|∞, fν is the Euler-Poincaré function associated to V ∨ν as in Lemma

5.25, and fHν is a linear combination of the Euler-Poincaré functions ap-
pearing in Lemma 5.28.

We shall further require that fν (resp. fHν ) is bi-invariant under KUν (resp. KHν )
for all ν 6∈ S.

By Lemma 5.30, Lemma 5.32, Lemma 5.37 and using the linear independence of
characters, we can separate the chain of representations

(6.1)
∑
σ′

mdisc (σ′) Trσ (f) =
∑
H

ι (U,H)
∑
τH

n (τH) Tr τH
(
fH
)

where

• σ′ runs through the discrete automorphic representations of U such that
– for all archimedean ν, σ′ν has cohomology for the system of coefficients
Vν ,

– for all ν 6∈ S, σ′ν ' σν , and
– for all ν 6∈ S′, σ′ν and σν are elements of the same L-packet, that is,
ψ (σ′ν) ' ψ (σν)

• τH runs through the stable discrete automorphic representations of H such
that

– for all archimedean ν, τH,ν has cohomology for a system of coefficients
VH,ν such that ξ ◦ ψ (Π (VH,ν)) ' ψ (Π (Vν)),

– for all ν 6∈ S, τH,ν is KHν -unramified and ξ ◦ ψ (τHν ) ' ψ (σν), and
– for all ν 6∈ S′, ξ ◦ ψ (τHν ) ' ψ (σν)

By Lemma 5.27 and using the linear independence of characters, we see that the
distribution is non-trivial. This implies that there exists a H = U∗a ×U∗b for which
the distribution

(6.2)
∑
τH

n (τH) Tr τH
(
fH
)
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is non-trivial.
The stable base change identity of Proposition 5.13 provides us with the identity

C · IGH
(
φH
)

= STH
(
f ′H

)
where

• GH = GLa ×GLb × θ,
•

C =

{
2 : if H = U∗n
4 : otherwise

• f ′H = ⊗νf ′Hν and φH = ⊗νφHν are associated at each place ν, and
• for all archimedean ν, f ′Hν = fHν as in Equation 6.1, and ψHν is a linear

combination of the twisted Euler-Poincaré functions appearing in Lemma
5.4.

We shall further require that f ′Hν is bi-invariant under KHν for all ν 6∈ S.
By Lemma 5.6, Lemma 5.8, Lemma 5.10, Lemma 5.12, and using the linear

independence of characters, we can separate the chain of representations

C ·
∑
L0∈L0

|WL0
0 |

|WG0

0 |
∑

s∈WG(aL0)
reg

|det (s− 1)aGL0

|−1

∑
π̃

mdisc (π̃) Tr

(
MQ0|sQ0

(0) ρQ0,t

(
s, 0, φH

)
|
IndG

0
Q0

π

)
=
∑
τH

n (τH) Tr τH
(
fH
)

(6.3)

where

• the τH are those appearing in Equation 6.2, and
• π̃ runs through the π̃ ∈ Πdisc (L0 o 〈s〉) such that

– for all archimedean ν, IndGLa×GLbQ0
πν is cohomological for a system of

coefficients VHν ⊗ V θHν where VHν is one of the previously described
algebraic representations (cf. Equation 6.1),

– for all ν 6∈ S, IndGLa×GLbQ0
πν is unramified, and is the Langlands base

change of τH,ν where τH is a representation appearing in Equation 6.2,

– for all ν 6∈ S′, IndGLa×GLbQ0
πν is the Langlands base change of τH,ν

where τH is a representation appearing in Equation 6.2.

Invoking the Mœglin-Waldspurger [MW89] and Jacquet-Shalika [JS81] description
of the automorphic spectrum of GLn (AE), we see that there exists a partition
n1 + · · ·+ nr = n, and a corresponding set of discrete automorphic representations
Πi of GLni (AE), such that, the representations π̃ appearing in Equation 6.3 are
exactly those for which

π '
(
Πj1µ

−1
b × · · · ×Πjr′µ

−1
b

)
×
(

Πjr′+1
µ−1
a × · · · ×Πjrµ

−1
a

)
where {j1, . . . , jr} = {1, . . . , r} and nj1 + · · · + njr′ = a. Furthermore, by Lemma
5.17, Πi ' Πi ◦ θ for all i = 1, . . . r.

It follows from Lemma 4.1 that the automorphic representation of GLn

Π = Π1 � · · ·� Πr

is the Langlands base change of σ outside of S′, and that Πν has cohomology in the
system of coefficients Vν ⊗ V θν for all archimedean ν. By considering infinitesimal
characters, we see that Πi 6' Πj for all i 6= j. Finally if the Πi are cuspidal, then
by Lemma 5.2, Πν is the Langlands base change of σν at the archimedean places ν
for which σν is a discrete series representation. �
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7. Certain representations

In this section, we shall combine some results of Shin [Shi10a] on the limit
multiplicity with our results on base change. This allows us to deduce the existence
of automorphic representations π of GLn such that π ' π ◦ θ, and which satisfy
certain imposed local conditions. These representations shall be extensively used
throughout this article.

Lemma 7.1. Let E/F be a totally imaginary quadratic extension of a totally real
field, and let U be a unitary group appearing in Proposition 2.1. Let S be a finite
set of places of F including all archimedean places, and all non-archimedean places
which are ramified in E. For all ν ∈ S,

• if ν is archimedean, let τν be a discrete series representation of U (Fν)
that has cohomology for a system of coefficients Vν whose highest weight is
regular, and

• if ν is non-archimedean, let τν be a discrete series representation of U (Fν).

Then there exists a discrete automorphic representation σ of U (AF ) such that

• if ν ∈ S is archimedean, then σν is a discrete series representation which
appears in the same L-packet as τν , that is, ψ (σν) ' ψ (τν),

• if ν ∈ S is non-archimedean, then σν is a discrete series representation
which is isomorphic to a twist of τν by some unitary character χν , and

• if ν 6∈ S is non-archimedean and inert in E, then σν is unramified.

Proof. [Shi10a, Theorem 5.7] �

Remark 7.2. By applying the result of Shin [Shi10a, Theorem 5.7] to a finite product
of unitary groups, we can demand the following slightly stronger result. For i =
1, . . . , t, let Ui be a unitary group associated to E/F and let {ti,ν : ν ∈ S} be a
finite collection of representations as in Lemma 7.1. Then there exist discrete
automorphic representations σ1, . . . , σt as in Lemma 7.1 such that for all ν ∈ S,
the characters χ1,ν ' · · · ' χt,ν are isomorphic.

