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1 Introduction

Turbulence stands as one of the towering unsolved problems of classical physics [1, 2, 3].

This problem has so many facets that it seems almost overwhelming. One of the most

puzzling aspects and yet strikingly simple to state is the famous Kolmogorov scaling [4],

which specifies the behavior of n-point correlation functions of the fluid velocity. While in

real fluids, this scale invariance is empirically broken, one may still reasonably expect it to

be restored, in a statistical sense, in the limit of infinite Reynolds number.

Here we try to approach Kolmogorov scaling by employing some recent ideas from quan-

tum gravity. In view of the fact that the fundamental equations of turbulent fluids at very

high Reynolds numbers are invariant under volume preserving diffeomorphisms, and given

that at least on the näıve level, the fundamental symmetries of quantum gravity at low-

energies are spacetime diffeomorphisms, perhaps the connection between turbulence and

quantum gravity should not be completely surprising.

In fact several recent papers have explored various aspects of fluid dynamics from the

perspective of quantum gravity [5, 6, 7, 8].1 In this note, as a first step, we similarly bridge

two phenomenologies, that of incompressible fluids and that of spacetime foam [10]. Specifi-

cally we relate Kolmogorov’s scaling of fully developed turbulence and a generic holographic

model of spacetime foam [11].

Our presentation is as follows. Section 2 begins with a very brief review of Kolmogorov’s

1941 and 1962 theories, known as K41 and K62, respectively. Section 3 motivates the

connections between quantum gravity, fluctuations in fluids, and turbulence while Section 4

sketches a Wheeler–DeWitt styled formulation of spacetime foam. Section 5 provides a

map via scaling laws between spacetime foam, holography, and Kolmogorov’s universality.

In Section 6, we lay down some future directions suggested by this work and state our

conclusions.

2 The Kolmogorov scaling

The Kolmogorov 1941 scaling [4] (also independently derived by Heisenberg [12] and On-

sager [13]) works in the infinite Reynolds number limit in which the viscosity term ν∇2~v

in the Navier–Stokes equations can be neglected compared to the convective term [1, 2, 3].

Thus the basic starting point is given by the Euler equation

∂~v

∂t
+ (~v · ∇)~v = −∇p

ρ
, (1)

1As well, effective gravitational physics was recently argued to play an important rôle in other many-body
problems [9].
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where ∇·~v = 0.2 Kolmogorov’s observation is that in the presence of a constant energy flux

v2

t
∼ ε , (2)

there is a single length scale given by the velocity and time ` ∼ vt. The scaling of velocity

with ` is

v ∼ (ε`)1/3 . (3)

Kolmogorov 1941 deduces that the statistical moments are

〈(δv(`))n〉 ∼ Cnε
n/3`n/3 , (4)

where δv(`) = v(r+ `)− v(r) and again ε is the mean energy dissipation rate per unit mass.

The Cn are dimensionless, universal, and constant.

In particular, this implies that the two-point function of velocity goes as

〈vi(`)vj(0)〉 ∼ `2/3δij . (5)

This is the famous two-thirds law. There are deviations from this behavior known as far

back as Landau [1] whose criticisms led to the response in K62 [2, 15]. There Kolmogorov

dealt with the issue of anomalous values of the scaling exponents by taking into account

the observed intermittency effects mainly due to vorticity. Nevertheless the special cases

of n = 2, 3 are most notable. The n = 2 case (two-thirds law) tells us that the energy

spectrum follows the power law k−5/3 [1, 2]. The n = 3 case is one in which the coefficient

is explicitly known and is universal. Here, in the limit of infinite Reynolds number, we have

the four-fifths law:

〈(δv(`))3〉 = −4

5
ε` . (6)

The derivation assumes only the following: homogeneity, isotropy, and the finiteness of ε.

In particular, scale invariance is not invoked. This scaling is noteworthy in being the only

exact dynamical result, obtainable directly from the Navier–Stokes equations themselves [2].