Lemma 7.3. Let E/F be a totally imaginary quadratic extension of a totally real
field, and let U be a unitary group appearing in Proposition 2.1. Let S be a finite
set of places of F including all archimedean places, and all non-archimedean places
which are ramified in E. For all ν ∈ S,

• if ν is archimedean, let τν be a discrete series representation of U (Fν)
that has cohomology for a system of coefficients Vν whose highest weight is
regular, and

• if ν is non-archimedean, let τν be a discrete series representation of U (Fν).

Then there exists a cuspidal automorphic representation π of GLn (AE) such that

• π ' π ◦ θ,
• if ν ∈ S is archimedean, then πν is the Langlands base change of τν , that

is, ψ (πν) ' BC (ψ (τν)),
• if ν ∈ S is non-archimedean, then πν is isomorphic to the Langlands base

change of a discrete series representation τ ′ν of U (Fν) which is isomorphic
to a twist of τν by some unitary character χν , and

• if ν 6∈ S is non-archimedean and inert in E, then πν is unramified.

Proof. Let ω 6∈ S be a non-archimedean place of F that splits in E, and let τω
be a supercuspidal representation of U (Fω)

∼→ GLn (Fω). Let σ be a discrete
automorphic representation of U (AF ) obtained by applying Lemma 7.1 at the set
of places S ∪ {ω}. Let π be the Langlands base change of σ given by Theorem
6.1. The result will follow upon confirmation that π is cuspidal. However, πω is a
supercuspidal representation, and it follows that π is cuspidal. �
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8. L-packets of discrete series representations of the p-adic
quasi-split unitary group

The aim of this section is to show that the non-trivial coefficients n (ψ, π) of
Mœglin appearing in Lemma 5.10 are equal to 1. In order to do so, we shall assume
the existence of twisted analogues of some results of Arthur [Art93] on the inner
product of elliptic tempered representations of p-adic groups (cf. Hypothesis 8.0.1).

Let k′/k be a quadratic extension of p-adic fields. Let ψ : Lk′ → GLn be a
tempered θ-discrete stable L-parameter of GLn/k

′. Let πk′ denote the irreducible
admissible representation of GLn (k′) corresponding to ψ viewed as an L-parameter
of GLn/k

′. There exists a natural inner product on the space of tempered θ-discrete
stable representations of GLn (k′) (cf. [Mœg07, §1]). We shall admit the following
hypothesis.

Hypothesis 8.0.1.
〈πk′ , πk′〉 = 2l(ψ)−1

Remark 8.1. This would follow from the existence of the twisted analogues of some
results of Arthur [Art93].

Lemma 8.2. The coefficients n (ψ, σk) of Mœglin appearing in Lemma 5.10 are
equal to

n (ψ, σk) =

{
1 : if σk ∈ Π (ψ)

0 : otherwise

for all irreducible admissible representations σk of U∗ (k′/k).

Proof. We remark that if σk 6∈ Π (ψ), then the result is trivial (cf. Remark 5.11).
There exists for any connected reductive p-adic group, a natural inner product on
the space of elliptic tempered representations (cf. [Art93]). We also know that (cf
[Mœg07])

〈πk′ , πk′〉 =

〈 ∑
σk∈Π(ψ)

n (ψ, σk)σk,
∑

σk∈Π(ψ)

n (ψ, σk)σk

〉
Arthur [Art93, Corollary 6.2] has shown that the discrete series representations of
U∗ (k′/k) are orthonormal for this inner product. Thus

〈πk′ , πk′〉 =
∑

σk∈Π(ψ)

|n (ψ, σk)|2

By admitting Hypothesis 8.0.1, we deduce that

2l(ψ)−1 = |Π (ψ)| =
∑

σk∈Π(ψ)

|n (ψ, σk)|2

Since the n (ψ, σk) are non-zero, the result will then follow upon confirmation
that the n (ψ, σk) are non-negative integers. This is accomplished by the following
lemma. �

Lemma 8.3. n (ψ, σk) ∈ N0 for all σk ∈ Π (ψ).

Proof. Choose a totally imaginary quadratic extension of a totally real field E/F ,
and a place v′ of F such that

• Eν′/Fν′ ' k′/k, and
• E/F is unramified outside of v′.

By Lemma 7.3, we can find a cuspidal automorphic representation Π of GLn (AE)
such that

• Π ◦ θ ' Π,
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• for all archimedean ν, Πν has cohomology in a system of coefficients Vν⊗V θν
where Vν is an irreducible algebraic representation of GLn with regular
highest weight,

• Πν′ is the Langlands base change of a discrete series representation which is
isomorphic to a twist of some discrete series representation in the L-packet
Π (ψ) by some unitary character χν′ , and

• for all non-archimedean places ν 6= ν′ that are inert in E, Πν is unramified.

Let σ = ⊗νσν be an irreducible admissible representation of U∗ (AF ) such that

• Π is the Langlands base change of σ at all places ν, and
• for all non-archimedean ν 6= ν′ inert in E, σν is unramified.

Let S be the finite set of places ν of F such that either

• ν is archimedean, or
• ν = ν′, or
• ν is non-archimedean and σν is not unramified.

For all ν 6∈ S and for all H, let KU∗ν
and KHν be hyperspecial subgroups of U∗ (Fν)

and H (Fν) respectively such that σ
KU∗ν
ν 6= 0.

The stable trace formula of Proposition 5.39 provides us with the identity

I (f) =
∑
H

ι (U,H)SH
(
fH
)

where

• fH = ⊗νfHν is a ∆-transfer of f = ⊗νfν at each place ν, and
• for all archimedean ν, fν is a pseudo-coefficient of σν and fHν is as in Lemma

5.28.

We shall further require that fν (resp. fHν ) is bi-invariant under KU∗ν
(resp. KHν )

for all ν 6∈ S.
By Lemma 5.30, Lemma 5.32, Lemma 5.37, and using the linear independence

of characters, we can separate the chain of representations

(8.1)
∑
σ′

mdisc (σ′) Trσ′ (f) =
∑
H

ι (U,H)
∑
τH

n (τH) Tr τH
(
fH
)

where

• σ′ runs through the discrete automorphic representations of U∗ such that
– for all ν|∞, σ′ν ' σν ,
– for all ν 6∈ S, σ′ν is KU∗ν

-unramified, and
– for all ν, σν and σ′ν are in the same L-packet, that is, ψ (σν) ' ψ (σ′ν).

• τH runs through the stable discrete automorphic representations of H such
that

– for all ν 6∈ S, τH,ν is KHν -unramified, and
– for all ν, ψ (σν) ' ξ ◦ ψ (τH,ν).

For each H, we have the stable base change identity of Proposition 5.13

C · IGH
(
φH
)

= STH
(
f ′H

)
where

• GH = GLa ×GLb × θ,
•

C =

{
2 : if H = U∗n
4 : otherwise

• f ′H = ⊗νf ′Hν and φH = ⊗νφHν are associated at each place ν, and
• for all archimedean ν, f ′Hν = fHν as in Equation 8.1, and φHν is the associated

twisted Euler-Poincaré function given by Lemma 5.4.
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We shall further require that f ′Hν is bi-invariant under KHν for all ν 6∈ S.
By Lemma 5.6, Lemma 5.8, Lemma 5.10, Lemma 5.12, and using the linear

independence of characters, we can separate the chain of representations

C ·
∑
L0∈L0

|WL0
0 |

|WG0

0 |
∑

s∈WG(aL0)
reg

|det (s− 1)aGL0

|−1

∑
π̃

mdisc (π̃) Tr

(
MQ0|sQ0

(0) ρQ0,t

(
s, 0, φH

)
|
IndG

0
Q0

π

)
=
∑
τH

n (τH) Tr τH
(
fH
)

(8.2)

where

• the τH are those appearing in Equation 8.1, and
• π̃ runs through the π̃ ∈ Πdisc (L0 o s) such that

– for all ν 6∈ S, IndGLa×GLbQ0
πν is unramified, and

– for all ν, IndGLa×GLbQ0
πν is the Langlands base change τH,ν where τH

is a representation appearing in Equation 8.1

It follows from Lemma 4.1 that, writing π = πa× πb, seen as a representation of
a Levi-subgroup of GLa ×GLb, we have that

IndGLnQ0
πa,ν · µb,ν × πb,ν · µa,ν ' Πν

for all ν 6∈ S. Now Π is cuspidal, and it follows from the Mœglin-Waldspurger
[MW89] and Jacquet-Shalika [JS81] description of the automorphic spectrum of
GLn (AE) that H = U∗n and π ' Π. It then follows from Lemma 5.16, Lemma
5.17, and Lemma 5.18 that Equation 8.2 is equal to{

0 : if H 6= U∗n
Tr Π ◦AW

(
φH
)

: if H = U∗n

By Lemma 5.2, Lemma 5.6, Lemma 5.8, Lemma 5.10, and Lemma 5.24, we see
that the τU∗ appearing in Equation 8.2 (and hence also Equation 8.1) are exactly
the representations

⊗ν|∞τ ′U∗,ν ⊗ τ ′U∗,ν′ ⊗⊗ν 6∈{∞∪ν′}τ ′U∗,ν
where

• for all archimedean ν, τ ′U∗,ν is in the same L-packet as σν ,

• τ ′U∗,ν′ is in the same L-packet as σν′ , and

• for all non-archimedean ν 6= ν′, τ ′U∗,ν ' σν .

We also see that

n
(
⊗ν|∞τ ′U∗,ν ⊗ τ ′U∗,ν′ ⊗⊗ν 6∈{∞∪ν′}τ ′U∗,ν

)
= n

(
ψ (Πν′) , τ

′
U∗,ν′

)
It follows that Equation 8.1 can be written as∑
σ′
ν′∈Π(ψ(Πν′ ))

mdisc

(
σν
′
⊗ σ′ν′

)
Tr
(
σν
′
⊗ σ′ν′

)
(f)

=
∑

n
(
ψ (Πν′) , τ

′
U∗,ν′

)
Tr
(
⊗ν|∞τ ′U∗,ν ⊗ τ ′U∗,ν′ ⊗⊗ν 6∈{∞∪ν′}τ ′U∗,ν

) (
fU
∗
)

It then follows from the spectral transfer results of Lemma 5.22, Lemma 5.30,
Lemma 5.32, and Lemma 5.35 that∏

ν|∞

∆spec

(
ψ
(
τ ′U∗,ν

)
, σν
)
·∆spec (ψ (Πν′) , σ

′
ν′) = mdisc

(
σν
′
⊗ σ′ν′

)
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for all σ′ν′ ∈ Π (ψ (Πν′)). Due to our normalisation of the transfer factors for the
principal endoscopic group (cf. Lemma 5.38), this reduces to give

n (ψ (Πν′) , σ
′
ν′) = mdisc

(
σν
′
⊗ σ′ν′

)
It follows that n (ψ (Πν′) , σ

′
ν′) is a non-negative integer for all σ′ν′ ∈ Π (ψ (Πν′)) as

the multiplicity of a representation in the discrete automorphic spectrum of U is a
non-negative integer. The result then follows since for all σk ∈ Π (ψ),

n (ψ, σk) = n (ψ (Πν′) , σ
′
ν′)

where σ′ν′ ∈ Π (ψ (Πν′)) is the twist of σk by the unitary character χν′ . �

9. Some properties of the spectral transfer factors

The aim of this section is to prove some properties of the spectral transfer factors.
These properties shall form the basis of our proof of the Arthur conjectures.

Let E/F be a totally imaginary quadratic extension of a totally real field, and
let U be a unitary group in n-variables appearing in Proposition 2.1. Let

Π0 = Π0
1 � · · ·� Π0

r

be an automorphic representation of GLn (AE) where

• for all i = 1, . . . , r, Π0
i is a cuspidal automorphic representation ofGLni (AE)

such that Π0
i ' Π0

i ◦ θ,
• for all archimedean places ν of F , Π0

ν has cohomology for a system of

coefficients V 0
ν ⊗ V 0

ν
θ

where the highest weight of V 0
ν is regular,

• for all non-archimedean places ν of F that are inert and unramified in E,
Π0
ν is either unramified or tempered θ-discrete stable, and

• for all non-archimedean places ν of F that are ramified in E, Π0
ν is tempered

θ-discrete stable.

Let σ0 be an irreducible admissible representation of U (AF ) whose Langlands base
change is Π at all places ν. Let S be a finite set of places of F such that

• S contains all archimedean places,
• S contains all non-archimedean places ν that are ramified in E,
• if ν ∈ S is non-archimedean, then ν is inert E and Πν is tempered θ-discrete

stable, and
• if ν 6∈ S is non-archimedean and inert in E, then σ0

ν is unramified.

9.1. Properties involving a single endoscopic data.

Lemma 9.1.
∏
ν∈S ∆spec

(
ψ0
ν , σ

0
ν

)
= 1 where ψ0

ν denotes the L-parameter associ-

ated to σ0
ν , viewed as an L-parameter of U∗ (Fν).

Proof. By Lemma 7.3, we can find a cuspidal automorphic representation Π of
GLn (AE) such that

• Π ' Π ◦ θ,
• for all archimedean ν, Πν ' Π0

ν , and
• for all non-archimedean ν ∈ S, Πν is the Langlands base change of a discrete

series representation σν of U (Fν) which is isomorphic to a twist of σ0
ν by a

unitary character χν , and
• for all non-archimedean places ν 6∈ S that are inert in E, Πν is unramified.