Hydrodynamics can be thought of as an effective field theory [16] capturing the dynam-

ics at large spatial and temporal scales. Moreover the constant energy flux can be nicely

interpreted in terms of a quantum field theoretic anomaly [17]. Various other quantum field

theoretic aspects of fluid turbulence have been discussed in [18, 19]. (See also [20].)

The fundamental problem is a dynamical one, namely how to get from the deterministic to

a statistical description. Also, Kolmogorov’s distribution is not the usual Gibbs distribution.

How does such a non-Gibbsian distribution leading to Kolmogorov’s scalings emerge from

the equations of fluid dynamics? The dynamical questions concern the approach to scaling,

2Here we note that the Euler equation has an infinite dimensional geometric interpretation as it describes
the geodesic flow on the group of volume preserving diffeomorphisms [14]. While the above equations are
mostly applied in spatial dimensions two or three, they do hold in general dimension.
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namely how to explain the breakdown of Kolmogorov scaling from first principles such as from

the Navier–Stokes equation, i.e., how to account for the anomalous values of the exponents

of the many-point functions. These deviations from universality point to the non-Gaussian,

non-Gibbsian nature of the velocity distribution. Furthermore, in contrast to the usual

effective field theoretic study of long-time, long-distance behavior at scales much larger than

the high-energy cutoff, in turbulence one is interested in the opposite regime, much shorter

than the cutoff scale! Thus the renormalization group (RG) analysis is peculiar: instead of

going from ultraviolet (UV) to infrared (IR), the scaling for turbulence goes in the reverse

direction [19].

In this paper we wish to point out that some of these basic puzzling features are very

natural from the point of view of quantum gravity3 thus offering a new perspective on the

problem of turbulence.

3 Quantum gravity and turbulence

Why would gravity have anything to do with fluid dynamics? In this section we recall the

recent discussion of induced gravity in fluid dynamics [23, 24]. In the case of irrotational

fluids in three spatial dimensions an effective metric emerges, called the acoustic metric [23].

(The viscous flow has been considered in [25].) This comes about by considering fluctuations

of the fluid density ρ and the velocity potential φ (the velocity ~v = ∇φ). The underlying

spacetime action of the moving fluid is

S =

∫
d4x [ρφ̇+

1

2
ρ(∇φ)2 + U(ρ)] , (7)

where U(ρ) is the effective potential that upon variation leads to equations of motion for ρ

and φ (the Euler continuity equation and the Bernoulli energy balance equation). In other

words, following the effective field treatment of [26, 27] (and the nice summary in [24]),

ρ̇+∇ · (ρ~v) = 0 , (8)

and also

φ̇+
1

2
~v2 +

dU

dρ
= 0 . (9)

When these equations of motion are perturbed around the equilibrium values ρ0 and φ0,

ρ = ρ0 + ρ′ , φ = φ0 + ϕ , (10)

3As we have mentioned in the introduction the connection between turbulence and quantum gravity is
perhaps not surprising on the level of symmetries involved. At least at low-energies, gravity is defined by
diffeomorphism invariance. On the other hand one of the defining symmetries in the problem of turbulence is
volume preserving diffeomorphisms: the flow is incompressible [21]. The volume preserving diffeomorphisms
also naturally occur in quantum gravity in the treatment of Matrix theory [22].
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one is led to the equations for the fluctuations of the velocity potential ϕ (after eliminating

ρ′ because it occurs quadratically in the perturbed effective action)(
∂

∂t
+∇ · ~v

)
ρ0

c2

(
∂

∂t
+∇ · ~v

)
= ∇(ρ0∇ϕ) . (11)

In particular, the equation for the fluctuations of the velocity potential can be written in a

geometric form [23] of a harmonic Laplace–Beltrami equation:

1√
−g

∂a(
√
−ggab∂bϕ) = 0 . (12)