Let σ be an irreducible admissible representation of U (AF ) such that

• Π is the Langlands base change of σ at all places ν,
• for all archimedean ν, σν ' σ0

ν ,
• for all non-archimedean ν ∈ S, σν is the twist of σ0

ν by the character χν ,
and
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• for all non-archimedean ν 6∈ S that are inert in E, σν is unramified.

We see that ∏
ν∈S

∆spec (ψν , σν) =
∏
ν∈S

∆spec

(
ψ0
ν , σ

0
ν

)
where ψν denotes the L-parameter associated to σν , viewed as an L-parameter of
U∗ (Fν). By arguing as in the proof of Lemma 8.3, we deduce that∏

ν∈S
∆spec (ψν , σν) ∈ N0

By Lemma 5.38 and Lemma 8.2, |∆spec (ψν , σν)| = 1 for all ν ∈ S. The result
follows. �

9.2. Properties involving two endoscopic data. Let j1, . . . , jr ∈ N such that

{j1, . . . , jr′} ∪ {jr′+1, . . . , jr} = {1, . . . , r}
Let a = nj1 + · · · + njr′ and let b = njr′+1

+ · · ·njr . We define the following

automorphic representations Π0
a and Π0

b of GLa (A) and GLb (A) respectively.

Π0
a = Π0

j1µ
−1
b � · · ·� Π0

jr′
µ−1
b

Π0
b = Π0

jr′+1
µ−1
a � · · ·� Π0

jrµ
−1
a

Lemma 9.2.
∏
ν∈S ∆spec

(
ψ0
a,b,ν , σ

0
ν

)
= ±1 where ψ0

a,b,ν denotes the L-parameter

of Ha,b for which BC
(
ψ0
a,b,ν

)
' ψ

(
Π0
a,ν

)
× ψ

(
Π0
b,ν

)
.

Proof. This will follow from the next two results: Lemma 9.3 and Lemma 9.4. �

Lemma 9.3.
∏
ν∈S ∆spec

(
ψ0
a,b,ν , σ

0
ν

)
∈ Z

Proof. By Lemma 7.3, we can find cuspidal automorphic representations Πa and
Πb of GLa (AE) and GLb (AE) respectively such that

• Πa ' Πa ◦ θ and Πb ' Πb ◦ θ,
• for all archimedean ν, Πa,ν ' Π0

a,ν (resp. Πb,ν ' Π0
b,ν),

• for all non-archimedean ν ∈ S, Πa,ν (resp. Πb,ν) is the Langlands base
change of a discrete series representation σa,ν (resp. σb,ν) and there exists
a unitary character χν such that Π0

a,ν (resp. Π0
b,ν) is the Langlands base

change of σa,ν · χ−1
ν (resp. σb,ν · χ−1

ν ), and
• for all non-archimedean places ν 6∈ S that are inert in E, Πa,ν (resp. Πb,ν)

is unramified.

We define the automorphic representation Π of GLn (AE):

Π = Πaµb � Πbµa

Let σ be an irreducible admissible representation of U (AF ) such that

• Π is the Langlands base change of σ at all places ν,
• for all archimedean ν, σν ' σ0

ν ,
• for all non-archimedean ν ∈ S, σν ' σ0

ν · χν , and
• for all non-archimedean ν 6∈ S that are inert in E, σν is unramified.

We see that ∏
ν∈S

∆spec (ψa,b,ν , σν) =
∏
ν∈S

∆spec

(
ψ0
a,b,ν , σ

0
ν

)
where ψa,b,ν denotes the L-parameter of Ha,b for which BC (ψa,b,ν) ' ψ (Πa,ν) ×
ψ (Πa,ν). The result will follow upon confirmation that∏

ν∈S
∆spec (ψa,b,ν , σν) ∈ Z
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Let S be a finite set of places ν such that either

• ν ∈ S, or
• σν is not unramified.

For all H and for all ν 6∈ S, let KUν and KHν be hyperspecial subgroups of U (Fν)

and H (Fν) respectively such that σ
KUν
ν 6= 0. By arguing as in the proof of Lemma

8.3, we can deduce the following identity.∑
σ′ν∈Π(σν)

mdisc

(
σ∞ ⊗⊗ν∈{S−∞}σ′ν ⊗ σS

)
Tr
(
σ∞ ⊗⊗ν∈{S−∞}σ′ν ⊗ σS

)
(f)

=
1

2

∑
τ ′
U∗ν
∈Π(σν)

Tr
(
⊗ν∈Sτ ′U∗ν ⊗⊗ν 6∈Sτ

′
U∗ν

)(
fU
∗
)

+
1

2

∑
τ ′Ha,b,ν

∈Π(ψa,b,ν)

Tr
(
⊗ν∈Sτ ′Ha,b,ν ⊗⊗ν 6∈Sτ

′
Ha,b,ν

) (
fHa,b

)

where

• fH = ⊗νfHν is a ∆-transfer of f = ⊗νfν for all ν,
• for all archimedean ν, fν is a pseudo-coefficient of σν and fHν is the associ-

ated Euler-Poincaré function appearing in Lemma 5.4,
• for all ν 6∈ S, fν (resp. fHν ) is bi-invariant under KUν (resp. KHν ),
• for all ν 6∈ S, τ ′U∗ν is the unique KU∗ν

-unramified representation whose Lang-

lands base change is Πν ,
• for all ν ∈ S − S, τ ′U∗ν is the unique representation whose Langlands base

change is Πν ,
• for all ν 6∈ S, τ ′Ha,b,ν is the unique KHa,b,ν -unramified representation whose

Langlands base change is Πa,ν ×Πb,ν , and
• for all ν ∈ S−S, τ ′Ha,b,ν is the unique representation whose Langlands base

change is Πa,ν ×Πb,ν

Applying the results of Section 5, we deduce that

mdisc (σ) =
1

2

∏
ν∈S

∆spec (ψν , σν) +
1

2

∏
ν∈S

∆spec (ψa,b,ν , σν)

where ψν denotes the L-parameter associated to σν , viewed as an L-parameter of
U∗ (Fν). By Lemma 9.1, we see that

∏
ν∈S ∆spec (ψν , σν) = 1. It follows that∏

ν∈S ∆spec (ψa,b,ν , σν) is integral. �

Lemma 9.4. Let k′/k be a quadratic extension of p-adic fields. Let ψH : Lk′ →
GLa × GLb be an L-parameter such that ξ ◦ ψH is a tempered θ-discrete stable
L-parameter. Then

|∆spec (ψH , σk)| =

{
1 : if ξ ◦ ψH ' ψ (σk)

0 : otherwise

for all discrete series representations σk of U∗n (k′/k).

Proof. We remark that if ξ ◦ ψH 6' ψ (σk), then the result is part of Lemma 5.35.
Let ψH : Lk′ → GLa × GLb be an L-parameter such that ξ ◦ ψH is a tempered
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θ-discrete stable L-parameter. We know that (cf. [Mœg07, §7])〈 ∑
σH∈Π(ψH)

n (ψH , σH)σH ,
∑

σH∈Π(ψH)

n (ψH , σH)σH

〉

=

〈 ∑
σk∈Π(ξ◦ψH)

∆spec (ψH , σk)σk,
∑

σk∈Π(ξ◦ψH)

∆spec (ψH , σk)σk

〉
By Lemma 8.2, n (ψH , σH) = 1 for all σH ∈ Π (ψH). By a result of Arthur [Art93,
Corollary 6.2], the discrete series representations of H (k) and U∗ (k) are orthonor-
mal. It follows that

|Π (ψH)| =
∑

σk∈Π(ξ◦ψH)

|∆spec (ψH , σk)|2

Now
|Π (ψH)| = 2l(ψH)−1 = 2l(ξ◦ψH)−1 = |Π (ξ ◦ ψH)|

and by Lemma 5.35, ∆spec (ψH , σk) 6= 0 for all σk ∈ Π (ξ ◦ ψH). The result will
thus follow upon confirmation that |∆spec (ψH , σk)| ∈ N0 for all σk ∈ Π (ξ ◦ ψH).

Let σk ∈ Π (ξ ◦ ψH). Choose a totally imaginary quadratic extension of a totally
real field E/F , and a place ν′ such that

• Eν′/Fν′ ' k′/k, and
• E/F is unramified outside of ν′.

Write ψH = ψa × ψb, and let πa,k (resp. πb,k) be the tempered θ-discrete stable
representation of GLa (k′) (resp. GLb (k′)) corresponding to ψa (resp. ψb) viewed
as an L-parameter of GLa (resp. GLb). By Lemma 7.3, we can find cuspidal
automorphic representations Π0

a and Π0
b of GLa (AE) and GLb (AE) respectively

such that, writing Π0 = Π0
aµb � Π0

bµa, we have that

• Π0
a ' Π0

a ◦ θ and Π0
b ' Π0

b ◦ θ,
• for all archimedean ν, Π0

ν has cohomology for a system of coefficients Vν⊗V θν
where V is an algebraic representation with regular highest weight,

• Π0
a,ν′ (resp. Π0

b,ν′) is the Langlands base change of a discrete series repre-

sentation σ0
a,ν′ (resp. σ0

b,ν′) and there exists a unitary character χν′ such

that πa,k (resp. πb,k) is the Langlands base change of the discrete series

representation σa,ν′ · χ−1
ν′ (resp. σb,ν′ · χ−1

ν′ ), and
• for all non-archimedean places ν 6= ν′ that are inert in E, Π0

ν is unramified.

Let σ0 be an irreducible admissible representation of U (AF ) such that

• Π0 is the Langlands base change of σ0 at all places ν,
• σ0

ν′ ' σk · χν′ , and
• for all non-archimedean ν 6= ν′ that remain inert in E, σ0

ν is unramified.

We see that
∆spec

(
ψ0
a,b,ν′ , σ

0
ν′
)

= ∆spec (ψH , σk)

where ψ0
a,b,ν′ denotes the L-parameter of Ha,b for which

BC
(
ψ0
a,b,ν′

)
' ψ

(
Π0
a,ν′
)
× ψ

(
Π0
b,ν′
)

Thus the result will follow upon confirmation that |∆spec

(
ψ0
a,b,ν′ , σ

0
ν′

)
| ∈ N0.

By Lemma 9.3,

∆spec

(
ψ0
a,b,ν′ , σ

0
ν′
)
·
∏
ν|∞

∆spec

(
ψ0
a,b,ν , σ

0
ν

)
∈ Z

where for archimedean ν, ψ0
a,b,ν denotes the L-parameter of Ha,b for which

BC
(
ψ0
a,b,ν

)
' ψ

(
Π0
a,ν

)
× ψ

(
Π0
b,ν

)
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The result then follows as |∆spec

(
ψ0
a,b,ν , σ

0
ν

)
| = 1 for all archimedean ν. �

9.3. Properties involving multiple endoscopic data. Let j1, . . . , jr ∈ N such
that

{j1, . . . , jr′} ∪ {jr′+1, . . . , jr′′} ∪ {jr′′+1, . . . , jr} = {1, . . . , r}
Let a1 = nj1 + · · ·+ njr′ and let b1 = n− a1. We define the automorphic represen-
tations of GLa1 (AE) and GLb1 (AE):

Π0
a1

= Π0
j1µ
−1
b1

� · · ·� Π0
jr′
µ−1
b1

Π0
b1 = Π0

jr′+1
µ−1
a1

� · · ·� Π0
jrµ
−1
a1

Let a2 = njr′+1
+ · · ·njr′′ and let b2 = n− a2. Define the automorphic representa-

tions of GLa2 (AE) and GLb2 (AE):

Π0
a2

= Π0
jr′+1

µ−1
b2

� · · ·� Π0
jr′′
µ−1
b2

Π0
b2 = Π0

j1µ
−1
a2

� · · ·� Π0
jr′
µ−1
a2

� Π0
jr′′+1

µ−1
a2

� · · ·� Π0
jrµ
−1
a2

Let a3 = njr′′+1
+ · · ·njr and let b3 = n−a3. Define the representations GLa3

(AE)

and GLb3 (AE):

Π0
a3

= Π0
jr′′+1

µ−1
b3

� · · ·� Π0
jrµ
−1
b3

Π0
b3 = Π0

j1µ
−1
a3

� · · ·� Π0
jr′′
µ−1
a3

Lemma 9.5.∏
ν∈S

∆spec

(
ψ0
a1,b1,ν , σ

0
ν

)
=
∏
ν∈S

∆spec

(
ψ0
a2,b2,ν , σ

0
ν

)
·
∏
ν∈S

∆spec

(
ψ0
a3,b3,ν , σ

0
ν

)
where for i = 1, 2, 3, ψ0

ai,bi,ν
is the L-parameter of Hai,bi for which

BC
(
ψ0
ai,bi,ν

)
' ψ

(
Π0
ai,ν

)
× ψ

(
Π0
bi,ν

)
Proof. By Lemma 7.3, we can find cuspidal automorphic representations Πa1 , Πa2

and Πa3 of GLa1 (AE), GLa2 (AE), and GLa3 (AE) respectively such that for all
i = 1, 2, 3,

• Πai ' Πai ◦ θ,
• for all archimedean ν, Πai,ν ' Π0

ai,ν ,
• for all non-archimedean ν ∈ S, Πai,ν is the Langlands base change of a

discrete series representation σai,ν and there exists a unitary character,
independent of i, χν such that Π0

ai,ν is the Langlands base change of the

twist σai,ν · χ−1
ν , and

• for all non-archimedean places ν 6∈ S that are inert in E, Πai,ν is unramified.