Here, apart from a conformal factor, the effective space time metric has the canonical ADM

form [23, 24]

ds2 =
ρ0

c
[c2dt2 − δij(dxi − vidt)(dxj − vjdt)] , (13)

where c is the sound velocity and vi are the components of the fluid’s velocity vector. This

is the fundamental observation: because of dragging of the sound in a moving fluid, the

spherical shell associated with a given emitted sound pulse shifts by v dt in a unit time

interval, so that its location can be found by solving the equation

(d~r − ~v dt)2 = c2dt2 (14)

which effectively can be arranged to the above acoustic metric [23, 24]. The sound then

propagates along null curves defined by the acoustic metric.

We observe that in the above expression for the metric the velocity of the fluid vi plays

the rôle of the shift vector N i which is the Lagrange multiplier for the spatial diffeomorphism

constraint (the momentum constraint) in the canonical Dirac/ADM treatment of Einstein

gravity. A fluctuation of vi would imply, given the intuition of Kolmogorov and this dictio-

nary between fluids and gravity, a fluctuation of the shift vector. This is possible provided

the metric of spacetime fluctuates, which is a very loose, intuitive, semi-classical definition

of the spacetime foam.

Now, whence comes the effective gravitational dynamics? One idea discussed by Visser

in [24] is the idea of induced gravity. After integrating out the fluctuations of the veloc-

ity potential (viewed as as a scalar field in the gravitational metric) around a background

that does not satisfy the fluid equations of motion, one can then obtain an effective action

which is of the induced gravity type and which includes the Einstein–Hilbert term and the

cosmological term as well as higher order terms.

More explicitly (for a review see [28]) the above equation for the sound wave fluctuations

comes from the effective action

Sϕ,gab
=

∫
d4x
√
−g (gab∂aϕ∂bϕ) . (15)
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By expanding ϕ around a fixed configuration and by integrating out the fluctuations, one

gets on the basis of symmetry “an induced gravitational action” [29]

eiSind ≡
∫

Dϕ eiSϕ,gab , (16)

where on the grounds of induced diffeomorphism invariance

Sind = κ

∫
d4x
√
−g (−2Λ +R(g) + . . .) . (17)

Here κ is the induced (inverse) of the gravitational constant. This Sakharov-like induced

action (and not a Wilsonian effective action) has the usual features (and problems) associated

with running of the gravitational and the cosmological constant [29]. Yet, very näıvely, this

procedure does suggest the existence of effective diffeomorphisms at low-energy.

To conclude, the main point of this section is that from the perspective of the acoustic

metric the velocities appear as shifts and that fluctuations of velocities might be related to

the fluctuations of the shifts, and thus a general fluctuating geometry or, in other words,

in general, a spacetime foam. In the case of general topology-changing configuration, which

defines spacetime foam, shifts, the Lagrange multipliers for the primary momentum con-

straint, can also fluctuate opening a possibility for a universal scaling of their fluctuations

as a function of some characteristic length scale.

Given this picture, the main idea would be to relate the universal geometric properties of

spacetime foam to turbulence and discuss issues like Kolmogorov’s scaling in the gravitational

context.

4 Wheeler–DeWitt equation and spacetime foam

The issue of topology change and spacetime foam can be discussed from the canonical and

euclidean points of view. Here we review the relation between the Wheeler–DeWitt equation

of the canonical Hamiltonian formalism of quantum gravity and spacetime foam. We want

to discuss the canonical Wheeler–DeWitt equation [30]

HΨΛ = 0 (18)

on a spacetime with cosmological constant Λ. (In fluid dynamics it seems that the bare value

of Λ vanishes, but in general this value can be renormalized, together with the gravitational

constant in the induced gravity action [29].) Here H = 0 is the classical Hamiltonian

constraint in the canonical formalism of general relativity.

We begin by writing the spacetime metric in a local neighborhood in the ADM form,

which also appears in fluid dynamics:

ds2 = gµν dxµdxν = N2dt2 − hij(dxi +N idt)(dxj +N jdt) . (19)
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Note that in the fluid dynamics context

−N i → vi , N2 → c2 . (20)

In the following, we keep this simple dictionary in mind. Note that, in accordance with

induced diffeomorphisms at long distances, we use the general three-dimensional metric hij
in the expression for the ADM metric.

We find that the extrinsic curvature Kij is

Kij = − 1

2N
(∂thij +∇ivj +∇jvi) , (21)

which can obviously be rewritten as the evolution equation

∂thij = −2NKij −∇ivj −∇jvi . (22)

We also have the Hamiltonian and momentum constraints

H = R(3) +K2 −KijK
ij − 2Λ = 0 , (23)

Mi = ∇jK
j
i −∇iK = 0 , (24)

and a second evolution equation

∂tKij = NR
(3)
ij +NKKij−2NKikK

k
j−∇i∇jN−∇iv

kKkj−∇jv
kKki−vk∇kKij−NΛhij , (25)

where K = hijKij and R
(3)
ij and R(3) are the Ricci and scalar curvatures of the spatial metric

hij. The Schrödinger equation then is

1

2

(
R(3) +K2 −KijK

ij
)

ΨΛ = ΛΨΛ . (26)

It is convenient to rewrite this in a slightly different form. Following [30] and [31], define

Gijkl =
1

2
√
h

(hikhjl + hilhjk − hijhkl) . (27)

Define the conjugate momentum to the spatial metric hij as

πijh := −i~ 1√
h

δ

δhij
. (28)

We will restore powers of ~ and put κ = 8πGN = ~M−2
P . Dimensional analysis tells us that

πijh has units ML−2. The functional Schrödinger equation is the Wheeler–DeWitt equation(
−2κ~2 1√

h
Gijkl

δ

δhij

δ

δhkl
− 1

2κ
R(3) +

1

κ
Λ

)
ΨΛ[h] = 0 . (29)
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Now, in the presence of topology change [32], and thus spacetime foam this equation has

been argued to become non-linear [33]. For example, in the case of a cubic vertex we have

the following non-linear Wheeler–DeWitt equation(
−2κ~2 1√

h
Gijkl

δ

δhij

δ

δhkl
− 1

2κ
R(3) +

1

κ
Λ

)
ΨΛ[h] = cΨΛ[h] ∗ΨΛ[h] . (30)

where c is an effective coupling constant. This equation captures the quatum dynamics of

spacetime foam in the most direct way.

What would be the meaning of this wave functional in the turbulence context? One

obvious suggestion is that the natural probability density defined by the wave functional,

i.e., the probability measure for the spatial three-geometry defined by hij to be found with

spacetime volume V in the region of superspace with volume element dµ[h]:

dP = |ΨΛ[h]|2dµ[h] , (31)

should correspond to the non-Gibbsian stationary probability density in the infinite Reynolds

number regime. Thus sample solutions of the Wheeler–DeWitt equation can provide us

with models of non-Gibbsian distribution for turbulence, given the dictionary between fluid

dynamics and gravity.

Now, one puzzling feature of this natural proposal is the apparent absence of shifts

(velocities) in the expression for the probability density. This distribution in the case of

turbulence should be defined over velocity fields. In the quantum gravity context the shifts

should fluctuate. This seems to be the case, because they are Lagrange multipliers for

primary constraints, which in the case of topology change can become dynamical (see [34]).

We also know that in quantum field theory Lagrange multipliers can become dynamical and

acquire vacuum expectation values (a good example is what happens in the large-N O(N)

sigma model [35]). This is precisely what we need: correlation functions which depend on

the characteristic scale for our Lagrange multipliers, the shifts, which are the fluid velocities.

Finally, the partition function, and thus the wave function becomes in the quantum case a

function of the Lagrange multipliers (again, we recall the example of the partition function

of the large-N O(N) sigma model). Similarly, one encounters condensation of Lagrange

multipliers in the treatment of string theory as a theory of random surfaces, formulated as

a (1 + 1)-dimensional gravity coupled to matter fields (see [35]).