We then define the following automorphic representations.

Πb1 = Πa2
µb2µ

−1
a1

� Πa3
µb3µ

−1
a1

Πb2 = Πa1
µb1µ

−1
a2

� Πa3
µb3µ

−1
a2

Πb3 = Πa1µb1µ
−1
a3

� Πa2µb2µ
−1
a3

We also define the automorphic representation of GLn (AE),

Π = Πa1
µb1 � Πb1µa1

' Πa2
µb2 � Πb2µa2

' Πa3
µb3 � Πb3µa3

Let σ be an irreducible admissible representation of U (AF ) such that

• Π is the Langlands base change of σ at all places,
• for all archimedean ν, σν ' σ0

ν ,
• for all non-archimedean ν ∈ S, σν ' σ0

ν · χν , and
• for all non-archimedean ν 6∈ S that are inert in E, σν is unramified.
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We see that, for i = 1, 2, 3,∏
ν∈S

∆spec (ψai,bi,ν , σν) =
∏
ν∈S

∆spec

(
ψ0
ai,bi,ν , σ

0
ν

)
where for i = 1, 2, 3, ψ0

ai,bi,ν
is the L-parameter of Hai,bi for which BC (ψai,bi,ν) '

ψ (Πai,ν)× ψ (Πbi,ν). The result will follow upon confirmation that,∏
ν∈S

∆spec (ψa1,b1,ν , σν) =
∏
ν∈S

∆spec (ψa2,b2,ν , σν) ·
∏
ν∈S

∆spec (ψa3,b3,ν , σν)

Let S be the set of places ν such that either

• ν ∈ S, or
• σν is not unramified.

For all H and for all ν 6∈ S, let KUν and KHν be hyperspecial subgroups of U (Fν)

and H (Fν) respectively such that σ
KUν
ν 6= 0. By arguing as in the proof of Lemma

8.3, we can deduce the following identity.∑
σ′ν∈Π(σν)

mdisc

(
σ∞ ⊗⊗ν∈{S−∞}σ′ν ⊗ σS

)
Tr
(
σ∞ ⊗⊗ν∈{S−∞}σ′ν ⊗ σS

)
(f)

=
1

4

∑
τ ′
U∗ν
∈Π(σν)

Tr
(
⊗ν∈Sτ ′U∗ν ⊗⊗ν 6∈Sτ

′
U∗ν

)(
fU
∗
)

+
1

4

3∑
i=1

∑
τ ′Hai,bi,ν

∈Π(ψai,bi,ν)

Tr
(
⊗ν∈Sτ ′Hai,bi,ν ⊗⊗ν 6∈Sτ

′
Hai,bi,ν

) (
fHai,bi

)
where

• fH = ⊗νfHν is a ∆-transfer of f = ⊗νfν for all ν,
• for all archimedean ν, fν is a pseudo-coefficient of σν and fHν is the associ-

ated Euler-Poincaré function as appearing in Lemma 5.4,
• for all ν 6∈ S, fν (resp. fHν ) is bi-invariant under KUν (resp. KHν ),
• for all ν 6∈ S, τ ′U∗ν is the unique KU∗ν

-unramified representation whose Lang-

lands base change is Πν ,
• for all ν ∈ S − S, τ ′U∗ν is the unique representation whose Langlands base

change is Πν ,
• for i = 1, 2, 3, for all ν 6∈ S, τ ′Hai,bi ,ν

is the unique KHai,bi,ν
-unramified

representation whose Langlands base change is Πai,ν ×Πbi,ν , and
• for i = 1, 2, 3, for all ν ∈ S−S, τ ′Hai,bi ,ν

is the unique representation whose

Langlands base change is Πai,ν ×Πbi,ν

Applying the results of Section 5, we deduce that

mdisc (σ) =
1

4

∏
ν∈S

∆spec (ψν , σν) +
1

4

3∑
i=1

∏
ν∈S

∆spec (ψai,bi,ν , σν)

By Lemma 9.1, ∏
ν∈S

∆spec (ψν , σν) = 1

and by Lemma 9.2, for i = 1, 2, 3,∏
ν∈S

∆spec (ψai,bi,ν , σν) = ±1
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The multiplicity mdisc (σ) is a non-negative integer, and it follows that mdisc (σ) is
equal to either 0 or 1. By considering the possible values of the terms, we see that∏

ν∈S
∆spec (ψa1,b1,ν , σν) =

∏
ν∈S

∆spec (ψa2,b2,ν , σν) ·
∏
ν∈S

∆spec (ψa3,b3,ν , σν)

�

10. The local Arthur conjectures

The main aim of this section is to prove a formulation of the local Arthur conjec-
tures for discrete series representations of the quasi-split p-adic unitary group. Our
proof of the local Arthur conjectures follows the work of Arthur [Art05, Theorem
30.1] who has proved these conjectures for general representations of the orthogo-
nal and symplectic groups. For tempered representations of real groups, the local
Arthur conjectures are due to Shelstad [She08b]. We shall also recall a formulation
of Shelstad’s result for discrete series representations of real unitary groups.

10.1. Discrete series representations of real unitary groups. Let U = U (p, q)
be a real unitary group. Let ψ : LR → LU be a tempered discrete L-parameter;
we shall also have need of its Langlands base change BC (ψ) : LC → GLn (C). We
shall denote by Sψ the centraliser of the image of BC (ψ) (z) in GLn (C) for all
z ∈ C, and we shall denote by Sθψ the subgroup of θ-invariant points of Sψ. We

shall study the quotient group Sψ = Sθψ/ {±1}. By Schur’s lemma, we see that

Sψ ' (Z/2Z)
n−1

For all s ∈ Sψ, one associates to s an endoscopic data Hs = Ha,b and a tempered
discrete L-parameter

ψs : LR → LHs

such that ψ ' ξ ◦ ψs via the following construction. The centraliser of a represen-
tative of s in GLn (C) is of the following form.