Thus we expect that upon the inclusion of topology change

ΨΛ[h]→ ΨΛ[h, vi] . (32)

The shift Lagrange multipliers (the fluid velocities) condense and obtain non-zero vacuum

expectation values

〈vi(`)vj(0)〉 ∼ `α , (33)

where ` denotes the characteristic scale and α is the critical exponent to be computed from

the explicit model of the spacetime foam. The point of the next section is to argue that
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holographic models of spacetime foam in 3+1 dimensions lead to α = 2/3, thus reproducing

the Kolmogorov scaling. The non-Gibbsian stationary distribution should then be computed

as

dPvi = |ΨΛ[h, vi]|2 dµ[h] . (34)

In principle such a distribution determines the computation of all correlators. For example

〈vi(`)vj(0)〉 ≡
∫

Dvi Pvivi(`)vj(0) . (35)

Of course, the central question is whether Kolmogorov’s scaling follows from this non-

Gibbsian distribution.

In the next section we want to argue that even without knowing the explicit form of the

distribution, holography constrains the universality of the scaling law in (3 + 1)-dimensional

turbulence in accordance with Kolmogorov’s theory.

5 Spacetime foam, holography, and Kolmogorov

What is known about spacetime foam? Let us start with the review of [11]. If spacetime

is foamy due to quantum fluctuations, the fluctuations δ` will show up when we measure a

distance `, in the form of uncertainties in the measurement. One way to find δ` is to carry

out a gedanken experiment to measure ` [11]. Alternatively we can use a global positioning

system to find δ` by mapping out the geometry of spacetime for a spherical volume of radius

` over the amount of time T = 2`/c it takes light to cross the volume. Let us fill the

space with clocks, exchanging signals with other clocks and measuring the signals’ times of

arrival. This process of mapping the geometry of spacetime is a kind of computation. Hence

the total number of operations, including the ticks of the clocks and the measurements of

signals, is bounded by the Margolus–Levitin theorem in quantum computation [36], which

stipulates that the rate of operations for any computer cannot exceed the amount of energy

E that is available for computation divided by π~/2. A total mass M of clocks then yields,

via the Margolus–Levitin theorem, the bound on the total number of operations given by

(2Mc2/π~) × 2`/c. To avoid black hole formation, in D spacetime dimensions, M must be

less than `D−3c2/2GD. Together, these two limits imply that the total number of operations

or events that can occur in a spatial volume of radius ` for a time period 2`/c is no greater

than (`/`P )D−2, where `P ≡ (~GD/c
3)1/(D−2) is the Planck length, and we have dropped

multiplicative factors of order one. In other words, if one regards the elementary events

partitioning the spacetime volume into “cells,” then the number of cells is bounded by the

surface area of the spatial region (corresponding to the holographic scaling of black hole

physics [37]), and each cell occupies a spacetime volume of (`D/c)/(`/`P )D−2 = `2 `D−2
P /c on

average. The maximum spatial resolution of the geometry is obtained if each clock ticks only

once during the entire time period `/c. Then on average each cell occupies a spatial volume no

less than `D−1/(`/`P )D−2 = ` `D−2
P , yielding an average separation between neighboring cells

9



no less than (` `D−2
P )1/(D−1). This spatial separation is interpreted as the average minimum

fluctuation of a distance `.

One of the points of [11] is that in the case where space and time are treated on different

footing (this is natural from the point of view of turbulence).4 The scaling of length in the

simple holographic models of spacetime foam [11] is as follows:

δ` ∼ `1/(D−1) `
(D−2)/(D−1)
P . (36)

Note that it is natural to expect that the coefficient multiplying ` `D−2
P for 〈δ`D−1〉 is universal,

being given by the holographic principle. In D = 3 + 1 dimensions, consider a cube of size

` × ` × `. The number of degrees of freedom that the cube can contain is given by `3/δ`3,

which is bounded by the requirement that the entropy S/kB ∼ (1/4)(6`2)/`2
P , where 6`2 is

the surface area of the cube. (In fact this is one way to get δ` ∼ `1/3`
2/3
P .) Unfortunately

there is a small ambiguity in the determination of the coefficient. The ambiguity comes

about because it is not clear whether one should use a big cube (volume `3) containing the

small cubes (volume δ`3) to do the counting of the degrees of freedom or a big sphere (volume

4π`3/3) containing small spheres (volume 4πδ`3/3). The holographic principle argument uses

spheres, but the packing of small spheres in a big sphere is not tight (having space between

neighboring small spheres). But in any case, the coefficient is positive. The upshot is that

provided one defines the velocity as

v ∼ δ`

tc
, (37)

where the natural characteristic time scale is

tc ∼
`P
c
. (38)

It follows that

v ∼ c
( `
`P

)1/3
. (39)

Then it is obvious that a Kolmogorov-like scaling has been obtained, i.e., the velocity scales

as v ∼ `1/3 and the two-point function has the needed two-thirds power law.5

The other consequences of this scaling discussed in Section 2, also known from Kol-

mogorov’s work, would follow. Note that the relation between turbulence and gravity, as

discussed so far, is in the same number of dimensions. Yet the full gravitational dynamics

is only induced at long distance, and in principle is ill-defined at short distance. In this

relationship the short distance probes of turbulence correspond to the long distance probes

of gravitational dynamics. Considering the high-energy limit seems particularly natural here

(as opposed to the usual prescription of Wilsonian effective field theory where we systemat-

ically integrate out those degrees of freedom) because in the map between turbulence and

4Also, from the point of view of quantum gravity, this is natural in a dynamical regime of emergent
spacetime.

5The energy dissipation rate ε is nothing but c3/`P , where now c is effective (it is the speed of sound)
and `P is effective (it is given by the induced gravitational constant).
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spacetime foam, the foam is an UV concept. Thus, we should expect the inverted RG scaling

noted in [19].

Now, if the connection between turbulence and spacetime foam can be indeed established

as indicated above, then the emergence of a Kolmogorov-like scaling might not be simply

fortuitous. Yet, we note that this observation has been made for three spatial dimensions. On

the other hand, Kolmogorov’s scaling seems to be dimension-independent. We now contrast

the scaling laws for turbulence in 3 + 1 and 2 + 1 dimensions.

5.1 3 + 1 vs. 2 + 1 and the energy cascade

How does the holographic model of spacetime foam compare to what is known about the

rôle of the dimensionality of space in turbulent flows, i.e., (2 + 1)-dimensional versus (3 + 1)-

dimensional scaling laws. First, in three spatial dimensions, the two-thirds law has been

well-tested experimentally (see [2]). Also, this leads to the four-fifths law for the three

point function and what is more important to the following scaling for energy as function of

momenta:

E(k) ∼ k−5/3 . (40)

Note that in general [2] the energy scaling

E(k) ∼ k−n (41)

is related via a one-dimensional Fourier transform to the scaling of the two-point function

for the velocity field

〈(δv(`))2〉 ∼ `n−1 . (42)

Thus the two-thirds scaling of the two-point function leads to the k−5/3 scaling in momentum

space. As shown above, applying the holographic principle to enumerate the degrees of

freedom of spacetime foam does reproduce the Kolmogorov scaling.

In 2+1 dimensions, Kraichnan [2, 18] has argued that the relevant scaling law associated

with the energy cascade is also the k−5/3 Kolmogorov law. But, as Kraichnan crucially

observed, the energy cascade is inverted in 2 + 1 dimensions as opposed to 3 + 1. Related

to this is the fact that in 2 + 1 dimensions, there is another conserved quantity apart from

energy, i.e., enstrophy [38]

Ω =

∫
d2x ω2 , (43)

where ~ω ≡ ∇ × ~v is the vorticity. By repeating the Kolmogorov like reasoning for the

enstrophy Kraichnan [38, 18] obtained v ∼ l which leads to the k−3 scaling in momentum

space.