C (s,GLn (C))
∼→ (GLa ×GLb) (C)

for a unique a, b ∈ N0 such that a ≤ b. The endoscopic data Hs is then defined to
be Hs = Ha,b as in Definition 5.19. The L-homomorphism ψs is defined to be the
L-homomorphism whose Langlands base change

BC (ψs) : LC → (GLa ×GLb) (C)

is the pull back of BC (ψ) through the morphism

(GLa ×GLb) (C)
∼→ (GLa ×GLb) (C)

∼→ C (s,GLn (C)) ↪→ GLn (C)

where the first isomorphism is defined as follows.

(GLa ×GLb) (C)→ (GLa ×GLb) (C)

ga × gb 7→ ga · µb (det ga)× gb · µa (gb)

Remark 10.1. The ψs are easily seen to be in bijection with the equivalence classes
of L-parameters ψH : LR → LH such that ξ ◦ ψH ' ψ.

We fix a representation σbase ∈ Π (ψ) in the L-packet of discrete series represen-
tations of U (R). Arthur defines the pairing

〈·, ·〉 : Sψ ×Π (ψ)→ C×

s× σ 7→ ∆spec (ψs, σ)

∆spec (ψs, σbase)

This pairing is canonical: it depends only upon the equivalence class of the L-
homomorphism ψ and the choice of a base point representation σbase ∈ Π (ψ).
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In particular, the pairing does not depend upon the chosen normalisation of the
transfer factors.

Theorem 10.2. The pairing 〈·, ·〉 takes values in {±1}, and induces an injection
from the elements of the L-packet Π (ψ) to the characters of Sψ.

Proof. This is a simple reformulation of a result of Shelstad [She08b]. �

Remark 10.3. The results of Shelstad [She08b] are in fact stronger, and include a
study of the characters that appear in the image of this injective map.

Remark 10.4. If we restrict ourselves to L-packets of discrete series representa-
tions Π (V ) where V is an irreducible algebraic representation with regular highest
weight, then our method of proof of the local Arthur conjectures for discrete series
representations of the p-adic quasi-split unitary group can be adapted to give a
global proof of Theorem 10.2.

10.2. Discrete series representations of the p-adic quasi-split unitary group.
Let k′/k be a quadratic extension of p-adic fields. We shall study the discrete series
representations of the p-adic quasi-split unitary group U∗ (k′/k). Let ψ : Lk′ →
LGLn/k

′ be a tempered θ-discrete stable L-parameter. We shall denote by Sψ the
centraliser of the image of ψ in GLn (C), and we shall denote by Sθψ the subgroup

of θ-invariant points of Sψ. We shall study the quotient group Sψ = Sθψ/ {±1}. By
Schur’s lemma, we see that

Sψ ' (Z/2Z)
l(ψ)−1

For all s ∈ Sψ, one associates to s an endoscopic data Hs = Ha,b, and a tempered
θ-discrete L-parameter

ψs : Lk′ → LGLa ×GLb/k′

such that ψ ' ξ ◦ ψs via the following construction. The centraliser of a represen-
tative of s in GLn (C) is of the following form.

C (s,GLn (C))
∼→ (GLa ×GLb) (C)

for a unique a, b ∈ N0 such that a ≤ b. The endoscopic data Hs is then defined to
be Hs = Ha,b as in Definition 5.19. The L-homomorphism ψs is defined to be the
pull back of ψ through the morphism

(GLa ×GLb) (C)
∼→ (GLa ×GLb) (C)

∼→ C (s,GLn (C)) ↪→ GLn (C)

where the first isomorphism is defined as follows.

(GLa ×GLb) (C)→ (GLa ×GLb) (C)

ga × gb 7→ ga · µb (det ga)× gb · µa (gb)

Remark 10.5. The ψs are easily seen to be in bijection with the equivalence classes
of L-parameters ψH : Lk′ → LGLa ×GLb/k′ such that ξ ◦ ψH ' ψ.

We fix a representation σbase ∈ Π (ψ) in the L-packet of discrete series represen-
tations of U∗ (k′/k). Arthur defines the pairing

〈·, ·〉 : Sψ ×Π (ψ)→ C×

s× σ 7→ ∆spec (ψs, σ)

∆spec (ψs, σbase)

This pairing is canonical: it depends only upon the equivalence class of the L-
homomorphism ψ and the choice of base point representation σbase ∈ Π (ψ). In
particular, the pairing does not depend upon the chosen normalisation of the trans-
fer factors.
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Theorem 10.6. The pairing 〈·, ·〉 takes values in {±1}, and induces a bijection
between the elements of the L-packet Π (ψ) and the characters of Sψ.

Proof. Choose a totally imaginary quadratic extension of a totally real field E/F ,
and a place v′ of F such that

• Eν′/Fν′ ' k′/k, and
• E/F is unramified outside of v′.

By Lemma 7.3, we can find r = l (ψ) cuspidal automorphic representations Π0
i of

GLni (AE) such that, writing Π0 = Π0
1 � · · · � Π0

r, the following conditions are
satisfied.

• For all archimedean ν, Π0
ν has cohomology in a system of coefficients V 0

ν ⊗
V 0
ν
θ

where V 0
ν is an irreducible algebraic representation of GLn with regular

highest weight.
• For all i = 1, . . . , r, Π0

i ◦ θ ' Π0
i .

• Π0
ν′ is the Langlands base change of an L-packet of discrete series represen-

tations whose elements are isomorphic to a twist of the representations in
the L-packet Π (ψ) by some unitary character χν′ .

• For all non-archimedean places ν 6= ν′ that are inert in E, Π0
ν is unramified.

We can identify the L-packets via the natural bijection

Π (ψ)→ Π
(
ψ0
)

σk 7→ σkχν′

where ψ0 = ψ
(
Π0
ν′

)
. Similarly, we can identify the groups Sψ

∼→ Sψ0 . We see that,
for all s ∈ Sψ and for all σk ∈ Π (ψ),

∆spec (ψs, σk) = ∆spec

(
ψ0
s , σkχν′

)
Thus the theorem will follow from the analogous statement concerning the L-packet
Π
(
ψ0
)
.

Let σ0 = ⊗νσ0
ν be an irreducible admissible representation of U∗ (AF ) such that

• for all non-archimedean ν 6= ν′ that are inert in E, σ0
ν is unramified, and

• Π0 is the Langlands base change of σ0 at all places ν.