How does this compare with holographic spacetime foam? In the D = 3 + 1 case, we

seem to have an agreement with Kolmogorov’s scaling. But in the D = 2 + 1 case, the näıve
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holographic model of spacetime foam gives

v ∼ c
( `
`P

)1/2
, (44)

and thus v2 ∼ `, which in momentum space implies the k−2 scaling instead of Kolmogorov–

Kraichnan’s k−5/3.6 Admittedly, the holographic scaling is close to Kraichnan’s, which has

been well established in numerical simulations [2]. Nevertheless, after vortices kick in this

scaling, due to the conservation of enstrophy [2, 18], this should change to the k−3 scaling.

Näıvely there does not seem to exist an obvious analog of this fact on the holographic

spacetime foam side, unless one appeals to the topological nature of 2 + 1 gravity.

The axial symmetry in 2 + 1 dimensions makes it obvious that the vorticity and any

power of it are conserved. That is to say that v ∼ ` by dimensions of the vorticity, and

then t ∼ constant if one defines v ∼ `/t. As 2 + 1 gravity is topological, there is no time

evolution, so constant t is indeed the expected scaling. Thus the conservation of enstrophy

is equivalent to the topological character of gravity and leads to the k−3 power law for the

energy spectrum.

To summarize: the näıve holographic spacetime model does not seem quite to match

Kolmogorov–Kraichnan’s scaling in 2 + 1 dimensions. How about the inverse energy cascade

of Kraichnan [2, 18, 38] in 2 + 1? The only obvious difference between 2 + 1 and 3 + 1

gravity is that the 2+1 gravity is topological and that in that case there exists a holographic

anomaly [39]. Still, it is not clear how to relate these unique features to the inverse cascade.

One possibility is offered by the work of Polyakov on conformal turbulence [17] which might

be holographically dual to a (2 + 1)-dimensional gravitational description. In Polyakov’s

discussion the rôle of the enstrophy cascade was clearly identified. Note also that in the case

of an AdS/CFT-like holographic map [40], the RG scalings from the bulk of spacetime and

the holographic boundary are inverted. In other words, the UV of the holographic boundary

corresponds to the IR of the bulk [41]. This might offer a way of understanding the inverted

cascade in 2+1 dimensions, provided there indeed exists a (2+1)-dimensional AdS-like dual

to the conformal turbulence in two dimensions. In any case, the näıve holographic spacetime

model in 2 + 1 dimensions has to be modified to take these important physics considerations

into account. On the fluids side, contrary to first appearance, two-dimensional turbulence

turns out to be much more complex and richer in physics than the three-dimensional case.

There are several types of cascades at work with interplay between statistics and, e.g.,

coherent structures [42].

One might wonder what the geometric analog of the Kolmogorov’s three-point function

is in the (3+1)-dimensional holographic spacetime foam model and also where the factor −4
5

6The prediction of holography in 2 + 1 dimensions, that the scaling of the energy in momentum space
is k−2, might have to do with the UV completion of the holographic model. Provided that we understand
M-theory beyond the eleven-dimensional supergravity limit, but as a true quantum theory, the `1/3`

2/3
P

behavior of the two-point function might appear naturally and would then be dimension independent.
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comes from in this model. Given the picture offered in this note, to figure out the four-fifths

law we would need to know the vertex for the spacetime foam, which is beyond the simple

scaling relations implied by holography.

Finally, we emphasize that the holographic scaling is semiclassical. Loop corrections

might naturally correspond to turning on the viscosity. From this point of view, viscosity is

a loop expansion parameter (an effective ~). These dynamics would indeed be interesting to

consider.