We remark that we have the natural injections

Sψ(σ0
ν) ↪→ Sψ0

for all ν|∞. By the results of Section 9, we see that the function

Sψ0 → C×

s 7→ ∆spec

(
ψ0
s , σ

0
ν′
) ∏
ν|∞

∆spec

(
ψ
(
σ0
ν

)
s
, σ0
ν

)
is a ±1 valued character. Write σbase

ν′ ∈ Π
(
ψ0
)

for the chosen base point represen-

tation. Consider now the function associated to the representation σ0ν
′

⊗ σbase
ν′

Sψ0 → C×

s 7→ ∆spec

(
ψ0
s , σ

base
ν′

) ∏
ν|∞

∆spec

(
ψ
(
σ0
ν

)
s
, σ0
ν

)
which by the results of Section 9, is also a ±1 valued character. By multiplying
the first character by the inverse of the second character, we see that the function
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induced by Arthur’s pairing

〈·, σ0
ν′〉 : Sψ0 → C×

s 7→
∆spec

(
ψ0
s , σ

0
ν′

)
∆spec

(
ψ0
s , σ

base
ν′

)
is a ±1 valued character. Since σ0

ν′ ∈ Π
(
ψ0
)

can be chosen to be any element of the
L-packet, we see that Arthur’s pairing 〈·, ·〉 induces a map from the elements of the
L-packet Π

(
ψ0
)

to the characters of Sψ0 . The map is known to be injective; this can
be seen by inverting the spectral transfer factors and expressing the distribution of a
representation in the L-packet Π

(
ψ0
)

in terms of the stable distributions associated

to the L-packets Π
(
ψ0
s

)
(cf. [Mœg07, §8.1]). The result follows as the sets have

the same cardinality

|Π
(
ψ0
)
| = 2l(ψ

0)−1 = |Ŝψ0 |
where Ŝψ0 denotes the group of characters of Sψ0 . �

11. The global Arthur conjectures

The main aim of this section is to prove a formulation of the global Arthur
conjectures for certain representations of the unitary group. Our proof follows the
work of Arthur [Art05, Theorem 30.2] who has proved these conjectures for general
representations of the orthogonal and symplectic groups.

Let E/F be a totally imaginary quadratic extension of a totally real field, and
let U be a unitary group appearing in Proposition 2.1. Let Π = Π1 � · · · � Πr be
an automorphic representation of GLn (AE) that satisfies the following properties.

• For all i = 1, . . . , r, Πi is cuspidal and Πi ' Πi ◦ θ.
• For all archimedean places ν of F , Πν is the Langlands base change of a

discrete series representation of U (Fν) with the same infinitesimal character
as an irreducible algebraic representation of GLn whose highest weight is
regular.

• For all non-archimedean places ν of F that are inert and unramified in E,
Πν is either unramified, or tempered θ-discrete stable.

• For all non-archimedean places ν of F that are ramified in E, Πν is tempered
θ-discrete stable.

Let σ be an irreducible admissible representation of U (AF ) whose Langlands base
change is Π at all places.

The global Arthur conjectures predict the multiplicity with which σ appears in
the discrete automorphic spectrum of U (AF ), which we shall now describe. Let S
be the set of places ν of F such that either

• ν is archimedean, or
• ν is non-archimedean, inert in E, and Πν is tempered θ-discrete stable.

For all places ω of E, let ψω : LEν → GLn (C) be the L-parameter corresponding
to Πω. Let SΠ be the group of elements of GLn (C) that commute with the image
of ψω (z) in GLn (C) for all z ∈ LEω and for all ω. Let SθΠ be the subgroup of θ-
invariant points. We shall study the quotient group SΠ = SθΠ/ {±1}. There exists
a natural embedding for all ν ∈ S,

SΠ ↪→ Sψν

The local characters 〈·, σν〉 : Sψν → {±1}, defined for all ν ∈ S, induce by restric-
tion a character

〈·, σ〉 =
∏
ν∈S
〈·, σν〉|SΠ : SΠ → {±1}

The global Arthur conjectures predicts the following.
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Theorem 11.1. There exists a unique character

εΠ : SΠ → {±1}
such that σ appears in the discrete automorphic spectrum of U (AF ) with multiplic-
ity equal to

mdisc (σ) =

{
1 : if 〈·, σ〉 = εΠ

0 : otherwise

Proof. By considering the trace formula, and arguing as in the proof of Lemma 8.3,
we deduce that

mdisc (σ) =
1

|SΠ|
∑
s∈SΠ

∏
ν∈S

∆spec (ψ (σν)s , σν)

By Lemma 9.2, we see that each term in the summation is equal to ±1. It follows
that

mdisc (σ) =

{
1 : if ∀s ∈ SΠ,

∏
ν∈S ∆spec (ψ (σν)s , σν) = 1

0 : otherwise

We define the function

ΞΠ : SΠ → C×

s 7→
∏
ν∈S

∆spec

(
ψ
(
σbase
ν

)
s
, σbase
ν

)
where σbase

ν ∈ Π (ψ (σν)) denotes the chosen base point representation of the L-
packet. It follows from the results of Section 9 that ΞΠ is a ±1-valued character.
We define the character εΠ = Ξ−1

Π . The result now follows from the definition of
the local pairings 〈·, ·〉. �

Corollary 11.2. Assume in addition to the previous assumptions that either

• Π is cuspidal, or
• there exists a non-archimedean place ν′ ∈ S.

Then there exists a σ as above such that σ appears in the discrete automorphic
spectrum of U (AF ) with multiplicity 1.

Remark 11.3. In the case where Π is cuspidal and [F : Q] > 1, this result is due to
Labesse [Lab09, Theorem 5.4, Theorem 5.9].

Proof. Firstly if Π is cuspidal, then the group SΠ = {1} is trivial. It follows by
Theorem 11.1 that mdisc (σ) = 1 for any representation σ as above.

Consider now the second case, that is, assume that there exists a non-archimedean
place ν′ ∈ S. Let σ be any irreducible admissible representation as above. Let σ′ν′
be a discrete series representation of U (Fν) lying in the same L-packet of σν′ such
that the following characters are equal

〈·, σ′ν′〉|SΠ
= εΠ

∏
ν∈{S−ν′}

〈·, σν〉−1|SΠ
: SΠ → C×

This is possible by Theorem 10.6. Define the irreducible admissible representation
σ′ = σν

′ ⊗σ′ν′ of U (AF ). We see that 〈·, σ′〉 = εΠ. It follows by Theorem 11.1 that
mdisc (σ′) = 1.

�
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J.-P. Labesse, and B. C. Ngô, eds.), vol. 1, 2009.
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[LN08] G. Laumon and B. C. Ngô, Le lemme fondamental pour les groupes unitaires, Ann. of
Math. (2) 168 (2008), no. 2, 477–573. MR 2434884 (2009i:22022)

[LS87] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278
(1987), no. 1-4, 219–271. MR 909227 (89c:11172)

[Min09] A. Minguez, Unramified representations of unitary groups, Book Project (L. Clozel,

M. Harris, J.-P. Labesse, and B. C. Ngô, eds.), vol. 1, 2009.
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