6 Future directions and conclusions

In this note we have argued, based on the analog fluid models of gravity, that in the grav-

itational context the phenomenon of turbulence is intimately related to the properties of

spacetime foam. In particular, using some general observations about holographic models of

spacetime foam we have discussed the relation between turbulence and holography and the

interpretation of the Kolmogorov scaling in the quantum gravitational setting.7

The duality between fluids and spacetime foam discussed in this note exists in the same

number of dimensions. One might wonder whether turbulence is dual to a classical gravi-

tational background following the philosophy of the AdS/CFT correspondence. Two ideas

come to mind.

First, as we have previously mentioned, Polyakov has considered a two-dimensional CFT

in the context of (2 + 1)-dimensional turbulence [17]. Searching for a gravitational AdS-like

dual of this two-dimensional CFT seems natural from the point of view of this paper. The

natural gravitational dual, according to our proposal, should involve spacetime foam. In

this respect we note recent papers on topology and AdS/CFT [44]. One upshot is these

investigations is that wormhole configurations can be accounted by the correspondence and

are not of the third quantization type. From the point of view advocated in this note,

these wormhole configurations might be used as models of spacetime foam in the AdS/CFT

context, and should provide dual gravitational backgrounds for turbulent fluid dynamics on

the boundary.

Secondly, spacetime foam has also been discussed in string theory in the context of the

microstate picture of black holes. (For reviews, see [45, 46] and references therein.) The

entropy of a black hole is determined by the area of the event horizon: SBH = A/4GD~ [37].

The thermodynamic description of a black hole originates in an underlying theory of grav-

itational statistical mechanics: there are eSBH microstates that one associates to the black

hole. Models for this may be considered in the context of the AdS/CFT correspondence.

For example, the physics of black holes with AdS5 × S5 asymptotics is described by opera-

tors in the dual N = 4 SU(N) super-Yang–Mills gauge theory with the same charges. In

7Note that this dictionary is natural from the point of view of the proposed general relation between
quantum gravity and non-equilibrium statistical physics [43].
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terms of these boundary data, there is a density function on the phase space of the gauge

theory such that when we integrate against this kernel ρ, we reproduce bulk correlators in

the semiclassical limit:

lim
N→∞
~→0

(tr(ρO)− 〈O〉)→ 0 , (45)

for macroscopic observables O. Similar behavior applies to higher point correlators. At ~
precision, the correlation functions of a probe operator in the thermal density matrix equates

to the correlation functions in a pure state that is an element of the thermodynamic ensemble

for almost all probes. Thus, the entropy measures the inability to distinguish elements of

the ensemble from each other. The semiclassical geometry emerges from a thermodynamic

coarse-graining over the microstates [47]. In particular, a new scale in quantum gravity

associates to the semiclassical horizon, where regular geometries corresponding to individual

microstates begin to diverge from each other [48]. The “typical” state corresponds to a

spacetime foam, with topologically complex features at the Planck scale; the effective long

wavelength description in low-energy gravity is a singular geometry [47]. Once again, from

our point of view, this “typical” spacetime foam state should be dual to a boundary turbulent

flow.

Finally, non-Abelian hydrodynamics has been treated in a dual AdS-like way in the

recent literature as mentioned in the beginning of this note [5, 8]. (See also an illuminat-

ing review [49].) In this context, the hydrodynamic description is related to black hole

backgrounds. Indeed, in [50] the technology of [8] is adapted to apply (2 + 1)-dimensional

fluid dynamics to yield a long-wavelength description of black holes in AdS4. In view of

the above-mentioned microstate picture of black holes we should expect that non-Abelian

hydrodynamic turbulence should be dual to the “typical” spacetime foam state.

Obviously there are many future avenues for working out the proposal presented in this

note. Through the above mapping between turbulence and spacetime foam and its possible

further elaborations, we hope that turbulence, the great problem of classical physics may

be informed by quantum gravity, the great problem of quantum physics, and of course, vice

versa.
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